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ABSTRACT

With this work we analyze the Secure Routing Protocol (SRP) proposed by Papadimi-

tratos and Haas as a means for securing source-driven route discovery in ad hoc networks.

We discuss flaws in SRP’s design and expose SRP’s shortcomings with respect to its security

goals. We analyze SRP using both the canonical BAN logic analysis for cryptographic

protocols and the CPAL-ES formal methods suite.

Formal methods work in broadcast paradigms is a burgeoning research area. As such,

we discuss the challenges this environment poses for formal methods analysis and suggest

changes to CPAL-ES that will assist future ad hoc network protocol analyses.

We introduce an attack which demonstrates SRP’s vulnerabilities and our bloodhound

solution. We abstract the attack and conclude that protocols developed in the likeness of

SRP are equally vulnerable. Finally, we point out SRP’s unrealistic assumptions that make

it unfit for use in practical MANET applications.

ix



CHAPTER 1

INTRODUCTION

Mobile ad hoc networks (MANETs) are gaining popularity as an attractive, and in

some situations a necessary, alternative to traditional wired networks. MANETs provide

a means of peer-to-peer communication without a pre-existing infrastructure. Their uses

range in scale from servicing rural mountainous regions to provisions for communications in

emergency or battlefield situations [1, 2].

Because of their natural characteristics, MANETS utilize message relay to deliver

messages. For efficiency, many have proposed routing algorithms to uniquely support this

purpose [3, 4]. Recently, a flurry of research has been directed at protecting routing in this

environment [5, 6, 7]. In this work, we illustrate the complexities involved with evaluating

MANET security protocols by analyzing the proposed Secure Routing Protocol (SRP) [8].

1.1 Cryptography and Security

Because MANETs are put into practice, it behooves us to find ways to protect these

networks with the common security goals of confidentiality, authentication, and integrity. It

is widely known that cryptography is used to provide privacy of communicated information;

indeed, cryptography is often loosely defined as the art of secret writing. For our purposes,

however, cryptography has a much more developed definition. Table 1.1 lists the three

security features cryptography provides with a brief description. We address each of these

in more detail below.

Confidentiality fits well with the colloquial use of the term cryptography. That is,

confidentiality is concerned with maintaining the secrecy of message contents. Being the

most popular goal of cryptography, it is also the most widely studied. There are numerous

mechanisms which provide privacy, referred to as cryptosystems. Cryptosystems run the

gamut with respect to strength (i.e., their difficulty to break). For strong cryptosystems,
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Table 1.1. Security goals of cryptography.
Goal Description

Confidentiality provide privacy and secrecy
Authentication identify origins of message
Integrity detect message modification

it is generally accepted that the choice of key and not the obfuscation of the algorithm is

what makes the resulting cipher-text hard to decipher. All cryptosystems have well-defined

encryption and decryption algorithms that have these properties.

c = e[msg]k,

msg = d[c]k′, or alternatively

msg = d[e[msg]k]k′.

With encryption key k and matching decryption key k′, decryption function d under key k′

performs the reverse operation of encryption function e under key k.

With authenticity, the goal is to determine the origin of a message. Most often this is

accomplished by the originator disclosing some knowledge that only it possesses. Passwords

and biometrics serve this purpose, the former considering what an entity knows, the latter

what an entity physically possesses. An alternative approach is for both communicating

principals to establish a trust relationship with a trusted third party. The principals then

authenticate utilizing this shared trust in the third party.

Integrity is concerned with whether message contents have been modified. Methods for

protecting message integrity devise strategies to detect when a message has been tampered

with. A common technique is to attach a digest (or hash) of the message along with the

message itself. As the name suggests, the digest is a condensed fixed-length output of the

input message. Message digests have many special properties [9], most important of which

is one-wayness. This property states that given a hash function h : X → Y and an element

x ∈ X , it is computationally infeasible to find x′ ∈ X with x 6= x′ such that h(x) = h(x′).

For our purposes, this expresses that it is sufficiently difficult to alter a message so that this

new message produces the same digest as the unaltered message. A receiver verifies message

integrity by executing the hash function on the received message and comparing the result

to the received hash.
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The goals of authenticity and integrity are often combined using a keyed-hash. The

resulting computation is called a Message Authentication Code (MAC ). A MAC is computed

as follows.

MAC = h(msg, k)

While the hash function is publicly known, only two parties who share key k can produce the

MAC. The properties of hash function h protect integrity while key k provides authentication.

1.2 Security Protocols

As we intend to study security protocols, it serves us well to formally define the terms

that we rely upon. Security expert Bruce Schneier defines protocols as three-pronged

structures [10]:

1. a series of steps

2. 2 or more participants (principals)

3. well-defined goals

In many ways protocols resemble algorithms, in that they follow a process and accomplish

some task. This does not comprise a protocol, however, without the participation of two or

more principals.

Cryptographic (more recently, security) protocols employ the cryptographic techniques

described in Section 1.1 to accomplish the security goals of confidentiality, authenticity, and

integrity. The study of security protocols demonstrates that the process of achieving these

security goals is just as important as the mechanism itself; stated concisely, the how is

equally as important as the what. One could choose the strongest cryptosystem, but if a

well-designed security protocol is not followed, security can easily be compromised.

Cryptographic techniques are used in protocols to prevent malicious principals from

thwarting the goals of the protocol. While this purpose seems clear, the means to this

end are not always so crystalline. As we will see with SRP, attacks and vulnerabilities

are often subtle and all too frequently the result of insufficient analysis on the part of the

designers.
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1.3 Secure MANET Routing

The goal of SRP is to successfully establish a route between source and destination nodes

in an ad hoc network of untrusted nodes. This is achieved through source-driven route

discovery. SRP is a security extension for existing insecure MANET routing protocols. The

novelty of SRP is that only the two end nodes (source and destination) must have a security

association, which includes a key. Where many MANET protocols assume the presence of a

public-key infrastructure (PKI) or group-key establishment, SRP makes no such assumptions

about intermediate nodes. Still, the designers claim that after SRP executes the source and

destination are guaranteed that the route between them is non-corrupted. With this as its

goal, our analysis shows that SRP is flawed.

We begin in Chapter 2 with an introduction to the Secure Routing Protocol. In

Chapters 3 and 4 we analyze SRP using the canonical BAN logic as well as CPAL-ES

formal methods. We discuss an overlooked attack on SRP and its solution in Chapters 5

and 6. In Chapter 7 we argue that any security protocol designed in the likeness of SRP

is inherently flawed. We conclude this work by suggesting future research directions and a

summary of our analysis.
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CHAPTER 2

THE SECURE ROUTING PROTOCOL

Route discovery in MANETs has been a key area of focus in recent years, with the

Ad-hoc On-demand Distance Vector routing (AODV) [11] and Distance Vector Routing

(DSR) [1] algorithms emerging as de facto protocols. Rather than their standard pro-active

counterpart in wired networks, AODV and DSR are reactive protocols that establish routes

on an “as-needed” basis. Route discovery is source-driven with a query and response scheme.

Both protocols share the benefits of simplicity, efficiency, and low resource consumption.

The two protocols differ with respect to their storage of routing information. In AODV,

nodes store only the next node along the route to a destination. DSR, on the other hand,

stores the entire route at each node. The Secure Routing Protocol (SRP) is designed in the

likeness of DSR.

SRP, in fact, naturally extends DSR and similar protocols such as the Zone Routing

Protocol (ZRP) [12] and the Interzone Routing Protocol (IERP) [13]. While these latter

protocols pay little attention to the security issues discussed in Chapter 1, SRP’s goal is to

establish routes which correctly identify the network topology even in the face of malicious

intruders. The three operating assumptions of SRP are:

1. communication between nodes is bi-directional, defined in [2] to imply symmetric node

communication. That is, if A can receive from B at time t then the converse also holds

(namely, B can receive from A at time t);

2. a Security Association (SA) exists between the source S and target T . The SA provides

authentication by the pre-established shared key KS,T between S and T ; and

3. the protocol runs in an environment with non-colluding nodes.
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SRP’s insistence that only the two end nodes require a shared key makes the approach novel.

However, as we will show, the fact that there is little control over the activity of intermediate,

routing nodes is cause for concern.

We provide a working description of the steps involved in SRP, while remaining faithful

to the authors’ design [8]. SRP has four fundamental components: (1) route request, (2)

query propagation, (3) route reply, and (4) reply validation.

2.1 Route request

For source node S to initiate a route discovery to target node T , it issues a route request

in a query packet. The following four fields are contained within the SRP header:

1. Qseq → a monotonically increasing Query sequence number that S maintains for each

T between which it attempts to establish a route. This field is used by T to recognize

outdated or replayed route requests.

2. QID → a 32-bit random number that provides distinguishability of requests.

3. Message Authentication Code (MAC) → a 96-bit keyed-hash of the IP header, Qseq,

and QID. The MAC is generated with the key KS,T shared by S and T .

4. route → initialized with the source address S.

The MAC excludes those fields within the IP and SRP headers that may change during

packet propagation. The authors claim this use of a MAC renders “the scheme efficient and

scalable.” However, we will demonstrate that it makes SRP vulnerable to attack.

With the route request packet initialized by the source, it is transmitted by broadcast.

2.2 Query propagation

Nodes within the transmission range of source node S and are not target node T are

called intermediate nodes. These nodes act as relays for the route request, allowing it to

traverse the ad hoc network.

Upon receipt of a route request, intermediate nodes extract the source and destination

addresses from the IP header and the QID field from the SRP header; it uses the source
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and destination addresses to maintain an entry in its query table with a QID attribute. If

a source-target entry with a matching QID exists, the packet is discarded as a replayed or

previously processed route request. Otherwise, the intermediate node updates the route field

by appending its IP address. It then forwards the route request by broadcast.

This query propagation is repeated by subsequent intermediate nodes until the packet

reaches its target.

2.3 Route reply

When the route request reaches target node T it is verified. T first checks the source

address in the IP header to determine if it shares an SA with the query initiator. If it does,

T compares Qseq from the SRP header to Smax, a maximum sequence number T maintains

for each of its SA partners. If Qseq ≤ Smax, the query packet is discarded as a replayed

or previously processed request. Otherwise, T computes the MAC with Qseq, QID, the IP

header, and KS,T . T then compares the received MAC with the one it computes to verify

message integrity with respect to the included fields.

At this point, T composes the route response. The response packet includes the four

fields of Section 2.1, with one modification to the MAC field. T will include the accumulated

route field within the response’s MAC. The response is then unicast along the reverse of the

identified route.

Intermediate nodes will perform the checks of Section 2.2 and propagate the response

accordingly.

2.4 Reply validation

When S receives a response packet, it verifies the source, destination, Qseq, and QID

fields to determine the packet’s legitimacy in response to a valid query. S then compares the

route accumulated during the response packet’s propagation to the reverse of the route field

identified by T . If the two routes do not match, the response is dropped due to detected

malicious activity. Otherwise, S computes the MAC from Qseq, QID, the IP header, and

KS,T . It then compares the MAC it computes with the MAC received in the response packet.
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If the MACs match, S accepts the route response packet as non-corrupted and deems the

route a legitimate path to send traffic between itself and T .

2.5 Remarks on SRP

We argue that using only a MAC and an SA between two end nodes does not ensure

that the identified route between S and T actually exists. The vulnerability exists for two

related reasons. First, the protocol does not effectively regulate the activity of intermediate

nodes. Second, as a result of unregulated intermediate node activity, target node T has no

way of verifying any data altered or accumulated by intermediate nodes.

With regards to the first, we note that the designers intended matching forward and

reverse routes to regulate intermediate node behavior. The designers argue that this, coupled

with the first-in wins strategy whereby the route request first received by T supersedes all

subsequent requests, sufficiently ensures security. Still, intermediate nodes are not forced

to append, for example, their IP addresses. Our attack exploits this fact. With regards

to the second, because T cannot trust data altered by intermediate nodes it has no way to

verify that the route field is, in fact, legitimate. We elaborate on these issues more when we

introduce our attack in Chapter 5.
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CHAPTER 3

BAN LOGIC ANALYSIS OF SRP

BAN logic [14] is a logic of belief used to infer properties about security protocols. BAN

comprises its own notation of predicates and rules of inference. In Table 3.1 we provide

a summary of some common predicates. BAN predicates are used to express beliefs and

Table 3.1. BAN logic notation.
Notation Description

P �X P is told X
P 3 X P possesses X
P |∼ X P once said X
P |≡ X P believes X
P |≡ ]X P believes X is fresh

P
KP,Q←→ Q KP,Q is a goodkey between P and Q

P |⇒ X P has jurisdiction over X

intentions of participants in a given protocol. There are three rules of inference that allow

analysts to deduce properties of a given protocol from the predicates. For our analysis, we

are concerned with the inference rules of jurisdiction and message meaning given below; the

third may be found in [14]. For jurisdiction we have

((A|≡ S|≡ X), (A|≡ S|⇒ X))

(A|≡ X)
. (3.1)

In general, the numerator expresses the predicate(s) which must be true to infer the

predicate(s) in the denominator. In this case, if A believes that S believes X and A believes

that S controls (has jurisdiction over) X, then we can infer that A believes X. For message

meaning we have

((A
kab←→ B), (A� {X}kab)

(A|≡ B|∼ X)
. (3.2)
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That is, if A and B share a goodkey kab and A is told {X}kab, then we can infer that A

believes that B once said X.

A common simplification axiom that allows inference of fields within concatenated values

is

P |≡ (X, Y )

P |≡ X
.

Succinctly, this states that if we believe a concatenated message we also believe its constituent

parts.

The process of coding of protocol in BAN logic notation has three steps: idealization,

annotation, and deduction. In idealization, the analyst translates actions on data into beliefs

and intentions of the involved principals. This requires a macroscopic view of the purpose

of the protocol. As an example, the following message

A→ B : {B, kab}kbs

could be idealized to

A→ B : A
kab←→B . (3.3)

Annotation uses simplification rules or intuitive reasoning to find further predicates that may

be helpful when combined with the inference rules. To continue our example, Equation 3.3

may be annotated by

B � {A kab←→ B}kbs.

With these predicates one can now use the three inference rules to deduce properties about

the protocol.

3.1 The designers’ BAN analysis

In their introduction of SRP [8] the designers present a BAN logic analysis of the protocol.

They decompose SRP into its two fundamental messages, the route request (query) and the

route reply (response). These two messages can be represented by

S → T QS,T , H(QS,T , KS,T )

T → S RS,T , route,H(RS,T , route,KS,T ).

10



QS,T is the route request header information which includes the source, target and Qseq; RS,T

is the route reply containing the same three fields. Recall, Qseq links RS,T to QS,T . In these

messages, the MAC value is represented by H(<fields>,<key>).

The initial assumptions of SRP are given below in BAN logic notation.

S 3 KS,T , S|≡
KS,T

S ←→ T

T 3 KS,T , T |≡
KS,T

S ←→ T

S 3 Qseq, S|≡ ]Qseq

T 3 Np
S,T .

We assume the reader has little familiarity with BAN, so we also provide the following verbose

description of the assumptions. Both S and T possess the secret key KS,T and believe that

it is a good key. Furthermore, S possesses sequence number Qseq and believes it is fresh.

Lastly, T possesses a list of all sequence numbers Np
S,T that S has sent with previous route

requests.

When T receives the forward route request originating at S,

T � (QS,T , H(QS,T , KS,T ))

T 3 (QS,T , H(QS,T , KS,T ))
,

from which one can simplify

T 3 (QS,T , H(QS,T , KS,T ))

T 3 Qseq

.

Recall that QS,T contains Qseq within it. T uses Qseq to determine the freshness of the route

request. If Qseq /∈ Np
S,T then T believes the message is fresh. T will then compute the

MAC from the fields within QS,T and check its validity with H(QS,T , KS,T ) it receives. If

the message is fresh and the MACs match, then T believes that S once said (transmitted)

both the sequence number and the MAC. In BAN logic notation,

T |≡ S|∼ (QS,T ), T |≡ S|∼ (H(QS,T , KS,T )).

With these beliefs T prepares a response packet and includes the route field accumulated

during query propagation by intermediate nodes.
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Upon S’s receipt of the forwarded response packet,

S � (RS,T , route,H(RS,T , route,KS,T ))

S 3 (RS,T , route,H(RS,T , route,KS,T ))

and subsequently

S 3 (RS,T , route,H(RS,T , route,KS,T ))

S 3 Qseq

.

Again, recall that RS,T contains Qseq within it. Because S believes the freshness of Qseq, S

also believes the freshness of (Qseq, route) and RS,T which contains both fields. With the

predicates

S �H(RS,T , KS,T ), S
KS,T←→ T,

one can use the message meaning rule from Equation 3.2 to infer

S|≡ T |∼ RS,T .

At this point the designers claim “S believes that the entire route reply datagram originates

from T and is fresh and, trivially, that T has constructed route” [8] (emphasis on “trivially”

ours). While we agree with the former statement, we first showed in [15] the latter claim

to be false. That is, T does not in fact construct the route field as the designers suggest;

rather, T accepts the accumulated route based on misplaced trust.

It is evident that T once said (transmitted) the route field. In no way does this guarantee

the accuracy of what T said let alone the security of the protocol as a whole. We expand

our argument in the next section.

3.2 Critique of BAN analysis for SRP

In their seminal paper introducing BAN logic for analysis of authencation protocols,

Burrows et al. note that BAN was not designed to consider the impact of clear-text messages

in protocols. Specifically, they state:

The idealized protocols of the examples given . . . do not include clear-text

message parts . . . We have omitted clear-text communication simply because

it can be forged, and so its contribution to an authentication protocol is mostly

one of providing hints as to what might be placed in encrypted messages [14].
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So while clear-text messages can be used by analysts to better understand the intent of a

protocol, the authors are quite clear that clear-text messages can compromise security.

That the route field in the SRP header is sent in the clear is cause for concern. While

use of the route field may be legitimate when linked to an encrypted message part, because

the route is created in transit no such link exists between it and the MAC. Furthermore, no

single node can claim responsibility for the route’s correctness. As a result, its stand-alone

use is errant.

However, S still uses the reverse of the route to identify the contents of the MAC. This

despite T having placed the route within the MAC without any means to verify its integrity.

The designers’ word choice that T has “constructed” the route is misleading; T has simply

forwarded the accumulated route from a query request it verifies as non-corrupted. Our

attack in Chapter 5 demonstrates how T can erroneously reach such a conclusion.

The designers’ inferences from Section 3.1 are necessary but insufficient to logically reach

their conclusion. To say that T has constructed the route, some node (perhaps T itself)

must necessarily have jurisdiction (control) over the route field so that S can believe the

route is legitimate. According to the jurisdiction rule of Equation 3.1, we require

S|≡ T |⇒ route and S|≡ T |≡ route

S|≡ route
.

That is, S must believe both that T has control over the route and also that T believes

the route for it to truly believe that route is legitimate. While this may stretch the limits

of BAN logic (see Section 3.3), the designers do not attempt to claim that T believes it

controls route, let alone that S believes that either T believes or controls the route. As a

result, S has no grounds on which to base its belief that the route field is legitimate.

3.3 Limitations of BAN logic

We not only wish to illustrate that the designers’ conclusion about the source node’s

belief in the route’s validity is false, we also argue that any such belief does not in itself

constitute a claim that the protocol is secure. This work was first introduced in [16].

It is widely accepted that logics of belief provide no guarantee of security [17, 18, 19].

Security protocol analyst Paul Syverson states, “The goal of a logic such as that of Burrows,

Abadi and Needham is to evaluate the trust that may rightly be placed in a protocol by
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legitimate participants” [18]. It does not, however, say anything about the security of such

protocols in hostile environments. As the designers of BAN themselves note, “The restrictive,

operational notion of belief that we have adopted would certainly be harmful in the study of

security protocols” [14]. Furthermore, BAN logic is an incomplete system. As such, a BAN

logic proof showing success or failure does not mean that the protocol is insecure; rather, it

points to a potential problem. So, we view the inability of BAN to find SRP’s attack not

as a flaw of BAN logic, but rather a misuse of BAN logic. As Syverson succinctly states,

“BAN deals only with trust and not security” [18].

Assessing protocol security represents a difference in perspective from that of trusted

principal beliefs. As an analyst, one must view the protocol from the eyes of a malicious

adversary. In this way one goes beyond the beliefs of legitimate participants to identify

potential vulnerabilities that intruders can exploit. With untrusted intermediate nodes,

surely we must consider the actions of illegitimate nodes in the network in which SRP

executes. BAN cannot reason about such illegitimate principals.

Finally, we note that BAN logic was intended for use with protocols in traditional, wired

networking environments. In such networks, true point-to-point communications is (or can

be) achieved. However, the very nature of ad hoc networks is broadcast and dependent

upon routing amongst potentially malicious nodes. BAN has no mechanisms for handling

the “leap-frogging” technique of SRP in accumulating the route. We feel this, too, stretches

BAN beyond its intended purposes.
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CHAPTER 4

CPAL-ES ANALYSIS OF SRP

As we discussed in Chapter 1, appreciation for the value of protocol analysis stemmed

from the realization that even simple protocols can be attacked in very subtle and clever

ways [20]. As a result, a number of techniques have been employed to analyze security

protocols. We have already seen BAN logic analysis in the previous chapter. In this chapter,

we discuss a technique that employs formal methods.

With formal methods, the analyst has a rigorous proof mechanism which can be used

to determine if a protocol attains its security goals. Borrowing concepts from programming

language design, the analyst develops a formal syntax to represent the protocol steps and a

semantics to reason about the meaning of these steps. For our study, we have chosen the

Cryptographic Protocol Analysis Language Evaluation System (CPAL-ES) [21], an existing

formal methods environment developed specifically for security protocol analysis. In the

following sections, we introduce CPAL-ES and our use of it in the analysis of SRP.

4.1 Syntax of CPAL-ES

CPAL-ES uses protocol specifications in standard notation as a guideline for creating a

formal syntax. The fundamental aspect of any protocol is its send operator, but CPAL-ES

makes the matching receive operator equally important; where standard notation assumes a

receive succeeding a send, CPAL-ES makes such assumptions explicit.

CPAL-ES uses a queue structure to maintain the ordering of sends and receives that works

as follows. A sender uses a send statement that places the sent message on the receiver’s

queue. The send should be viewed as taking a value in the sender’s address space and

making it available to the receiver. The receiver explicitly extracts this value from the front

of the queue with a receive statement; this places the value in the receiver’s address space.

CPAL-ES’s queue structure enforces an ordering of alternating send and receive statements.
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We use the following example to further illustrate the send and receive statements, as well

as provide an introduction to the syntax of CPAL-ES.

A: => B(msg);

B: <- (msg);

CPAL-ES defines send statements in one of two ways: secure- and insecure-sends. The

former is most commonly used. The secure-send assumes the establishment of a secure

channel between the sender and receiver. In the example above, A securely sends (=>) the

message msg to B. The subsequent receive (<-) statement is issued by B. Notice that a

CPAL-ES statement begins with a principal, then a separating colon, the statement the

principal will execute, and finally an ending semi-colon.

The insecure-send (->) is used for those instances when a secure channel is either

not available or cannot be assumed. The purpose of the insecure-send is to allow for

malicious intermediate node activity. Regardless of the intended recipient, in CPAL-ES

an insecure-send must always be followed by a receive statement by malicious intruder I.

Consider the following example.

A: -> B(msg);

I: <- (msg);

I: => B(dummy_msg);

B: <- (msg);

The code is similar to our first example, only that A’s secure-send is replaced with an

insecure-send. Intruder I can manipulate the received message in any way, or simply replace

it as is the case here. I may then forward a message onto the intended recipient B.

A common operation in many protocols is concatenation. CPAL-ES supports this action

with the following syntax.

A: msg := <part1,part2>;

Here we see that A assigns the concatenation of part1 and part2 to msg. Concatenation of

multiple fields is permissible, with each field separated by a comma. The reverse operation

(separation of concatenated fields) is expressed by the following.
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A: (part1,part2) := msg;

Functions in CPAL-ES are globally defined. The design strategy here was to permit

two principals invoking a function with identical parameters to be returned the same value.

This adds simplicity to the implementation, but also supports mechanisms used in security

protocols. For example, hash functions (such as the one below) are typically publicly defined.

As we discussed in Section 1.1, hash function’s security is achieved through a parameterized

secret key.

A: hash(parm1,parm2);

Naturally, CPAL-ES supports symmetric and asymmetric cryptography. However, the

four features described above (send, receive, concatenation and functions) are the only

ones we employ in our analysis. For a more thorough description of the CPAL-ES syntax,

see [21, 22].

4.2 Semantics of CPAL-ES

CPAL-ES uses weakest precondition logic to reason about security protocols, building

on Hoare logic [23, 21]. We illustrate this concept with an example. Suppose we execute

the statement (y := x + 3) and that we want the postcondition (y == 7) to be true after

statement execution. The goal of Hoare logic is to determine what precondition must be

true before statement execution for the postcondition to be true after statement execution.

The problem takes the general format

P{S}Q

where S is (y := x+3), Q is (y == 7), and P is the weakest precondition to be determined. To

solve for P , we work in reverse and perform substitutions as follows. For a given postcondition

Q, replace variables from Q with equivalent right-hand values from statement S. In our

example, Q derives

(y == 7) =⇒ (x+ 3 == 7).

To find the weakest precondition P , simply solve for x. In this case, P is (x == 4).
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As one can see, Hoare logic requires a bottom-up approach. It is extended for multiple

statements with the following concatenation rule,

P{S1, S2}Q =⇒ P{S1}R, R{S2}Q

where R represents some intermediate condition. In simple terms, R serves as both the

postcondition of statement S1 and the precondition of statement S2.

Postconditions in CPAL-ES are expressed with assertion statements. Assertions represent

the goals of a security protocol. Assert statements take two forms: assert() and gassert().

The former is used for variables within the asserting principal’s address space, while the latter

allows for variable comparisons across address space boundaries. For example, to assert the

equality of the variable val in A and B’s address spaces, the following statement could be

used.

global: gassert(A.val == B.val);

Notice that variables with the global assert must be prepended with the principal in whose

address space they belong; we call such variables fully-qualified.

Analysis performed by CPAL-ES steps backward through a protocol to determine the

weakest preconditions that must be true for the postconditions to logically be deduced – that

is, for the security goals to be achieved. Once the weakest preconditions are determined, they

can be expressed as assumptions with the assume statement. For example, it is common to

see a key shared by S and T be assumed equal with the following.

global: assume(S.k == T.k);

Assume statements also use fully-qualified variables to distinguish principal address spaces.

Once a statement is assumed, further statements can be logically derived from it; this often

greatly simplifies CPAL-ES analysis.

In this way, CPAL-ES does not directly identify protocol flaws or vulnerabilities. Rather,

CPAL-ES forces the analyst to explicitly state (with assume statements) the necessary

conditions for a protocol to attain it security goal(s). Such assumptions are either tacit or

have yet to be considered. As we have alluded to already, tacit assumptions are dangerous in

security protocols; they leave room for interpretation and the possibility for injected error.
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Authors’ assumptions should be clearly expressed to ensure proper protocol implementation

and use. Assumptions that have yet to be considered provide insight into the design and

strength of a protocol, and they may even identify vulnerabilities. Our analysis in Section 4.4

demonstrates such a vulnerability with SRP.

4.3 CPAL-ES Encoding of SRP

CPAL-ES was developed with wired security protocols in mind. While many of the

CPAL-ES design features carry over to the wireless environment, we encountered many

difficulties in our encoding of SRP. We address these issues in this section, and in Chapter 8

we suggest adaptations to CPAL-ES to assist wireless protocol analysis.

Little work has been done with formal methods in wireless environments. The ad

hoc nature of this environment introduces complexities. In true MANET route discovery

protocols, nodes can assume very little about network topology. In most cases, a node

does not even have knowledge of its neighboring nodes. This makes it difficult to direct a

transmission over a secure channel to an intended recipient; the recipient node may have

moved out of range or may never have been a neighbor.

In our CPAL-ES encoding of SRP, we have made some assumptions about the ad hoc

network topology. The topological assumptions are for modeling purposes and are in no way

intended to limit the scope of SRP. Rather, the assumptions are intended to make analysis

more controlled while remaining faithful to the authors’ design. For the purposes of our

analysis, we assume the ad hoc network topology of Figure 4.1 with nodes S, A, B, and T. A

link between two nodes represents the fact that the two nodes are within transmission range

(i.e. assuming bi-directionality, packets can be sent to and received from each node).

SRP’s full CPAL-ES encoding is given in Appendix A. We do not yet consider broadcast

transmissions; we will address this issue later during our attack in Chapter 5 and the solution

in Chapter 6. As such, all sends are issued securely (=>). Of particular interest in SRP’s

encoding is the security goal at the last line of the protocol, reproduced below.

S: assert(reverse_route’ == found_route);

The assertion checks whether the route accumulated along the route reply equals the route

field certified by T. While there may be intermediate goals of SRP, this is its primary goal
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Figure 4.1. Ad hoc network topology.

and the one upon which we will focus. Stated simply, the goal of SRP is to identify a route

between S and T that indeed exists. We now provide an analysis of how well SRP achieves

this goal.

4.4 CPAL-ES Analysis of SRP

Appendix B shows the output of the run of SRP’s encoding through CPAL-ES. At the

very bottom, CPAL-ES produces the following predicate.

(<<<S.S,A.A>,B.B>,S.T> == <S.S,<A.A,<B.B,S.T>>>)

This identifies the weakest precondition that must be true before protocol execution for the

security goal (assertion) to be achieved. The contents of the two concatenations show that

this equality condition concerns the accumulated route. A cursory look at the predicate

would have the casual observer believe this to be a rather trivial concession and perhaps an

obvious assumption to make. However, we point out two important subtleties.

First, the order of concatenation is important. On the left-hand side we see that values

are appended to the accumulated route, which occurs only during forward query propagation

of the route request. Values on the right-hand side are prepended, which occurs only

during the reverse route reply. While this may appear to be an annoying idiosyncrasy of

CPAL-ES, it illustrates the importance of even a seemingly small detail such as the ordering

of concatenation and the impact it can have on security. In fact, our analysis may not have

identified the flaw had it not been for CPAL-ES’s rigidness.

Second, and more importantly, notice that the contents of the concatenations (the fields)

contain fully qualified variables in A and B’s address spaces. Recall, A and B are untrusted
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intermediate nodes. However, for the identified route to be verified by the source it must

allow intermediate nodes to have a high level of involvement and participation in that route’s

establishment. But the very nature of S’s relationship with A and B indicates that it places

little trust in these intermediate nodes. There is no jurisdiction over these nodes, so an

entity cannot verify that they appropriately follow SRP’s query propagation rules. Expressed

another way, no entity can ensure that intermediate nodes append an IP address let alone

their own. We show that this brings about the attack we introduce in the next chapter.
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CHAPTER 5

ATTACK ON SRP

We first showed in [15] that an attack on SRP is possible by a single malicious

intermediate node without collusion. This attack exposes a fundamental weakness of

broadcast communications, namely that without some authentication scheme it is difficult

to detect precisely who sent a message.

The attack arises when a malicious intermediate node I does not append its IP address

to the route field of the SRP header. Recall, target node T uses the accumulated route to

establish a path between S and itself. Even when I does not append its IP address, according

to SRP, T will verify the query packet and send a response packet along the reverse path.

5.1 The Attack

We use the ad hoc network represented in Figure 5.1 to illustrate the attack. We use

Figure 5.1. Attack network topology.

CPAL-ES notation to provide the steps of the attack. Recall, the nodes operate in a broadcast

environment so the notion A “sends to” B is not well defined. For our purposes, A => B

implies A broadcasts a message intended for B; the receive statement (<-) determines which

principal, in fact, receives the message. We are mostly concerned with the route field for

our attack, so we ignore the other SRP fields. Accordingly, our attack only manipulates the

accumulated route.
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Below we show the actions during the route request propagation that lead to the attack.

1. S: route := S;

2. S: => A(route);

3. A: <- route;

4. A: => B(<route,A>);

5. I: <- route;

6. I: => B(route);

7. B: <- route;

8. B: => T(<route,B>);

9. T: <- route;

10. T: route := <route,T>;

Notice, in steps (5) and (6) I intercepts the broadcast and simply forwards the identical

packet onto B without appending its IP address. Still, T verifies the MAC and, because no

fields used to compute the MAC have been altered, accepts the route request. T creates the

route reply packet and computes a new MAC with the accumulated (false) route. The route

reply follows this process.

1. T: rev_route := T;

2. T: => B(route,rev_route);

3. B: <- (route, rev_route);

4. B: => A(route,<rev_route,B>);

5. I: <- (route,rev_route);

6. I: => A(route,rev_route);

7. A: <- (route,rev_route);

8. A: => S(route,<rev_route,A>);

9. S: <- (route,rev_route);

10. S: rev_route := <rev_route,S>;

Again, notice that I does not append its IP address. Once S receives the route reply it

verifies the MAC and then tests route and rev_route for equality. This check is satisfied so

23



S accepts the route reply and deems the route SABT legitimate. Therefore, I has successfully

deceived S and thwarted the security goals of SRP.

5.2 Implications

The result of the attack is that S erroneously believes a route exists between T and itself

that does not depend on the participation of intermediate node I. Yet, S undoubtedly relies

on I to forward packets so they finally reach T.

To illustrate a possible implication of S’s false belief concerning the route, consider what

happens when I leaves the ad hoc network. Any route maintenance technique will be unable

to notify S that the route is no longer intact because it is believed the route does not rely on

I’s presence. If one extrapolates this, it is easy to envisage that the intruder could become

involved in many such routes and thus have some control over the ad hoc network.

Consequences aside, the attack shows that SRP is flawed. SRP does not meet its goal

to guarantee that the identified route is non-corrupted. The fundamental characteristic of

this attack is that untrusted intermediate nodes can forward a packet without appending

their IP addresses. The reliance of the source and destination on the actions of untrusted

intermediate nodes produces this vulnerability.

5.3 CPAL-ES Analysis of SRP Attack

To encode the attack, we utilized the insecure send (->). Recall, this requires transmitted

messages to go through malicious intruder I regardless of the true intended recipient. We

provide the essence of our attack in the following snippet; the full encoding of the attack can

be found in Appendix C.

A: <- (route);

A: route := <route,B>;

A: -> B(route);

I: <- (route);

I: => B(route);

B: <- (route);
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This shows A receiving the route field and appropriately appending its identifier. A insecurely

transmits the route to B, which malicious intruder I intercepts. I does not append its

identifier, but simply forwards the message onto B. This leaves little doubt that the identified

route relies on I’s participation, and yet I is not included in the accumulated route field.

Not only does B not possess a mechanism to detect the malicious activity, but worse still

target node T will verify the route request it later receives. T subsequently accepts the route

and creates a route reply with the route as an integral part. The reply follows the steps

outlined in Section 5.1. Upon receipt, S will accept the route with no knowledge of I.

When we ran the encoding of SRP found in Appendix C through CPAL-ES, we formally

verified our hypothesis. The predicate CPAL-ES produces (see Appendix D) shows what we

already knew from Section 4.4. There is no indication of I’s malicious activity or even that

the protocol had been exploited.

CPAL-ES analysis confirms our attack. It provides further insight by showing that

untrusted intermediate nodes may perform any of a number of malicious activities and

thwart detection. While the MACs produced by S and T limit the extent of such activity,

this security measure is inadequate to mitigate malicious activity and resulting compromises

to security.
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CHAPTER 6

SOLUTION

In [2] the authors introduce watchdog as a means to detect and mitigate node misbehavior.

We first proposed an adaptation to watchdog we called bloodhound in a discussion panel [15].

bloodhound was designed as an extension to SRP and it detects the attack of Chapter 5.

First, we shall describe watchdog and then our bloodhound adaptation.

6.1 Watchdog

As in Figure 5.1, suppose a path exists between S and T with intermediate nodes A, I,

and B. Recall that because A cannot reach B directly, it routes packets through I who is

within transmission range of both A and B. When I forwards the packet, not only does B

receive it but A also overhears it. The ability of A to overhear this transmission is a result of

the bi-directionality assumption we introduced in Chapter 2. In this way, A can determine

if its packet has been forwarded properly.

The authors make use of watchdog to determine if a packet identical to the one A sent

is forwarded by I. To this end, A maintains a buffer of recently transmitted packets. If A

overhears a packet matching one in this buffer, then A knows I has properly handled the

forward and the buffer entry is erased. On the other hand, if a specified timeout period

elapses and A does not overhear the forwarding of its packet then A increments a failure tally

kept for I. Once the tally exceeds a threshold, I’s behavior is flagged as malicious.

6.2 Bloodhound

We first consider the adaptation that solves the root cause. Upon further analysis, we

showed in [16] that this solution injects a subtle vulnerability. We provide our full solution

in Section 6.2.2.
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6.2.1 Closing the SRP gap

Initially, the adaptation to watchdog was minor: the scheme’s steps remained identical

while only the interpretation of and response to a buffer match differed. Because bloodhound

is an add-on to SRP, we know how a “loyal” intermediate node behaves (see Section 2.2). In

short, an intermediate node need only append its IP address to the route field then forward

the packet. As a result, A should never overhear a packet identical to one it has previously

sent.

To illustrate, let’s revisit our example from Chapter 5. Suppose A forwards a query packet

with route = SA. Any intermediate node Ni within A’s transmission range will receive the

packet, append its IP address (Ni) and forward the packet. A overhears this forward and

notes that the packet with route = SANi is not identical to one it sent, signaling that the

packet has been properly forwarded.

Suppose, however, that the intermediate node is malicious (Ni = I) and that it attempts

to exercise the attack from Chapter 5. In this case, I will not append its IP address to the

route. Instead, I forwards exactly what it receives from A. A will overhear the packet and

notice that the packet is identical to one it transmitted. When A encounters a match with an

entry in its transmission buffer it knows malicious activity is being perpetrated by one of its

neighbors. However, A does not have any way of discerning which node in its transmission

range is acting maliciously. In this event, A can choose from two courses of action. First,

if S and A have a SA and an established route, then A can notify S that a route reply with

a given QID and A as a route member is suspect. The action is then left up to S. Second,

A can flag the entry in its buffer “malicious.” If A later receives a response packet with the

same QID as a “malicious” entry, then it drops (does not forward) the response. In this way,

S will never receive a corrupted route.

The second approach seems the more elegant of the two: it is simple, it does not presume

the existence of a SA between S and A, and it requires no decision on the part of S. However,

it injects error into the system in the form of a denial-of-service (DoS) attack. An example

should help to clarify. Suppose we have the network topology of Figure 6.1. In this attack, I

is not on the route between S and T. However, I is within transmission range of A and, thus,

overhears the packet A forwards. Suspecting that bloodhound is in use, I can simply forward
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Figure 6.1. DoS attack network topology.

an identical packet to the one it received from A. Due to bi-directionality, A overhears this

packet and labels its entry in the transmission buffer “malicious.” As a result, any response

packet A receives with a matching QID is dropped. I has successfully employed a DoS attack.

6.2.2 DoS removal

The error occurs because nodes running bloodhound over-react, per se. To resolve this

problem intermediate nodes must react more cautiously. Expanding upon our example from

Section 6.2.1, when A overhears a packet identical to one it transmitted, instead of labeling

its entry in the transmission buffer “malicious” we recommend labeling it “suspicious.” As

Figure 6.1 shows, A also overhears a packet B forwards with route = SAB. When A receives

a response packet from T it can check to see if the route field is T*B where * represents

one or more intermediate nodes. Recall, A can identify the route response by QID and the

accumulated route in the response is in reverse order. If the route matches A’s expectation

then A can forward the response instead of dropping it as the simple solution of Section 6.2.1

suggests.

More formally, let TRA denote the set of nodes within transmission range of A. For all v

∈ TRA, if A overhears a packet with route S*Av, A will make note in its buffer that it could

receive a response with route = T*v. When A receives such a response it appends its IP

address to the route field and forwards the reply. A then flushes its buffer of all entries with

the response packet’s QID. If, however, A does not receive a response for the request with
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QID, it flushes its buffer of those entries after some specified timeout period elapses as in

watchdog.

6.3 CPAL-ES Analysis of bloodhound

The bloodhound solution was our first encoding that required broadcast transmissions.

For bloodhound to work, nodes must be able to overhear packets their neighbors transmit.

Because CPAL-ES has no mechanism that specifically supports broadcast, we needed to

address this issue with this work. We found a way to simulate the broadcast paradigm, a

snippet of which we provide below; the full encoding of SRP with bloodhound is given in

Appendix E.

1. A: -> B(msg);

2. I: <- (msg);

3. I: => A(msg);

4. A: <- (overheard_msg);

5. I: => B(msg);

6. B: <- (msg);

First, notice that to simulate broadcast transmissions a principal must issue multiple send

statements. This is what I does in steps (3) and (5). These send statements assume some

knowledge of the network topology, but no more than we have previously assumed for our

modeling purposes. Once a node overhears a message, it executes bloodhound. Because of

our topology assumptions, nodes that are in a position to overhear only execute bloodhound.

In practice a node would possess the code to execute SRP and bloodhound and perform

conditional checks to determine which block of code to execute. However, for simplicity and

to keep the encoding short, we chose to execute only the bloodhound code on those nodes

that overhear broadcasts.

The CPAL-ES encoding of bloodhound uses assertion statements to compare the over-

heard message to the one it transmitted. If there is a match, the route request identified

by QID is flagged as suspicious. Due to expressive limitations of CPAL-ES we discuss in

Chapter 8, we were not able to set such a flag – we also had difficulty encoding the DoS

removal scheme of Section 6.2.2. However, we did develop a scheme that identifies the
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erroneous route in the CPAL-ES analysis. By recognizing identical forwarded packets, a

node executing bloodhound is able to send bogus QID and Qseq values in its route reply

forward to S. These bogus values convince the source node to drop the response and thus the

identified route it contains. When the source asserts the security goal, CPAL-ES requires

these bogus values to equal specific values for a true result. This demonstrates that the

bogus values serve their purpose. The output of CPAL-ES can be found in Appendix F.
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CHAPTER 7

COMMENTS ON SRP’S APPROACH

The “leap-frogging” approach used by SRP to accumulate relevant route information

using untrusted intermediate nodes proved to be flawed. This, coupled with SRP’s non-

colluding assumption, make the protocol suspect for use in truly hostile environments. It is

unrealistic and impractical to imagine an environment without the potential for colluding

entities. While less critical ad hoc network applications may adhere to these constraints, a

battlefield environment with highly sophisticated adversaries should not be bound by such

limitations. A DoS attack in such a scenario could prove disastrous.

The simple possibility of having even two colluding nodes renders the bloodhound solution

to SRP ineffectual. We illustrate this with an example. The aim of the protocol is for S

to establish a route to communicate with T, where T can be reached through P, Q, and B

with P and Q being malicious colluding nodes. Figure 7.1 represents this situation. Each

node in the network has SRP and bloodhound codes available. As in Chapter 5, we are

Figure 7.1. DoS attack with collusion.

only concerned with the route field. The series of events for a colluding attack are given in

CPAL-ES notation.

S: route := S;

S: => P (route);

P: <- route;
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P: => Q (<route,P>);

Q: <- route;

Q: => B (route);

B: <- route;

B: => T (<route,B>);

T: <- route;

T: => route := <route,T>;

Notice that Q does not append its IP address. Because P colludes with Q, it will not report

such misbehavior detected by bloodhound to S. T is unaware of any discrepancy that might

have occurred en route. As such, the response generated by T contains the route SPBT within

the MAC. The sequence of events the route reply undergoes on its way from T to S are as

follows.

T: route := T;

T: => Q (route);

B: <- route;

B: => P (<route,B>);

Q: <- route;

Q: => P (<route,Q>);

P: <- route;

P: => S (<T,B,P>);

S: <- route;

S: => route := <route,S>;

S accepts the route to T without any knowledge of the malicious activity. Therefore, P

and Q have effectively deceived S into believing that it has a valid path to T which is not

dependent on Q. This proves hazardous for S when it wishes to communicate with T, because

the identified route is undoubtedly dependent on both P and Q.

The attack above uses adjacent colluding nodes. However, no location constraints

are placed on the colluding nodes as the next example demonstrates. A similar attack

occurs when colluding nodes are more than one link apart. In this scenario the amount of
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computation is exactly the same as that in the case when colluding nodes are adjacent; the

difference occurs in the values malicious nodes alter in the route request and route response

packets. In Figure 7.2, P and Q are malicious colluding nodes. When S sends a route request

Figure 7.2. DoS with non-adjacent colluding nodes.

to T, the packet first reaches P. The packet is forwarded correctly according to SRP (IP

addresses are appended to the route field) until the packet reaches Q.

Q appends its address, but also deletes B’s address from the route field. Q then forwards

the packet to T. In processing the route response, Q follows SRP by appending its IP address,

whereas P now removes B’s entry from the route field before appending its own address. So

we have removed a legitimate node, B, from the route without detection.

A property of both bloodhound and watchdog allows such malicious activity even in their

proper use. Recall that the solution calls for intermediate nodes to compare outgoing traffic

against previously transmitted packets. For example, when S generates a route request

it compares the packet it transmitted with the packet P transmits. An alarm is raised

only if the packets are identical. So when P does not append its address to the packet,

bloodhound detects the discrepancy and triggers an alarm. However, in the example above

the forwarded packets are not identical (their route fields differ), despite being incorrect.

So even bloodhound is thwarted with clever attacks.
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CHAPTER 8

FUTURE WORK WITH CPAL-ES

An important part of any research effort is to answer the question “What next?” The

answer requires not only a breadth of background knowledge, but also evolutionary foresight.

In this chapter we discuss those features of CPAL-ES that facilitate further wireless security

protocol investigation; we also point out short-comings and offer suggestions that will benefit

future researchers.

8.1 Features of CPAL-ES

As we discussed in the introduction to CPAL-ES in Chapter 4, the primary contribution

of CPAL-ES is that it requires assumptions to be stated explicitly. This defends against an

all too common pitfall of using a security protocol in unintended ways. We also discussed

the idiosyncratic enforcement CPAL-ES has on the ordering of concatenations. Indeed, this

helped to identify the fundamental flaw in SRP.

Here we will focus on an initially surprising feature of encryption that, upon further

thought, stands to reason. In our initial encoding of SRP, we used encryption to produce the

MAC for both the route request and the route reply. While we later replaced encryption with

the more accurate global hash function, we felt an encryption performed by two principals

who share a symmetric key would equate equally. However, this is not the case. Let us

demonstrate this with the following example.

global: assume(S.kst == T.kst);

S: => T(msg);

T: <- (msg);

S: mac := e[msg]kst;

T: mac := e[msg]kst;
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global: gassert(S.mac == T.mac);

Here we assume that S and T share a symmetric key. S then sends a message to T who duly

receives it. The two principals perform an encryption of the same variable under their shared

key. The assertion then compares the resulting outputs of the encryptions.

Initially it seemed surprising that CPAL-ES did not reduce the assertion to true. Instead,

it required the following predicate to be true.

(e[S.msg]T.kst == e[S.msg]S.kst)

Aside from a simple substitution, the predicate is exactly what we asserted. Though

surprising, when one considers the possibility of probabilistic encryption [24, 25] the catch by

CPAL-ES makes sense. With probabilistic encryption, the deterministic results of encryption

are removed; stated more clearly, an encryption can take on one of any number of values

at different times. This reduces the amount of information leakage caused by cipher-text

disclosure and makes cipher-text-only attacks by intruders that much more difficult. Under

its current implementation, CPAL-ES supports the concept of probabilistic encryption.

8.2 Suggested Changes to CPAL-ES

As we have already discussed, our work needed to address ways to formally model the

broadcast paradigm. Because CPAL-ES does not support a broadcast semantic, we simulated

broadcasts with multiple sends (see Section 6.3).

However, we suggest an extension to the syntax of CPAL-ES to better facilitate study

of wireless security protocols. We introduce the concept of a broadcast domain (BD) that

encompasses all nodes within transmission range. Instead of simulating a broadcast with

multiple sends, Alice instead initializes a group BD and issues only one send as follows.

A: BD := <B,C,E>;

A: => BD(msg);

B: <- (B.msg);

C: <- (C.msg);

E: <- (E.msg);
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Also, we must consider use of secure send with broadcast. Does broadcast stay true to

the semantics of a secure send? Surely, in this environment an intruder can intercept

broadcast transmissions; this interpretation leans more toward our definition of an insecure

send. Furthermore, we may want to consider extending the grammar to allow an optional

interception by principal I for insecure sends.

We noticed in our encoding that there are times we would have liked to compare a variable

field to the principal identifier. For example, instead of assuming the network topology we

could have all code run on each node. In this way, a node could test to determine if it is the

destination node and act appropriately. CPAL-ES currently provides no such mechanism.

Lastly, in our analysis we noticed the current working version of CPAL-ES does not

support the full grammar expressed in [26]. In particular, logical operators such as AND,

OR, and NOT are not supported, and neither is assignment of constants to variables. This

limits the expressiveness of the notation and may even prevent accurate analysis of a number

of wireless protocols. As a final aside, we would have liked to compare our SRP analyses

with those of existing protocols but found the expressive limitations of CPAL-ES hindered

our ability to do so.
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CHAPTER 9

CONCLUSIONS

We introduced the Secure Routing Protocol with the goal to identify non-corrupted routes

in mobile ad hoc networks. We showed that the two approaches the authors use to guard

against malicious intermediate activity (see Section 2.5) are insufficient. We exposed a

vulnerability with attack from Chapter 5.

This attack was found through intuitive reasoning and theoretical approaches. We

discussed in Chapter 3 BAN logic and its inability to find the flaw in SRP. We further argued

that BAN is not intended for proofs of security; we employed a more rigorous approach

using the formal methods of CPAL-ES. We demonstrated that formal methods can be used

in the broadcast environment, but have suggested that other models should be considered

or existing models should be adapted to better suit the environment.

In Chapter 6 we discuss our solution bloodhound that mitigates untrusted node misbehav-

ior. We also comment on SRP’s unrealistic assumption of non-collusion. We consequently

remove the assumption and expose inherent vulnerabilities that SRP and protocols designed

in its likeness share.

Finally, we would like to say that this paper in no way is intended as a condemnation of

secure routing in mobile ad hoc networks. Rather, we hoped to emphasize the difficulty in

proposing security services in such an environment. Furthermore, we respect the attempts

of previous researchers and hope that our analysis of the techniques used in the design of

SRP contributes to this field of study.
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APPENDIX A

CPAL-ES ENCODING OF SRP

--

-- initial assumptions

--

global: assume(S.kst == T.kst);

--

--Route request

--

S: mac := hash(S,T,Qid,Qseq,kst);

S: forward_route := S;

S: msg := <S,T,Qid,Qseq,forward_route,mac>;

S: => A(msg);

--

--Route request propagation

--

A: <- (msg’);

A: (S,T,Qid,Qseq,forward_route,mac) := msg’;

A: forward_route’ := <forward_route,A>;

A: msg := <S,T,Qid,Qseq,forward_route’,mac>;

A: => B(msg);

B: <- (msg’);

B: (S,T,Qid,Qseq,forward_route,mac) := msg’;

B: forward_route’ := <forward_route,B>;
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B: msg := <S,T,Qid,Qseq,forward_route’,mac>;

B: => T(msg);

--

--Route request receipt

--

T: <- (msg’);

T: (S,T,Qid,Qseq,forward_route,mac’) := msg’;

T: mac := hash(S,T,Qid,Qseq,kst);

T: found_route := <forward_route,T>;

T: assert(mac == mac’);

T: newmac := hash(S,T,Qid,Qseq,found_route,kst);

--

--Route reply

--

T: reverse_route := T;

T: msg := <S,T,Qid,Qseq,found_route,reverse_route,newmac>;

T: => B(msg);

--

--Route reply propagation

--

B: <- (msg’);

B: (S,T,Qid,Qseq,found_route,reverse_route,mac) := msg’;

B: reverse_route’ := <B,reverse_route>;

B: msg := <S,T,Qid,Qseq,found_route,reverse_route’,mac>;

B: => A(msg);

A: <- (msg’);

A: (S,T,Qid,Qseq,found_route,reverse_route,mac) := msg’;

A: reverse_route’ := <A,reverse_route>;

A: msg := <S,T,Qid,Qseq,found_route,reverse_route’,mac>;

A: => S(msg);
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--

--Route reply receipt

--

S: <- (msg’);

S: (S,T,Qid,Qseq,found_route,reverse_route,mac’) := msg’;

S: mac := hash(S,T,Qid,Qseq,found_route,kst);

S: assert(mac == mac’);

S: reverse_route’ := <S,reverse_route>;

--

-- SRP’s security goal

--

S: assert(reverse_route’ == found_route);
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APPENDIX B

CPAL-ES ANALYSIS OF SRP

global: assume((T.kst == S.kst));

S: S.mac := f.hash(S.S,S.T,S.Qid,S.Qseq,S.kst);

S: S.forward_route := S.S;

S: S.msg := <S.S,S.T,S.Qid,S.Qseq,S.forward_route,S.mac>;

S: => A(S.msg);

A: <-(A.msg’);

A: (A.S,A.T,A.Qid,A.Qseq,A.forward_route,A.mac) := A.msg’;

A: A.forward_route’ := <A.forward_route,A.A>;

A: A.msg := <A.S,A.T,A.Qid,A.Qseq,A.forward_route’,A.mac>;

A: => B(A.msg);

B: <-(B.msg’);

B: (B.S,B.T,B.Qid,B.Qseq,B.forward_route,B.mac) := B.msg’;

B: B.forward_route’ := <B.forward_route,B.B>;

B: B.msg := <B.S,B.T,B.Qid,B.Qseq,B.forward_route’,B.mac>;

B: => T(B.msg);

T: <-(T.msg’);

T: (T.S,T.T,T.Qid,T.Qseq,T.forward_route,T.mac’) := T.msg’;

T: T.mac := f.hash(T.S,T.T,T.Qid,T.Qseq,T.kst);

T: T.found_route := <T.forward_route,T.T>;

T: assert((T.mac’ == T.mac));

T: T.newmac := f.hash(T.S,T.T,T.Qid,T.Qseq,T.found_route,T.kst);

T: T.reverse_route := T.T;

T: T.msg := <T.S,T.T,T.Qid,T.Qseq,T.found_route,T.reverse_route,T.newmac>;
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T: => B(T.msg);

B: <-(B.msg’);

B: (B.S,B.T,B.Qid,B.Qseq,B.found_route,B.reverse_route,B.mac) := B.msg’;

B: B.reverse_route’ := <B.B,B.reverse_route>;

B: B.msg := <B.S,B.T,B.Qid,B.Qseq,B.found_route,B.reverse_route’,B.mac>;

B: => A(B.msg);

A: <-(A.msg’);

A: (A.S,A.T,A.Qid,A.Qseq,A.found_route,A.reverse_route,A.mac) := A.msg’;

A: A.reverse_route’ := <A.A,A.reverse_route>;

A: A.msg := <A.S,A.T,A.Qid,A.Qseq,A.found_route,A.reverse_route’,A.mac>;

A: => S(A.msg);

S: <-(S.msg’);

S: (S.S,S.T,S.Qid,S.Qseq,S.found_route,S.reverse_route,S.mac’) := S.msg’;

S: S.mac := f.hash(S.S,S.T,S.Qid,S.Qseq,S.found_route,S.kst);

S: assert((S.mac’ == S.mac));

S: S.reverse_route’ := <S.S,S.reverse_route>;

S: assert((S.found_route == S.reverse_route’));

*** End of Protocol ***

((<<<S.S,A.A>,B.B>,S.T> == <S.S,<A.A,<B.B,S.T>>>)

or

not (TRUE))

****** Simplified predicate follows.

(<<<S.S,A.A>,B.B>,S.T> == <S.S,<A.A,<B.B,S.T>>>)
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APPENDIX C

CPAL-ES ENCODING OF SRP ATTACK

--

--initializations

--

global: assume(S.kst == T.kst);

--

--Route request

--

S: mac := hash(S,T,Qid,Qseq,kst);

S: forward_route := S;

S: msg := <S,T,Qid,Qseq,forward_route,mac>;

S: => A(msg);

--

--Route request propagation

--

A: <- (msg’);

A: (S,T,Qid,Qseq,forward_route,mac) := msg’;

A: gassert(A.Qid == S.Qid);

A: forward_route’ := <forward_route,A>;

A: msg := <S,T,Qid,Qseq,forward_route’,mac>;

--

-- insecure send

--

A: -> B(msg);
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--

-- malicious intermediate node simply forwards to B

--

I: <- (msg);

I: => B(msg);

B: <- (msg’);

B: (S,T,Qid,Qseq,forward_route,mac) := msg’;

B: gassert(B.Qid == S.Qid);

B: forward_route’ := <forward_route,B>;

B: msg := <S,T,Qid,Qseq,forward_route’,mac>;

B: => T(msg);

--

--Route request receipt

--

T: <- (msg’);

T: (S,T,Qid,Qseq,forward_route,mac’) := msg’;

T: gassert(T.Qseq == S.Qseq);

T: mac := hash(S,T,Qid,Qseq,kst);

T: found_route := <forward_route,T>;

T: assert(mac == mac’);

T: newmac := hash(S,T,Qid,Qseq,found_route,kst);

--

--Route reply

--

T: reverse_route := T;

T: msg := <S,T,Qid,Qseq,found_route,reverse_route,newmac>;

T: => B(msg);

--

--Route reply propagation

--
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B: <- (msg’);

B: (S,T,Qid’,Qseq,found_route,reverse_route,mac) := msg’;

B: assert(Qid == Qid’);

B: reverse_route’ := <B,reverse_route>;

B: msg := <S,T,Qid,Qseq,found_route,reverse_route’,mac>;

B: => A(msg);

A: <- (msg’);

A: (S,T,Qid’,Qseq,found_route,reverse_route,mac) := msg’;

A: assert(Qid == Qid’);

A: reverse_route’ := <A,reverse_route>;

A: msg := <S,T,Qid,Qseq,found_route,reverse_route’,mac>;

A: => S(msg);

--

--Route reply receipt

--

S: <- (msg’);

S: (S,T,Qid’,Qseq’,found_route,reverse_route,mac’) := msg’;

S: assert(Qid == Qid’);

S: assert(Qseq == Qseq’);

S: mac := hash(S,T,Qid,Qseq,found_route,kst);

S: assert(mac == mac’);

S: reverse_route’ := <S,reverse_route>;

S: assert(reverse_route’ == found_route);
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APPENDIX D

CPAL-ES ANALYSIS OF ATTACK

global: assume((T.kst == S.kst));

S: S.mac := f.hash(S.S,S.T,S.Qid,S.Qseq,S.kst);

S: S.forward_route := S.S;

S: S.msg := <S.S,S.T,S.Qid,S.Qseq,S.forward_route,S.mac>;

S: => A(S.msg);

A: <-(A.msg’);

A: (A.S,A.T,A.Qid,A.Qseq,A.forward_route,A.mac) := A.msg’;

A: gassert((S.Qid == A.Qid));

A: A.forward_route’ := <A.forward_route,A.A>;

A: A.msg := <A.S,A.T,A.Qid,A.Qseq,A.forward_route’,A.mac>;

A: -> B(A.msg);

I: <-(I.msg);

I: => B(I.msg);

B: <-(B.msg’);

B: (B.S,B.T,B.Qid,B.Qseq,B.forward_route,B.mac) := B.msg’;

B: gassert((S.Qid == B.Qid));

B: B.forward_route’ := <B.forward_route,B.B>;

B: B.msg := <B.S,B.T,B.Qid,B.Qseq,B.forward_route’,B.mac>;

B: => T(B.msg);

T: <-(T.msg’);

T: (T.S,T.T,T.Qid,T.Qseq,T.forward_route,T.mac’) := T.msg’;

T: gassert((S.Qseq == T.Qseq));

T: T.mac := f.hash(T.S,T.T,T.Qid,T.Qseq,T.kst);

46



T: T.found_route := <T.forward_route,T.T>;

T: assert((T.mac’ == T.mac));

T: T.newmac := f.hash(T.S,T.T,T.Qid,T.Qseq,T.found_route,T.kst);

T: T.reverse_route := T.T;

T: T.msg := <T.S,T.T,T.Qid,T.Qseq,T.found_route,T.reverse_route,T.newmac>;

T: => B(T.msg);

B: <-(B.msg’);

B: (B.S,B.T,B.Qid’,B.Qseq,B.found_route,B.reverse_route,B.mac) := B.msg’;

B: assert((B.Qid’ == B.Qid));

B: B.reverse_route’ := <B.B,B.reverse_route>;

B: B.msg := <B.S,B.T,B.Qid,B.Qseq,B.found_route,B.reverse_route’,B.mac>;

B: => A(B.msg);

A: <-(A.msg’);

A: (A.S,A.T,A.Qid’,A.Qseq,A.found_route,A.reverse_route,A.mac) := A.msg’;

A: assert((A.Qid’ == A.Qid));

A: A.reverse_route’ := <A.A,A.reverse_route>;

A: A.msg := <A.S,A.T,A.Qid,A.Qseq,A.found_route,A.reverse_route’,A.mac>;

A: => S(A.msg);

S: <-(S.msg’);

S: (S.S,S.T,S.Qid’,S.Qseq’,S.found_route,S.reverse_route,S.mac’) := S.msg’;

S: assert((S.Qid’ == S.Qid));

S: assert((S.Qseq’ == S.Qseq));

S: S.mac := f.hash(S.S,S.T,S.Qid,S.Qseq,S.found_route,S.kst);

S: assert((S.mac’ == S.mac));

S: S.reverse_route’ := <S.S,S.reverse_route>;

S: assert((S.found_route == S.reverse_route’));

*** End of Protocol ***

((<<<S.S,A.A>,B.B>,S.T> == <S.S,<A.A,<B.B,S.T>>>)

or

not (TRUE))

****** Simplified predicate follows.
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(<<<S.S,A.A>,B.B>,S.T> == <S.S,<A.A,<B.B,S.T>>>)
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APPENDIX E

CPAL-ES ENCODING OF BLOODHOUND

--

--initializations

--

global: assume(S.kst == T.kst);

--

--Route request

--

S: mac := hash(S,T,Qid,Qseq,kst);

S: forward_route := S;

S: msg := <S,T,Qid,Qseq,forward_route,mac>;

S: => A(msg);

--

--Route request propagation

--

A: <- (msg’);

A: (S,T,Qid,Qseq,forward_route,mac) := msg’;

A: gassert(A.Qid == S.Qid);

A: forward_route’ := <forward_route,A>;

A: msg := <S,T,Qid,Qseq,forward_route’,mac>;

--

-- simulating broadcast, send back to source

--

A: => S(msg);
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--

-- S overhears

--

S: <- (overheard_msg);

--

-- insecure send

--

A: -> B(msg);

--

-- malicious intermediate node simply forwards to B

--

I: <- (msg);

I: => A(msg);

--

-- A overhears

--

A: <- (overheard_msg);

--

-- bloodhound

--

A: (S’,T’,Qid’,Qseq’,overheard_route,mac’) := overheard_msg;

--

-- assures it’s the same packet

--

A: assert(S == S’);

A: assert(T == T’);

A: assert(Qid == Qid’);

A: assert(Qseq == Qseq’);

A: assert(mac == mac’);

--

-- the "kicker", should not happen if SRP packet forwarded properly
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--

A: assert(forward_route’ == overheard_route);

--

-- then forwards onto B

--

I: => B(msg);

B: <- (msg’);

B: (S,T,Qid,Qseq,forward_route,mac) := msg’;

B: gassert(B.Qid == S.Qid);

B: forward_route’ := <forward_route,B>;

B: msg := <S,T,Qid,Qseq,forward_route’,mac>;

B: => T(msg);

--

--Route request receipt

--

T: <- (msg’);

T: (S,T,Qid,Qseq,forward_route,mac’) := msg’;

T: gassert(T.Qseq == S.Qseq);

T: mac := hash(S,T,Qid,Qseq,kst);

T: found_route := <forward_route,T>;

T: assert(mac == mac’);

T: newmac := hash(S,T,Qid,Qseq,found_route,kst);

--

--Route reply

-- presume reply is unicast along identified route

--

T: reverse_route := T;

T: msg := <S,T,Qid,Qseq,found_route,reverse_route,newmac>;

T: => B(msg);

--
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--Route reply propagation

--

B: <- (msg’);

B: (S,T,Qid’,Qseq,found_route,reverse_route,mac) := msg’;

B: assert(Qid == Qid’);

B: reverse_route’ := <B,reverse_route>;

B: msg := <S,T,Qid,Qseq,found_route,reverse_route’,mac>;

--

-- Insecure send

--

B: -> A(msg);

--

-- Malicious intermediate node forwards

--

I: <- (msg);

I: => A(msg);

A: <- (msg’);

A: (S,T,Qid’,Qseq,found_route,reverse_route,mac) := msg’;

A: assert(Qid == Qid’);

--

-- added for bloodhound

-- will emulate a dropped reply with bad data check

--

A: if(forward_route’ == overheard_route) then {

msg:= <S,T,bad_Qid,bad_Qseq,found_route,reverse_route’,mac>;

} else {

reverse_route’ := <A,reverse_route>;

msg := <S,T,Qid,Qseq,found_route,reverse_route’,mac>;

}

A: => S(msg);
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--

--Route reply receipt

--

S: <- (msg’);

S: (S,T,Qid’,Qseq’,found_route,reverse_route,mac’) := msg’;

S: assert(Qid == Qid’);

S: assert(Qseq == Qseq’);

S: mac := hash(S,T,Qid,Qseq,found_route,kst);

S: assert(mac == mac’);

S: reverse_route’ := <S,reverse_route>;

S: assert(reverse_route’ == found_route);
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APPENDIX F

CPAL-ES ANALYSIS OF BLOODHOUND

global: assume((T.kst == S.kst));

S: S.mac := f.hash(S.S,S.T,S.Qid,S.Qseq,S.kst);

S: S.forward_route := S.S;

S: S.msg := <S.S,S.T,S.Qid,S.Qseq,S.forward_route,S.mac>;

S: => A(S.msg);

A: <-(A.msg’);

A: (A.S,A.T,A.Qid,A.Qseq,A.forward_route,A.mac) := A.msg’;

A: gassert((S.Qid == A.Qid));

A: A.forward_route’ := <A.forward_route,A.A>;

A: A.msg := <A.S,A.T,A.Qid,A.Qseq,A.forward_route’,A.mac>;

A: => S(A.msg);

S: <-(S.overheard_msg);

A: -> B(A.msg);

I: <-(I.msg);

I: => A(I.msg);

A: <-(A.overheard_msg);

A: (A.S’,A.T’,A.Qid’,A.Qseq’,A.overheard_route,A.mac’) := A.overheard_msg;

A: assert((A.S’ == A.S));

A: assert((A.T’ == A.T));

A: assert((A.Qid’ == A.Qid));

A: assert((A.Qseq’ == A.Qseq));

A: assert((A.mac’ == A.mac));

A: assert((A.overheard_route == A.forward_route’));
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I: => B(I.msg);

B: <-(B.msg’);

B: (B.S,B.T,B.Qid,B.Qseq,B.forward_route,B.mac) := B.msg’;

B: gassert((S.Qid == B.Qid));

B: B.forward_route’ := <B.forward_route,B.B>;

B: B.msg := <B.S,B.T,B.Qid,B.Qseq,B.forward_route’,B.mac>;

B: => T(B.msg);

T: <-(T.msg’);

T: (T.S,T.T,T.Qid,T.Qseq,T.forward_route,T.mac’) := T.msg’;

T: gassert((S.Qseq == T.Qseq));

T: T.mac := f.hash(T.S,T.T,T.Qid,T.Qseq,T.kst);

T: T.found_route := <T.forward_route,T.T>;

T: assert((T.mac’ == T.mac));

T: T.newmac := f.hash(T.S,T.T,T.Qid,T.Qseq,T.found_route,T.kst);

T: T.reverse_route := T.T;

T: T.msg := <T.S,T.T,T.Qid,T.Qseq,T.found_route,T.reverse_route,T.newmac>;

T: => B(T.msg);

B: <-(B.msg’);

B: (B.S,B.T,B.Qid’,B.Qseq,B.found_route,B.reverse_route,B.mac) := B.msg’;

B: assert((B.Qid’ == B.Qid));

B: B.reverse_route’ := <B.B,B.reverse_route>;

B: B.msg := <B.S,B.T,B.Qid,B.Qseq,B.found_route,B.reverse_route’,B.mac>;

B: -> A(B.msg);

I: <-(I.msg);

I: => A(I.msg);

A: <-(A.msg’);

A: (A.S,A.T,A.Qid’,A.Qseq,A.found_route,A.reverse_route,A.mac) := A.msg’;

A: assert((A.Qid’ == A.Qid));

A: if ((A.overheard_route == A.forward_route’)) then {

A.msg := <A.S,A.T,A.bad_Qid,A.bad_Qseq,A.found_route,A.reverse_route’,A.mac>;

} else {
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A.reverse_route’ := <A.A,A.reverse_route>;

}

A: => S(A.msg);

S: <-(S.msg’);

S: (S.S,S.T,S.Qid’,S.Qseq’,S.found_route,S.reverse_route,S.mac’) := S.msg’;

S: assert((S.Qid’ == S.Qid));

S: assert((S.Qseq’ == S.Qseq));

S: S.mac := f.hash(S.S,S.T,S.Qid,S.Qseq,S.found_route,S.kst);

S: assert((S.mac’ == S.mac));

S: S.reverse_route’ := <S.S,S.reverse_route>;

S: assert((S.found_route == S.reverse_route’));

*** End of Protocol ***

((((<<<S.S,A.A>,B.B>,S.T> == <S.S,A.reverse_route’>)

and

(A.bad_Qseq == S.Qseq))

and

(A.bad_Qid == S.Qid))

or

not (TRUE))

****** Simplified predicate follows.

(((<<<S.S,A.A>,B.B>,S.T> == <S.S,A.reverse_route’>)

and

(A.bad_Qseq == S.Qseq))

and

(A.bad_Qid == S.Qid))
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