THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTSAND SCIENCE

A GRAPHICAL DISPLAY OF THE SNORT RULE SET

By

JOSEPH PETER BELANS

A Project submitted to the
Department of Computer Science
in partid fulfillment of the
requirements for the degree of
Masters of Science

Degree Awarded:
Spring Semester, 2003

MAJOR PROFESSOR
Lois Hawkes

COMMITTEE
Alec Yadansac
Jeff Bauer

TABLE OF CONTENTS

Y 0 1 =o: AT PP PRSP 3
gLl [N i1 o o RSP SUSUFUP ST PSPR 4
Chapter 1: INtrUSION SYSIEIMScoiiiiiie ettt e s se e bt e s aeesre e e e 6
Chapter 2: SECUNTY TOOIS ..ottt bbbt 11
Chapter 3: SN0 DISPIAY......ceeieeiieiesice et e et b e e s re e seereesseennesneensens 19
CONCIUSION ...t b bbbt b e a e e e e e s e e e s e e b e e ne b e nse e e e nn e 38
APPENAIX A SOUICE COUE ...ttt e et se b e seese e s 40
Appendix B: GNU COPYIIQNLooieeeeecece et sne e 85
REFEIENCES ... et r e b bt r e r e n e n e an s 98
BiographiCal SKELCN............ooii e 99

ABSTRACT

Snort, alightweight intruson detection system, uses a pattern-matching scheme to dert
on mdicioustraffic. Packet Sgnatures are matched againgt predefined rules to determineif the
trafficisvaid. Like many other rule-based systems, amagjor disadvantage isthat the rule sets
can grow extremey large. To compensate for the lengthiness of the rule set, many graphica user
interfaces (GUIs) have been designed to aid adminigrators in configuring Snort. However, a
ggnificant underganding of the rule base, the traffic to be monitored, and the Snort detection
processis required to gain the benefits of such configuration tools. In order to get a better
understanding of the detection process, users have requested an interface to graphicaly display
the flow of the rules, without the underlying details. The remainder of this paper will give
background on intrusion detection and describe a web-based interface tool that addresses the

requests made by many Snort users, to dynamicaly show the flow of the Snort rule st.

INTRODUCTION

Aswe dl know, computers are increasing in Size and speed at an incredible rate.
Keeping up with technology today is not an easy task. Astechnology grows, so do the problems
that are associated withit. A by-product of technology has shown itsdlf in the form of worms,
Trojan horses, and many other intrusion techniques. These are issues that many systems
adminigtrators must dedl with on adaily basis. Now more than ever, the need for security ison
therise.

Why do we need security? With the daily advancements in technology today, the rate at
which intrusions take place isincreasing tremendoudy. For example, in mid-2001, the Code
Red worm was released and replicated approximately every 37 minutes. The Sammer worm,
which was released late January 2003, had a doubling rate of 8.5 seconds. Slammer was
reported to be the fastest growing worm in history to hit the Internet [6].

Attacks are changing on adaily basis. Once one attack is discovered and prevented, it
may change ever so dightly to create another atack. Therefore, to list al the known attacks
would take an entire document in itself. There are some types of common attacks that are seen
on the network today. A few examples include protocol exploitations, worms, viruses, and
denid of service (DoS) attacks. Protocol explaitations, which include smple port scansand IP
spoofing, are one of the most common types of attacks and may be the basis for other attacks.
Asthe use of web servers grows, so do the worms or viruses that attack the HTTP protocol. [t
seems that everyday thereis anew Internet Information Server (11S) virus appearing. DoS

attacks directed at network connectivity are not very damaging but cause headaches for many

adminigtrators. Syn flood attacks are an example of afrequently seen DoS attack. FTP and
other known vulnerable applications are attacked daily on many systems across the Internet [4].
There are many types of tools available to dert users on, and/or protect users from, the
dangers that lurk on an insecure network like firewals, encryption, intrusion detectors, and
intruson protectors. Unlike firewdls and encryption that provide an overdl layer of protection,
intrusion detection and prevention systems provide information and/or precise protection from
known and unknown attacks. Snhort, a lightweight intrusion detection system, provides a
mechanism to analyze known attacks. The Snort detection engine uses an extremdy large rule
st to pattern match againgt network traffic. For example, the latest set of rules provided with
Snort includes 1,821 rules. As more vulnerabilities become recognized, the number rules
provided will increase. With the rule set Sze increasing, o does the time and intervertion
required to understand what Snort isandyzing. It isthe god of this project to produce atool that
will hdp minimize the time it takes gain afull understanding of the flow of the Snort rule s&t.
Therefore, this paper will describe the advantages and disadvantages of intrusion detection and
prevention systems, an intrusion detection system titled Snort, and an extenson to Snort to

provide a better understanding to users of how Snort detects intrusions.

CHAPTER 1

NETWORK SECURITY

Everyday, aerts are presented to users concerning the release of a new worm or virus that
has“hit” the Internet. Stories of web Stesthat have been defaced are now common didog
amongst adminigtrators. The once safe and educationa Internet has become one of the most
insecure mediums available. Asaresult, network security is now one of the most regarded
details applied to alocal network. Associated with network security are intrusion detection and

intrusion prevention systems.

1.1. Intruson Detection Systems

Intrusion detection systems (IDS) provide detailed information about events that are
occurring, or have occurred, on a given network. In generd, intruson detection is an anays's of
the network traffic that may be entering or leaving the given network. The two detection
methods used are anomaly detection and misuse detection. Anomaly detection modes normd
behavior. Any deviation of this model would be considered an atack. Misuse detection models
abnorma behavior that would clearly indicate an attack. Some gpplications that currently use a
form of intrusion detection engine are honey netsand personal firewalls. Honey nets are
intentionally vulnerable systems created to attract users to use them in amdiciousfashion. As
users “hack and crack” at the honey net, information can be acquired to defend against the

techniques used. Personal firewalls are a software-based firewdl and 1DS that can be applied to

amaller workstations to provide protection while ng an insecure network. Software
implementations began to gppear when high-speed personal Internet access, like DSL and cable,
was introduced. [5].

Intrusion detection systems have the advantage of not incurring any additiond latency
upon the network or itshosts. One way isto andyze the network traffic offline in the form a
dump file. Another isto receive identica traffic viaahub or port mirroring on aswitch. Red
time monitoring of multiple systems can be achieved when a network interface card (NIC) is
placed in promiscuous mode. In promiscuous mode, a NIC will listen to awire and pick up any
traffic that it hears, not just traffic thet is destined to it. To improve security, amonitor can be
isolated from the network by not assigning a routable address to the NIC. In essence, it can
receive dl traffic but will not send any traffic [5].

Asthe name gates, intruson detection systems “ detect” traffic. Unfortunately, detection
isdl that isaccomplished. Thereisno protection provided to the network or hosts that are being
monitored. Also, as aresult from continuous andlys's, excessive log files may be created that
will require some sort of manud intervention to analyze. Therefore, analysis of anetwork can

become too time consuming to acquire ameaningful result [4].

1.2. Intrusion Prevention Systems

Intrusion prevention, on the other hand, does provide a means of protection for agiven
network and its hogts. The basisfor the protection is built upon the same detection methods that
were introduced in intrusion detection systems with some added complexity for speed and
quality. Four gpproachesto intrusion prevention include stateful signature detection, various

types of anomaly detection, a software based heuristic approach, and a hybrid approach.

Sateful signature detection uses pattern matching, which requires prior knowledge of an atack
to follow state within a series of packets by looking a relevant portions of the traffic where the
attack could be perpetrated. A software based heuristic approach issmilar to an IDSusng
anomaly detection built upon a neura network. Combining various detection methods and
sgnature detection creates a hybrid approach to gain the advantages of each type of detection
method. An example of an intruson prevention system is StormWatch which has a network
interceptor built into its detection engine [3].

The obvious advantage to intrusion prevention systems over detection systemsisthat a
layer of protection isintroduced to the given network. However, the added protection may come
at aprice. If not configured correctly, the network may experience an added latency as aresult
of added processing to determine if an attack iseminent. Also, any fase positives could greetly
hinder anetwork by diminating legitimate traffic that may resemble an attack. Therefore, as

dated earlier, the added protection, if not implemented correctly, could have negative effects.

1.3. Components of an Intrusion Detection System

Although intruson detection systems have evolved over the years, the same atomic
building blocks can be found in every sysem. Each sysem will contain the following
functiondity: aprobe, monitor, resolver, and controller. The probe isthe bassfor the entire
system. Probes listen and decode network traffic into a more readable form. Monitors take the
information provided by the probes, andyze it, and emit any necessary derts. Resolvers take the
necessary action based on the alert. Controllers, only apparent in distributed intrusion detection
systems, act as acentrd point of adminigration. The origind probe, when intrusion detection

sysems were log based, andyzed log files offline. In a networked environment, there are host

network and promiscuous network-based systems. Host networ k-based probes will decode
traffic degtined for an individua host. Promiscuous networ k-based probes will decode any
traffic that it hearson awire [5].

Monitors use anomaly detection and/or misuse detection to andyze the decoded network
traffic. Anomaly and misuse detection behave like inverses of each other. Anomaly detection
provides better intelligence in detecting variations of attacks but can produce an abundance of
false pogitives. On the other hand, misuse detection minimizes false postives but lacksin the
ability to provide information about new or morphed attacks. False positives and the ahility to
detect unknown attacks are two of the most noted problems in monitor design. Combining both
methodologies can dleviate these problems and is seen in many systems[5].

Statigticad modding, atechnique used in anomaly detection, uses some of the more well
known mathematica processes like mean and standard deviation, the Multivarate mode, and the
Markov processmodel. Animmune systems gpproach follows systlem calswithin an
gpplication to create conditiona models of norma behavior, error conditions, and attempted
exploits. Protocol verification rigoroudy checks for malformed protocol fields. Violations of
given protocols are key indications of an attack. File checking uses standard checksums to check
the vaidity of thefile. Taint checking assumes any input data provided is considered “tainted”
until it is cleaned [5].

Misuse detection, in its most basic form, is achieved using expresson metching. The
expressions can be in abinary format, a character string within aweb request, or any other type
of pattern that may be found within a given packet. State trangtion andysis uses finite Sate
machinesto follow an attack. When a state machine reachesitsfind degtination, it Sgnifiesan

attack. Dedicated languages create specidized programsto find an attack. Aseventsareread in,

the program will match the events againg internd filters to determine if an attack has taken place
[5].

Intrusion detection systems can take the form of four architectures. monoalithic,
hierarchic, agent-based, and distributed. Monoalithic sysems house dl the basic components to
monitor asingle sysem. Hierarchic sysems have a centrdized controller to correate data from
multiple sysems. Agent-based systems include multiple probes, controllers, and monitors.
Distributed systems build on an agent-based architecture with added pattern matching to andyze

multiple sysems as awhole, not asindividud systems.

10

CHAPTER 2

SECURITY TOOLS

Security tools ad in the design, implementation, monitoring, and testing of secure
networks. Packet sniffers and port scanners are only afew of many tools available to
adminigtrators to test the security of anetwork. However, they are more than enough for arogue
user to compromise a network. In response, intrusion detection and prevention systems have

been created. Tools like tcpdump, nmap, and Snort will be described below.

2.1. Toolsof Protection or Mass Destruction

There are many other types of security tools. Unfortunately, most tools that are built to
help an administrator can be used to create havoc. Port scanning is one of the most often seen
atacks. Many attacks begin with aport scan to alow an attacker to determine what services are
available on agiven network or host. Nmap isavery popular port scanner that is free and comes
pre-built on many variations of UNIX. Dueto itsavalability, it isvery widdy used by many
attackers. One of the many features that nmap provides is the ability to spoof the origin address.
The functiondity was added to alow administrators to cregte randomnessin their port scansto
find holesin thelr security schemes. Asaresult, attackers can now spoof themselves when using
nmap in an atack. Another widely used tool istcpdump, or some other form of packet sniffer.

Packet sniffers were aso built to provide a means for adminisirators to creste a snap shot of the

11

traffic on the network. In the hands of an attacker, it is an easy way to find usernames and
passwords to gain access in an insecure network.

Asone can easlly picture, security tools, in the wrong hands, can provide a Sgnificant
amount of information to an attacker. Used correctly, one can provide aforce field of security
and understand completely the state of a host or network. Having the right information will give
an administrator what he or she needs to defegt an attacker.

Another security tool that is available that can produce a very detailed picture of ahost or
network is Snort. Snort isaglorified verson of tcpdump; a packet sniffer that has a detection

engine to aert upon detection of abnormal traffic.

2.2. Snort Intrusion Detection System
2.2.1. Background

Snort is considered to be a cross-plaform, lightweght intruson detection sysem. A
lightweight intrusion detection system can be deployed on any given system having minimal
affects on the system. As per the GNU public license, Snort is free to use, change, and
digribute. An open source library, libpcap, isthe basis for the Snort technology. Snort
compares rdatively wel to other commercid applicationsin that it is very inexpensive and
trivid to implement. Many other gpplications may have an abundance of functiondity compared
to Snort, but, with complexity comes a price and alot of additionad work [2]. Some of the well-
known companies that provide a variation of an intruson detection and/or prevention system are

Cisco [10] and Enterasys[11].

12

2.2.2. Primary Components

Snort, like any intrusion detection system, contains the three primary components. the
probe, the detection engine, and the derting and logging system. The probe, or packet decoder,
makes up the firgt primary subsystem of Snort that is built upon the libpcap library. Libpcap
interfaces with the NI C to decode network traffic. Without any additiona changes or extensions,

Snort can decode Ethernet, Serid Line Internet Protocol (SLIP), and raw Point-to-Point Protocol

(PPP) packets. Ethernet traffic istypically seenin local areanetworks. SLIP and PPP are used
to trangport data over serid lines, for example, telephone lines between two modems.
Depending on the logica location of Snort, the system can be configured as a host network or
promiscuous network-based system. Astraffic isread in from the network, the decoder will
creete pointers to packet datathat is later anadyzed by the detection engine. The detection engine
uses a pattern matching approach to detect abnorma behavior and can then issue an dert. With
the use of athird party plug-in, for example Spade, anomaly detection can be used to minimize
the rule st by creating a picture of norma traffic and alowing the rule set to process further any
packets that do not fit the picture [2].

Rounding out the overdl architecture is the logging and derting subsystem. Built into
the Snort software are various logging and derting mechanisms. Logs can be built in abinary or
plain text format. Alerts can be sent to atext file, sydog, a samba pop-up window, or an SQL
database [2]. Sydog isalogging mechaniam that is availablein most UNIX variants out of the
box. A third-party application, Samba, provides various functiondities mainly that being the
ability to mount aUNIX file sysem to a Microsoft Windows machine. One of the derting
mechanisms built into Samba is the ability to create a pop-up window on a user’s machine for

various informationa purposes. Snort can use this functiondity to adert an attack. Ladtly,

13

various Simple Query Language (SQL) databases can be utilized to store dert data. Some of the
many databases that Snort is pre-configured to use are MySQL, PostgreSQL, Oracle, and
unixODBC-compliant databases [2].

Snort isvery versdtile in that it can take on many forms. Internaly, Snort can act asa
ample packet sniffer and display network traffic to stlandard out. Packet logging isdso possble
with Snort S0 that the information can be sored for later andysis. Once given alogging
directory, Snort will decode the traffic and create a directory structure containing information
pertaining to each host that is represented in the decoded traffic. Lastly, and in the most
sgnificant form, Snort can provide intrusion detection functionaity [1]. Asanintruson

detection system Snort can be configured as a monalithic, hierarchic, or agent-based system.

2.2.3. Snort Detection Engine

The heart of the Snort detection engine resides in the rule set that is provided by the user.
As network traffic isread in, each packet will be pattern matched to the rules provided to
determine if it matches a known attack. Each rule has a predefined format that allows for the
most generd to extremely complex rules. A generd template that dl rules will follow is:

<action> <protocol> <src IP> <src port> <direction> <dest |P> <dest port> <options>
Rules have two basic components: rule headers and rule options. Rule headers make up the first
seven fidds of therule

<action> tdlsthe type of therule

<protocol> isthe type of traffic the rule matches

<src IP> and <src port> describe where the traffic came from

<direction> shows which direction the treffic is traveling that the rule will match

14

<dest IP> and <dest port> describe where the treffic is going
Each header contains common attributes found during a given attack. All the headers are found
inthe firg dimengon of thelink lig. Rule options, which are not required, provide the
expressions on how the rule will match a packet. A list of options associated with each header
compile the second dimensoninthelink list [1]. For example:

alert tcp any any -> 192.168.1.0/24 111
(content:" |00 01 86 a5|" ; msg: " mountd access';)

The above rule will be used throughout the remainder of this section to provide an example for
each field within the rule.

Rule headers are made up of five components. the type of rule, protocol, source,
destination, and direction. There are five types of rulesthat make up thefirs field: activate,
dynamic, alert, pass, or log. Alert rules make up the mgority of most rule sets. It is how Snort
notifies an adminigtrator of an atack by way of the logging or derting mechanism that is
gpecified in the configuration. From the example, we see that the ruleis an dert rule from the
firg fidd: alert tcp any any -> 192.168.1.0/24 111(content:"|00 01 86 a5|"; msg: "mountd
access';). Log ruleslog the packet to disk creating a directory structure describing hosts and the
networks that the hosts resde on. Pass rules assume the traffic is legitimate and does nothing.
Activaterules dert an adminigtrator and activate another dynamic rule. Dynamic rulesare
dormant until activated and then becomelog rules[1].

The second field specifies the protocol that must be associated with a given packet to
match therule. By default, Snort’ s decoder will decode IP, TCP, UDP, and ICMP packets.
Obvioudy, the example rule will match TCP packets. alert tcp any any -> 192.168.1.0/24
111(content:"|00 01 86 a5|"; msg: "mountd access";). There are others that have been added

with the use of pre-processors and other plug-ins[1].

15

The next two fields provide the source | P address and port number. The IP addressfield
can contain asingle IP address, a masked address, or the keyword “any” to specify any address
will match. An IP addressis specified usng CIDR notation, a short-hand way of displaying the
subnet mask associated with an address. For example, 192.168.1.0/24 trandates into
192.168.1.0/255.255.255.0 which will include the addresses between 192.168.1.0 and
192.168.1.255. Negation is aso alowed to specify any other address except the oneg(s) specified
that will match therule. Port numbers are pecified in the same manor. Also, the same criteria
will be used to specify the destination IP address and port number [1]. Any packet that is
destined for an address within the 192.168.1 subnet and port 111 would match the example rule:
alert tcp any any -> 192.168.1.0/24 111(content:" |00 01 86 a5|"; msg: "mountd access';).

Thedirectional fid will determine which direction the traffic must flow to match the
rule. The mgority of the rule set will use the source to destination operator (->) that will only
meatch incoming traffic. Thisisthe case with the example rule asit will only watch incoming
traffic. alert tcp any any -> 192.168.1.0/24 111(content:"|00 01 86 a5|"; msg: "mountd
access';). With the use of the bi-directiona operator (<>), one can follow a conversation
between two machines [1].

Rule options provide the necessary information for the detection engine to process
packets. There are an extremdy large number of keywords that can be included in the rule
options, and therefore, will not be completely described here. Two keywords that are most often
used in rule options are content and msg. The content keyword provides an expresson to match
againg the packet. Content can take the form of abinary string to acomplex expresson
containing wild cards to match atext string contained within a packet. Msg describesthe

message that will be logged or sent to an adminigrator viathe logging or derting mechanism

16

specified in the configuration [1]. Combining these two keywords makes for avery smplerule
but hdpsin our example: alert tcp any any -> 192.168.1.0/24 111(content:"|00 01 86 a5|"; msg:

"mountd access";).

2.2.4. Motivation for project

There are many tools available that extend or enhance the front and back end of Snort.
For example, Webmin, a popular collection of miscdlaneous tools, has a Snort front-end module
that will asss an adminigtrator in configuring the Snort rule set [9]. The Andysis Console for
Intrusion Databases (ACID), converts data collected and stored in a database into a meaningful
human readable form for analysis[8]. Unfortunately, there is nothing currently available to
andyze the extremdy large rule set, which is Snort’s mgjor draw back. Asthe number of rules
incresses from the most recent set of 1821 rules, so does the timeit takes to understand the rule
set. Oncearuleis added to the rule set, depending on its location and expressions, it could
possibly be matched against every packet that isintercepted by the probe. 1t becomes very
gpparent that without careful configuration of Snort, degradation of performance would be seen
immediately. There may dso be many other rulesincluded in the set that are never matched.
This requires unnecessary processing power that could be iminated if one knew how the rule
Set was processed.

After browsing the mailing.unix.snort news group, it was gpparent that atool that would
graphicaly show an administrator how Snort internaly processes the rule set would be very
useful. This determination was based on the many questions that were asked pertaining to the
interna structure and functiondity of the Snort detection engine. It seemsthereisa

misunderstanding amongst many of the Snort user community about how therule st is

17

processed by Snort. Understanding the detection engine, and the traffic flowing through it,
would alow an administrator to configure Snort for better performance. Therefore, the
remaining portion of this document describes such a user interface, one that will allow auser to
cregte an image of how Snort will process the rules but without rule details. The interface
provided gives the user the flexibility of viewing the entire rule set, asingle rule, or a portion of
the rule set. With the information provided by the tool, auser can make better decisons on how
to configure Snort so that it more closdy matches that type of traffic that is found on agiven
network. It can dso providethe“visble’ information that may help othersthat have aless
technica background understand what is being detected on their network by seeing the rule set

without the underlying details.

18

CHAPTER 3

SNORT DISPLAY TOOL

The following application, Snort Display, was created to provide a picture of how the
Snort detection engine interprets the rule set to provide information as to how Snort processes
therule set. In order to correctly display how Snort works, two functions that are included in the
Snort source code are used to dump the information asit is portrayed by Snort. With the use of
the interface tool developed, a user may display dl rules or a subset by narrowing down the
criteriato display. Once a search criteria has been provided, the requested graph will be

displayed. Information provided in the graph solves two problems associated with Snort.

Large number of rules with unclear interactions

One of the issues that many Snort users have been dedling with is that of how does Snort
processthe rule set. For example, the latest rule set includes 1821 rules that will require an
amount of manua intervention to fully understand. 1t iswell documented that Snort parses the
rule set in afirst come, firgt serve process. Where the mystery liesisin theinteligencethat is
built into Snort that combines smilar rules to speed up processing. Unfortunately, the find tree
structure may not match what is expected if one were to read the rule filesin the order they are
parsed. Itisthe god of this project to graphically provide information that will speed up the

learning processto alow a user to increase the performance of Snort.

19

High amount of processing required to pattern match network traffic

A wel known problem concerning pattern matching IDS isthat as the Sze of the rule st
increases, S0 does the time to process the network traffic that is being monitored. Therefore, one
way to minimize the processing time is to minimize the number of petterns that need to be
meatched. The information contained in the graph can be compared to the type of traffic which

will be seen on a network and Snort can then be configured to increase the overdl performance.

3.1. Overview
Snort Display
1) Parsesthe Snort rule s;
2) Dynamicdly createsthe interface;

3) Cresates the graph.

1) Parse the Snort rule set

In order to creste the interface, Snort Digplay must first parse the Snort rule set and creste
aconfiguration file. Upon clicking the “Browse” button, the user can search for a Snort
configuration file. A new browser window will open displaying a change rooted directory. One
can then traverse through the diplayed directory tree to find the file. Next, the user will click
the“Load” button to load the Snort configuration file, parse the rule set, and create the Snort
Display configuration file. Theinterface will then refresh with the first drop down box

containing the defaullt rules.

20

2) Dynamicdly creates the interface

Initially the five default rules are read into the first drop down box. If the user sdlects
“All”, the entire rule set will be displayed. By sdecting atype of rule, the interface refreshes
with the second drop down box with alist of recognized protocols. Agan, by sdecting “All”, dl
rulesthat are of the sdected type will be displayed. Otherwise, by selecting aprotocol fillsin the
fina drop down box with alist of the associated rules. From this point, there are three different
views available:

1) Theuser can display dl the associated rules by sdecting “All”;

2) A subset of the rules associated with the protocol may be display by supplying a

number of rulesto diplay along with the location of the selected rule;

3) A snglerule associated with the protocol may be displayed.

3) Creates the path

The sdection criteria supplied by the user will be passed to the digplay function. With
the information provided by the user and the rule details provided by Snort, Snort Display will
create the graph details. A point on the graph will be created for each rule type, protocol, rule,
and option to be displayed. With the use of severd gd library functions, the graph will be

dynamicaly created. Findly, an HTML page containing the graph will be provided to the user.

3.2. Desgn
In generd, the project involved designing an application that would create a graphica
representation of the Snort rule set. The requirements that were set from the beginning were that

it would be web based, interactive, and dynamic. A web-based application was decided upon for

21

portability and to dlow for wide-spread use. Being that web servers are becoming an industry
standard for supplying information, and that many of the third- party gpplications that interface
with Snort are web-based, it seemed that a web interface would provide the best solution to this
problem.

An interactive implementation was required so that different variations of the graph could
be displayed based on the user’ s criteria.

Findly, to dlow for the interactive cgpability, the gpplication would have to dynamicaly

create the graph display for various requests.

3.2.1. Initid Desgn

Theinitia design took on abasic implementation in order to create a prototype of the
initid idea and cregte abassfor other suggested functiondity. Some of theinitia design
components that are implemented in the final design are:

a“Browse’ interface to search for a Snort configuration file;

the ability to “Load’ the Snort configuration file;

three drop down boxes that will provide the required information to create the graph.

Oncetheinitid design took shape, two of the main problems that were contemplated
many timeswere:
how to provide the information in the graph;

which direction should the graph flow.

22

Initidly, the information was to be portrayed via different icons representing each point
on the graph. Unfortunately, with the number of rules that needed to be displayed, the graph
became quite large to the point that the library could not create an image large enough.
Therefore, an implementation that provided the same information in a smaller space was
required.

The direction of the flow of the graph was questioned many times throughout the design
processes. Initidly, the graph flowed from Ieft to right with the heads of each tree digned on the
left margin. This followed the traditiona idea of scrolling up and down rather than |eft to right.
Unfortunately, with the number of options associated with some of the rules, the graph grew
from left to right very quickly. Therefore, the graph was rotated to aign the head nodes across
the top of the graph. Again, the display scrolled from left to right being the rule set is so large.
It was determined that there was no clear cut solution as to which direction the graph should
flow. Asthe number of rulesincreases, o does the graph in one direction, or, as the number of
related options increases, so does the graph in the other direction. The question remains, which

direction is going to grow the fastest? Thisis answered in the find implementation.

3.2.2. Find desgn

Prior to presenting the application for the first time, some of the flaws that were seenin
theinitid design were updated. In order to minimize the size of the graph, points, rather than
icons, were created on the graph. Each point had relevant information that would be seen when
moused over. Asthe number of points that were displayed decreased, the Size of each node

increased with more information being displayed graphicaly.

23

The other problem of the direction of the graph was dso dedt with. 1t was assumed that
as the number of rulesincreases, the number of related rules may say the same. Theideaisthat
the components of a network will remain the same but, the points of attack may change,
therefore creating other rules that are Smilar to rulesthat aready exist. Thus, the number of
options will increase faster than the number of individua rules. So, to minimize the amount of

left to right scrolling, the graph was created in a top-down fasion.

After presenting the initid design of the gpplication with the additiond changes, some of
the comments and suggestions that were made were:

provide different colors and shapes to show a distinction between the types of nodes;

add alegend describing each color and shape;

provide a mechanism to display a portion of the rules, not just asingle rule or dl rules,

decrease the Sze of each point to minimize the Sze of the overdl graph.

The colorization of the graph was very sraight forward with the functiondity provided
by the graphicslibrary. Unfortunately, creating a different shape for each node was not as
trivid. When cregting alarger point on the graph, the detail of each shape was obvious.
However, once the point Size was decreased, the shapes were |less defined and were not clearly
displayed. After adding the different colorsto the graph alegend was added to the top of the
graph. With the colorization and legend, the details of the graph were much easier to distinguish.

Finally, a suggestion was made to add the ability to digplay a portion of the grgph. This
functiondity rounded out the gpplication into itsfinal verson. By alowing the user to Sate the

number of rulesto display, and the location to place the selected rule, a portion of the graph can

24

be displayed once a user has narrowed the criteria to a specific type of rule and protocol. With

the findl revison at hand, it seemed that al the necessary requirements were fulfilled.

25

3.3. Snort Display components

3.3.1. Thelnterface

[Netscape 6 & x|
. File Edic “iew Search Go Bookmarks Tasks Help
Q O @ O | o |Qhttp:j,l’wehser.cs‘Fsu.edu,i~hEIans;’cgi-hin,l’snnrt-displayisnnrtDisplay‘pl I [GKSearl:h] | Cfgo

. 48 Home [Wy] Matscape QSearch @) shop | EdBockmarks & MetzPhone S Google % Google Groups

Node Protocol Rule

cotstel 7 I SNORT DISPLAY ==y

Figure 1 — Thedefault interface

The interface provides access to the four main components of Snort Display: sdect a
Snort configuration file viathe “Browse” button, “Load” the Snort configuration file to creste
the Snort Display configuration file, generate a criteriafor the graph via the three drop down
boxes, and display the graph in the bottom half of the interface. Figure 1 shows an example of
the top haf of the interface that provides the interactive functiondity avalable to theuser. To
find the Snort configuration file, an additiona browser window will open when the user selects
“Browsg” (Figure 2) and display the contents of the change-rooted directory supplied when Snort
Digplay wasingdled. The HTML code contained in the browse window is produced by another
Perl script, browsepl. Asauser “clicks’ on each directory, anew directory listing will be

provided. Once the user selects a Snort configuration file, the full path will be entered into the

interface.

ENetscapeB 5
» File Edit Yiew Search Go Bookmarks Tasks Help

M Netscape 6 ' x| =18l x|

il Q O @ 0 Q Shttp:f fwebsryvz, o5, fau, eduf~ bOP’YING I[G\Search] go

| & ; Changelog

. Home M) Metscape Cly Search @] Shop | E3Bookmarks &8 Net LICENSE :
Makefile Nod Protocol Rl
takefile.am ode otoco e

COnﬁgﬁle;I?gradsfbe\ansfsnort—] Loadl Elrowsel Wiakefile in) I—' = ~

acconfigh LAY J I J I J
aclocal.md

config.cache
config.guess
config.h

Figure 2 — Browse window

26

Upon selecting “Load”, the Snort Display configuration file will be crested based on how
Snort parses the rule set. Thefirst drop down box will befilled in with the five default rule types
(Figure 3). Asthe user makes various sdlections, the interface will be re-displayed based on the
new sdection. A user will then have the ability to narrow down the search to a single type of
rule, asingle protocol, or asingle rule by selecting one dement from any or al of the three drop

down sdlect boxes. Or, the user can get the big picture by displaying the entire rule set dl a

once.

[B Netscape 6 =0
. File Edit WYiew Search Go Bookmarks Tasks Help

0 Q @ O | Q |%http:,l’,iwabser.cs.Fsu.edu,l’~belans,l’cgi-binfsnort-display,l’snortDisplay.pl I[QSearch] go

. 48 Home [My] Metscape e\Search .’a Shop | EJBookmarks @NetZPhone % Google %% Google Groups

Node Protocol Rule

REE |
All

Activation
Dynaric
Alert
Fass

Lo

Confg il Jredlbeensiencr” Lood | Browse | SNORT DISPLAY

Figure 3—Initialization of interface

27

3.3.2. TheDisplay

[BI Netscape 6 =] x]

. File Edit Yiew Search Go Bookmarks Tasks Help

@Q O @ O | o |%http:,l’,iwabser.cs.Fsu.edu,l’rvbelans,l’cgi-binfsnort-display,l’snortDisplay.pl |[@\533r5h] Cgo

. 48 Home W] Netscape ‘Gl Search (@) Shop | CJBookmarks &9 NetzPhone S Google S Google Groups

Node Protocol Rule

Conﬁgﬁlg;Pgradsfbe\ans,f’snort—] Loadl Erowse | SNORT DISPLAY Alert j ITcp j IRU|81 j

Numher of rules to show: IU
Selection: Front * Middle ¢ End ©

Legend:

B Type of rules

B rrotocol of rule
ey

B options

alert
Tep

e]

. BAD TRAFFIC top port O traffic

Figure 4 — Graph with additional data included

Based on the sdection(s) made, the appropriate link listswill be searched and/or
traversed to create and display the graph. Each point on the graph will represent aligt, a
protocol, arule, or an option. Information associated with each point will be included in the
dynamicaly created page. Theinformation, by default, will be displayed as each point is
moused over. Asthe number of points on the graph decreases, more information will appear on
the graph itsdlf (Figure 4).

Again, after demondrating the initid design, many suggestions were made to improve
functiondity. The points, and the lines that are joining the points, were color coded to sgnify
the type of point it represents. A legend isincluded at the top of the graph to sgnify the meaning
of each color. Black represents the different types of rules. Red represents the protocol of the
rule. Green represents the header information contained in each rule. Blue representsthe

options contained in each rule. Additiona functiondity was added to dlow a user to determine

28

the number of rulesthat will appear in the graph. Once the user has selected a specific protocal,
two other fields will gppear (Figure 5):

atext box to enter the number of rulesto display;

a st of radio buttons to determine the location of the selected rule, if any.

Basad on the additiond information from the user, and the added functiondity, the user may

create avery broad or narrow representation of the Snort rule .

[Netscape 6 =S|

. File Edit “iew Search Go Bookmarks Tasks Help

@0 @ @ Q | O |%http:jjwahsrvzcs.Fsu.edu,l’~helans,l’cgi-hinfsnnrt-display,l’snnrtDispIay.pl I[@kSearch] ; CL’%;Q

45 Home [My] Netscape @\Saarch 11 Shop : FSBookmarks &9 NetzPhone N Google S Googls Groups

-

-

=
Node Protocol Rule =

Conﬁgﬁlg_Pgradsfbe\ans,f’snorH Loadl Erowse | SNORT DISPLAY Alert ﬂ ITCP j IRU|B1 j

Tumher of rules to show: |1 0
Selection: Front * Middle ¢ End ¢

Legend:
B Type of rules
M Protocol of rule

HRule
Moptions
alert
.2
| Tcp
I

- aa
EEEEEEE = nm

Figure 5— Graph created based on selections

29

3.4. Snort Display implementation
3.4.1. Initid implementation
3.4.1.1. Snort Display functions
menu.pl()
Perl Script
Cdlsbrowse.pl(), config.pl(), display.pl(), and itsdlf
Creates the interface based on the Snort Display configuration file and user selections

Provides the basic mechanism for the user to interface with the application

browse.pl()
Perl script

Cresates a browse window to find a Snort configuration file

config.pl()
Perl script
Cdlsconfig()

Parses the form data to creste the command line string to pass to config()

config()
C program
CdlsInitNetmasks(), I nitPreprocessors(), I nitPlugl ns(), InitTag(), I nitVariables(),
CreateDefaultRules(), ParseRulesFile(), and CreateDataFile()

Recaves a |least one argument, the snort configuration file

30

An optiona output file may be provided, otherwise, the output will be sent to STDOUT
Snort dictated the language to use to create config() the Snort functions required are

writtenin C

Function: CreateDataFile()

Crestes the Snort Display configuration file

display.pl()
Perl script
Cdlsdisplay()

Parses the form data to create the command line string to pass to display()

display()

C program

CdlsreadFile(), drawl mage(), drawNodes(), drawLists(), drawRules(),
drawOptions(), freel mage()

Receivesthe type of rule, aprotocol, and arule as parameters

All parameters are required but may be empty length strings

Reads in the Snort Display configuration file to fill in each sructure

Node structures represent the types of rules and contain
The name of the node
The number of protocols associated with the node

The number of rules associated with the node

31

The number of options associated with the node
A pointer to the next node
A pointer to alist of protocols associated with the node
List structures represent the types of network protocols and contain
The name
The number of rules
The number of options
A pointer to the next protocol
A pointer to aligt of rules
Rule structures represent the header information of each rule and contain
The name
The number of options
A pointer to the next rule
A pointer to aligt of options
Option structures represent the options section of each rule and contain
The name
The message that will be sent upon the option being matched

A pointer to the next option.

32

34.1.2. Snort functions
Function: CreateDefaultRules()
Crestes the five default link lists, one for each type of rule
Each link ligt is headed by a ListHead Snort data structure
Each ListHead contains a pointer to alist of RuleTreeNodes
Each dement of the list contains unique header information supplied by the rules
Contained in each RuleTreeNode is a pointer to alist of OptTreeNodes

Each dement of the list contains the options section of Smilar rules

Function: ParseRulesFile()

Parses each rule file in the order it is referenced in the snort configuration file

3.4.1.3. Destription of implementation

Two frames were created to split the user interface, the top frame, from the display ares,
the bottom frame. Menu.pl(), generated the code to create the user interface. Since thereisno
Snort Digplay configuration file available for the firdt iteration, the default interface is displayed.
Once auser selects “Browse’, browse.pl() will open anew browser window and generate the
HTML code to display the change-rooted directory. After a Snort configuration file is selected,
JavaScript code will enter the full path of the fileinto the interface. Upon sdecting “Load”,
config() is caled to creete the configuration file for Snort Display. Config() was wrapped by
another script config.pl() to create the config() command line gring. Config.pl() completes by
cdling menu.pl() which will read in the Snort Display configuretion file that was cregted in the

previous step. Included in the HTML code produced by menu.pl() are three drop down boxes

33

and JavaScript to dynamicaly submit the form. Each time a user makes a selection,
MenuSelect() will verify the selection(s) made, possibly reset the remaining drop down boxes,
and determine whether to cal menu.pl() or display.pl().

Config() firg initidizes the environment by cdling I nitNetmasks(), I nitPreprocessors(),
InitPluglns(), and InitTag(). InitVariables() isthen called to set other variablesto complete the
initidization process. Many different variations of code were revised on atrid-and-error
gpproach to determine which interna structures were required by the Snort functions to operate
properly. CreateDefaultRules() and ParseRulesFile() arethen caled to read in the rue set.
ParseRulesFile() will reed in eech rule in afirst come, firs serve bass. Aseachruleisreadin,
it will be concatenated to thelink lit it is associated with. By using some basic intelligence, any
common rules will be combined to decrease the number of rules that need to be processed. For
example, Rule 1 matches arange of addresses and asingle port.

alert tcp any any -> 192.168.1.0/24 111
Rule 2 matches a single address, contained in the origina range, and the same port.

alert tcp any any ->192.168.1.10/32 111
Short will flip-flop the two rules, otherwise, rule 2 would never be matched. Thisis because any
traffic matching Rule 2 will match Rule 1 first. Findly, the Short Display configuration fileis
created by CreateDataFile(). Initidly, the type of rule, protocol, rule number, option number, IP
addresses, and port numbers were dumped from the link lists. Throughout the devel opment
process, additional properties were added which includes the Sgnature id, the signature revision,
and the message that will be sent to the logging and derting mechanism.

Display() isthefina script that is activated once the selection criteria has been made.

Basad on the information provided from the user and the Snort Display configuration file,

display() is ableto create the graph. Firgt, readFile() readsin the Snort Display configuration
file. Next, drawl mage() is caled to create the graphic which references drawNodes(),
drawLists(), drawRules(), and drawOptions() to display each particular portion of the graph.
Based on the depth of the sdlection criteria determines which of the functions will be caled.

Once the image is written to afile, freel mage() free any memory required to store the graph.

3.4.2. Find implementation
3.4.2.1. Snort Display functions
snortDisplay.pl()
Perl script
Cdlsbrowse.pl(), config() and display()
Became the interface into the gpplication

Contains the functiondity of config.pl() and display.pl()

Display()

Recaves the following additiond fields viathe list of command line parameters
The number of rulesto display
Location of the selected rule, if any
The width of the screen

Added the following to the Node structure
The maximum height of the tree below the node

Added the following to the List Structure

The maximum height of the tree below the protocol point on the graph

35

Added the following to the Rule structure
The source and destination |P address
The source and destination port number
A pointer to the previousrulein the list
Added the following to the Option structure

Theid and revison number of the option

3.4.2.2. Destription of implementation

After testing, it was determined that there was a problem updating the interface in certain
scenarios. For example, if anode, protocol, and rule were selected, and then another protocol
was sdlected, the rules were not updated correctly. The problem was that the decision to use
JavaScript to create an interactive interface prevented the user interface from receiving the
correct information based on the new sdection. Therefore, the JavaScript interface was
converted to a Perl script, snortDisplay.pl, that produces HTML code to create a single frame
containing the same information and functiondity asthe first generation of code.
SnortDisplay.pl isnow the angle entry point for the entire application. Once the processing was
moved from the client Sde to server Sde, the drop down select box fields werefilled in correctly
based on the user sdlections which provided a smoother user interface. The functionality
provided by config.pl() was aso added to snortDisplay.pl() to diminate the script entirely. It
was aso determined later that the server side implementation provided amuch essier
implementation of the added functiondity of digplaying a portion of the graph.

After providing a demondration of the first generation of code to the seminar group | was

apart of, it was suggested that the ability to display arange of rules would provide better

36

functiondity. Therefore, two more fields were added to the interface, azoom and loceation field.
Once auser has narrowed the search to a specific type and protocol, the two fields will appesr.
Now the user can specify how many rules will gppear in the graph and the location of the
selected rule. Once the complete selection is made, the form data is passed to display() which
will dynamically creste and display the graph. (Figure 4)

In order to display arange of rules, afew changes were made. Firdt, a pointer was added
to each internal data structure, that is represented in the link lists, that points to the previous
edement inthelist. Now the link lists can be traversed in reverse, and therefore, a portion of the
graph can be displayed. Findly, the width of the screen is passed to the display C program to
limit the amount of space the graphic needsto cover. By limiting the Sze of the graphic fileto

the size of the screen will decrease the load time of the graphic file.

3.5. Find reaults

The find implementation provides the information that has been requested from the Snort
user’sgroup. SnortDisplay() providesthe interface to the application to select a Snort
configuration file and criteriato creste the graph. Once a Snort configuration file is selected,
config() retrieves the information from the link lists provided by Snort. Display() then usesthat
data and the user sdlection(s) to create agraphical representation of how Snort will interpret the
rule set. The information provided by the graph creates a clearer picture of how Snort interprets

therulesat. Thus, it assists auser to configure Snort to execute more efficiently.

37

CHAPTER 4

CONCLUSION AND FUTURE WORK

Snort Display isagreet building block for a unique performance-tuning tool. As stated
earlier, there is no mechanism to display how Snort processestherule set. Therulesfilesare
sdf-explanatory but the extrerne number of rules hinders a user from gathering a detailed
understanding of the entire set. Documentation exigts that explains the structure of the link lists,
but the contents of the structures and how they are arranged are instance specific. Therefore,
Snort Display fillsin the missing gaps that exist to gain a better understanding of how Snort
processes the rule set. With the information provided by Snort Display and agood
understanding of the traffic that Snort will be processing, one can configure Snort for better
performance.

Snort Display isafirg atempt at providing an easy interface to describing how Snort
processes the rule set provided. Fortunately, the mgority of the components created, that
interface with Snort, are dynamically configured based on how Snort is configured. However,
thisisan areathat can beimproved. For ingance, the default rule types are the only types that
are parsed out of therule set. A dynamic implementation of this section will dlow auser to
change Snort, and in turn, change Snort Display without any additiond changes. The graph sze
isaso, somewhat, Saticaly determined. Dueto alack of time, the max number of options
associated with a rule determines the height of the graph regardless of the rule(s) sdlected. If the

max number of options displayed determined the height of the image, the image size and load

38

time would be greatly reduced. Findly, the overd| detall of the graph itsdf needsto be
improved upon. A redesign of the tree may provide more space to include more detail on the
graph. By decoding additiond information contained in various structures, more detail will be

available uponrequest. Snort Display can now provide the basis for other smilar tools.

39

APPENDIX A

A.1. README

README file for Snort Display

The followi ng nust be previously installed before configuring
and installing Snort Display.

Snort: http://ww.snort.org/dl/
GD Graphics Library: http://ww. boutell.conf gd/

Install ati on Gui de

1) ./configure.pl <options>
Configuration options:

--snort | -s Path to snort source code
--snort _display | -d Path to snort display source code
--libs Path to linker libraries
--tenmpdir | -t Tenporary directory
--browsedir | -b Base browse directory
--datafile | -f Path to data file
--logfile | -1 Path to log file
--imagefile Full path of image file
--imageuri Virtual path of image file
--htnml _path Path to htm directory
--htm _virtual Virtual path to htm files
--cgi _path Path to cgi-bin

--cgi _virtual Virtual path to cgi-bin
--width W dt h of nodes

- - hei ght Hei ght of nodes

--space Space between nodes

--help | -h Di spl ay hel p information

2) meke
3) nmke install

The first step in using Snort Display is to provide the |location of a Snort
configuration file. The full path can be entered directly by hand, or, by
pressing the "Browse" button, another wi ndow will open displaying what is
consi dered the root path that was provided during installation. The

remai ning directory tree can be searched for a given Snort configuration
file. Once selected, the full path will be entered into the interface.

40

Next, by pressing the "Load" button, the Snort configuration file will be
parsed and the required information will be witten to a tenparary file
| ocated in the directory provided during installation.

Once the data file is loaded, the interface will initialize itself with the
default rule types read in fromthe data file. By selecting various options
di spl ayed in each drop down box, a graph will be created displaying the

requested information. A graph can contain as little as a single rule, or
as nmuch as the entire file.

Questions / Comrents

Snort display is a first attenpt at providing i nformati on about how Snort
parses the configuration file. You may use the software as you see fit, that
bei ng, copying the software, changing the software, and/or re-distributing
the software. |f you have any questions or coments on how to use the
software, or enhance the software, please send themto bel ans@s. fsu. edu.

A.2. configurepl

#! [/ usr/ bi n/ perl

HitH BB R H R R R R R R A HHHHHHH AR R R R R R R R 7 #
Copyright 2003 Joseph Bel ans <bel ans@s. f su. edu>

This programis free software; you can redistribute it and/or nodify
it under the terns of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any |later version.

This programis distributed in the hope that it will be useful
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the
GNU Ceneral Public License for nore details.

You shoul d have received a copy of the GNU General Public License

along with this program if not, wite to the Free Software

Foundation, Inc., 59 Tenple Place, Suite 330, Boston, MA 02111-1307 USA
HHHBH PR HBH PR H R R R R R R R R

use strict;

use Getopt::Long;

HFHHIAHFHFEHHHHFHEHEHEHHR

Set default val ues

nmy $GCC = “which gcc 2>/dev/null
chop ($GCO);

ny $PERL = “which perl 2>/dev/null;
chop ($PERL);

ny $SNORT = "/usr/local/src";

$SNORT = “Is -d ${SNORT}/snort* 2>/dev/null | tail -17;
chop ($SNORT);

ny $SNORT DI SPLAY = “pwd";

chop ($SNORT_DI SPLAY) ;

${ SNORT_DI SPLAY} =~ s/ /\\ /g;

41

ny $LIBS = "/usr/local/lib:/usr/lib";

ny $TEMPDIR = "/t mp";

ny $BROWSEDI R = "/usr/local /src";

ny $DATAFILE = "${TEMPDI R}/ data.txt";

ny $LOGFI LE = "${TEMPDI R}/ 1 og. t xt";

ny $HTML_PATH = "/var/www htm /snort _di spl ay";
ny $VI RTUAL_HTM._PATH = "/snort _di spl ay";

ny $CGE _PATH = "/var/ww/ cgi - bi n/snort_di spl ay";
ny $VI RTUAL_CG _PATH = "/cgi-bin/snort_display";
ny $I MAGEFI LE = "$HTM._PATH graph.j pg";

ny $I MAGEURI = "$VI RTUAL_HTM._PATH gr aph.j pg";
ny $W DTH = 5;

ny $HElI CHT = 5;

ny $SPACE = 10;

ny $HELP;

Parse conmand |ine paraneters

ny $result = GetOptions ("snort|s:s" => \ $SNORT,
"snort _display|d:s" => \$SNORT_DI SPLAY,
"libs:s" => \$LIBS,
"tenpdir|t:s" => \$TEMPDI R,
"browsedir|b:s" => \ $BROASEDI R,
"datafile|f:s" => \ $DATAFI LE,
"logfile|l:s" => \$LOGFI LE,
"i magefile:s" => \$I MAGEFI LE,
"imageuri:s" => \$l MAGEURI,
"htm _path:s" => \ $HTM__PATH,
"htnl _virtual :s" => \$VI RTUAL_HTM._PATH,
"cgi _path:s" => \$CG _PATH,
"cgi _virtual :s" => \$VI RTUAL_CA _PATH,

"width:i" => \$W DTH,
"height:i" => \$HEl GHT,
"space:i" => \ $SPACE,

"hel p| h* => \ $HELP) ;

Check options that were passed
if ((!$result) || ($HELP)) {
printUsage ();
exit;

}

Check that required conponents exi st

Find snort

if (! -f "$SNORT/src/snort.c") {
print "Can not find snort source code.\n";
exit;

}

Check for gcc

if ($GCC eq "") {
print "Can not find gcc conpiler.\n";
exit;

}

Check for perl
if ($PERL eq "") {
print "Can not find perl interpreter.\n";

42

exit;

}

Check third party libraries

ny $gdflag = 0;

nmy $j pegflag = O;

ny $zlibflag = 0;

my $pngflag = O;

ny $freetypeflag = 0;

foreach (split (/:/, $LIBS)) {

if (-f "$_/libgd.a") {

$gdflag = 1;

if (-f "$_/1ibjpeg.a") {
$j pegflag = 1;

if (-f "$_/libz.a") {
$zlibflag = 1;

if (-f "$_/libpng.a") {
$pngflag = 1;

if ('Is $ /libfreetype.* 2>/dev/null™ ne "") {
$freetypeflag = 1;

if (!$gdflag) {
print "Mssing gd library.\n";
exit;

if (!$ pegflag) {
print "Mssing jpeg library.\n";
exit;

if (!$zlibflag) {
print "Mssing z library.\n";
exit;

if (!$pngflag) {
print "M ssing png library.\n";
exit;

if (!$freetypeflag) {
print "Mssing freetype library.\n";
exit;

}

Di splay parameters

print "Snort Source Code:\t\t\t$SNORT\n";

print "Snort Display Source Code:\t\t$SNORT DI SPLAY\ n";

print "Tenp Directory:\t\t\t\t$TEMPDI R\ n";

print "Data File:\t\t\t\t$DATAFILE\n";

print "Log File:\t\t\t\t$LOGFILE\n";

print "Snort Display HTM. Path:\t\t $SHTM._PATH\ n";

print "Snort Display Virtual HTM. Path:\t$VI RTUAL_HTM._PATH\ n";
print "Snort Display CA Path:\t\t\t$Cd PATH\ n";

print "Snort Display Virtual CG Path:\t\t$VI RTUAL_CA _PATH\ n";

43

Renane nmain in snort.c

chdir

"$SNORT/ src";

system ("cp snort.c snort.org.c");

system ("cat snort.org.c | sed
"s/\\(int.*\\)main\\(.*arg[cv].*arg[cv].*\\)/\\1lmai nSnort\\2/' > snort.c");

Get conmand line to create config.c
nmy ($gcc_config) = “make -n snort.o”;
ny ($gcc_snort) = “make -n snort | grep gcc | grep snort.o;

Create command | i nes

$gcc_config =~ s/\bsnort.c\b/config.c/;
$gcc_config =

$gcc_config =

${gcc_snort
${gcc_snort
${gcc_snort

} =
} =
} =

~s/-1\V. AV /-1TV$\V (SNORT\) / g;
~ s/-1\./-1\$\(SNORT\)\ /src/g;

~ s/\bsnort.o\b//;
~ s/\b([a-zA-Z\-_\/]+\.[o]la])\b/\$\ (SNORT\)\/src\/\1/g;
~ s/\bsnort\b/config config.o getcgi.o snort.o/;

Create snortDisplay. htm
chdir
ny ($path_escaped) = $VI RTUAL_CG _PATH;

$pat h_escaped =~ s/\//\\\//g;

ny ($cnd) = "cat perl/snortDisplay.htm.in | sed

's/ <VI RTUAL_CG _PATH>/ $pat h_escaped/' > perl/snortDisplay.htm";
system ("$cmd");

" $SNORT_

DI SPLAY";

Create snortDisplay.pl
$pat h_escaped = $PERL;
$pat h_escaped =~ s/\//\\\//g;

$cnmd = "cat

perl/snortDisplay.pl.in | sed 's/<PERL>/ $path_escaped/' >

perl/snortDisplay.pl";
system ("$cnmd");

Create browse. pl

$cnd = "cat

perl/browse.pl.in | sed 's/<PERL>/$path_escaped/' >

perl/browse. pl";
system ("$cmd");

Create c nmakefile

open (OUTFI LE,

pri
pri
pri
pri
pri
pri
pri
pri
pri
pri

nt
nt
nt
nt
nt
nt
nt
nt
nt
nt

OUTFI LE
OUTFI LE
OUTFI LE
OUTFI LE
OUTFI LE
OUTFI LE
OUTFI LE
OUTFI LE
OUTFI LE
OUTFI LE

l'j peg”;
foreach (split (/:/, $LIBS)) {
print OUTFILE " -L$ ";

}

">c/ Makefile");
" SNORT=$SNORT\ n";
" SNORT_DI SPLAY=$SNORT_DI SPLAY\ n\ n";
"all: config display\n";
"install: install-config install-display\n\n";
"clean:\n";
"\trm-f config display *.o0 header.h Makefile\n\n";
"config: config.o getcgi.o\n";
"\'t$gcc_snort\n\n";
"di splay: display.c getcgi.o displayFunctions.o\n";
"\tgcc -o display display.c displayFunctions.o getcgi.o -1gd -

print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE

"\'n\n";

"config.o: header.h config.c\n";
"\t $gcc_config\n\n";

"getcgi.o: getcgi.h getcgi.c\n";
"\tgcc -c getcgi.c\n\n";

"di spl ayFunctions. o: displayFunctions. h di spl ayFunctions.c\n";
"\tgcc -c displayFunctions.c\n\n";
"install-config: config\n";
"\tnkdir -p $CA _PATH; \\\n";
"\tcp -p config $CA _PATH\n\ n";
"install-display: display\n";
"“\tnkdir -p $CA _PATH, \\\n";
"\tcp -p display $CE _PATH\ n";

cl ose (QUTFILE);

Create the perl Makefile

open (OUTFI LE,
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
Makefil e\ n";

">perl|/ Makefile");

"all: install\n\n";

"install:\n";

"\tcp *.pl $CA _PATH, \\\n";
"\tchnmod 755 $CG _PATH *.pl; \\\n";
"\tcp *.html $CA _PATH, \\\n";
"\tnkdir -p $HTM._PATH; \\\n";
"\ttouch $I MAGEFI LE; \\\n";
"\tchnod 666 $I MAGEFI LE\ n\ n";
"clean:\n";

"\trm browse. pl header.pl snortDisplay.pl snortDisplay. htni

cl ose (QUTFILE);

Create snort
chdir "$SNORT/
system (" nmake

src";
snort.o");

system ("mv snort.o $SNORT_DI SPLAY/c");
system ("cp snort.org.c snort.c");
system ("rmsnort.org.c");

system (" meke
system (" meke

snort.o");
snort");

Create c/header.h

chdir "$SNORT_

open (OUTFI LE,
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFI LE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE
print OUTFILE

DI SPLAY";

">c/ header. h");
"#i f ndef _snortDi splay\n\n";
"/* Declare snortDisplay paranmeters */\n";
"#define _snortDisplay\n\n";
"/* Configuration section */\n";
"#define TEMPDIR\ t\"$TEMPDI R\ "\ n";
"#defi ne BASECA \t\"$VI RTUAL_CA _PATH\ "\ n";
"#defi ne WDTH\ t $W DTH\ n";
"#define HEI GHT\t $HEI GHT\ n";
"#define SPACE\t $SPACE\ n\ n";
"/* Create constants */\n";
"#define DATAFILE\t\" $DATAFI LE\"\ n";
"#define LOGFILE\t\t\"$LOGFI LE\"\ n";
"#define | MAGEFI LE\ t\ " $I MAGEFI LE\ "\ n";
"#define | MAGEURI\t\"$I MAGEURI\ "\ n\ n";
"#endi f\n";

45

cl ose (OUTFILE);

Create perl/header. pl
open (I NFILE, "perl/header.pl.in");
open (QOUTFILE, ">perl/header.pl");
foreach (<INFILE>) {
chop;
if ($_ eq "<INSERT>") {
print OUTFILE "# Constants\n";
print OUTFILE "use constant BASECONFDI R => \"$BROWSEDI R\ ";\ n";
print OUTFILE "use constant DATAFILE => \"$DATAFILE\";\n";
print OUTFILE "use constant TEMPLATE =>
\"$CA _PATH snortDi splay. htmd\";\n";
print OUTFILE "use constant BASECA DIR => \"$Cd _PATH\ ";\n\n";
print OUTFILE "use constant BASECG URI => \"$VI RTUAL_CG _PATH\ ";\n\n";
} else {
print OUTFILE "$_\n";
}
}

cl ose (QUTFILE);

HRHH R R A
Function: printUsage

Par aneters: none

#
#
#
#
Return: none
#
Di splay the usage of configure
#
S

ub printUsage () {
print "configure <options>\n";

print "\t--snort | -s\t\tPath to snort source code\n";

print "\t--snort_display | -d\tPath to snort display source code\n";
print "\t--libs\t\t\tPath to Iinker |ibraries\n";

print "\t--tenpdir | -t\t\tTenporary directory\n";

print "\t--browsedir | -b\tBase browse directory\n";

print "\t--datafile | -f\t\tPath to data file\n";

print "\t--logfile | -I\t\tPath to log file\n";

print "\t--imagefile\t\tFull path of image file\n";

print "\t--inmageuri\t\tVirtual path of inmage file\n";
print "\t--html _path\t\tPath to htm directory\n";

print "\t--htm _virtual\t\tVirtual path to htm files\n";
print "\t--cgi_path\t\tPath to cgi-bin\n";

print "\t--cgi_virtual\t\tVirtual path to cgi-bin\n";
print "\t--width\t\t\tWdth of nodes\n";

print "\t--height\t\tHeight of nodes\n";

print "\t--space\t\t\t Space between nodes\n";

print "\t--help | -h\t\tDisplay help information\n";

46

A.3. Makefile

all:
cd c; \
make
install:
cd c; \
make install
cd ../perl; \
make i nstal
cl ean:
cd c; \
make cl ean; \
cd ../perl; \
make cl ean
A.4. config.c

/***

* Copyright 2003 Joseph Bel ans <bel ans@s. f su. edu>

* % X X X X X X X X X X X

it under

(at your

I nc.,

This programis free software; you can redistribute it and/or nodify
the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
option) any |later version.

This programis distributed in the hope that it will be useful
but W THOUT ANY WARRANTY; without even the inplied warranty of
MERCHANTABI LI TY or
GNU Genera

FI TNESS FOR A PARTI CULAR PURPCSE. See the

Public License for npre details.

You shoul d have received a copy of the GNU General Public License
along with this program if not, wite to the Free Software
* Foundati on,

59 Tenple Place, Suite 330, Boston, MA 02111-1307

***/

/***

* File:
*
*
*
*
*
*
*
*
*

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

config.c

Par anet er s:
configuration file
output file

Ret urns: none

<stdi 0. h>
<stdlib. h>
<string. h>
"header . h"
"getcgi.h"

Dunmp the link lists provided by Snort to a text file

**/

47

USA

#i ncl ude "snort.h"

#i nclude "rul es.h”

#i nclude "strlcpyu. h"
#i ncl ude "pl ugbase. h"
#i ncl ude "parser.h"
#i ncl ude "tag. h"

#i nclude "util.h"

/* Start of the rule list */
extern Rul eLi st Node *Rul eLi sts;

/* Declare functions */

void InitVariables ();

void StoreConfig (char *file);

void CreateDataFile (char *outfile);

voi d ProcessNode (FILE *outfile, RuleListNode *node);
voi d ProcessList (FILE *outfile, RuleTreeNode *list);
void ConvertlP (I pAddrSet *idx, char **str);

/* Main function */
int main(int argc, char* argv[]) {
char *outfile, /* Qutput file */
infile; / Config file */

/* Use stdout for output */
if (argc == 2) {

outfile = NULL;

infile = argv[1];

/* Set input and output file */
} else if (argc == 3) {

outfil e = DATAFI LE

infile = argv[1];

/* Display usage */

} else {
printf ("USACE: config <config file> [output file]\n");
return (0);

}

/* Setup sonme | ookup data structs */
I ni t Net masks();

/* Initialize required variables */
InitVvariables ();

/* Store the config file */
StoreConfig (infile);

/* Initialize all the plugin nodules */
I nitPreprocessors();

I nitPluglns();

I nitTag();

/* Setup the default rule action anchor points */
Creat eDef aul t Rul es();

48

/*

Parse the rules file */

Par seRul esFi |l e(pv.config _file, 0);

/* Create the data file */
CreateDataFile (outfile);
/* Done */

return (0);

}

/**

* Function: InitVariables

* X X

Par aneters: none

* Returns: (void)

*

* Sets the required variabl es

***/

void InitVariables () {

/*

pv.
pv.
pv.
pv.
pv.

/*

pv.

/*

pv.

/*

pv.

pv.

/*

pv.

/*

El i m nate any messages */
verbose_flag = O;

quiet flag = 1;

nolog flag = 1;

log _cnd_override = 1

al ert _nmode = ALERT_NONE

Set the alert filenane */
alert _filename = LOGFI LE

Set the default alert npde */
al ert_node = ALERT_FULL,;

Set the default assurance node (used with stream4) */
assurance_mode = ASSURE_ALL;

use_utc = 0O;

Turn of f decoder alerts */
decode_al ert _flag = O;

Set the default |ogging directory */

strlcpy(pv.log_dir, TEMPDIR, STD BUF);

}

/**

* Function: StoreConfig

Par anet ers:

*
*
*
*
* Returns: (void)
*
*
*

file (char*) - the output config file nane

Stores the config file name in the pv structure

**/

void StoreConfig (char *file) {
char *tnp;

49

strlcpy(pv.config_file, file, STD BUF);
if (strrchr(file,' /")) {
strlcpy(pv.config_dir, file, STD _BUF);
tnmp = strrchr(pv.config dir,"'/");
*(++tp) = "\0";
} else {
strlcpy(pv.config dir, "./", STD BUF);
}

pv.use_rules = 1;

}

/**

* Function: CreateDataFile

Par anet er s:
outfile (char*) - the output config file nane

Returns: (void)

Creates the data file that contains the rule set

*
*
*
*
*
*
*
***/
void CreateDataFile (char *outfile) {

FILE *outfil e_handl e; /* Qutput file handle */

Rul eLi st Node *node; [* Current node */

int i;

/* Qutput to stdout */
if (loutfile) {
outfile_handl e = stdout;

/* Open output file */

} else if (!(outfile_handle = fopen (outfile, "w))) {
printf ("Can't open output file: %\n", outfile);
return;

}

/* Wite the config file nanme */
fprintf (outfile_handle, "%\n", pv.config file);

node = Rul eLi st s; /* The first node */

/* Loop through all nodes */
for (i = 0; node; i++) {
/* If the current node has rules, process */
i f (node->Rul eList) {
/* Wite the node name */
fprintf (outfile_handle, "%\n", node->nane);

/* Process the |lists associated with the current node */
ProcessNode (outfile_handl e, node);

}

node = node- >next;

50

/* Close the output file, if necessary */
if (outfile)
fclose (outfile_handle);

}

/*************************-k-k***************************************
* Function: ProcessNode
Par anet er s:
outfile (FILE*) - the output config file handle
node (Rul eLi st Node*) - the head node

Returns: (void)

* X X X Xk F

Parses the link list for the given node to collect the required data
* from each protocol |ist associated with the node
**/

voi d ProcessNode (FILE *outfile, RuleListNode *node) {

/* Process the lists for the node */

i f (node->Rul eLi st->IpList) {

fprintf (outfile, " Ip\n");
ProcessLi st (outfile, node->Rul eList->|pList);

i f (node->Rul eLi st->TcpList) {
fprintf (outfile, " Tcp\n");
ProcessLi st (outfile, node->Rul eList->TcplList);

i f (node->Rul eLi st->UdpList) {
fprintf (outfile, " Udp\n");
ProcessLi st (outfile, node->Rul eList->UdpList);

}
i f (node->Rul eLi st->lcnpList) {

fprintf (outfile, " lcnmp\n");

ProcessLi st (outfile, node->Rul eList->lcnpList);
}

/**

* Function: ProcesslLi st

Par anet er s:
outfile (FILE*) - the output config file handle
node (Rul eTreeNode*) - the head of the I|ist

Returns: (void)

Parses the link list for the given node to collect the required data
from each protocol |ist associated with the node

*
*
*
*
*
*
*
*
*
**/

void ProcessList (FILE *outfile, RuleTreeNode *list) {

Rul eTr eeNode *rul e; [* Current rule */
Opt TreeNode *opti on; /* Current option */
| pAddr Set *i dx; /* 1 ndexing pointer */

char *str = (char*)malloc (42); [/* Tnp string */

/* Get the first rule */
rule = list;

51

/* Loop through the list */
while (rule) {
fprintf (outfile, " Rule %l:", rule->head_node_nunber);

/* Display port information */
if (rule->flags & EXCEPT_SRC_PORT)
fprintf (outfile, "!");

if (rule->flags & ANY_SRC_PORT)

fprintf (outfile, "any:");

el se

fprintf (outfile, "%/ %l:", rule->hsp, rule->lsp);

if (rule->flags & EXCEPT_DST_PORT)
fprintf (outfile, "!'");

if (rule->flags & ANY_DST_PORT)

fprintf (outfile, "any:(");

el se

fprintf (outfile, "%/ %: (", rule->hdp, rule->ldp);

/* Print source ip info */
idx = rul e->sip;
while(idx !'= NULL) {
/* Display ip address info */
Convertl P (idx, &str);
fprintf (outfile, "%", str);

/* Get the next address */
i dx = idx->next;

/* Print separator */
if (idx)
fprintf (outfile, ":");
}

fprintf (outfile, "):(");

[* Print destination ip */

i dx = rul e->dip;
whil e(idx !'= NULL) {

/* Display ip address info */
Convertl P (idx, &str);
fprintf (outfile, "%", str);

/* Get the next address */
i dx = idx->next;

/* Print separator */
if (idx)
fprintf (outfile, ":");
}
fprintf (outfile, ")\ n");
/* Loop through the options */

option = rul e->down;
while (option) {

52

fprintf (outfile, " Option %d: %d: %l: %\ n",
opti on->chai n_node_nunber, option->siglnfo.id,
option->siglnfo.rev, option->siglnfo.nmessage);
opti on = option->next;

}

rule = rul e->right;
}
free (str);

void Convertl P (I pAddrSet *idx, char **str) {
u_int8_t octet;
u_int32_t tnp;
char *strptr;
int i;

/* Set pointer to string */
strptr = *str,

/* Check if the exception flag is set */
if (idx->addr_flags & EXCEPT_IP) {
sprintf (strptr, "!");
strptr++;
menset (strptr, '\0', 1);

[* Check if this is an "any" ip */

if ((idx->ip_addr == 0) && (idx->netmask == 0)) {
sprintf (strptr, "any");
return;

}

/* Convert |P address */
tnmp = idx->i p_addr;
for (i =0; i < 4; i++) {
octet = tnp;
sprintf (strptr, "%l.", octet);
tnmp = tnp >> 8;
strptr = strrchr (*str, "\0");
}
menset ((strptr - 1), '/', 1);

/* Convert netmask */
tmp = idx->net nask;
for (i =0; i < 4; i++) {
octet = tnp;
sprintf (strptr, "%.", octet);
tnp = tnmp >> 8;
strptr = strrchr (*str, '"\0");
}
strptr--;
menset (strptr, '\0', 1);

53

A.b. display.c

/***

* Copyright 2003 Joseph Bel ans <bel ans@s. f su. edu>

This programis free software; you can redistribute it and/or nodify
it under the ternms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any |later version.

* F * %

This programis distributed in the hope that it will be useful
but W THOUT ANY WARRANTY; without even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the
GNU Ceneral Public License for nore details.

You shoul d have received a copy of the GNU General Public License
along with this program if not, wite to the Free Software
Foundation, Inc., 59 Tenple Place, Suite 330, Boston, MA 02111-1307

£ % kX X X X X % F

***/
/***

* File: display.c

*

* Paraneters:

* node sel ected

* list selected

* rul e sel ected

*

nunmber of rules to display
the avail able width of the screen
| ocation of the sel ected node

Di spl ays the graph

*
*
*
* Returns:. none
*
*
~k**/

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude "header. h"
#i ncl ude "di spl ayFuncti ons. h"

/* Declare functions */
node *readFile (char *infile, int *numNodes,

int *nuniists, int *nunRules, int *maxOptions);
void endHTM. (int width, int height);

int main (int argc, char **argv) {

node *root = NULL; /* The root node */

i nt numNodes = O, /* Nunmber of nodes */
nunlii sts = 0, /* Total nunber of lists */
nunRul es = 0, /* Total nunber of rules */

maxOpt i ons 0; /* Max nunmber of options */
/* Check if all arguments were supplied */
if (argc '=7) {
printf ("Miust supply node, list, rule, zoom wi dth,
"and | ocation argunments
\n");

54

USA

return (0);

}

/* Fill in the args structure */
args. node = strdup (argv[1]);
args.list = strdup (argv[2]);
args.rule = strdup (argv[3]);
args.zoom = atoi (argv[4]);

args.width = atoi (argv[5]);

if (strcasecnp (argv[6], "front") == 0)
args. |l ocati on = FRONT,;

else if (strcasecnp (argv[6], "mi ddle") == 0)
args.location = M DDLE

else if (strcasecnp (argv[6], "end") == 0)
args.location = END

el se

args.location = 0;

/* Read in the data file */
if (!(root = readFile (DATAFILE, &numNodes,
&nunii sts, &nunRul es, &maxOptions))) {
printf ("Can't read data file: %s\n", DATAFILE);
return (0);

}

/* Draw i mage */
drawl nage (root, maxOptions, | MAGEFILE);

/* Free nmenory */
freel mage (root);
free (args.node);
free (args.list);
free (args.rule);

/* Done */
return (0);

55

/**

*

* F *

L B B T T I

node *readFile (char *infile,

Function: readFile
Par anet er s:
infile (char*): data file
numNodes (i nt*): nunber of nodes
nunli sts (int*): nunber of lists
nunRul es (int*): nunber of rules
maxOptions (int*): max nunber of options
Ret ur ns:
Address to first node
Oif there is an error

Read in the data file and display the requested portion of the graph

**/

i nt

i nt

/* The root
The current
The current
The current
/-k
/*
[* Tenp stri

node *root,

* cur Node;
list *curlList; /*
rule *curRule; /*
option *curOption;
FILE *infil e_handl e;
char str[2056],

*t np;

/*

rul

/* Open the data file */
if (!(infile_handle = fopen (inf
return (0);

/* Get
fgets (str,

config file name */

2056, infile_handle);

/* EOF */

r oot

root - >head = NULL;

cur Node = root;

while ((fgets (str, 2056,
/* Strip off the newline */
menset (strchr(str, '"\n'),

Read until

/* Increment / Reset counters
/* Current
if (str[2] ==" ") {

/* Create a new option */
i f (curRul e->nunOptions

The current
Infile pointer */

infile_

"\O',

*nunmNodes,
*nunli st s,

i nt
node */

*nunRul es,

node */
| ist

*/
e */
option */

ng */

l e,

"))

= (node*)mal | oc (sizeof (node));

handl e))) {
1);

*/

line contains an option */

0) {

i nt

*maxOptions) {

cur Rul e->head = (option*)malloc (sizeof (option));

curOption = curRul e->head,;
} else {
cur Opti on- >next
curOption =

}

/* Fill
/* Set the nane */
tmp = &str[3];

in option structure */

56

= (option*)mall oc (sizeof (option));
cur Opti on->next;

menset (strchr (tnp, ":"), "\0', 1);
cur Option->name = strdup (tnp);

/[* Set the id */

tnp += strlen (curOption->nane) + 1;
menset (strchr (tnp, ':"), "\0', 1);
curOption->id = atoi (tnp);

/* Set the revision nunber */

tnp += strlen (tnp) + 1

menmset (strchr (tnp, ":"), "\0', 1);
curOption->rev = atoi (tnp);

/* Set the msg string */
tnp += strlen (tnp) + 1;
curOption->nsg = strdup (tnp);

/* Set the next pointer */
cur Option->next = NULL;

/* Set option counters */
cur Rul e- >nunOpt i ons++;
curLi st->nunOpti ons++;
cur Node- >nunOpt i ons++;

/* Set new maxOptions if necessary */
if ((*maxOptions) < curRul e->nunmOptions)
(*maxOptions) = curRul e->numOpti ons;

/[* Current line contains a rule */
} else if (str[l] ==" ") {
/* Create a new rule */
if (curList->nunRules == 0) {
curlList->head = (rule*)malloc (sizeof (rule));
curlList->maxOptions = 0;
curRul e = curlist->head;
curRul e->prev = NULL;
} else {
if (curRule->nunOptions > curlList->max0Options)
curLi st->maxOptions = curRul e->nunmOpti ons;

curRul e->next = (rule*)malloc (sizeof (rule));
(curRul e->next)->prev = curRul e;
curRul e = curRul e->next;

}

[* Fill in the rule structure */

/* Set the rule name */

tnmp = &str[2];

menset (strchr (tnp, ':"), "\0', 1);
cur Rul e->name = strdup (tnp);

/* Set the source port */

tnmp += strlen (curRul e->nane) + 1;
menset (strchr (tnp, ":"), "\0', 1);
curRul e->src_port = strdup (tnp);

57

/* Set the destination port */

tnmp += strlen (curRule->src_port) + 1
memset (strchr (tnp, ":"), "\0', 1);
curRul e- >dst _port = strdup (tnp);

/* Set the source ip address */

tnp += (strlen (curRul e->dst_port) + 2);
menset (strchr (tnp, ")"), "\0', 1);
curRule->src_ip = strdup (tnp);

/* Set the destination ip address */
tmp += (strlen (curRule->src_ip) + 3);
menmset (strchr (tnmp, ")"'), "\0", 1);
curRul e->dst _ip = strdup (tnp);

/* Set the pointers */
cur Rul e- >next NULL;
cur Rul e- >head NULL;

/* Set rule counters */
cur Rul e- >nunOpti ons = O;
cur Li st ->nunRul es++;

cur Node- >nunRul es++;
(*nunRul es) ++;

/* Current line contains a list */

} else if (str[0] ==" ") {

/* Create a new |list */

i f (curNode->nuniists == 0) {

cur Node- >maxOpti ons = O;
cur Node->head = (list*)malloc (sizeof (list));
curLi st = curNode- >head,;

} else {
i f (curlList->maxOptions > cur Node->maxOpti ons)

cur Node- >maxOpti ons = curList->max0Options;

curList->next = (list*)malloc (sizeof (list));
curlList = curlList->next;

}

/* Fill in the list structure */
curlList->name = strdup (&str[1]);
curLi st->next = NULL;
curLi st->head = NULL;

/* Set list counters */
curLi st->numRul es = 0;
curLi st->nunOptions = O;
cur Node- >nunlLi st s++;
(*nunLi sts) ++

/* Current |line contains a node */
} else {
/* Create new node */
if ((*numNodes) != 0) {
cur Node- >next = (node*)mal |l oc (sizeof (node));
cur Node = cur Node- >next ;

58

}

cur Node- >nanme = strdup (str);

/* Set node counters */
(*nunNodes) ++;

cur Node- >nunlLi sts =
cur Node- >nunmRul es =
cur Node- >nunOpt i ons

oo

0;

/* Set node pointers */
cur Node- >next NULL;
cur Node- >head NULL;

}

/* Close infile */
fclose (infile_handle);

/* Return */
return (root);

}

/**

* Function: endHTM

Par anet er s:
width (int): width of inmge
hei ght (int): height of inmage

Returns: void

Di splay the end of the htm code

*
*
*
*
*
*
*
*
**/
void endHTML (int width, int height) {

printf ("</ MAP>\n"

"<P><DlIV style=\"z-index: 2\">\n"

"<I MG SRC=\ "%\ " W DTH=% HEI GHT=% USEMAP=\"#mai nmap\" BORDER=\"0\">\n"

"</ Dl V>\n"

"</ BODY></ HTML>\n", | MAGEURI, wi dth, height);

A.6. displayFunctions.c

/***

* Copyright 2003 Joseph Bel ans <bel ans@s. f su. edu>

This programis free software; you can redistribute it and/or nodify
it under the ternms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any |later version.

This programis distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; without even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

L B I

59

GNU General Public License for nore details.

along with this program if not, wite to the Free Software
Foundation, Inc., 59 Tenple Place, Suite 330, Boston, MA 02111-1307 USA

***/

*
*
* You shoul d have received a copy of the GNU General Public License
*
*

/***

* File: displayFunctions.c
*

* Functions to display the graph
***/

#i ncl ude <stdi o. h>

#i ncl ude <string. h>

#i ncl ude <stdarg. h>

#i ncl ude <gd. h>

#i ncl ude <gdfontl. h>

#i ncl ude <gdfonts. h>

#i ncl ude "di spl ayFuncti ons. h"

#i ncl ude "header.h"

#i ncl ude "getcgi.h"

/* Decl are gl obals */
i nt hei ght = HElI CHT;
int width = W DTH,

i nt space = SPACE;

/* Declare colors */
i nt black, red, green, blue;

/* Declare functions */
voi d di spl ayPoi nt (gdlmagePtr *im int x, int y, char *node,
char *list, char *rule, char *option, int color, char *fm, ...);
voi d displayLine (gdlmgePtr *im void *head, void *next, int x1, int yl,
int x2, int y2, int x3, int y3, int x4, int y4, int color);
char *createl PString (char *str);

/**

* Function: draw mage

Par anet er s:
root (node*): the root node
maxOptions (int): max number of options
file (char*): data file

Returns: void

Draw t he graph

*
*
*
*
*
*
*
*
*
**/

voi d drawi mage (node *root, int maxOptions, char *file) {

node *cur Node; /* Node pointer */

list *curlist; /* List pointer */

rul e *curRul e; /* Rule pointer */

gdl magePtr im /* |1 mage pointer */

FILE *i mage; /* Image file */

int white, /* VWite index */
total _width = 0, /* Wdth of imge */
total _height = 0; /* Height of image */

60

/* Check if there is a root node */
if (!root)
return;

/* Determine the size of the inmage */
cur Node = root;

/* If all nodes, count all rules */
if (strcmp (args.node, "all") == 0) {
whil e (curNode !'= NULL) {
total _wi dth += curNode->nunRul es;

i f (curNode->maxOptions > total _height)
t ot al _hei ght = cur Node- >maxOpti ons;

cur Node = cur Node- >next ;

}
} else {
/* Find sel ected node */
while (strcnmp (args.node, curNode->nane) != 0)

cur Node = cur Node- >next ;

curLi st = cur Node- >head,;

[* If all lists, count all lists */
if (strcmp (args.list, "all") == 0) {
while (curList !'= NULL) {

total _wi dth += curlList->nunRul es;

i f (curlList->max0Options > total _height)
total _hei ght = curlList->mx0Options;

curLi st = curlList->next;

}

} else {

/* Find selected list */

while (strcnmp (args.list, curlList->nanme) != 0)

curLi st = curlList->next;

/[* 1f all rules, count all rules */

if (strcmp (args.rule, "all") == 0) {
total _wi dth = curlList->nunRul es;
total _hei ght = curlList->maxOptions;

} else {
width *= 4;
hei ght *= 4;
space *= 2;

/* Determi ne height */
if (args.zoom > 0) {

total _wi dth = args.zoom

total _hei ght = curlList->maxOptions;
} else {

61

total _width = args.w dth;

curRul e = curlLi st->head;

while (strcnmp (args.rule, curRule->nanme) != 0)
curRul e = curRul e->next;

total _hei ght = curRul e->nunmOpti ons;

}

/* Calculate total width and height */
total _height = (total _height * (space + height)) +
(3 * (space + height)) + 120;

if ((strcnp (args.rule, "") == 0) |
(strcnp (args.rule, "all") == 0) || (args.zoom > 0))
total _ width = (total_width * (space + width)) +
(3 * (space + width)) + 120;

/* Create imge background */
i m= gdl mageCreate(total _w dth, total _height);

/* Set background col or */
white = gdl mageCol or Al | ocate(im 255, 255, 255);

/* Declare colors */

bl ack = gdl mageCol or Al l ocate(im 0, 0, 0);
red = gdl mageCol or Al l ocate(im 255, 0, 0);
green = gdl mageCol or Al l ocate(im 0, 255, 0);
bl ue = gdl mageCol or Al l ocate(im 0, 0, 255);

/* Display the | egend */

gdl mageString(im gdFontLarge, 10, 10, "Legend:", bl ack);

gdl mageFi | | edRect angl e(im 20, 30, 30, 40, black);

gdl mageString(i m gdFontLarge, 35, 30, "Type of rules", black);
gdl mageFi I | edRect angl e(im 20, 50, 30, 60, red);

gdl mageString(i m gdFontLarge, 35, 50, "Protocol of rule", red);
gdl mageFi | | edRect angl e(im 20, 70, 30, 80, green);

gdl mageString(i m gdFontLarge, 35, 70, "Rule", green);

gdl mageFi | | edRect angl e(im 20, 90, 30, 100, blue);

gdl mageString(i m gdFontLarge, 35, 90, "Options", blue);

/* Create graph */
drawNodes (& m root, 20, 120);

/* End htm */
endHTM. (total _width, total _height);

/* Wite the image to a file */
i mpmge = fopen(file, "wbh");

gdl magedpeg(im inmage, -1);

fcl ose(i mage);

/* Destroy the image in nmenory. */
gdl mageDestroy(in;

62

/*

*

*
*
*
*
*
*
*
*
*
*
*

IR R RS SRR SRR EEEEREEEEEEEREEEEREEEEREEREEEEREEEREEEEREEEREREEEREEEEE SRR SRS S

Function: drawNodes

Par anet er s:
im(gdlmgePtr*): pointer to i mage data
head (node*): the head node
x (int): x coordinate
y (int): y coordinate

Returns: void

Draw t he nodes

***/

voi d drawNodes (gdlmagePtr *im node *head, int x, int y) {

node *curNode = head, /* Head of node list */

st opNode = NULL, / Stop node */

prevNode = NULL; / Previous node */
int x1 = X, [* X coordi nate */

start, stop; [* Start / Stop point of line */
int color; /* Col or of point */

/* Set point color */
col or = gdl mageCol or Al l ocate (*im 0, 0, 0);

/* I f not displaying All, find node */
if (strcmp (args.node, "all") I'=0) {
whil e (curNode !'= NULL) {
if (strcmp (args. node, curNode->nane) == 0) {
st opNode = cur Node- >next ;
cur Node- >next = NULL;
br eak;
}
cur Node = cur Node- >next ;
}
}

/* Display nodes */
whil e (curNode !'= NULL) {
/* Display point */
di spl ayPoint (im x1, y, curNode->name, NULL, NULL, NULL, color
"<TABLE><TR><TD ALI GN=ri ght >Nane: </ TD><TD>%s </ TD></ TR>\\ n"
"<TR><TD ALI GN=ri ght >Li sts: </ TD><TD>%</ TD></ TR>\\ n"
"<TR><TD ALI GN=ri ght >Rul es: </ TD><TD>%</ TD></ TR>\\ n"
"<TR><TD ALI GN=ri ght >Opt i ons: </ TD><TD>%</ TD></ TR></ TABLE>\\ n",
cur Node- >nane, cur Node->nunlLi sts,
cur Node- >nunRul es, cur Node->nuntpti ons);

/* Set starting point */
start = x1,

/* Draw |ists */
i f (curNode->head)
drawLi sts (im curNode->head, curNode->nane,
&1, (y + height + space));
el se
x1 += width + space;

63

}

/* Set stopping point */
stop = x1;

/* Display line(s) */

di spl ayLine (im curNode->head, curNode->next, (start + width),

(y + (height [/ 2)), stop, (y + (height / 2)), (start + (width / 2)),
(y + height), (start + (width / 2)), (y + height + space), color);

/* Get next node */
prevNode = cur Node;
cur Node = cur Node- >next ;

(stopNode) {
cur Node = prevNode;
cur Node- >next = st opNode;

/**

*

*
*
*
*
*
*
*
*
*
*
*
*

Function: drawLists

Par anet ers:

im(gdlmgePtr*): pointer to i mage data
head (list*): the head I|ist

node (char*): nanme of the associ ated node
x (int*): x coordinate

y (int): y coordinate

Returns: void

Draw the lists

***/

void drawlLi sts (gdlmagePtr *im list *head, char *node, int *x, int y) {

list *curlList = head, /* Head of protocol list */
stoplList = NULL, / Stop list */
prevLli st = NULL; / Previous list */
int x1 = *x, [* X coordi nate */
start, stop; /* Start / Stop point of line */
int color; /* Color of point */

/*

Set point color */

col or = gdl nageCol or Al l ocate (*im 255, 0, 0);

/*

If not displaying All, find list */

if ((strcnp (args.list, "all") '=0) && (strcnp (args.list, "") I'=0))

while (curList !'= NULL) {
if (strcmp (args.list, curlList->nane) == 0) {
st opLi st = curlList->next;
curlList->next = NULL;
br eak;
}

curList = curlList->next;

}

}

/*

Display lists */

while (curList !'= NULL) {

}

/*
* X

/* Display point */

di spl ayPoint (im x1, y, node, curlList->name, NULL, NULL, col or
"<TABLE><TR><TD ALI GN=r i ght >Nane: </ TD><TD>%s</ TD></ TR>\\ n"
"<TR><TD ALI GN=ri ght >Rul es: </ TD><TD>% </ TD></ TR>\\ n"

"<TR><TD ALI GN=ri ght >Opti ons: </ TD><TD>% </ TD></ TR></ TABLE>\\ n",
curLi st->nanme, curlList->nunRul es, curlList->nunptions);

/* Set starting point */
start = x1;

/* Draw rules */
i f (curlList->head)
drawRul es (im curlList->head,
node, curlist->nane, &1, (y + height + space));
el se
x1 += width + space;

/* Set stopping point */
stop = x1;

/* Display line(s) */

di splayLine (im curlList->head, curlList->next, (start + width),

(y + (height [/ 2)), stop, (y + (height / 2)), (start + (width / 2)),
(y + height), (start + (width / 2)), (y + height + space), color);

/* Get next node */
prevLi st = curlist;
curList = curlList->next;

(stopList) {
curlList = prevlList;
curlList->next = stoplist;

Return x coordi nate */
= X1;

/**

*

*
*
*
*
*
*
*
*
*
*
*
*
*

Function: drawRul es

Par anet ers:

im(gdlmgePtr*): pointer to i mage data
head (rule*): the head |i st

node (char*): name of the associated node
list (char*): nane of the associated |ist
x (int*): x coordinate

y (int): y coordinate

Returns: void

Draw t he rul es

***/

void drawRul es (gdlmagePtr *im rule *head,

65

char *node, char *list, int *x, int y) {
head, /* Head of rule list */
NULL, /* Start rule */

rule *curRul e
*startRul e

stopRul e = NULL, / Stopping point */
prevRul e = NULL; / Previous rule */
int x1 = *x, /* X coordi nate */
start, stop, /* Start / Stop point of line */
col or, /* Color of point */
i /* Loop variables */
char *srclP, *dstlP; /[* Src /| Dst ip addresses */

/* Set point color */
col or = gdl mageCol or Al l ocate (*im 0, 255, 0);

/* If not displaying All, find rule */
if ((strcnp (args.rule, "all") '=0) & (strcnmp (args.rule, "") '=0)) {
while (curRule !'= NULL) {
if (strcnmp (args.rule, curRul e->nane) == 0) {
if (args.zoom == 0) {
st opRul e = curRul e->next;
cur Rul e- >next = NULL;

}
br eak;
}
curRul e = cur Rul e->next;
}

/* If zoom find starting rule */
if (args.zoom > 0) {
if (args.location !'= FRONT) {
if (args.location == M DDLE)
i = args.zoom/ 2;
el se
i = args.zoom - 1;

for (; ((curRule->prev !'= NULL) && (i > 0)); i--)
curRul e = curRul e->prev;

}

startRul e = curRul e;

for (i = 1; i < args.zoon i ++)
cur Rul e = cur Rul e->next;

st opRul e = curRul e->next;
cur Rul e->next = NULL;
curRul e = startRul e;
}
}

/* Display rules */
while (curRule !'= NULL) {
/* Create the tenmporary strings */

if (strchr (curRule->src_ip, '":"))
srclP = createl PString (curRul e->src_ip);
el se

srclP = strdup (curRul e->src_ip);

66

/*
*X

if (strchr (curRule->dst_ip, ":'))

dstlP = createl PString (curRul e->dst_ip);
el se

dstI P = strdup (curRul e->dst_ip);

/* Display point */

di spl ayPoint (im x1, y, node, list, curRule->nanme, NULL, color,
"<TABLE><TR><TD ALI GN=ri ght >Nane: </ TD><TD>%s </ TD></ TR>\\ n"
"<TR><TD ALI GN=ri ght >Opt i ons: </ TD><TD>%</ TD></ TR>\\ n"

"<TR><TD ALI GN=ri ght VALI GN=t op>Src | P: </ TD><TD>%s</ TD></ TR>\\ n"
"<TR><TD ALI GN=ri ght>Src Port: </ TD><TD>%s</ TD></ TR>\\ n"

"<TR><TD ALI GN=ri ght VALI GN=t op>Dest |P: </ TD><TD>%s</ TD></ TR>\\ n"
"<TR><TD ALI GN=ri ght >Dest Port: </ TD><TD>%s</ TD></ TR></ TABLE>\\ n",
cur Rul e- >nane, curRul e->nunptions, srclP,

curRul e->src_port, dstlP, curRul e->dst_port);

/* Set starting point */
start = x1,

/* Draw options */

i f (curRul e->head)

drawOptions (im curRul e->head, &x1, (y + height + space));
el se

x1l += width + space;

/* Set stopping point */
stop = x1;

/* Display line(s) */

di spl ayLine (im curRul e->head, curRul e->next, (start + wi dth),

(y + (height [/ 2)), stop, (y + (height / 2)), (start + (width / 2)),
(y + height), (start + (width / 2)), (y + height + space), color);

/* Get next node */
prevRul e = curRul e;
curRul e = cur Rul e->next;

/* Free the temp strings */
free (srclP);
free (dstlP);

(stopRule) {
curRul e = prevRul e;
cur Rul e- >next = stopRul e;

Return x coordi nate */
= x1;

67

/*

*

*
*
*
*
*
*
*
*
*
*
*

IR R R SRR RS R R R R R R R R SRR EREREEREEEEREEREREEEREEEREREEEREEEERE SRR EREEES

Functi on: drawOpti ons

Par anet er s:
im(gdlmgePtr*): pointer to i mage data
head (rule*): the head I|i st
x (int*): x coordinate
y (int): y coordinate

Returns: void

Draw t he options

***/

voi d drawOptions (gdlmagePtr *im option *head, int *x, int y) {

option *curOption = head; /* Head of option list */

int x1 = *x, /* X coordi nate */
yl =vy; /* Y coordinate */
int color; /* Color of point */

/* Set point color */
col or = gdl mageCol or Al l ocate (*im 0, 0, 255);

/* Display options */
while (curOption !'= NULL) {
/* Display point */
di splayPoint (im x1, y1, NULL, NULL, NULL, curOption->nsg, color
"<TABLE><TR><TD ALI GN=ri ght >Nane: </ TD><TD>%s</ TD></ TR>\\ n"
"<TR><TD ALI GN=ri ght >Desc: </ TD><TD>%s</ TD></ TR>\\ n"
"<TR><TD ALI GN=ri ght >I D: </ TD><TD>%d</ TD></ TR>\\ n"
"<TR><TD ALI GN=ri ght >Rev: </ TD><TD>%l</ TD></ TR></ TABLE>\\ n",

cur Opti on->nane, curOption->nsg, curOption->id, curOption->rev);

/* Display line(s) */

di splayLine (im NULL, curOption->next, (x1 + (width / 2)),
(yl + height), (x1 + (width / 2)), (yl1 + height + space),
0, 0, 0, 0, color);

/* Get next point */
y1l += hei ght + space;

/* Get next option */

curOption = curOption->next;

}

/* Return x coordinate */
*x = x1 + width + space

68

/**

* Function: displayPoint

*
* Paraneters:

* im(gdlmgePtr*): pointer to i mage data
* x (int*): x coordinate

* y (int): y coordinate

* node (char*): the nanme of the node

* list (char*): the name of the |ist

* rule (char*): the name of the rule

* option (char*): the desc of the option
* color (int): color number

* ftm (char*): string to display

*

*

*

*

*

Returns: void
Draw the point on the graph

***/

voi d di splayPoi nt (gdlmagePtr *im int x, int y, char *node,

char *list, char *rule, char *option, int color, char *fm, ...) {
va_list ap; [* String paraneters */
char str[1024], /* Tenmp string */

*tnpl, *tnp2, *tnp3;
int rul eNum /* Decimal value of rule nunber */

/* Create string */
va_start (ap, fnt);
vsprintf (str, fmt, ap);
va_end (ap);

/* Escape any single quotes */

if (strchr (str, 39)) {
tmpl = (char*)malloc ((2 * strlen(str)) + 1);
strcpy (tnpl, "");
tnmp2 = str;

while ((tnmp3 = strchr (tmp2, 39))) {
menmset (tnp3, '\0', 1);
strcat (tnpl, tnp2);
strcat (tnpl, "\\\"");
tmp2 = tnp3 + 1;

}

strcat (tnpl, tnmp2);

strcpy (str, tnpl);

free (tmpl);

}

/* Display point */
gdl mageFi | | edRectangle(*im x, y, (x + width), (y + height), color);

/* Display text in graph */
if (strcnmp (args.rule, "") = 0) {
if (option) {
if ((strcnp (args.rule, "") = 0) &&
(strcnp (args.rule, "all") '=0) & (args.zoom == 0))
gdl mageString(*im gdFontSmall, (x + width + space), y, option
col or);

69

} else if (rule) {

if ((strcnp (args.rule, "all") !'=0) && (args.zoom == 0))

gdl mageString(*im gdFontSmall, (x + width + space), y, rule,
col or);

} else if (list) {

gdl mageString(*im gdFontSmall, (x + width + space), y, list, color);
} else if (node) {

gdl mageString(*im gdFontSmall, (x + width + space), y, node, color);
}

}

/* Display htm code */
printf ("<AREA SHAPE=RECT COORDS=\"9%d, %, %, %d\ " HREF=\"",
X, ¥y, (x +wdth), (y + height));

/* Create path */

if ((node) || (list) || (rule)) {
printf ("%/snortDisplay.pl ?nodes=%&l i sts=", BASECA, node);

/* Display the list selection */

if (list)

printf ("%", list);

else if (strcnp (node, "all") = 0)
printf ("all");

/* Display the rules selection */

printf ("&ules=");

if (rule) {

rul eNum = atoi (strchr (rule, ' '));

printf ("Rul e®20%", rul eNum;

} else if ((list) & & (strcnp (list, "all"™) = 0)) {
printf ("all");

}

/* Display the width, if provided */

if (args.w dth)

printf ("&w dth=%d", args.w dth);
}

/* Display event code */
printf ("\" onMuseOver="showDetails (\"%\", %, %)’
"onMouseQut =" hideDetails ()'>\n", str, (x + 10), y);

70

/**

*

* F *

L B B T T I

*
*
*
*
*
*

Function: displayLine
Par anet er s:
im(gdl magePtr*):
head (voi d*):

pointer to i nage data
the head of the itens

next (void*): the next item
x1 (int): start next x coordinate
yl (int): start next y coordinate
x2 (int): end next x coordinate
y2 (int): end next y coordinate
x3 (int): start head x coordinate
y3 (int): start head y coordinate
x4 (int): end head x coordinate
y4 (int): end head y coordinate
color (int): color nunber

Returns: void

Draw the |ine(s)

***/

voi d di spl ayLine (gdlnmagePtr *im void *head, void *next, int x1, int yl,
int x2, int y2, int x3, int y3, int x4, int y4, int color) {
/* Display a line to the next entry in the list */
i f (next)
gdl mageLi ne(*im x1, yl, x2, y2, color);
/* Display a line to the next level of the tree */
if (head)
gdl mageLi ne(*im x3, y3, x4, y4, color);

}

/**

*

*
*
*
*
*
*
*
*

Function: freel nage

Par anet ers:

root (node*): the root node
Returns: void
Free all the data structures

voi d freel mage (node *root) {

node *cur Node, *next Node;
list *curlList, *nextList;
rule *curRul e, *nextRule;

option *curOption, *nextOption

/* Start with the first node */
cur Node = root;
/* Loop through all nodes */

while (curNode !'= NULL) {
/* Get the list */
curLi st = curNode->head,;

/* Loop through all lists */

***/

71

}

while (cur

Li st

= NULL) {

/* Get the rule */
curLi st->head;

curRul e =

/* Loop through all the rules */
while (curRule !'= NULL) {
/* Get the option */

cur Opt

ion

cur Rul e- >head;

/* Loop through all the options */
while (curOption !'= NULL) {
next Opti on = cur Opti on->next;
free (curOption->nane);
free (curOption->meg);
free (curOption);

curOption

}

next Ru

le =

= next Opti on;

cur Rul e- >next ;

free (curRul e->nane);
free (curRul e->src_port);
free (curRul e->dst_port);
free (curRul e->src_ip);
free (curRul e->dst_ip);
free (curRule);

cur Ru

}

next Li st

curlist =

}

next Node =

free (curNode);

cur Node =

e =

next Rul e;

= curlLi st->next;
free (curlist->nane);
free (curlist);

next Li st ;

cur Node- >next ;
free (curNode->nane);

next Node;

/**

*

L I

*

char *createl PString

Functi on:

Par

Ret

aneters:
str (char*

createl PString

): the original ip string

urns: (char?*)
the string with ":" replaced by "
\n"
NULL if an error occurs

Create a new ip string

**/

i nt

| en;

char *cpystr,

/*

*newstr,
*ptr;

/*
/*
/*
/*

(char *str) {

Length of original string */

Copy of original string */

The new string */

Pointer to |l ocation within str */

Initialize variables */

72

cpystr = strdup (str);
len = strlen (cpystr);
newstr = (char*)malloc (len + ((len / 15) * 8) + 1);

/* Create the new string */
ptr = cpystr;

strcpy (newstr, "");
while (ptr !'= NULL) {
if (strchr (ptr, ":")) {
menset (strchr (ptr, ":"), "\0', 1);

strcat (newstr, ptr);
strcat (newstr, "
\\n\\t");
ptr += strlen (ptr) + 1

} else {
strcat (newstr, ptr);
strcat (newstr, "
\\n");
ptr = NULL;
}
}

/* Free menory */
free (cpystr);

/* Done */
return (newstr);

A.7. displayFunctionsh

/***

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Copyright 2003 Joseph Bel ans <bel ans@s. f su. edu>

This programis free software; you can redistribute it and/or nodify
it under the terns of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any |later version.

This programis distributed in the hope that it will be useful
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
GNU Ceneral Public License for nore details.

You shoul d have received a copy of the GNU General Public License
along with this program if not, wite to the Free Software
Foundation, Inc., 59 Tenple Place, Suite 330, Boston, MA 02111-1307

**/

#i ncl ude <gd. h>

#i f ndef _DI SPLAYFUNCTI ONS

#def i ne _DI SPLAYFUNCTI ONS

#defi ne FRONT 1

73

USA

#defi ne M DDLE 2
#defi ne END 3

/* Declare structures */
/* Option structure */
typedef struct _option {

char *nane;

char *nsg;

int id;

int rev;

struct _option *next;
}option;

/* Rule structure */
typedef struct _rule {
char *nanme;
char *src_port;
char *dst_port;
char *src_ip;
char *dst _ip;
i nt numOpti ons;
struct _rule *prev;
struct _rule *next;
option *head;
}rule;

/* List structure */
typedef struct _list {
char *nane;
i nt numRul es;
i nt nunOpti ons;
i nt maxOpti ons;
struct _|ist *next;
rul e *head;
Hist;

/* Node structure */
typedef struct _node {
char *nane;
i nt nunLi sts;
i nt nunRul es;
i nt nunOpti ons;
i nt maxOpti ons;
struct _node *next;
list *head;
} node;

/* Command |ine arguments */
struct _args {

char *node;

char *list;

char *rul e;

int |ocation;

int zoom

int wdth;
}args;

74

/* Declare functions */
void drawl mage (node *root, int maxOptions, char *file);
voi d drawNodes (gdl magePtr *im node *head, int x, int y);
void drawLi sts (gdlmagePtr *im 1|ist *head, char *node, int *x, int y);
void drawRul es (gdlmagePtr *im rule *head,
char *node, char *list, int *x, int y);
voi d drawOptions (gdlmagePtr *im option *head, int *x, int y);
voi d freel mage (node *root);
voi d displayArea (int x1, int yl, int x2, int y2, char *fm, ...);

#endi f

A.8. header.pl

HEHH PRI R R
Copyright 2003 Joseph Bel ans <bel ans@s. f su. edu>

This programis free software; you can redistribute it and/or nodify
it under the terns of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any |later version.

This programis distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the
GNU General Public License for nore details.

You shoul d have received a copy of the GNU General Public License
along with this program if not, wite to the Free Software
Foundation, Inc., 59 Tenple Place, Suite 330, Boston, MA 02111-1307
HEHH U R H AR H AR H AR H AR H AR H TR TR TR TR R R R R

HitH BB R H R R R R R R A HHHHHHH AR R R R R R R R 7 #

File: header.p

HFHHIFHFHFHEHHFHEFEHEHHR

Paraneters: (read in from stdin)
file: path to configuration file

Ret urns: none

HHHFHHHHR

Receives file name fromstdin via cgi. WII process the
path or file selected and display the appropriate htm
HHHBH PR R R R R R R R R R R
Require all variables are declared prior to use

use strict;

<| NSERT>

HH#HHH R HTH R H TR T R R H T R T R H T R R H T R TR
Function: validPath

#

Paraneters:

file: path to configuration file
#

Returns: none

75

USA

#
Make sure BASECONFDIR is the base directory
HHHRH P H R R R R R R R R R R R R R
sub validPath {
ny ($file) = shift;
ny ($str) = BASECONFDI R

$str
$str

=~ s/\//\\\//g;
= "\'$file !~ /" $str/";
Invalid path
if (eval ($str)) {
return (0);
}

Valid path
return (1);

}

return 1;

A.9. snortDisplay.html.in

<HTM.>

<HEAD>

<l--

Copyright 2003 Joseph Bel ans <bel ans@s. f su. edu>

This programis free software; you can redistribute it and/or nodify
it under the terns of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any |ater version.

This programis distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the
GNU General Public License for nore details.

You shoul d have received a copy of the GNU General Public License
along with this program if not, wite to the Free Software
Foundation, Inc., 59 Tenple Place, Suite 330, Boston, MA 02111-1307
-->

<SCRI PT LANGUAGE="JavaScri pt">

/1 Check for the enter key

var Nav4 = docunent.| ayers;

var | E4 = docunment. all;

//***

/1 Function: onEnter

/1

/] Paranmeters:

I/ e: the event
/1

/! Returns: none
/1

76

USA

/1 Subnmit form data when enter key is pressed
//***
function onEnter(e) {
i f (Nav4)
keyPressed
else if (1E4)
keyPressed = String. frontChar Code(w ndow. event . keyCode) ;

String. fromChar Code(e. whi ch);

i f (keyPressed. charCodeAt (0) == 13) {
docunent . di spl ay. subm t ();
}

}

//***

/1 Function: openBrowseW n

/1

/] Parameters: none
/1

// Returns: none

/1

/1 Open a new browser wi ndow to browse for config file

//***

function openBrowseWn ()
wi ndow. open(' <VI RTUAL_CG _PATH>/ br owse. pl', ' Browse',
"tool bar=0, status=0, resizable=0, w dth=250, hei ght=500");
}

//***

/1 Function: openBrowseWn

!/

/] Paraneters: none
!/

// Returns: none

/1

/1 Open a new browser wi ndow to browse for config file
//***
function menuSel ect (select) {

/1 Set the remaining lists to the 0 index

if (select.nane == "nodes") {

docunent . di splay.|lists. sel ect edl ndex = O;

docunent . di spl ay. rul es. sel ect edl ndex = 0;
} else if (select.nane == "lists") {

docunent . di spl ay. rul es. sel ect edl ndex = 0;

}
}

//***

/! Function: showDetails

/1

/] Paranmeters:

/1 str: the nanme of the point
/1 X: X coordi nate

/1 y: y coordinate

/1

// Returns: none

/1

77

/1 Displays pop-up wi ndow contai ning information about point
//***
function showbetails (str, x, y) {
i f (document. get El enent Byl d) {
docunent . get El ement Byl d("details").innerHTM. = str;
docunent . get El ement Byl d("details").style.visibility = "visible";
docunent . get El ement Byl d("details").style.left = x + 10;
docunent . get El ement Byl d("details").style.top = v;
} else {
docunent . detai |l s. document . open();
docunent . det ai |l s. document . write(str);
docunent . det ai | s. docunent . cl ose();
docunent . details.visibility = "visible";
docunent . details.left = x + 10;
docunent . details.top = vy;

}

//***

/! Function: hideDetails

!/

/] Paraneters: none
!/

// Returns: none
/1

/1 Hide the pop-up w ndow
//***
function hideDetails () {
i f (document. get El enent Byl d) ({
docunent . get El enent Byl d("details").style.visibility = "hidden";
} else {
docunent.details.visibility = "hidden";
}
}

</ SCRI PT>
</ HEAD>
<BODY>
<SCRI PT>
/] Capture events
i f (w ndow. docunent. captureEvents! =null)
wi ndow. docunent . capt ur eEvent s(Event . KEYPRESS)
wi ndow. docunent . onkeypress = onEnter;

</ SCRI PT>
<TABLE W DTH="100% ><TR><TD>
<pP>

<FORM NAME="config_form' METHOD="post"
ACTI ON="<VI RTUAL_CG _PATH>/ snort Di spl ay. pl ">
Config file: <INPUT TYPE="text" NAME="config"><!--config--></INPUT>
<I NPUT TYPE="submit" NAME="submi t" VALUE="Load"></|NPUT>
<I NPUT TYPE="submit" NAME="subm t" VALUE="Browse"
onCl i ck="openBrowseWn (); return (false);"></INPUT>
</ FORM>
</ TD><TD ALI GN="center" VALI GN="center">
<H1>SNORT DI SPLAY</ H1>
</ TD><TD ALI GN="ri ght">
<FORM NAME="di spl ay" METHOD="post"
ACTI ON="<VI RTUAL_CG _PATH>/ snort Di spl ay. pl ">

78

<I NPUT TYPE=hi dden NAME=changed VALUE="">

<I NPUT TYPE=hi dden NAME=wi dt h>

<TABLE>

<TR><TH>Node</ TH><TH>Pr ot ocol </ TH><TH>Rul e</ TH></ TR>

<TR>

<TD ALI GN="center">

<SELECT NAME=nodes onChange="this.form submit()"><!--nodes--></SELECT>
</ TD>

<TD ALI GN="center">

<SELECT NAME=Ili sts onChange="this.form submit()"><!--lists--></SELECT>
</ TD>

<TD ALI G\N="center">

<SELECT NAME=rul es onChange="this.form submt()"><!--rul es--></SELECT>
</ TD>

</ TR><TR>

<TD COLSPAN=3>

<l--zoom->

</ TD>

</ TR></ TABLE>

</ FORM>

<SCRI PT LANGUAGE="JavaScri pt">

/1l Set the width of the screen

docunent . di spl ay. wi dt h. val ue = screen. avai | W dt h;

</ SCRI PT>

</ TD></ TR></ TABLE>

<pP>

<Dl V id="detail s" style="position: absolute; z-index: 1; top: 200px; left:
100px; width: 300px; border: solid 3px #000000; background-color: #ffffO0O;
visibility: hidden;"></Dl V>

<P>

<MAP NAME=" mai nmap" >

<l'--display-->

</ BODY>

</ HTML>

A.10. snortDisplay.pl.in

#! [/ usr/ bi n/ perl

HEHH PR H AR H AR TR R TR R R R R R R R
Copyright 2003 Joseph Bel ans <bel ans@s. f su. edu>

This programis free software; you can redistribute it and/or nodify
it under the ternms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any |later version.

This programis distributed in the hope that it will be useful
but W THOUT ANY WARRANTY; without even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
GNU CGeneral Public License for nore details.

You shoul d have received a copy of the GNU General Public License
along with this program if not, wite to the Free Software

HHHFHFFHFHHHFHEHHHR

79

Foundation, Inc., 59 Tenple Place, Suite 330, Boston, MA 02111-1307
HHHBH PR R R R R R R R R R R

HHHRH P H R R R R R R R R R R R R R

File: snortDisplay.p

Parameters: (read in from stdin)
file: path to configuration file

Ret urns: none

Receives file name fromstdin via cgi. WII process the
path or file selected and display the appropriate htni
TR R R R R R
Require all variables are declared prior to use

use strict;

HHIFHEHFHHHH

Include cgi functions and header information
require "process_cgi.pl";
BEGI N { require "header.pl" }

If the tenplate file does not exist, display error
if (! -f TEMPLATE) {
print_header ();
print "Tenplate does not exist: " . TEMPLATE
exit;

}

Read in the tenplate
open (I NFILE, TEMPLATE);
nmy (@ENU) = <I| NFI LE>;
close (I NFILE);

Get the formdata
ny (%O0RM;
parse_i nput (\%ORM;

Load the data file
if ($FORM 'submit'} eq "Load") {

system (BASECG DIR . "/config $FORM'config'} " . DATAFILE);
print_header ($ENV{"REQUEST URI"} . "\n\n");
exit;

If the data file does not exist, display enpty tenplate
} elsif (! -f DATAFILE) {

print_header ();

print @VENU;

exit;

Display the header
} else {

print_header ();
}

Read in the data file
open (I NFILE, DATAFILE);
ny (@ATA) = <I| NFI LE>;
cl ose (I NFILE);

80

USA

Strip the newline fromall entries
foreach (@ATA) {

chop;
}

Reset form data based on sel ections
if ($FORM ' nodes'} eq. aII") {
SFORM ' i sts'} ;
$FORM ' rul es'}
$FORM ' zoom } = 0;
} elsif ($FORM' Ilsts} eq "all") {
$FORM 'rules'} = "";
$FORM ' zoonl } = O;
} elsif ($FORM'rules'} eq "all") {
$FORM ' zoom } = 0;
}

Get the config file name
ny $config = $DATA[O] ;
shift (@ATA);

Insert the data
my (@np, @esc, @alue, $tnp, $item $i);
foreach $item (@ENU) {

Insert the config file nane

if ($item=~/<l--config-->/) {

eval ("\$item =~ s|><!--config--|] VALUE = \"" . $config .

print $item

Create the graph

} elsif (($item=~/<l--display-->/) && (($FORM ' nodes'} eq

($FORM ' lists'} eq "all") || ($FORM ' rules'}
ny $cnd = BASECADIR . "/display \"$FORM ' nodes' }\" "

n\nl "

aII

"\"SFORM 'lists"'}\" \"$FORM 'rul es' }\" \"$F(PIV['£00n1}\" "

"\"$FORM 'wi dth'}\" \"$FORM 'l ocation"}\"";

print “$cnd’;
Fill in the node menu
} elsif ($item=~ /<!l--nodes-->/) {

@alue = grep (/™"\w, @ATA);
foreach (@al ue) {

push (@lesc, ucfirst ($_));
}

fillSelect ($item "nodes", $FORM' nodes'}, \ @alue, \ @esc);

@alue = ();
@esc = ();

Continue if a node was sel ected
} elsif (($FORM ' nodes'} ne "") && ($FORM ' nodes'} ne "all
if ($item=~ /<l--lists-->/) {
for ($i = 0; $DATA[Si]; S$i++) {
if (eval ("\$DATA\[\S$i\] =~ /~" . $FORM ' nodes'} .
for ($i++; $DATA[Si]; $i++) {
if (SDATA[S$I] =~/ (\w.*)$/) {
push (@al ue, $1);
push (@lesc, $1);

81

")) |

1) A

} elsif ($DATA[SI] =~ /™M\w) {
| ast ;
}

}

fillSelect ($item "lists", $FORM'lists'}, \@alue, \@lesc);
@alue = ();
@lesc = ();

| ast;

}

Continue if a list was sel ected
} elsif (($FORM'lists'} ne "") && ($FORM'lists'} ne "all")) {
Fill in the rule nmenu
if (Sitem=~/<l--rules-->/) {
for ($i = 0; $DATA[S$i]; &i++) {
if (eval ("\$DATA\[\S$i\] =~ /~" . $FORM ' nodes'} . "/")) {
for ($i++; $DATA[Si]; $i++) {
if (eval ("\$DATA\[\$i\] =~ /A" . $FORM'lists'} . "/")) {
for ($i++; $DATA[Si]; $i++) {
if (SDATA[S$I] =~ /" (Rule \d+):(.*)9$/) {
push (@al ue, "$1");
push (@lesc, $1);

} elsif ($DATA[S$I] =~ /2 \w) {

| ast;
}
}
} }
fillSelect ($item "rules", $FORM'rules'}, \ @alue, \@lesc);
@alue = ();
@esc = ();
| ast;
}
}
Display the zoomfields
} elsif ($item=~/<l--zoom->/) {

print "Nunmber of rules to show \n";

if ($FORM ' zoom } gt 0) {
print "<INPUT TYPE=t ext NAME=zoom VALUE=$FORM ' zoom } SI ZE=3
MAXLENGTH=3>
\ n";
} else {
print "<INPUT TYPE=t ext NAME=zoom VALUE=0 SI ZE=3
MAXLENGTH=3>
\ n" ;

}

print "Sel ection:\n";

print "Front <INPUT TYPE=radi o NAME=| ocati on VALUE=front
onChange=\"this.formsubmt()\"";
if (($FORM 'l ocation'} eq "") || ($FORM'location'} eq "front")) {
print " CHECKED';

82

-
print

>\ n";

print "M ddle <INPUT TYPE=radi o NAME=| ocati on VALUE=n ddl e

onChange=\"this.formsubmt()\"";

if ($FORM'location'} eq "middle") {
print " CHECKED';

}
pri nt

>\n";

print "End <INPUT TYPE=radi o NAME=| ocati on VALUE=end

onChange=\"this.formsubmt()\"";

}
}

if ($FORM'location'} eq "end") {
print " CHECKED";
}

print ">\n";

} else {
print $item
}
el se {

print $item

OQtherwise, print the |ine
} else {
print $item

}
}

exit;

BB HRHE R HE R R H R H R R R R R R R R R R R R R R R
Function: fill Sel ect

HFHHIFHHFHFEHHHHR

Par anet ers:

ine - next line fromthe data file

str - the nane of the drop down box

select - itemof drop down box that is selected
val ue - address of array containing val ues

desc - address of array containing descriptions

Ret urn: none

Fills in the sel ect box
HHHHHHHHHHHHHHHHHHHHH R R R R R R R R R 7
sub fill Select {

333333

($line) = shift;
($str) = shift;
($select) = shift;
($val ue) = shift;
($desc) = shift;
($i, $tnp);

Cenerate the substitution string
Insert the all selection
$tnp = "\ n<OPTI ON>\ n<OPTI ON VALUE=\"al I\"";

83

if ($select eq "all") {
$tmp .= " SELECTED';
}

$tnmp .= ">All\n";

Insert the data val ues
for ($i = 0; $$value[$i]; $i++) {

$tnp .= "<OPTI ON VALUE=\"$$val ue[$i]\"";
if ($$value[$i] eq $select) {
$tmp .= " SELECTED';
}
$tmp .= ">$$desc[i]\ n";
}
eval ("\$line =~ s|<!--" . S$str . "-->|" . $tnmp .

print "$line";

APPENDIX B
GNU GENERAL PUBLIC LICENSE

Verson 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyoneis permitted to copy and diiribute verbatim copies of this license document, but

changing it is not alowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU Generd Public Licenseisintended to guarantee your freedom to share and
change free software--to make sure the software is free for dl itsusers. This Generd Public
License gppliesto most of the Free Software Foundation's software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered by

the GNU Library Genera Public Licenseinstead.) Y ou can gpply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our Genera Public
Licenses are designed to make sure that you have the freedom to distribute copies of free

software (and charge for this service if you wish), that you receive source code or can get it

85

if you want it, that you can change the software or use pieces of it in new free programs; and that

you know you can do these things.

To protect your rights, we need to make redtrictions that forbid anyone to deny you these rights
or to ask you to surrender therights. These redtrictions trandate to certain responsibilities for

you if you digtribute copies of the software, or if you modify it.

For example, if you digtribute copies of such a program, whether gratis or for afee, you must
give the recipients dl the rights that you have. 'Y ou must make sure that they, too, receive or can

get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license

which gives you legd permisson to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone ese and
passed on, we warnt its recipients to know that what they have is not the origina, so that any

problems introduced by others will not reflect on the origind authors reputations.

Findly, any free program is threatened congtantly by software patents. We wish to avoid the
danger that redigtributors of a free program will individualy obtain patent licenses, in effect
meaking the program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone's free use or not licensed at al.

86

The precise terms and conditions for copying, distribution and

modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License appliesto any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.

The "Program”, below, refers to any such program or work, and a"work based on the Program™
means ether the Program or any derivative work under copyright law: that isto say, awork
containing the Program or a portion of it, either verbatim or with modifications and/or trand ated
into another language. (Hereinafter, trandation isincluded without limitetion in the term

"modification”.) Each licenseeisaddressed as"you'.

Activities other than copying, distribution and modification are not covered by this License; they
are outsde its scope. The act of running the Program is not restricted, and the output from the

Program is covered only if its contents congtitute awork based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the Program

does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive i,

in any medium, provided that you conspicuoudy and gppropriately publish on each copy an

appropriate copyright notice and disclaimer of warranty; keep intact dl the notices that refer to

87

this License and to the absence of any warranty; and give any other recipients of the Program a

copy of this License dong with the Program.

Y ou may charge afee for the physical act of transferring a copy, and you may at your option

offer warranty protection in exchange for afee.

2. 'Y ou may modify your copy or copies of the Program or any portion of it, thus forming awork
based on the Program, and copy and distribute such modifications or work under the terms of

Section 1 above, provided that you aso meet al of these conditions:

a) You must cause the modified filesto carry prominent notices stating that you changed

the files and the date of any change.

b) Y ou must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed asawhole at

no charge to dl third parties under the terms of this License.

¢) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print
or display an announcement including an gppropriate copyright notice and a notice that
there is no warranty (or ese, saying that you provide awarranty) and that users may
redigtribute the program under these conditions, and telling the user how to view a copy

of thisLicense. (Exception: if the Program itself is interactive but does not normaly

88

print such an announcement, your work based on the Program is not required to print an

announcement.)

These requirements apply to the modified work asawhole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of awhole
which isawork based on the Program, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the entire whole, and thus to each

and every part regardless of who wroteit.

Thus, it isnot theintent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent isto exercise the right to control the distribution of derivative

or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with awork based on the Program) on a volume of a storage or distribution medium does not

bring the other work under the scope of this License.

3. You may copy and distribute the Program (or awork based on it, under Section 2) in object

code or executable form under the terms of Sections 1 and 2 above provided that you also do one

of the following:

89

a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily

used for software interchange; or,

b) Accompany it with awritten offer, vaid for at least three years, to give any third party,
for acharge no more than your cost of physicaly performing source digtribution, a
complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software

interchange; or,

¢) Accompany it with the information you received as to the offer to digtribute
corresponding source code. (Thisdternativeisalowed only for noncommercia
digtribution and only if you received the program in object code or executable form with

such an offer, in accord with Subsection b above.)

The source code for awork means the preferred form of the work for making modificationsto it.
For an executable work, complete source code means al the source code for al modules it
contains, plus any associated interface definition files, plus the scripts used to control

compilation and ingtalation of the executable. However, as a specia exception, the source code
distributed need not include anything that is normaly distributed (in either source or binary

form) with the mgjor components (compiler, kernel, and so on) of the operating system on which

the executable runs, unless that component itself accompanies the executable.

90

If digtribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
digtribution of the source code, even though third parties are not compelled to copy the source

aong with the object code.

4. Y ou may not copy, modify, sublicense, or digtribute the Program except as expresdy provided
under thisLicense. Any attempt otherwise to copy, modify, sublicense or digtribute the Program
isvoid, and will automaticaly terminate your rights under this License. However, partieswho
have received copies, or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, snce you have not signed it. However, nothing
€lse grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance of
this License to do so, and dll its terms and conditions for copying, distributing or modifying

the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives alicense from the origina licensor to copy, distribute or modify the
Program subject to these terms and conditions. 'Y ou may not impose any further restrictions on
the recipients exercise of the rights granted herein. Y ou are not responsible for enforcing

compliance by third parties to this License.

91

7. If, as a consequence of a court judgment or dlegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute S0 as to satisfy smultaneoudy your
obligations under this License and any other pertinent obligations, then as a consequence you
may not digtribute the Program at dl. For example, if a patent license would not permit royalty-
free redigtribution of the Program by al those who receive copies directly or indirectly through
you, then the only way you could satisfy both it and this License would be to refrain entirely

from digtribution of the Program.

If any portion of this section isheld invalid or unenforceable under any particular circumstance,
the balance of the section isintended to apply and the section as awhole is intended to gpply in

other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
cdamsor to contest vaidity of any such clams; this section has the sole purpose of protecting
the integrity of the free software digtribution system, which isimplemented by public license
practices. Many people have made generous contributions to the wide range of software
distributed through that system in reliance on consistent application of that system; it isup to the
author/donor to decide if he or she iswilling to distribute software through any other system and

alicensee cannot impose that choice.

92

This section isintended to make thoroughly clear what is believed to be a consequence of the

res of thisLicense.

8. If the didtribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the origina copyright holder who places the Program under this
License may add an explicit geographica digtribution limitation excduding those countries, so
that digribution is permitted only in or among countries not thus excluded. In such case, this

License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the Generd Public
Licensefrom timeto time. Such new versons will be amilar in spirit to the present version, but

may differ in detail to address new problems or concerns.

Each verson is given adiginguishing verson number. If the Program specifiesaverson
number of this License which gppliesto it and "any later verson”, you have the option of
following the terms and conditions ether of that verson or of any later version published by the
Free Software Foundation. If the Program does not specify a version number of this License,

you may choose any verson ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we

sometimes make exceptions for this. Our decision will be guided by the two gods

93

of preserving the free status of dl derivatives of our free software and of promoting the sharing

and reuse of software generaly.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE ISNO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "ASIS' WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK ASTO THE QUALITY
AND PERFORMANCE OF THE PROGRAM ISWITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TOIN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF

DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

94

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMYS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Termsto Y our New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the

best way to achieve thisisto make it free software which everyone can redistribute and change

under these terms.

To do 0, atach the following notices to the program. It is safest to attach them to the start of

each source file to most effectively convey the exclusion of warranty; and each file should have

a least the "copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify it under the terms of the

GNU Generd Public License as published by the Free Software Foundation; either version 2 of

the License, or (a your option) any later version.

95

This program is digtributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY ; without even the implied warranty of MERCHANTABILITY or FITNESS FOR

A PARTICULAR PURPOSE. Seethe GNU Genera Public License for more details.

Y ou should have received a copy of the GNU Generd Public License dong with this program; if
not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA

02111-1307 USA

Also add information on how to contact you by eectronic and paper mail.

If the program isinteractive, make it output a short notice like thiswhen it Sartsin an interactive
mode:
Gnomovison verson 69, Copyright (C) year name of author
Gnomovision comeswith ABSOLUTELY NO WARRANTY; for details type “show w'.
Thisisfree software, and you are welcome to redistribute it

under certain conditions; type "show c' for details.

The hypothetical commands “show w' and “show ¢’ should show the appropriate parts of the
Generd Public License. Of course, the commands you use may be caled something other than
“show w' and “show c'; they could even be mouse-clicks or menu items--whatever suits your

program.

96

Y ou should aso get your employer (if you work as a programmer) or your school, if any, to sign

a"copyright disclamer” for the program, if necessary. Hereisasample; dter the names:

Y oyodyne, Inc., hereby disclamsal copyright interest in the program “Gnomovison' (which

makes passes at compilers) written by James Hacker.

<ggnature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This Generd Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If thisiswhat you want to do, use the GNU

Library Genera Public License ingtead of this License.

97

7.

8.

0.

REFERENCES

M. Roesch, Snort Users Manual: Snort Release 1.9.x, 26 April 2002.

M. Roesch, Snort — lightweight intrusion detection for networks, Proceedings of LISA
99, 1999, http://Mww.snort.org/docs/lisa-paper.txt

D. Sequeira, Intruson Prevention Systems — Security's Silver Bullet?, November 14,
2002, http:/Mmww.sans.org/rr/intruson/siver bullet.php

Top Layer Networks, Beyond IDS; Essentials of Network Intruson Prevention,
November 2002

T. Vewoerd, R. Hunt, Intrusion detection techniques and approaches, Computer
Communications, Volume 25, Issue 15, 15 September 2002, Pages 1356-1365

M. Williams, Study: Slammer was fastest soreading worm yet, Infoworld, 03 February
2003, http://mww.infoworld.com/article/03/02/03/HNdamfast 1.html?applications

Snort, http:/Mmww.snort.org/

ACID, http://www.andrew.cmu.edu/~rdanyliw/snort/snortacid.html

Webmin, http:/Mmww.webmin.com/

10. Cisco, http://mwww.cisco.com/

11. Enterasys, http://www.enterasys.com/home.html

98

BIOGRAPHICAL SKETCH

Shortly after graduating with a Bachelors of Sciencein Computer Sciencein April of
1997 from The Horida State University (FSU), | began employment as a programmer for aunit
within the university, the Florida Information Resource Network (FIRN). Within the first couple
of yearswith FIRN, | not only progressed very quickly within the organization, but my
knowledge was progressing even fagter. | fed that entering the “red world” had a great effect on
my success in the master’ s program at FSU. After entering the master’ s program, | gained a
great interest in systems adminigtration and decided to continue with the systems administration
track. Intime, | took over as a Solaris administrator for FSU. Again, after assuming the new
role, my interests narrowed further into the relm of security. With that in mind, | elected to do
my project on Snort because | wanted a project that had more of a“red life’ fed in security
rather than atheoretical project. Once | graduate with amaster’s degree, | would like to continue
on with my interest in security and enter a position with the Federal Government in one of the

many cyber security divisons.

99

