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Abstract 
 
 

In these days where the whole world is 
connected through Internet, Intrusion 
Detection Systems have become an essential 
part of a network. Where security is the 
major concern of any organization, 
performance is also a crucial factor. This 
project is an attempt to look at a fast 
growing Intrusion Detection System, Snort, 
and find out ways to improve the overall 
performance by introducing threads.
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Objective: 
 
 Enhancing the performance of Snort, an Intrusion Detection System: 

 
- This project is an attempt to contribute to the field of Network Security 

by improving the performance of an Intrusion Detection system with a 
fast growing popularity. Snort provides the users with flexibility and 
with open source; it lets the advanced user contribute to the Intrusion 
Detection Library. 

 
- The goal of this project is to generate faster responses by decreasing 

the burden of the main program. The current situation is that the Snort 
process itself has to deal with generating messages for detected 
intrusions. Whenever high disk latency overheaed and network delays 
are involved, that makes it slower. With the addition of concurrent 
programming with threads for output tasks, this project shows an 
improvement in the Snort system performance. 
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Background 
 
 
Intrusion Detection System: 
 
An Intrusion Detection System dynamically monitors the actions taken in a given 
environment, and decides whether these actions are symptomatic of an attack or 
constitute a legitimate use of the environment. 
 
 
Kumar and Spafford [94] have defined it as: 
 
Intrusion Detection is primarily concerned with the detection of illegal activities and 
acquisition of privileges that cannot be detected with information flow and access control 
models.  
  
As the Internet develops, it has been realized that security precautionary methods such as 
firewalls are not sufficient to find out when a network is under attack. What is needed is a 
three-fold process: 

First step is to detect whether there is an attack or not. 
Secondly it should collect forensics so that the guilty may be punished. 
It should also collect statistics to find out how effective or ineffective the 
current security measures are. 
Finally it should gather information about the attack to understand its 
behavior. 

 
Intrusion Detection is divided into two main categories: 
 
Knowledge-base Intrusion Detection systems: 
 This kind of Intrusion detection systems maintain a database of known signatures 
for attack and match those to the current data to figure out whether there is an attack 
going on.  
 
Behavior-based Intrusion Detection Systems: 
 This kind of Intrusion Detection System has an exclusive nature, that is, to deny 
all activities except those that fit in under pre-defined patterns. A database of permitted 
activities is maintained and any behavior seen otherwise is dubbed suspicious thus setting 
off the alarms. This can be used in sensitive peripherals that require more strict security 
and would prefer limited activities as compared to Knowledge-base Intrusion Detection 
Systems that only report a possible intrusion if some activity matches known attack 
patterns. This approach is also useful for employers suspicious towards their employees.  
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Inference Engine 

Decision Engine 
 

 
Figure 1: IDS Model

 
Basic Intrusion Detection System Model as proposed by Ilgun, Kemmerer [95]: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Preprocessor is responsible for collecting the data and translating it into a format 
acceptable to the Inference Engine. 
 
Knowledge-base contains the signatures and rules for known attacks. Fact-base contains 
facts, rule-base contains rules that apply to those facts.  
 
Inference Engine collects data from the preprocessor, matches those with the facts and 
rule base and applies rules to match. Inference Engine is also supposed to update the fact-
base as new attacks are known. 
 
Decision Engine is responsible for responses on the basis of the inference earlier taken. 
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Host-based Intrusion Detection Systems vs Network-based Intrusion Detection Systems: 
 

HIDS (Host-based Intrusion Detection System) is installed on a single host and it 
checks for possible intrusion on its host only. So the monitoring range is limited to 
the host machine only.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
NIDS (Network Intrusion Detection System) resides on a single host and sniffs 
(monitors) the packets on a network level. So it checks for possible intrusion on the 
whole network. 

 
 

 
 

 

Figure 2: Host Based IDS

Figure 3: Network IDS
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Intrusion Detection System (IDS) Products: 
 
Some of the well-known Intrusion Detection Products out in the market are: 
 
 

• Network Flight Recorder  
 
  NFR is one of the most popular, if not THE most popular, commercial 
Intrusion Detection systems. It has two different versions: Host-based and Network-
based. The rule writing in NFR is done in N-code, which is a whole language. [NFR 
Security, 2002] 
 
 

• Cisco IDS 
 
  Cisco had their Intrusion Detection system earlier named as NetRanger but 
with newer version they dropped that name. It provides both Host-based and Network-
based protection. Cisco has divided their IDS in two parts: Sensors to detect the attack, 
and Director to figure out what to do after that. [Cisco Systems, 2002] 

 
 

• RealSecure from Internet Security System  
 
  They divide their product in to a 3-tiered architecture: Management layer, 
Sensor layer and Event Collector. Event Collector lets the Sensor layer only worry about 
monitors and takes care of the data stream and database syncs. Rule writing is distributed 
between different .ini and text files. ini files have initialization values and parameters to 
be used by the Management layer to create text log files. Other text files include 
information like version and help url. [Internet Security Systems, 2001] 
   
   

• Snort 
 
  Snort is a lightweight intrusion detection system with a rapidly increasing 
popularity. Snort is available free and open source. It is a network-based intrusion 
detection system. Rule writing for Snort is very easy and that is one of the reasons why 
Snort has been so quick in responding to the new attacks. Snort applies the Knowledge-
base Intrusion Detection systems approach. But it can be configured to deny all activities 
except few to apply the Behavior-base Intrusion Detection systems approach. [Roesch, 
1999] 
 
 



Background 

Page 10  

 
 
Snort: 
 
As defined in the famous “Lisa Paper” [99] by its creator, Martin Roesch himself, Snort 
is: 
 

a cross-platform, lightweight network intrusion detection 
tool that can be deployed to monitor small TCP/IP 
networks and detect a wide variety of suspicious network 
traffic as well as outright attacks.

 
Snort is under GNU General Public License (GPL) and it can be downloaded free of cost. 
It started as a student project of Martin Roesch. Over a period of time, it has been built 
through the contributions of people from different parts of the world over the mailing 
lists. 
 
 
Why was Snort chosen for this project? 
 

• Open Source 
 
 Snort is under GPL license and thus the code for Snort is open. It has been 
developed over time by the contribution of many people.  

 
• Faster emergency response  

 
 Snort has an easily managed Rule base. So for every new attack, the rule writing 
is easier and thus the Snort community comes out with a faster response for users 
than other such systems. 
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Comparison Between Snort and Network Flight Recorder (NFR): 
 

Snort is only a NIDS whereas NFR is both NIDS and HIDS. NFR sensors require 
dedicated hardware whereas Snort NIDS can be installed on any machine. Snort is 
still developing protocol coverage (has TCP, UDP, ICMP, ARP). NFR, as compared 
to Snort, covers a wide variety of protocol coverage, for example DNS and RSH 
protocols. Snort is evolving towards being more user friendly with graphical 
representation, whereas NFR is all graphical based. Though Snort rule writing is 
easier, NFR rule writing requires learning a whole new language. Signature coverage 
is the same except that NFR covers more network protocols. 

 
 
Below is a comparison between Snort and NFR given by 
http://zen.ece.ohiou.edu/~nagendra/compids.html . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name of IDS

 
NFR NID

 
Snort

 
Type 

 
Network-Based

 
Network-Based

 
Network speed & Over head

 
 NID 200 - 100MBPS

NID 100 - T3
High speed networks

 

Moderately 
speed networks

 

Threat signature language

 
N-code language "full 

featured scripting 
language"

 

Snort rule - not 
as complete as n-

code

  Method (s) of detection

 
Misuse/Anomaly

 
Misuse Detection 

Snort is moving 
towards anomaly 

detector

 
 Portability

 
 Needs dedicated 

machine

 

Runs on almost 
any system 
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Honey Pots: 
 
Honeypots are networks with intentionally introduced vulnerabilities in order to attract 
hackers. One reason for this is to divert a potential attacker’s attention from the actual 
network. Another reason is to monitor those attacks. 
 
Snort can be used as a honeypot by being installed in such a network, so that it records 
the possible intrusions made by hackers to figure out what attack are generally popular 
and whether there are exploits generally overlooked by network administrators

Real-time Operation

 
yes 

 
yes

 
 Attack resistance

 
 yes

 
No, But can act as 

Honey pots 
(Honeypots explained 

on next page)

 Detection time 

 
 Fast

 
Moderate

 
 IP Defragmentation

 
yes

 
 yes

 
TCP stream reassembly

 
yes

 
yes

 
Working

 
Central

 
Central

 
Open Source

 
No

 
Yes
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 Initialization 

Thread creation 
(number of threads = number of network 

interfaces) 

Read packets 

Consult Knowledgebase 

Inference and Decision 
 

 
 
 

Figure 4: Snort Flow

 
Snort Flow: 
 
Standard Snort starts as a single program. It creates one thread each for each network 
interface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Each Thread 
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Snort Use: 
 
There are three ways Snort can be used: 
 

  Sniffer 
  Logger 
  IDS 

 
 
Snort as a Sniffer: 
 
Snort can be used as a simple Sniffer, that is, it can be used simply to monitor the 
network traffic. User can choose between headers, headers and data, and header and data 
with more description. 
 
 
Snort as a Logger: 
 
Snort can be used to log all the packets into a file. This is one step ahead of the sniffer as 
a logger logs the packets into a file for selected traffic. It can log in simple text or in 
binary mode as tcpdump format. The user can specify the home network. It also lets the 
user log only control packets by filtering in icmp packets only. 
 
 
Snort as an IDS: 
 
This is the full mode operation of Snort. Along with both of the above options, an 
important command line option is the name of the file that contains rules that need to be 
checked against packets. The procedure below is followed: 
 
Procedure:  

• Network packets are sniffed. 
• Those packets are matched against the patterns given by the rules in one or 

more file.  
• If there is a match, an action is taken as determined by the corresponding 

rule.  
 
A sample snort command would be (as in the manual): 
 
./snort -dev -l ./log -h 192.168.1.0/24 -c snort.conf 
 
This tells the user to run snort displaying the full packets on screen, having 
192.168.1.0/24 as the home network, and to use snort.conf as the rule file. Snort can also 
be run as a daemon in the background that will be generating alerts without showing the 
packets on the screen. 
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Actions: 
 
Possible actions that can be taken when packets are matched against known patterns are: 
 

 Alert 
• Snort generates Alert messages for detected Attacks. (See following section 

for detail) 
 

 Log 
• Another possible action is to generate Logs for Packets. The logs can be either 

saved into a human readable text file, or in binary tcpdump format 
 

 Ignore 
• This option basically tells Snort to do not do anything for the matched pattern.  

 
 
Other Action Types: 
 

 Activate 
• Activates Alerts are those types of alerts that, when matched, turn on another 

dynamic rule 
 Dynamic 

• Dynamic rules, when turned on by an activate rule, act as a log rule. 
 
 
 
 
User defined Rule Types: 
 

 Users are allowed to create new types of rules. 
 

 Users can specify: 
o Type (alert / log / ignore) 
o Log File 
o Output Database (through a db plug-in) 
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Alerts: 
 
Alerts are generated whenever an attack is detected (Detecting an attack refers to some 
packets matching the user pre-defined rules in Snort rule file.)  
 
Alert mode: 
 
 Fast 

- This mode generates the alert with only a brief description of the 
packets. 

- It is suited for the environment prone to generate more false alarms or 
where attacks are obvious and a brief description of the packets is 
enough to understand the attacks. 

 
 Full 

- This mode generates the alert with full packet logging. 
- It is suited for the environment where attacks seldom happen or 

Packets have to be studied in detail to research the attack. 
 
 Unsock 

- This mode directs alerts to a Unix socket. 
- Unix programs can be written to use the alerts in a customized manner. 

 
 None 

- This mode turns off alerts. 
- It can be used for testing purposes. 

 
 
Snort Rule File: 
 
Snort rule file can contain, along with rules in snort rule format, some include directives 
that let other files be used as Snort rules. Snort comes with some pre-written rules. User 
can write his/her own rules customized to the environment where Snort is going to be 
used. 
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Alert output Messages: 
  
Alert output messages are directed towards one of the following pre configured modes. 
[Roesch, Green, 2002] 
 

• Syslog 
This sends Snort alerts to the syslog facility, as per defined by the 
host operating system. 
 

• Server Message Block: 
This will direct Snort Alert messages to appear as Windows Pop-
up messages on a windows machine running netbios. 

 
• TCP dump format: 

This will log Snort alert messages in a tcpdump format file.  
 

• Fast_alert 
This will print Snort alerts with quick one line format in a file. 
 

• Full_alert 
This will print Snort alert messages along with the packet headers 
for which the alert is being generated. 

 
• XML  

This will log Snort messages in a Simple Network Markup 
Language using the DTD that comes with the Snort package. 

 
• Database 

This mode lets Snort messages to be stored in a SQL database 
 

• SNMP Trap 
Using this mode, Snort alerts are sent as a SNMP (Simple Network 
Management Protocol) trap to a network management system.  

 
• CSV 

Snort messages can be logged in CSV (comma-separated values) 
format that is importable to a database.  

 
• Unified – Binary Fast  
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Simple Rule format: 
 
 
 

Action Protocol SourceIP(s) SourcePort(s) Direction DestinationIP(s) 
DestinationPort(s) content_to_match message 
 

 
Example: 

 
Alert tcp any any -> 192.168.1.0/24 111 (content:” |00 01 86 a5|” ; msg: “mountd 

access” ;) 
 

From this rule, we obtain the following information: 
 

  
Protocol TCP 
Source IP address any 
Source Port any 
Destination IP address 192.168.1.0 / 24 
Destination Por t 111 
Pattern to match |00 01 86 a5| 
Aler t message to generate mountd access 
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Threads: 
 
A thread is defined as the basic unit of CPU utilization. [Silberschatz, Patterson, Galvin, 
1991]. Threads are also known as lightweight processes. Processes have a separate data 
space whereas threads within a process share most of the data. Where context switching 
for processes requires copying the data back and forth into the memory, threads do not 
require much of it. 
 
Threads within a single process share the following:[Stevens, 1998] 
 
 Global data 
 Process Instruction 
 Open file descriptors 
 Signal handlers 
 Current working directory 
 User ID 
 Group ID 
 
Each thread has its own: 
 
 Thread ID 
 Set of registers (Program Counter, Stack Pointer etc) 
 Stack (Local variables and Return Addresses) 
 errno 
 Signal mask 
 Priority 
 
Concurrent Programming: 
 
Many processes can be multi-tasked on a single CPU. This provides many advantages, 
one of which is computation speedup. That is our main concern for this project. 
 
For a single program, Concurrent Programming can be provided using two different 
methods: 

- Forking more processes 
- Creating many threads  

 
Threads are developed to improve performance. Therefore the hypothesis was that the 
use of threads for output tasks would also improve the performance of Snort. 
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Problem Definition: 
 
Introducing Threaded output plug-in 
 
Alert Output is taken care of by the same Snort Process that is doing everything else. This 
becomes a bottleneck when the disk latency is high or where Snort alerts are being sent to 
another machine and network delays are involved. 
So the objective of this project was to introduce threads that will take care of the output 
while the main process will keep detecting attacks. 
 
As of now, the Standard Snort process itself has to take care of writing alerts to the 
proper places. 
Letting another thread take care of it will make it faster for the output plug-ins to put 
alerts into action. 
 
This Project makes changes in the Standard Snort system by using the concurrent 
programming technique and relieving the main process of the output management. There 
can be two different methods to do that: 

- Forking more processes. 
- Creating more threads. 

 
Forking child processes requires heavier context-switching that involves copying the data 
to the child’s memory space. That is expensive. Also the inter-process communication 
requires establishing pipes or sockets. So threads were chosen as a solution. Thread 
creation is much faster than forking processes. Also the inter-process communication is 
simple and efficient as all threads are sharing data. 
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Figure 5: Single Thread solution

 

Project Design: 
 
There will be one or more threads created to deal with the output generated by the alerts. 
 
For each of the threads in the multi-threaded solution, Snort Engine writes alerts to a 
shared queue and then carries on with its normal execution. The output thread reads alerts 
from the queue and takes care of the alert messages. 
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Figure 6: Multi Thread solution

 
For n Threads, the number of threads is determined by the Snort user (typically a network 
administrator) with the command line argument of Snort. Snort Engine is not concerned 
with the number of threads. It will just write the output to the shared queue and carry on. 
The Output Threads take turns taking care of the alert messages. 
  
If the count of alert is i, then thread j is responsible for alert number (i MOD n), where n 
is the total number of threads. 
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Figure 7: Work Environment

 

Implementation of multi-threaded Snort: 
 
 
Work Environment: 
 
The small 192.168.1.0/24 network has three computers. One has Linux workstation and 
the other has Windows NT workstation. The third computer is a Linux Server and that is 
where Snort is installed. All three computers are connected through a hub and outside 
connection is optional for the server. 
 
 
The work environment was setup at SAIT, Security and Assurance in Information 
Technology Lab at Computer Science Department, Florida State University. 
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Data Structure of the multi-threaded Snort: 
 

Data Type Var iable Name Descr iption 
 NO_T 

 
 

defined in multop.h to have the maximum 
size of threads array. It is pre defined as 
100. 
 

int num_of_threads obtained from the command line argument 
(that is used to run Snort by the Snort user) 
to indicate the number of threads to be 
created. 
 

pthread_t outputthread[NO_T] the array of threads that will be created 
when Snort starts. The number of actually 
created threads is limited to 
num_of_threads. 
 

pthread_attr_t tattr[NO_T] Thread Attributes associated with each 
thread. 
 

pthread_mutex_t mx[NO_T] array of mutexes associated with each 
thread to see whether it is busy or not. 
 

pthread_mutexattr_t mxattr[NO_T] array of mutex attributes associated with 
each mx. 
 

pthread_mutex_t mx2[NO_T] array of mutexes associated with condition 
variables for each thread. 
 

pthread_mutexattr_t mx2attr[NO_T] array of mutex attributes associated with 
each mx2. 
 

pthread_mutex_t itsme mutex for status file. 
 

pthread_mutexattr_t itsmeattr mutex attribute associated with mutex 
itsme. 
 

pthread_cond_t condts[NO_T]; array of condition variables for each thread. 
 

pthread_condattr_t condatts[NO_T]; array of condition attributes for each 
condition variable. 
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Data Type Var iable Name Descr iption 

struct thrarg {  
  int myrank; 
} ; 
 

 Each thread is assigned a rank which is 
passed to it when being created. 

struct argsthread {  
  Packet *  p; 
  OptTreeNode *  
otn; 
  Event *event; 
} ; 
 

struct argsthread 
*args1[NO_T]; 

the data structure required by the Alert  
 
Action. This is the data structure where data 
is copied before calling the thread. 

FILE *  fdmtcheck - File pointer for status file. 
 
The correspondence is between arrays of threads, mutexes mx and mx2, condition 
variable array condts and the struct argsthread. For each thread that is an element of the 
array Outputthread, there is one mutex mx, one mutex mx2, one structure args element, 
and one condition variable condts. Logically, we can say that it is a table like: 
 

Outputthread mx mx2 condts args1 
0 0 0 0 0 
1 1 1 1 1 
2 2 2 2 2 
. . . . . 
. . . . . 

n-1 n-1 n-1 n-1 n-1 
 
The correspondence is like this: 
 
Outputthread – mx: 

 
mx[i] is the mutex that is tested to see whether Outputthread[i] is busy or not.  

 
Outputthread – mx2: 

 
mx2[i] is the mutex that is associated with the condition variable condts[i]. 

 
Outputthread – args1: 

 
Outputthread[i] looks for the data from args1[i].  

 
Outputthread – condts: 

 
condts[i] is the condition waited upon by Outputthread[i] . 
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Number of threads: 
 
num_of_threads variable is given by the Snort user, typically a Network Administrator, 
through the command line argument of Snort. This project has added a –Y option to the 
Standard Snort system to allow the user to configure the number of threads. 
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Functions for multi-threaded Snort: 
 
Functions Modified from the Standard Snort: 
 
main: 
 main function had to be changed from the Standard Snort so that it calls the mtinit 
to take care of the initialization. 
 
AlertAction: 
 Instead of calling the functions that will take care of the alert messages, this 
function now: 

• Copies the data structure to be used by threads. 
• Tries lock to a mutex corresponding to a thread to figure out whether that 

thread is currently busy or not. 
• After getting the rank for a free thread, tells the thread to start its 

execution by signaling through the condt condition variable. 
 
ParseCmdLine: 
 To introduce the ‘ -Y n’  argument for number of threads. 
 
 
 
 
New functions: 
 
void outthreadfunc(void * ); 
 
 This is the function that serves as the start_routine for threads.  

• This function waits for the signal from the main program. 
• After getting the signal, it locks a mutex to show that it is busy. 
• It takes care of the alert. 
• It locks a mutex to write into the status file every 25 alerts. 
• It unlocks the mutexes it held and again goes into wait state. 
 

 
void lockagain(int); 
 
 This function takes care of handling the SIGUSR2. 
 
void mtinit(void); 
 
 The initialization function called by the main. This function: 

Initializes: 
o Thread attributes 
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o Mutex attributes 
o Condition attributes 
o Threads 
o Mutexes 
o Condition variable 

Creates:  
o all the threads 

Allocates the memory to data structure and  
Locks the mutexes.  

 
 
The code for the functions appears in Appendix C.
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Figure 8: Testing Mechanism

 

Performance: 
 
Expectations: 
 
The process of generating alerts should get faster with Threads taking care of handling 
Alerts wherever network delays and disk latency is involved. The idea behind multi-
thread programming is to speed up and improve performance. In the multi-threaded 
solution, output generation for Alerts is taken care of by the threads, and this should 
make the multi-threaded Snort faster than Standard Snort for heavy load for disk access 
and network, where the main process itself was responsible for output overhead.  
 
Testing mechanism: 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Attack used: 
 
Malicious Ping: 
 ping –s 1 –c k ipaddress 
 
Snort sample command: 
 
snort -l log –h 192.168.1.0/24 –c snort.conf –Y 10 
 
-l option is for indicating the name of the log file that follows it. Here the log filename is 
given as “ log” . 
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-h option is to specify the network that should be monitored. Here it is 192.168.1.0/24. 
 
-c option lets the user give the name for the rule file that should be used by Snort. Here it 
is given as snort.conf. 
 
-Y option lets the user specify the number of threads that will take care of the outputs for 
the generated alerts. 
 
Note that standard Snort program will generate an error for the above command since –Y 
option is not available and was introduced by this project to indicate number of threads. 
 
 
Testing Code: 
 
For testing, the time after every 25 alerts was written into the status file. Functions that 
were written for that were: 
 
void gettingtime(char * ); 

- to get  the current time from the system. 
 

float diffing(char * , char * ); 
- to compare the time after every 25 seconds. 

 
Testing program generates alerts after run with following arguments: 
Usage:  a. out  number _of _f or ks number _of _pi ngs  
 
The testing program is run on the Linux server which sends ping requests to, and accepts 
replies from, the Linux Workstation and Windows NT workstation. 
 
The code for the Test program appears in Appendix B. 
 
Some tests were also conducted running the test program on the Linux workstation to 
analyze results in an environment where Snort host is not under heavy load. 
 
Sample Alert messages to be generated: 
 
[* * ] [1:499:1] MISC Large ICMP Packet [* * ] 
[Classification: Potentially Bad Traffic] [Priority: 2] 
12/01-05:24:35.560887 192.168.1.102 -> 192.168.1.101 
ICMP TTL:32 TOS:0x0 ID:11812 IpLen:20 DgmLen:29 
Type:8  Code:0  ID:1   Seq:2451  ECHO 
[Xref => http://www.whitehats.com/info/IDS246] 
 
[* * ] [1:499:1] MISC Large ICMP Packet [* * ] 
[Classification: Potentially Bad Traffic] [Priority: 2] 
12/01-05:24:35.560887 192.168.1.101 -> 192.168.1.102 
ICMP TTL:255 TOS:0x0 ID:6004 IpLen:20 DgmLen:29 
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Type:0  Code:0  ID:1  Seq:2451  ECHO REPLY 
[Xref => http://www.whitehats.com/info/IDS246] 
 
The above messages are generated according to the rule in Snort rule file for malicious 
pings. There are two messages generated as the first one is for ECHO packet for ping, 
and the other is for ECHO REPLY packet for ping.  
 
The rule files associate a code for each type of errors, that is 1:499:1 here.  
 
“MISC Large ICMP Packet”  is the message for this type of attack. 
 
Snort has a classification file that classifies all attacks. Here it is “Potentially Bad 
Traffic” . 
 
Rule file associates Priority 2 with this attack. 
 
The message has the date and time, and then destination and source information for this 
attack. 
 
Then the message includes some basic packet header information for which alert is being 
generated. 
 
At the end the message includes a link for a web page that has more information about 
this attack. 
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Test Hardware Configuration: 
 
Testing environment consisted of a three-computer network networked by a hub. This 
was setup at the SAIT, Security and Assurance in Information Technology Lab at the 
Computer Science Department, Florida State University. Following is the hardware 
configuration for each of these machines. 
 

Linux Server (Snort Host) 
Operating System RedHat Linux 7.2 
Processor Pentium – III 

800 MHz 
RAM 256 MB 
Swap Memory 512 MB 
Network Card 3COM 3C905 Fast Ethernet 10/100Mbps 
 

Linux Workstation 
Operating System RedHat Linux 7.2 
Processor Pentium – MMX 

200 MHz 
RAM 32 MB 
Swap Memory 64 MB 
Network Card 3COM 3C905 Fast Ethernet 10/100Mbps 
 

Windows NT Workstation 
Operating System Windows NT 4.0 Workstation 
Processor Pentium – MMX 

200 MHz 
RAM 32 MB 
Swap Memory 64 MB 
Network Card 3COM 3C905 Fast Ethernet 10/100Mbps 
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Results: 
 
Threads have accelerated the overall process of alert outputs. The balancing factor here is 
the number of threads.  
 
The test driver was first tested running on the same machine as Snort. That increased 
Snort host’s overload for disk access for writing large number of alerts as well as taking 
care of the test program. The program was tested as follows: 
 
Number of Attacking Processes: 100 
Ping count (-c k): 10 
 

 
Number  of 

threads 

Aler t 
Landmark 

Time taken 
(seconds) 

Standard Snort 
(1 thread) 

500 4 

10 500 3 
20 500 4 
50 500 4 

100 500 4 
Standard Snort 

(1 thread) 
1000 6 

10 1000 6 
20 1000 6 
50 1000 6 

100 1000 6 
Standard Snort 

(1 thread) 
1500 9 

10 1500 8 
20 1500 9 
50 1500 8 

100 1500 8 
Standard Snort 

(1 thread) 
2000 12 

10 2000 11 
20 2000 12 
50 2000 11 

100 2000 11 
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Graph 1 
a.out 100 10 
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Observation: 
 
For a lower number of attacks (500), a smaller number of threads is better as 10 threads 
perform faster as compared to the standard Snort. But there is not much difference 
between the Standard Snort program and a larger number of threads because of the 
overhead associated with creating more threads. 
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Number of Attacking Processes: 100 
Ping count (-c k): 50 

 
 

 
Number  of 

threads 

Aler t 
Landmark 

Time taken 
(seconds) 

Standard Snort 
(1 thread) 

500 4 

10 500 4 
20 500 4 
50 500 3 

100 500 3 
Standard Snort 

(1 thread) 
1000 6 

10 1000 6 
20 1000 6 
50 1000 5 

100 1000 6 
Standard Snort 

(1 thread) 
1500 8 

10 1500 9 
20 1500 8 
50 1500 8 

100 1500 8 
Standard Snort 

(1 thread) 
2000 11 

10 2000 11 
20 2000 11 
50 2000 10 

100 2000 11 
Standard Snort 

(1 thread) 
3000 16 

10 3000 16 
20 3000 16 
50 3000 15 

100 3000 15 
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Graph 2 
a.out 100 50 

 
 

0

2

4

6

8

10

12

14

16

T
im

e 
in

 s
ec

o
n

d
s

500 1000 1500 2000 3000

Number of Alerts

Standard Snort
10 threads
20 threads
50 threads
100 threads

 
 

 
Observation: 
 
Here the number of attacks per processes was increased. Since that increased the burden 
on the number of outputs, Snort with more threads took less time as compared to standard 
Snort. Even Snort with 10 or 20 threads was not enough to take care of the problem and 
acted almost only as good as the standard Snort. Snort with more threads did not show 
considerable difference in the middle because of the burden on the machine but with 
time, it started showing considerable difference. 
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Number of Attacking Processes: 250 
Ping count (-c k): 10 

 
 

Number  of 
threads 

Aler t 
Landmark 

Time taken 
(seconds) 

Standard Snort 
(1 thread) 

500 4 

10 500 4 
20 500 5 
50 500 3 

100 500 4 
Standard Snort 

(1 thread) 
1000 14 

10 1000 14 
20 1000 14 
50 1000 14 

100 1000 14 
Standard Snort 

(1 thread) 
1500 16 

10 1500 16 
20 1500 16 
50 1500 16 

100 1500 16 
Standard Snort 

(1 thread) 
2000 18 

10 2000 18 
20 2000 18 
50 2000 17 

100 2000 18 
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Graph 3 
a.out 250 10 
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Observation: 
 
With more forks for attacks (250 here), the load on the machine increased. Though it was 
for a lesser time since each process is making only 10 attacks. There is abrupt behavior in 
the beginning, then it all leveled. With time, Snort with 50 threads was better than Snort 
with fewer threads. It is even better than the Snort with 100 threads because Snort with 
100 threads still was not able to balance load on the machine with the performance edge 
it offers. 
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Number of Attacking Processes: 250 
Ping count (-c k): 50 
 

 
Number  of 

threads 

Aler t 
Landmark 

Time taken 
(seconds) 

Standard Snort 
(1 thread) 

500 4 

10 500 4 
20 500 4 
50 500 4 

100 500 3 
Standard Snort 

(1 thread) 
1000 54 

10 1000 54 
20 1000 54 
50 1000 54 

100 1000 53 
Standard Snort 

(1 thread) 
1500 56 

10 1500 56 
20 1500 56 
50 1500 56 

100 1500 56 
Standard Snort 

(1 thread) 
2000 58 

10 2000 57 
20 2000 57 
50 2000 58 

100 2000 57 
Standard Snort 

(1 thread) 
3000 66 

10 3000 65 
20 3000 65 
50 3000 66 

100 3000 65 
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Graph 4 
a.out 250 50 
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Observation: 
 
With a larger number of attacks per process, the performance edge that more threads 
offer as compared to the standard Snort was visible for all number of threads as it was too 
much of a load to be handled by the standard Snort. 
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Number of Attacking Processes: 400 
Ping count (-c k): 10 
 

 
Number  of 

threads 

Aler t 
Landmark 

Time taken 
(seconds) 

Standard Snort 
(1 thread) 

500 5 

10 500 4 
20 500 4 
50 500 5 

100 500 4 
Standard Snort 

(1 thread) 
1000 16 

10 1000 15 
20 1000 15 
50 1000 16 

100 1000 15 
Standard Snort 

(1 thread) 
1500 24 

10 1500 24 
20 1500 24 
50 1500 25 

100 1500 24 
Standard Snort 

(1 thread) 
2000 26 

10 2000 26 
20 2000 26 
50 2000 27 

100 2000 26 
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Graph 5 
a.out 400 10 
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Observation: 
 
In the beginning, Snort with more threads performed better but as the time progressed, 
400 processes was too much of a load for the larger number of threads to handle. This 
shows that for a machine with increased load, a more powerful hardware configuration 
should be used. 
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Number of Attacking Processes: 400 
Ping count (-c k): 50 
 

 
Number  of 

threads 

Aler t 
Landmark 

Time taken 
(seconds) 

Standard Snort 
(1 thread) 

500 5 

10 500 4 
20 500 4 
50 500 5 

100 500 4 
Standard Snort 

(1 thread) 
1000 65 

10 1000 58 
20 1000 58 
50 1000 58 

100 1000 57 
Standard Snort 

(1 thread) 
1500 84 

10 1500 80 
20 1500 84 
50 1500 79 

100 1500 81 
Standard Snort 

(1 thread) 
2000 95 

10 2000 92 
20 2000 96 
50 2000 90 

100 2000 93 
Standard Snort 

(1 thread) 
3000 104 

10 3000 104 
20 3000 105 
50 3000 103 

100 3000 104 
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Graph 6 
a.out 400 50 
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Observation: 
 
This graph again shows the need to balance the number of attacks to the machine load in 
order to decide the number of threads. Though in the beginning, Snort with more threads 
performed better, with time Snort with 20 threads started to lag. So for the last 
comparison (3000 alerts), Snort with 50 threads performed the best. 
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Number of Attacking Processes: 500 
Ping count (-c k): 10 
 

 
Number  of 

threads 

Aler t 
Landmark 

Time taken 
(seconds) 

Standard Snort 
(1 thread) 

500 5 

10 500 4 
20 500 4 
50 500 4 

100 500 5 
Standard Snort 

(1 thread) 
1000 17 

10 1000 14 
20 1000 15 
50 1000 15 

100 1000 15 
Standard Snort 

(1 thread) 
1500 29 

10 1500 25 
20 1500 24 
50 1500 26 

100 1500 26 
Standard Snort 

(1 thread) 
2000 31 

10 2000 31 
20 2000 31 
50 2000 32 

100 2000 32 
Standard Snort 

(1 thread) 
3000 37 

10 3000 35 
20 3000 34 
50 3000 36 

100 3000 36 
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Graph 7 
a.out 500 10 
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Observation: 
 
Now we have 500 processes each making 10 attacks. Here we can see clearly the 
advantage of multi threaded Snort.  
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Number of Attacking Processes: 500 
Ping count (-c k): 50 
 

 
Number  of 

threads 

Aler t 
Landmark 

Time taken 
(seconds) 

Standard Snort 
(1 thread) 

1500 111 

10 1500 110 
20 1500 110 
50 1500 110 

100 1500 111 
Standard Snort 

(1 thread) 
3000 118 

10 3000 118 
20 3000 118 
50 3000 118 

100 3000 119 
Standard Snort 

(1 thread) 
4500 126 

10 4500 125 
20 4500 125 
50 4500 126 

100 4500 126 
Standard Snort 

(1 thread) 
6000 136 

10 6000 134 
20 6000 135 
50 6000 135 

100 6000 135 
Standard Snort 

(1 thread) 
7500 150 

10 7500 145 
20 7500 147 
50 7500 147 

100 7500 145 
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Graph 8 
a.out 500 50 
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Observation: 
 
With more attacks per process for 500 processes, the advantage begins to show. Here is 
where a more powerful machine would show better results for multi-threaded Snort. 
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Number of Attacking Processes: 600 
Ping count (-c k): 10 
 

 
Number  of 

threads 

Aler t 
Landmark 

Time taken 
(seconds) 

Standard Snort 
(1 thread) 

500 5 

10 500 5 
20 500 4 
50 500 4 

100 500 5 
Standard Snort 

(1 thread) 
1000 15 

10 1000 16 
20 1000 14 
50 1000 15 

100 1000 16 
Standard Snort 

(1 thread) 
1500 25 

10 1500 26 
20 1500 24 
50 1500 24 

100 1500 26 
Standard Snort 

(1 thread) 
2000 34 

10 2000 34 
20 2000 35 
50 2000 34 

100 2000 34 
Standard Snort 

(1 thread) 
3000 41 

10 3000 40 
20 3000 40 
50 3000 41 

100 3000 40 
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Graph 9 

a.out 600 10 
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Observation: 
 
We have 600 processes attacking our network. We can clearly see the advantage of multi- 
threaded Snort.  
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Next we tested our program by running the test program on the Linux workstation. What 
we expected was not any difference between Standard Snort and multi-threaded program 
since Snort machine is now relieved of the heavy load it was under for running the test 
program.  
 
We tested for a maximum of 200 attacking processes for the machine limitation on our 
Linux workstation system.  
 
Number of Attacking Processes: 100 
Ping count (-c k): 10 
 

 
Number  of 

threads 

Aler t 
Landmark 

Time taken 
(seconds) 

Standard Snort 
(1 thread) 

500 7 

10 500 6 
20 500 7 
50 500 7 

100 500 7 
Standard Snort 

(1 thread) 
1000 11 

10 1000 10 
20 1000 11 
50 1000 11 

100 1000 11 
Standard Snort 

(1 thread) 
1250 14 

10 1250 13 
20 1250 14 
50 1250 14 

100 1250 14 
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Graph 10 
a.out 100 10 
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Observation: 
 
There is some difference between the Standard Snort and multi-threaded snort up to a 
point where there are more context switches between threads and there the advantage the 
multi-threaded solution offers is balanced out. 
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Number of Attacking Processes: 100 
Ping count (-c k): 50 
 

 
Number  of 

threads 

Aler t 
Landmark 

Time taken 
(seconds) 

Standard Snort 
(1 thread) 

1500 14 

10 1500 14 
20 1500 14 
50 1500 14 

100 1500 14 
Standard Snort 

(1 thread) 
3000 25 

10 3000 26 
20 3000 25 
50 3000 25 

100 3000 25 
Standard Snort 

(1 thread) 
4500 37 

10 4500 37 
20 4500 36 
50 4500 37 

100 4500 36 
Standard Snort 

(1 thread) 
6000 48 

10 6000 48 
20 6000 48 
50 6000 48 

100 6000 48 
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Graph 11 
a.out 100 50 

 
 
 
 

0
5

10
15
20
25
30
35
40
45
50

T
im

e 
in

 s
ec

o
n

d
s

1500 3000 4500 6000

Number of Alerts

Standard Snort
10 threads
20 threads
50 threads
100 threads

 
 
Observation: 
 
There is almost no difference between the Standard Snort and Multi-threaded Snort. 
Though we see some difference in the middle, it all evens out as the number of threads 
switching increases. The advantage multi-threaded solution offers is not being availed 
here since there is not much load on the host machine. 
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Number of Attacking Processes: 200 
Ping count (-c k): 10 
 

 
Number  of 

threads 

Aler t 
Landmark 

Time taken 
(seconds) 

Standard Snort 
(1 thread) 

500 7 

10 500 7 
20 500 7 
50 500 6 

100 500 7 
Standard Snort 

(1 thread) 
1000 11 

10 1000 10 
20 1000 11 
50 1000 10 

100 1000 10 
Standard Snort 

(1 thread) 
1250 13 

10 1250 13 
20 1250 13 
50 1250 13 

100 1250 13 
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Graph 12 
a.out 200 10 
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Observation: 
 
Just like in 100 attacking processes, here we see that Standard Snort and multi-threaded 
Snort are performing equally well; the reason being the multi-threaded solution is not 
having a chance to show its usefulness in these test conditions. 
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Number of Attacking Processes: 200 
Ping count (-c k): 50 
 

 
Number  of 

threads 

Aler t 
Landmark 

Time taken 
(seconds) 

Standard Snort 
(1 thread) 

1500 14 

10 1500 14 
20 1500 14 
50 1500 14 

100 1500 14 
Standard Snort 

(1 thread) 
3000 24 

10 3000 25 
20 3000 25 
50 3000 25 

100 3000 25 
Standard Snort 

(1 thread) 
4500 35 

10 4500 36 
20 4500 36 
50 4500 36 

100 4500 36 
Standard Snort 

(1 thread) 
6000 46 

10 6000 47 
20 6000 47 
50 6000 47 

100 6000 47 
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Graph 13 
a.out 200 10 
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Observation: 
 
With more processes being involved in attack and with Snort host not having much load 
of its own, the Standard Snort performs better. Again, the advantage of multi-threaded 
Snort can be seen where the Snort host has a high load. An example would be the case 
where Snort alerts are being managed in a big database. Another would be Snort alets 
being sent to another machine. 
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Conclusion: 
 
From the above tables for Snort host machine under heavy load, it is evident that even 
though a large number of threads is hampered by a lack of resources, they get the edge as 
the number of attacks increases. Our test environment writes output in a text file. So it 
should be noted that in an environment where output is directed to a more time 
consuming format, such as a database or windows pop up messages, threaded output 
should dramatically increase the performance. The test environment where Snort host 
was under a heavy load was where we could see the advantage multi-threaded Snort 
offers, but where Snort host was not under such load, there was not much advantage 
visible. 
 
Another thing we see is that the number of threads should be carefully chosen depending 
upon the nature of environment, i.e. whether it is under more attacks from more locations 
or not. 
 
Number of threads should be increased for an environment where attacks are in 
abundance (this requires a more powerful machine), or decreased to keep the number of 
threads low for an environment where fewer attacks. 

 
In multi-threaded solution as the main program is relieved of the responsibility of 
handling the output in different ways, the process of analyzing the network data has 
become faster whenever there is higher disk latency and/or network delays are involved. 
In the case of repeated attacks from multiple sources, the multi-threaded Snort main 
process is not overloaded as threads are taking care of alert outputs. Though it should be 
noted that to process a larger number of threads, the machine that is hosting the new 
Snort should be powerful enough. The number of threads can be increased for an 
environment where attacks are in abundance, or decreased to keep number of threads low 
for an environment under less number of attacks. 
 
In summary, we introduced multi-threaded output for Snort, and through our tests we 
found improved performance for environment where high disk latency and/or network 
delays are involved. We observed how variation in the number of threads is crucial to 
tune up multi-threaded Snort to run at its maximum potential. The Snort user, typically a 
Network administrator by changing the number of threads through command line 
argument, is able to adjust performance to suit his/her environment. 
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Future Work: 
 
 

• Finding ways to add more Intelligence to Snort: 
- A way to improve the performance of Snort would be to introduce levels 
to parse the sniffed packets. As of now, Snort has a flat rule base and all 
rules need to be checked against the incoming packet. Introducing levels 
will only check against a set of rules depending upon the success or failure 
to match the earlier rule. That requires introducing new rule types. The 
design is to be changed so that the standard flow of Snort will be changed 
from being flat to being flexible to allow the direct jump into the depth of 
the rule base. The difficulties that lurk behind this idea are that to 
accomplish the different flow, the basic design of Snort needs to be 
changed. The challenge lies in keeping the intrusion detection capability 
of Snort along with introducing the more efficient parsing in levels. A 
detailed discussion is given in Appendix D. 

 
• Incorporate Snort as a module in Linux kernel.  

- Kernel modules are faster and have a higher priority. 
 
• Contribute in “Hank”  Project: http://hank.sourceforge.net/docs/lwn.html#AEN80:     

- Hank is a new project modeled after Snort so it provides a new 
opportunity to build an Intrusion Detection system with improved 
design. New things can be applied and if there is an agreed (by the 
Hank and/or Snort community) design bottleneck for Snort, it can be 
avoided. 
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Appendix A: Sample Status file 
 
Note: Attacks were also limited by the speed of the pings being generated. 
 
Status file generated for: 

100 threads 600 processes 10 pings per process 
 
Number of attacks per seconds 
 
For  25 t ook 1. 000000 
For  50 t ook 1. 000000 
For  75 t ook 1. 000000 
For  100 t ook 1. 000000 
For  125 t ook 2. 000000 
For  150 t ook 2. 000000 
For  175 t ook 2. 000000 
For  200 t ook 2. 000000 
For  225 t ook 2. 000000 
For  250 t ook 2. 000000 
For  275 t ook 3. 000000 
For  300 t ook 3. 000000 
For  325 t ook 3. 000000 
For  350 t ook 3. 000000 
For  375 t ook 3. 000000 
For  400 t ook 4. 000000 
For  425 t ook 4. 000000 
For  450 t ook 4. 000000 
For  475 t ook 4. 000000 
For  500 t ook 5. 000000 
For  525 t ook 5. 000000 
For  550 t ook 5. 000000 
For  575 t ook 6. 000000 
For  600 t ook 7. 000000 
For  625 t ook 8. 000000 
For  650 t ook 10. 000000 
For  675 t ook 11. 000000 
For  700 t ook 11. 000000 
For  725 t ook 12. 000000 
For  750 t ook 12. 000000 
For  775 t ook 13. 000000 
For  800 t ook 13. 000000 
For  825 t ook 13. 000000 
For  850 t ook 14. 000000 
For  875 t ook 14. 000000 
For  900 t ook 15. 000000 
For  925 t ook 15. 000000 
For  950 t ook 15. 000000 
For  975 t ook 16. 000000 
For  1000 t ook 16. 000000 
For  1025 t ook 17. 000000 
For  1050 t ook 17. 000000 
For  1075 t ook 18. 000000 
For  1100 t ook 18. 000000 
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For  1125 t ook 19. 000000 
For  1150 t ook 19. 000000 
For  1175 t ook 20. 000000 
For  1200 t ook 21. 000000 
For  1225 t ook 21. 000000 
For  1250 t ook 22. 000000 
For  1275 t ook 22. 000000 
For  1300 t ook 23. 000000 
For  1325 t ook 23. 000000 
For  1350 t ook 24. 000000 
For  1375 t ook 24. 000000 
For  1400 t ook 24. 000000 
For  1425 t ook 25. 000000 
For  1450 t ook 25. 000000 
For  1475 t ook 25. 000000 
For  1500 t ook 26. 000000 
For  1525 t ook 26. 000000 
For  1550 t ook 27. 000000 
For  1575 t ook 27. 000000 
For  1600 t ook 28. 000000 
For  1625 t ook 28. 000000 
For  1650 t ook 29. 000000 
For  1675 t ook 29. 000000 
For  1700 t ook 29. 000000 
For  1725 t ook 30. 000000 
For  1750 t ook 30. 000000 
For  1775 t ook 31. 000000 
For  1800 t ook 31. 000000 
For  1825 t ook 31. 000000 
For  1850 t ook 32. 000000 
For  1875 t ook 32. 000000 
For  1900 t ook 32. 000000 
For  1925 t ook 33. 000000 
For  1950 t ook 33. 000000 
For  1975 t ook 34. 000000 
For  2000 t ook 34. 000000 
For  2025 t ook 34. 000000 
For  2050 t ook 35. 000000 
For  2075 t ook 35. 000000 
For  2100 t ook 36. 000000 
For  2125 t ook 36. 000000 
For  2150 t ook 37. 000000 
For  2175 t ook 37. 000000 
For  2200 t ook 37. 000000 
For  2225 t ook 37. 000000 
For  2250 t ook 37. 000000 
For  2275 t ook 38. 000000 
For  2300 t ook 38. 000000 
For  2325 t ook 38. 000000 
For  2350 t ook 38. 000000 
For  2375 t ook 38. 000000 
For  2400 t ook 38. 000000 
For  2425 t ook 38. 000000 
For  2450 t ook 38. 000000 
For  2475 t ook 38. 000000 
For  2500 t ook 39. 000000 
For  2525 t ook 39. 000000 
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For  2550 t ook 39. 000000 
For  2575 t ook 39. 000000 
For  2600 t ook 39. 000000 
For  2625 t ook 39. 000000 
For  2650 t ook 39. 000000 
For  2675 t ook 39. 000000 
For  2700 t ook 39. 000000 
For  2725 t ook 39. 000000 
For  2750 t ook 40. 000000 
For  2775 t ook 40. 000000 
For  2800 t ook 40. 000000 
For  2825 t ook 40. 000000 
For  2850 t ook 40. 000000 
For  2875 t ook 40. 000000 
For  2900 t ook 40. 000000 
For  2925 t ook 40. 000000 
For  2950 t ook 40. 000000 
For  2975 t ook 40. 000000 
For  3000 t ook 40. 000000 
For  3025 t ook 41. 000000 
For  3050 t ook 41. 000000 
For  3075 t ook 41. 000000 
For  3100 t ook 41. 000000 
For  3125 t ook 41. 000000 
For  3150 t ook 41. 000000 
For  3175 t ook 41. 000000 
For  3200 t ook 41. 000000 
For  3225 t ook 41. 000000 
For  3250 t ook 41. 000000 
For  3275 t ook 41. 000000 
For  3300 t ook 41. 000000 
For  3325 t ook 42. 000000 
For  3350 t ook 42. 000000 
For  3375 t ook 42. 000000 
For  3400 t ook 42. 000000 
For  3425 t ook 42. 000000 
For  3450 t ook 43. 000000 
For  3475 t ook 43. 000000 
For  3500 t ook 43. 000000 
For  3525 t ook 43. 000000 
For  3550 t ook 44. 000000 
For  3575 t ook 44. 000000 
For  3600 t ook 44. 000000 
For  3625 t ook 45. 000000 
For  3650 t ook 45. 000000 
For  3675 t ook 46. 000000 
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Appendix B: Testing Program 
 
#i ncl ude <st di o. h> 
#i ncl ude <st dl i b. h> 
#i ncl ude <sys/ t ypes. h> 
#i ncl ude <uni st d. h> 
#i ncl ude <sys/ wai t . h> 
 
i nt  mai n( i nt  ar gc,  char  * ar gv[ ] )  
{  
  i nt  myr ank,  numf or ks,  i ,  r ank;  
  char  * cmdst r 1,  * cmdst r 2,  * cmdst r 3;  
 
  i f  ( ar gc < 3)  {  
    pr i nt f ( " Usage:  a. out  number _of _f or ks( at l east  3)  
number _of _pi ngs\ n" ) ;  
    ex i t ( 0) ;  
  }  
 
  cmdst r 1 = mal l oc( 30) ;  
  cmdst r 2 = mal l oc( 30) ;  
  cmdst r 3 = mal l oc( 30) ;  
 
  myr ank = 0;  
  r ank = 1;  
  numf or ks = at oi ( ar gv[ 1] ) ;  
  spr i nt f ( cmdst r 1,  " pi ng - s  1 - c  %d 192. 168. 1. 102" ,  at oi ( ar gv[ 2] )  ) ;  
  spr i nt f ( cmdst r 2,  " pi ng - s  1 - c  %d 192. 168. 1. 102" ,  at oi ( ar gv[ 2] )  ) ;  
  spr i nt f ( cmdst r 3,  " pi ng - s  1 - c  %d 192. 168. 1. 103" ,  at oi ( ar gv[ 2] )  ) ;  
 
  f or  ( i =0;  i <numf or ks;  i ++)  {  
    i f  ( ! myr ank)  {  
      i f  (  f or k( ) ==0)  {  
 myr ank = r ank;  
 / /  pr i nt f ( " I  am %d\ n" ,  myr ank) ;  
      }  
      el se  
 r ank++;  
    }  
  }  
 
  pr i nt f ( " I  am %d\ n" ,  myr ank) ;  
 
  i f  (  ( myr ank%3)  == 0)  {  
    pr i nt f ( " %s\ n" ,  cmdst r 1) ;  
    syst em( cmdst r 1) ;  
  }  
 
  el se i f  (  ( myr ank%3)  == 1)  {  
    f or ( i =0;  i <10000;  i ++) ;  
    / /     s l eep( 1) ;  
    pr i nt f ( " %s\ n" ,  cmdst r 2) ;  
    syst em( cmdst r 2) ;  
  }  
 
  el se i f  (  ( myr ank%3)  == 2)  {  
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    f or ( i =0;  i <10500;  i ++) ;  
    / /  s l eep( 2) ;  
    pr i nt f ( " %s\ n" ,  cmdst r 3) ;  
    syst em( cmdst r 3) ;  
  }  
 
  el se 
    pr i nt f ( " what ?! ! \ n" ) ;  
 
  i f ( ! myr ank)  {  
    f or  ( i =0;  i <numf or ks;  i ++)   
        wai t ( NULL) ;  
  }  
  r et ur n 0;  
    
}  
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Appendix C: Project Code 
 
I- multop.h (new file) 
 
#i ncl ude " snor t . h"  
#i ncl ude <pt hr ead. h> 
#i f ndef  _MULTOP_ 
#def i ne _MULTOP_ 
 
#def i ne NO_T 100 
 
i nt  num_of _t hr eads;  
 
/ *  i nt r oduci ng t hr eaded out put  dat a st r uct ur e * /  
 
s t r uct  ar gst hr ead {  
  Packet  *  p;  
  Opt Tr eeNode *  ot n;  
  Event  * event ;  
} ;  
 
pt hr ead_t  out put t hr ead[ NO_T] ;  
pt hr ead_at t r _t  t at t r [ NO_T] ;  
pt hr ead_mut exat t r _t  mxat t r [ NO_T] ;  
pt hr ead_mut exat t r _t  mx2at t r [ NO_T] ;  
pt hr ead_mut ex_t  mx[ NO_T] ;  
pt hr ead_mut ex_t  mx2[ NO_T] ;  
pt hr ead_mut ex_t  i t sme;  
pt hr ead_mut exat t r _t  i t smeat t r ;  
s t r uct  ar gst hr ead * ar gs1[ NO_T] ;  
 
pt hr ead_condat t r _t  condat t s[ NO_T] ;  
pt hr ead_cond_t  condt s[ NO_T] ;  
i nt  condi nt s[ NO_T] ;  
 
pt hr ead_cond_t  l ocksi g;  
 
char  * t est st ar t t i me;  
char  * t est endt i me;  
f l oat  t est di f f ;  
i nt  numat t acks;  
 
s t r uct  t hr ar g {  
  i nt  myr ank;  
} ;  
 
i nt  mt cnt r ;  
i nt  sender ;  
 
FI LE * f dmt check;  
 
/ *  f unct i ons decl ar at i ons * /  
 
voi d*  out t hr eadf unc( voi d * ) ;  
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voi d l ockagai n( i nt ) ;  
voi d mt i ni t ( voi d) ;  
voi d get t i ngt i me( char  * ) ;  
f l oat  di f f i ng( char  * ,  char  * ) ;  
 
 
#endi f  / *  f or  _MULTOP_ * /  

 



Appendix C 

Page 70  

 
II- Changes in snort.c: 
 
At  t he ver y t op:  
#i ncl ude " mul t op. h"  
 
Just  af t er  Par seCmdLi ne,  cal l  mt i ni t  ( at  Li ne 145) :  
mt i ni t  ( ) ;  
 
Not e:  Al l  t he f ol l owi ng f unct i ons can be added anywher e as f ar  as t hese 
f unct i ons ar e not  i ns i de any ot her  f unct i on code.  A good i dea,  t hat  was 
f ol l owed,  i s  t o add t hese at  t he ver y bot t om of  t he f i l e,  wher e t he 
or i gi nal  code ends.  
 
 
mt i ni t  f unct i on i s  r esponsi bl e f or  i ni t i al i z i ng al l  dat a st r uct ur e and 
cr eat i ng t hr eads i ni t i al l y)  
 
voi d mt i ni t ( voi d)  
{  
  / /   s t r uct  t hr ar g * t hr ar g1[ NO_T] ;  
  s t r uct  t hr ar g * t hr ar g1[ num_of _t hr eads] ;  
  i nt  j j ;  
 
  mt cnt r =0;  
  sender =- 1;  
 
  / / i f  (  ( t hr ar g1 = mal l oc( s i zeof ( st r uct  t hr ar g) ) ) ==NULL)  {  
  / /   per r or ( " mal l oc" ) ;  
  / /   ex i t ( - 1) ;  
  / /  }  
  pt hr ead_mut exat t r _i ni t ( &i t smeat t r ) ;  
  pt hr ead_mut exat t r _set pshar ed( &i t smeat t r ,  PTHREAD_PROCESS_SHARED) ;  
  pt hr ead_mut ex_i ni t ( &i t sme,  &i t smeat t r ) ;  
  pr i nt f ( " * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * \ n" ) ;  
  pr i nt f ( " * * * * * * * * * * *  num_of _t hr eads i s  %d * * * * * * * * \ n" ,  
num_of _t hr eads) ;  
  pr i nt f ( " * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * \ n" ) ;  
 
  t est st ar t t i me = mal l oc( 50) ;  
  t est endt i me = mal l oc( 50) ;  
  numat t acks = 0;  
 
  / /   f or  ( j j =0;  j j <NO_T;  j j ++)  {  
  f or  ( j j =0;  j j <num_of _t hr eads;  j j ++)  {  
    i f  (  ( t hr ar g1[ j j ]  = mal l oc( s i zeof ( st r uct  t hr ar g) ) ) ==NULL)  {  
      per r or ( " mal l oc" ) ;  
      ex i t ( - 1) ;  
    }  
    t hr ar g1[ j j ] - >myr ank = j j ;  
 
    i f  (  ( ar gs1[ j j ]  = mal l oc( s i zeof ( ar gs1[ j j ] ) ) ) ==NULL)  {  
      per r or ( " mal l oc" ) ;  
      ex i t ( - 1) ;  
    }  
    i f  (  ( ar gs1[ j j ] - >p = ( Packet  * ) mal l oc( s i zeof ( Packet ) ) ) ==NULL)  {  



Appendix C 

Page 71  

      per r or ( " mal l oc" ) ;  
      ex i t ( - 1) ;  
    }  
    i f  (  ( ar gs1[ j j ] - >ot n = ( Opt Tr eeNode 
* ) mal l oc( s i zeof ( Opt Tr eeNode) ) ) ==NULL)  {  
      per r or ( " mal l oc" ) ;  
      ex i t ( - 1) ;  
    }  
    i f  (  ( ar gs1[ j j ] - >event  = ( Event  * ) mal l oc( s i zeof ( Event ) ) ) ==NULL)  {  
      per r or ( " mal l oc" ) ;  
      ex i t ( - 1) ;  
    }  
    / /     ar gs1[ j j ]  = mal l oc( s i zeof ( st r uct  ar gst hr ead) ) ;      
    pt hr ead_mut exat t r _i ni t ( &mxat t r [ j j ] ) ;  
    pt hr ead_mut exat t r _set pshar ed( &mxat t r [ j j ] ,  PTHREAD_PROCESS_SHARED) ;  
    pt hr ead_mut ex_i ni t ( &mx[ j j ] ,  &mxat t r [ j j ] ) ;  
 
    pt hr ead_mut exat t r _i ni t ( &mx2at t r [ j j ] ) ;  
    pt hr ead_mut exat t r _set pshar ed( &mx2at t r [ j j ] ,  PTHREAD_PROCESS_SHARED) ;  
    pt hr ead_mut ex_i ni t ( &mx[ j j ] ,  &mx2at t r [ j j ] ) ;  
    / * i f  (  pt hr ead_mut ex_l ock( &mx[ j j ] )  ! = 0)  {  
     per r or ( " pt hr ead_mut ex_l ock" ) ;  
     ex i t ( - 1) ;  
     } * /  
 
 
    i f  ( pt hr ead_at t r _i ni t ( &t at t r [ j j ] ) ! =0)  {  
      per r or ( " pt hr ead_at t r _i ni t " ) ;  
      ex i t ( - 1) ;  
    }  
 
    i f  ( pt hr ead_cr eat e( &out put t hr ead[ j j ] ,  &t at t r [ j j ] ,  out t hr eadf unc,  
( voi d  * ) t hr ar g1[ j j ] ) ! =0)  {  
      per r or ( " pt hr ead_cr eat e" ) ;  
      ex i t ( - 1) ;  
    }  
 
    condi nt s[ j j ]  = 0;  
    pt hr ead_condat t r _i ni t ( &condat t s[ j j ] ) ;  
    pt hr ead_condat t r _set pshar ed( &condat t s[ j j ] ,  PTHREAD_PROCESS_SHARED) ;  
    pt hr ead_cond_i ni t ( &condt s[ j j ] ,  &condat t s[ j j ] ) ;  
 
    pr i nt f ( " t hr ead %d cr eat ed and mut ex l ocked\ n" ,  j j ) ;  
  }  
}  
 
SI GUSR2 si gnal  handl er  
 
voi d l ockagai n( i nt  s i g)  
{  
  / /   i f  ( pt hr ead_mut ex_l ock( &mx[ sender ] ) ! =0)  {  
  / /   per r or ( " pt hr ead_mut ex_l ock" ) ;  
  / /   ex i t ( - 1) ;  
  / / }  
  pr i nt f ( " t r y i ng t o unl ock %d\ n" ,  sender ) ;  
  pt hr ead_mut ex_t r y l ock( &mx[ sender ] ) ;  
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  pr i nt f ( " unl ocked %d\ n" ,  sender ) ;  
  sender  = - 1;  
}  
 

t i me handl i ng f unct i ons 
 
voi d get t i ngt i me( char  * t st t i me)  
{  
  t i me_t  t ;  
  t =t i me( NULL) ;  
  spr i nt f ( t s t t i me,  " %s" ,  c t i me( &t ) ) ;  
}  
 
f l oat  di f f i ng( char  * f i r s t t i me,  char  * secondt i me)  
{  
  char  * r wday,  * r mon,  * r mday,  * r hh,  * r mm,  * r ss,  * r y;  
  char  * l wday,  * l mon,  * l mday,  * l hh,  * l mm,  * l ss,  * l y ;  
  char  del [ ]  = "  : " ;  
 
  s t r uct  t m r mt ,  l c l ;  
  t i me_t  t r mt ,  t l c l ;  
  f l oat  t di f f er ;  
 
   
  / * * * * * * * * * * * * * * * * * * * * * *  par s i ng * * * * * * * * * * * * * * * * * * * * * * * * /  
 
  r wday = st r t ok( f i r s t t i me,  del ) ;  
  r mon = st r t ok( NULL,  del ) ;  
  r mday = st r t ok( NULL,  del ) ;  
  r hh = st r t ok( NULL,  del ) ;  
  r mm = st r t ok( NULL,  del ) ;  
  r ss = st r t ok( NULL,  del ) ;  
  / * r z  = st r t ok( NULL,  del ) ;   * /  
  r y  = st r t ok( NULL,  del ) ;   
 
  l wday = st r t ok( secondt i me,  del ) ;    
  l mon = st r t ok( NULL,  del ) ;  
  l mday = st r t ok( NULL,  del ) ;  
  l hh = st r t ok( NULL,  del ) ;  
  l mm = st r t ok( NULL,  del ) ;  
  l ss = st r t ok( NULL,  del ) ;  
  / * l z  = st r t ok( NULL,  del ) ;   * /  
  l y  = st r t ok( NULL,  del ) ;   
 
   / * * * * * * * * * * * * * * * *  par s i ng ends * * * * * * * * * * * * * * * * * * * * * * /  
 
    
   / * * * * * * * * * * * * * * *  maki ng t i me f or mat  * * * * * * * * * * * * * * * * * * * * * /  
 
   / * *  f or  f i r s t  * * /  
    
   r mt . t m_year  = at oi ( r y)  -  1900;  
   r mt . t m_mon = 7 -  at oi ( r mon) ;  
   r mt . t m_mday = at oi ( r mday) ;  
   r mt . t m_hour  = at oi ( r hh) ;  
   r mt . t m_mi n = at oi ( r mm) ;  
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   r mt . t m_sec = at oi ( r ss) ;  
   r mt . t m_i sdst  = - 1;  
 
   t r mt  = mkt i me( &r mt ) ;  
 
   / * *  f or  second * * /  
   l c l . t m_year  = at oi ( l y)  -  1900;  
   l c l . t m_mon = 7 -  at oi ( l mon) ;  
   l c l . t m_mday = at oi ( l mday) ;  
   l c l . t m_hour  = at oi ( l hh) ;  
   l c l . t m_mi n = at oi ( l mm) ;  
   l c l . t m_sec = at oi ( l ss) ;  
   l c l . t m_i sdst  = - 1;  
 
   t l c l  = mkt i me( &l c l ) ;  
 
   / * * * * * * * * * * * * * * * * * * * * *  mk ends * * * * * * * * * * * * * * * * * * * * * * * * * /  
 
   / * * * * * * * * * * * * * * * * * * * * *  cal cul at i on * * * * * * * * * * * * * * * * * * * * * /  
 
   t di f f er  = di f f t i me( t l c l ,  t r mt ) ;  
 
    
   / * * * * * * * * * * * * * * * * *  cal cul at i ons end * * * * * * * * * * * * * * * * * * * * /  
    
   / /  i f  ( t di f f er  < 30)  r et ur n 0;  
  r et ur n ( t di f f er ) ;  
}  
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III- Changes in rules.c: 
 
Not e:  Al l  t he f unct i ons can be added anywher e as f ar  as t hese f unct i ons 
ar e not  i ns i de any ot her  f unct i on code.  A good i dea i s  t o add t hese at  
t he ver y bot t om of  t he f i l e,  wher e t he or i gi nal  code ends.  
 
Or i gi nal  Al er t Act i on f unct i on i s  t ot al l y  r epl aced by t he f unct i on 
bel ow.  Ear l i er  i t  was used t o gener at e al er t s  i t sel f .  Now i t  j ust  
s i gnal s a f r ee t hr ead t o st ar t  wor k on t he al er t .  
 
 
i nt  Al er t Act i on( Packet  *  p,  Opt Tr eeNode *  ot n,  Event  * event )  
{  
 
#i f def  DEBUG 
    pr i nt f ( "         <! ! > Gener at i ng al er t !  \ " %s\ " \ n" ,  ot n- >message) ;  
#endi f  
 
    / *  copy t he Packet  * p Opt Tr eeNode *  ot n,  Event  * event  * /  
    / *  changes st ar t  * /  
  
    memcpy( ar gs1[ mt cnt r ] - >p,  p,  s i zeof ( Packet ) ) ;  
    memcpy( ar gs1[ mt cnt r ] - >ot n,  ot n,  s i zeof ( Opt Tr eeNode) ) ;  
    memcpy( ar gs1[ mt cnt r ] - >event ,  event ,  s i zeof ( Event ) ) ;  
 
 
    / / pr i nt f ( " I  cal l \ n" ) ;  
    / /     pt hr ead_cr eat e( &out put t hr ead,  NULL,  out t hr eadf unc,  ( voi d  
* ) ar gs1) ;  
    / /  pt hr ead_mut ex_unl ock( &mx[ mt cnt r ] ) ;  
 
    whi l e ( pt hr ead_mut ex_t r y l ock( &mx[ mt cnt r ] ) ! =0)  {  
      mt cnt r ++;  
      / /       i f ( mt cnt r  == NO_T)  
      i f ( mt cnt r  == num_of _t hr eads)  
 mt cnt r =0;  
    }  
    / / pr i nt f ( " got  mt cnt r  as %d\ n" ,  mt cnt r ) ;  
    pt hr ead_mut ex_unl ock( &mx[ mt cnt r ] ) ;  
    / /     done = 0;  
    / /  whi l e( ! done)  {  
      pt hr ead_mut ex_l ock( &mx2[ mt cnt r ] ) ;  
      / / pr i nt f ( " i  l ocked mx2[ %d] \ n" ,  mt cnt r ) ;  
      / /  i f  ( condi nt s[ mt cnt r ] ==0)  {  
      condi nt s[ mt cnt r ] ++;  
      pt hr ead_cond_si gnal ( &condt s[ mt cnt r ] ) ;  
 / /  done=1;  
 / /  }  
 
      pt hr ead_mut ex_unl ock( &mx2[ mt cnt r ] ) ;  
      / / }  
      mt cnt r ++;  
      / /      i f ( mt cnt r  == NO_T)  
      i f ( mt cnt r  == num_of _t hr eads)  
 mt cnt r =0;  
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      / / pr i nt f ( " I  cont i nue af t er  s i gnal l i ng %d\ n" ,  mt cnt r ) ;  
 
 / * #endi f * /  
 
    / *  changes end * /  
 
    r et ur n 1;  
}  
 
out t hr eadf unc f unct i on i s  t he f unct i on t hat  r uns when a t hr ead i s  
cor r ect ed.  I t  assi gns a r ank t o cal l i ng t hr ead and wai t s  on s i gcondt .  
 
 
voi d*  out t hr eadf unc( voi d * ar gs)  
{  
 
  i nt  myr ank;  
   
  Packet  *  p;  Opt Tr eeNode *  ot n;  Event  * event ;  
  s t r uct  t hr ar g * ar gs2;  
  char  * t empst t i me;  
 
  / /   ar gs2 = mal l oc( s i zeof ( st r uct  t hr ar g) ) ;  
 
  t empst t i me = mal l oc( 50) ;  
 
  ar gs2 = ( st r uct  t hr ar g * ) ar gs;  
  myr ank = ar gs2- >myr ank;  
  / / pr i nt f ( " I  am %d\ n" ,  myr ank) ;  
 
  p = ( Packet  * ) mal l oc( s i zeof ( Packet ) ) ;  
  ot n = ( Opt Tr eeNode * ) mal l oc( s i zeof ( Opt Tr eeNode) ) ;  
  event  = ( Event  * ) mal l oc( s i zeof ( Event ) ) ;  
 
  s l eep( 3) ;  
 
  whi l e( 1)  {  
    pt hr ead_mut ex_l ock( &mx2[ myr ank] ) ;  
    / / pr i nt f ( " t hr ead cal l ed %d wai t s\ n" ,  myr ank) ;  
    / /     whi l e( condi nt s[ myr ank] ==0)  
      pt hr ead_cond_wai t ( &condt s[ myr ank] ,  &mx2[ myr ank] ) ;  
    condi nt s[ myr ank] - - ;  
 
    / / pr i nt f ( " t hr ead cal l ed %d got  i t \ n" ,  myr ank) ;  
 
    / *  l oggi ng st ar t  t i me * /  
 
    i f  ( numat t acks == 0)  {  
      memset ( t est endt i me,  0,  s i zeof ( char ) * 50) ;  
      get t i ngt i me( t est st ar t t i me) ;  
    }  
 
    / / i f ( s t ar t now)  {  
    pt hr ead_mut ex_l ock( &mx[ myr ank] ) ;  
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    memcpy( p,  ar gs1[ myr ank] - >p,  s i zeof ( Packet ) ) ;  
    memcpy( ot n,  ar gs1[ myr ank] - >ot n,  s i zeof ( Opt Tr eeNode) ) ;  
    memcpy( event ,  ar gs1[ myr ank] - >event ,  s i zeof ( Event ) ) ;  
 
    / *  
    p = ar gs1[ myr ank] - >p;  
    ot n = ar gs1[ myr ank] - >ot n;  
    event  = ar gs1[ myr ank] - >event ;  
    * /  
    / *  her e i s  wher e I  mi ght  l et  t hr ead t ake car e of  Cal l Al er t Funcs * /  
    Cal l Al er t Funcs( p,  ot n- >message,  ot n- >r t n- >l i s t head,  event ) ;  
     
#i f def  DEBUG 
    pr i nt f ( "    => Fi ni shi ng al er t  packet ! \ n" ) ;  
#endi f  
     
    i f ( p- >ssnpt r  ! = NULL)  
      {  
 i f ( Al er t Fl ushSt r eam( p,  p- >ssnpt r )  == 0)  
   {  
     Cal l LogFuncs( p,  ot n- >message,  ot n- >r t n- >l i s t head,  event ) ;  
   }  
      }  
    el se 
      {  
        Cal l LogFuncs( p,  ot n- >message,  ot n- >r t n- >l i s t head,  event ) ;  
      }  
 
    pt hr ead_mut ex_l ock( &i t sme) ;  
 
 
    / *  l oggi ng end t i me and compar i ng * /  
    numat t acks++;  
 
    i f (  ( numat t acks % 25)  == 0)  {  
      memset ( t est endt i me,  0,  s i zeof ( char ) * 50) ;  
      memset ( t empst t i me,  0,  s i zeof ( char ) * 50) ;  
      get t i ngt i me( t est endt i me) ;  
      spr i nt f ( t empst t i me,  " %s" ,  t est st ar t t i me) ;  
      t est di f f  = di f f i ng( t empst t i me,  t est endt i me) ;  
    }  
 
    / *  wr i t i ng i nt o st at us f i l e * /  
    i f (  ( numat t acks % 25)  == 0)  {  
      f dmt check=f open( " / r oot / l og/ f dmt check. t xt " ,  " a" ) ;  
      f pr i nt f ( f dmt check,  " For  %d t ook %f \ n" ,  numat t acks,  t est di f f ) ;  
      f c l ose( f dmt check) ;  
    }  
     
    sender  = myr ank;  
    pt hr ead_mut ex_unl ock( &mx[ myr ank] ) ;  
 
    pt hr ead_mut ex_unl ock( &mx2[ myr ank] ) ;  
 
    / /  ear l i er  appr oach 
    / * i f ( r ai se( SI GUSR2) ! =0)  
      pr i nt f ( " coul dnt  r ai se t he s i gnal " ) ;  
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      pr i nt f ( " r ai sed by %d\ n" ,  myr ank) ; * /  
    / / whi l e( sender ! =- 1) ;  
        pt hr ead_mut ex_unl ock( &i t sme) ;  
 
 
    memset ( ar gs1[ myr ank] - >p,  0,  s i zeof ( Packet ) ) ;  
    memset ( ar gs1[ myr ank] - >ot n,  0,  s i zeof ( Opt Tr eeNode) ) ;  
    memset ( ar gs1[ myr ank] - >event ,  0,  s i zeof ( Event ) ) ;  
  }  
  pt hr ead_exi t ( NULL) ;  
  pr i nt f ( " naheen hua\ n" ) ;  
 
#i f def  DEBUG 
  pr i nt f ( "    => Al er t  packet  f i ni shed,  r et ur ni ng! \ n" ) ;  
#endi f   
  r et ur n( NULL) ;  
}  
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Appendix D: Introducing Levels in Snort – Potential 
Project Overview 
 

Performance Enhancement in Snor t Rules Parsing by 
introducing levels 
 
Identifying work area: 
 
As of now, Snort has a flat rule base and all rules need to be checked against the 
incoming packet. Introducing levels will only check against a set of rules depending upon 
the success or failure to match the earlier rule. That requires introducing new rule types. 
The design is to be changed so that the standard flow of Snort will be changed from being 
flat to being flexible to allow the direct jump into the depth of the rule base. The 
difficulties that lurk behind this idea are that to accomplish the different flow, the basic 
design of Snort needs to be changed. The challenge lies in keeping the intrusion detection 
capability of Snort along with introducing the more efficient parsing in levels. A detailed 
discussion is added within his report. 
 
Current Scenar io: 
 
Snort rule base architecture is a flat one, that is, all the rules must be checked for all the 
packets (except Dynamic ones, that will be discussed below). In an environment where 
attacks are less frequent, this approach results in unnecessarily waste of the resources. 
  
Relation between Rules: 
OR, AND, Activate-Dynamic 
 
OR model is between all the rules. So if any one of the rules is matched for a packet, an 
alert is generated. 
 
AND model is within the Rule. So that all the conditions within the rule must be satisfied 
to generate an alert. 
Example: 
 alert tcp $EXTERNAL_NET any -> $HOME_NET 70 (msg:"MISC gopher proxy"; 
content: "ftp|3a|"; content: "@/";) 
 
Above example shows the AND within a rule. An alert is generated if all of the following 
conditions are satisfied: 

- Packet protocol is TCP. 
- The source network is a network defined by the variable 

EXTERNAL_NET somewhere else in the rule file. 
- Source port can by any. 
- The destination network is a network defined by the variable 

HOME_NET somewhere else in the rule file. 
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- Destination port is 70. 
- Content of the packet has the pattern "ftp|3a|". 
- Content of the packet has the pattern "@/". 

 
 
Observation: 
There is no AND between different rules. 
 
Activate – Dynamic Relation: 
Activate rules are matched to the packets, and when there is a match, a corresponding 
Dynamic rule is activated. Dynamic rules are not checked for any packets until those are 
not activated by an Activate rule. 
First matched Activate Rule and its corresponding Dynamic rules do not apply to the 
same packet. 
 
 
What can be extended: 
 
An AND model between rules should be introduced. That means to introduce Depth into 
parsing, so that following flow will be followed: 
 
IF Rule1 is true 
Check for Rule2 
Else 
Goto Rule3 
 
This will prevent checking for all the rules in the rule-base.  
 
Project Design: 
 
Two new Action Types will have to be introduced: 
 
Intell k 

- For indicating it is an intelligent rule. 
- k is an integer. 
- Seeing this type of rule, Snort will match the conditions given within 

this rule, and if all are matched, Snort will find the next intell or 
intell_f rule with index k to be matched. Note that those other rules do 
not need to be matched unless first (in order) k intell rule is matched. 

 
intell_f k 

- For indicating the end of the intell depth 
- This tells the Snort that this rule is the final of the k line of intell rules. 
- If this rule is also matched, then an alert will be generated. 
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intell 1 tcp $EXTERNAL_NET any -> $HOME_NET 70 (msg:"MISC gopher proxy"; 
content: "ftp|3a|"; ) 
 
intell_f 1 Alert tcp $EXTERNAL_NET any -> $HOME_NET 70 (msg:"MISC gopher 
proxy"; content: "@/"; ) 
 
In the above example, index k is 1. So when the rules are being parsed, the relation 
between the two rules is identified. First rule is of intell type, which matches for the 
pattern "ftp|3a|". The second rule, which is of intell_f type, is used only when the first 
rule is satisfied. The second rule matches for the pattern "@/", and if that is matched, an 
alert is generated with the given message. 
 
Places where changes are to be introduced: 
 
Standard Snort has to be changed to introduce the new rule types intell and intell_f. 
While creating rtn (Rule Tree Node), the new Rule type has to be accommodated. Also 
the place where packets are matched with the rules needs to be modified. 
 
So there are two different stages that need to be taken care of:  

Stage A – Putting intell and intell_f in rtn 
Stage B – Parsing the packets 

 
Implementation: 
 
New Data Structures: 
 
#define RULE_INTELL 12 

- Standard Snort uses 11 different rule types to be used as Rule types. So 
intell types can use 12 to indicate their Rule type. 

 
struct _OutputFuncNode * IntellList; 

- Intell function list 
- _OutputFuncNode structure maintains the list of output functions. 

IntellList will be a new variable of this structure to keep track of intell 
functions. 

 
ListHead Intell;  

- Intell Block Header  
- This will keep track of the Block headers for Intell rules. 

 
 
Functions to be affected: 
 
ParseRulesFile 

- Reading the rule file 
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- This function takes care of way a rule file is read and parsed to get the 
rules from it. Standard Snort does it sequentially, but for this project, it 
needs to be done in a different order. Whenever an intell type rule is 
encountered, the next rule to be fetched is not the one following it, but 
the next intell rule of the same index needs to be found from the file. 

 
ParseRule 

- Processsing an individual Rule 
- Since the format of intell and intell_f rules is different, they need to be 

parsed in a different way. 
 
RuleType 

- Determines what type of rule is being processed and returns its 
equivalent value 

- With other rule types, this function needs to be able to recognize the 
intell and intell_f rule types. 

 
CreateDefaultRules 

- Creates a Rule Type in Rule Type Tree 
- This function needs to be changed to be able to add intell and intell_f 

to the Rule Type Tree. 
 
CreateRuleType 

- Creates a new type of rule and adds it to the end of the rule list 
- This function needs to be changed to be able to create intell and 

intell_f rule types and add those to the rule list. 
 
ParsePacket 

- When the packet is being parsed to be matched against the rules 
- This function needs to be changed so that it can also be matched 

against the intell and intell_f type rules. 
- Notice here that a packet might have to be checked many times if it 

keeps on satisfying intell rule in depth, but the process to match it 
against an intell index needs to be stopped whenever there is a 
mismatch and the following intell and intell_f rules for that index need 
to be ignored. 

 
 
New functions to be wr itten: 
 
IntellParse: 

- This function will parse through the Intell Tree. 
 
 
IntellSeeNext: 

This function will be responsible to get to next Intell / Intell_f. 
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int IntellAction: 

This function will return the integer value for what Action to take finally. 
 
ParseIntellMessage 

This function will be responsible for the alert message to propagate. 
 
 
Flow Change: 
 
ParseRulesFile()  

- ParseRulesFile has to run after RuleType to see if RuleType returned 
RULE_INT; to accommodate number of tokens for ParseRules 

- This is a big deviation from Snort’s architecture 
- ParseRulesFile passes one line at a time as a rule to ParseRule. But in 

our case ParseRule should run until it gets to the bottom of the 
intelligent rules. 

 
ParseRule()  

- ParseRule runs once for each rule. In our case it needs to run multiple 
times. This is only possible by adding conditions in ParseRulesFiles() 
and providing ParseRule() with more than one line.  

- But that means Parsing is overlapping between ParseRulesFile() and 
ParseRule() 

 
 
CheckRule()  

- CheckRule needs to be relaxed to accommodate our new Rule type. 
 
 
Toks[x] array for tokenizing rules 

- This array needs to be modified throughout the program to 
accommodate new number of tokens which will expand through the 
program. 

 
ProcessHeadNode () 

- ProcessHeadNode needs to be accessed more than once. 
 
 
Performance Compar ison Expectation: 
 

• Snort with levels should be a bit faster as compared to the Standard Snort since all 
the rules need not be checked. 

• Snort with levels could be a bit slower if an Intell action rule is satisfied, to the 
degree of depth. 
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Focal Complexity: 
 
Project flow needs to be changed. Since Snort was made without any vision of levels 
where AND would be provided between different rules, the existing flow does not 
accommodate that idea at all. Thus flow of the program needs to be changed, and that 
brings more complexities into the program by hindering what is the basic function of 
Snort. So the challenge is to introduce levels and keep Snort working.  
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The End 


