Florida State University
College of Artsand Sciences
Department of Computer Science

A Method for Detecting Intrusions on Encrypted

Traffic
-Sachin Prakash Goregaoker

Project submitted to the Department of Computer Science
in partial fulfillment of the requirements for the
Master of Science degree (M.S.)




The members of the committee approve the Master’ s Project of Sachin Goregaoker

defended on July 18", 2001.

Dr. Alec Yasinsac

Magjor Professor

Dr. Robert van Engelen

Committee Member

Dr. Lois Hawkes

Committee Member



Acknowledgements

The completion of this Master’s project would not have been possible without the timely
guidance and encouragement of my advisor, Dr. Alec Yasinsac. It was due to him that |
gained a better understanding of a field of computer science, which is relatively new to
me. | would aso like to thank my parents who are a constant source of inspiration and
support to me. My brother, Sameer has also been supportive of me through my tough
years completing the Master’s degree. Lastly, but not least I'd like to thank the other
members of my research group, Nikhil Patel and Alex Melendez. | had the privilege of
working closely with them during my research, and have found them to be great
colleagues.



Table of Contents

1. Introduction . PPN o
1.1. Need for Encryptlon ......................................................... 5
1.2. Flawsin Security ProtoCoIS ..........cc.vveiiiiie e e 6
1.3. Detecting Attacks on Security Protocols ...........ccee vovviiiiennnnnn. 6
0 I 0 0] o | 6
2. Intrusion Detection OVEINVIEW .......c.uieiie it e e e 8
2.1. Behavior Based Intrusion detection ...........cccovvviiiiiineviiieiinnnnn, 8
2.1.1. Behavior Based Detection ModelS ........covvvviiiiiiiiniannn, 8
2.2. Knowledge Based Intrusion Detection . . ceeenn.. 10
2.2.1. Signature Analysis Using State Transtlon Dlagrams ........... 10
2.2.2. Colored Petri NEtS ......c.oiveieiiii i e 10
3. Scopeof the Project ......c.o ot e 11
3.1. Roleof theIDEINSEADS ... 11
3.2, ASSUMPLIONS ..ttt e et e e e e e e e 12
3.3, FUNCLIONAILY ... 12
4. Detection Methodology . PN o1
4.1.Constructing Sgnaturesof Attacks PN L
4.2.Useof Finite StateMachines ...........coov v 19
4.2.1. Signature Format in the KnowledgeBase .................c.ce..e. 19
4.2.2. Construction of the Finite State Machine .......................... 21
4.3 AMACK DEIECHION  ...oineie i e e e e e e 22
4.3.1. Single SesSioN AttaCkS ....oove i 22
4.3.2. MUlti-SesSioN AtaCKS ....vveiieie e 22
4.3.2.1. Replay AttackS ......ovvveieiie e, 23
4.3.2.2. Parallel Session Attacks .........c.ovvvviiiiiii i, 23
4.3.3. Limitations to the Attack Detection Capabilities of the IDE ....24
5. Design of theIntrusion Detection ENQINE..........coviiviiiiiiiiieieen, 26
5.1.Architectural design .......cooiniii 26
5.1.1.DESIGN DECISIONS ... vt et aetie e et e e ee e enenes 26
5.1.1.1.Functionality of Threads .............ccvvvieiiiiiiiiiiiin 27
5.2.Design Flowehart ........cooovii i 28
6. The Graphical User Interface..........cooeiviriiiiiii i i, 30
6.1.Reporting Attackstothe User..........coooiiii e 30
6.2.Backup of the Active Attack Log File...........ccoooi i 30
78 == €1 T 31
8. CONCIUSION. .. ettt e e e e e e e e e e e e e e 33



O, FULUI W OOT K e e

O N o 0 1= o |

11, RE O ONCES. ..ot e e e e e



1. Introduction

In this day and age of unprecedented growth in the fields of web-communication and
more specifically, e-commerce, it is all the more important to ensure secure
communication between al parties involved. Web sites routinely establish transactions
over the Internet with their customers and in the process, credit card numbers and other
sensitive information about the customers, is sent. Ensuring the integrity and security of
such information has spawned a huge amount of research in the fields of network security
and cryptography. Intrusion detection systems aim to detect attacks against vulnerable
computer systems and networks. In this paper, we show how Intrusion Detection

technology can be used in encrypted environments.

1.1. Need for Encryption

Any data exchanges over public networks are susceptible to interception by malicious
parties. Unless cryptography is used in order to encrypt such exchanges, data is
vulnerable to passive listeners. Secure electronic communication relies on the application
of cryptography. A number of cryptographic algorithms exist to allow the involved
parties to ensure the level of data security that they reed.

Generally algorithms such as DES (Data Encryption Standard), IDEA (International Data
Encryption Algorithm) and a host of others are used to encrypt the data. In addition to the
encryption agorithm the valid parties involved in the communication need to possess the
valid keys to encrypt and decrypt the information. A combination of the cryptographic
algorithm and encryption keys will result in an encrypted exchange of information
between the valid parties involved.

However even perfect encryption nay not be enough to prevent communication from
being compromised. There have to be certain rules or protocols, which govern the

encrypted exchanges, to alow for key exchange, authentication and privacy.



1.2. Flawsin Security Protocols

Encryption backed by effective security protocols may still not be enough to prevent
sophisticated intruders from compromising the so-called secure communication. Even if
encryption is used to protect the data, there still exist flaws in security protocols, which

can be used by malicious parties to their benefit, so as to subvert the underlying protocol.

Intruders can still spoof the valid parties in any data exchange by using replay techniques,
whereby information from previous runs of any encrypted exchanges are used in the
current run. As a result, intruders may be able to masquerade as valid parties in
communication, steal keys etc. all of which leads to the inevitable compromise of the
encrypted exchange. It is clear that another level of protection must be provided for

encrypted data exchanges to detect attacks on the security protocols.

1.3. Detecting Attacks on Security Protocols

The future of network security revolves around secure enclaves. Secure enclaves are
environments where every, and only, recognized enclave members operate securely
within the environment. Environments where electronic communication is protected by
cryptography are secure enclaves as long as the members of the enclave are protected
from data loss, compromise and malicious attacks. In this project, | dmonstrate a
technique to detect attacks on encrypted exchanges between parties in such a secure
enclave. The Intrusion Detection Engine is able to raise alerts upon detection of positive

attacks or suspicious activity within the secure enclave.

1.4. Terminology

Principal: A process running on acomputer.

Enclave: A group of valid principals operating within a secure environment.

Intrusion Detection Engine (IDE): The working prototype developed as a result of this
project.

SEADS: Secure Enclave Attack Detection System.

Knowledge Base: The database of attack signatures used by the IDE as a reference.

Activity Monitor: The monitoring component of SEADS, which gathers ongoing



protocol activity dynamically as it happens within the secure enclave.
Signature: Thetrace of events, which correspond to arun of a single protocol session.
Signatures may however correspond to correct protocol runs or protocol
attacks.



2. Intrusion Detection Overview

The aim of intrusion detection systems is to detect attacks against computer systems and
networks. There has been growing interest in this particular field of computer security.
The research therein has yielded various methodologies of intrusion detection. The task
of intrusion detection systems is to monitor the usage of information systems and detect
the appearance of insecure states. Intrusion detection systems detect attempts by
legitimate users of the information systems or external parties, to abuse their privileges or
to exploit security vulnerabilities. The widespread research on intrusion detection
systems is due to the difficulty of ensuring that an information system will be free of

security flaws.

Since the seminal work by Denning [3], many intrusion detection models and prototypes
have been created. The most generic classification of intrusion-detection systems can be
based upon the model of detection. An intrusion detection system which detects
malicious activity/ intrusions based upon the behavior of the attacker uses the Behavior-
based or Anomaly Detection model of intrusion detection. An intrusion detection system
which uses a knowledge base of known attacks on the system being monitored or on the
security protocols being used for communication, follows the Knowledge-Based or

Misuse Detection model of intrusion detection.

2.1. Behavior Based Intrusion Detection

Behavior based intrusion detection systems use the information concerning the behavior
of users within the monitored environment. If any user exhibits unrecognized behavior,
then the intrusion detection engine will generate an alarm. Behavior based intrusion
detection systems will base their detection mechanism on deviations from the expected or

normal behavior of users.

2.1.1. Behavior Based Detection Models
Some important models for behavior based intrusion detection are:

Statistics



Expert Systems
Neural Networks

Statistics

Statisticdl modeling [2] is a widely used tool for behavior based intrusion detection
systems. Over a period of time, user behavior is gathered and stored as profile
information. The time period may vary from a few hours to a few months, depending on
the profiling needs. Profile information may include login frequency, resource use,
session duration etc. User profiles are dynamically updated so that as user behavior
changes so do their profiles. This model has been widely used in various tools for

intrusion detection.

Expert Systems

Expert systems can be used for behavior based intrusion detection. In [3] the author
describes a prototype real time Intrusion Detection Expert System (IDES). This prototype
monitors users on a remote system, using audit records that characterize their activities.
As it is an expert system, it learns the normal behavior of each user and reports any

anomal ous behavior.

The IDES monitors target system activity as it is recorded in audit records generated by
the target system. IDES examines the audit records as they are received from the target
system and ascertains whether the observed activity is abnormal with respect to the user

profile. The profiles themselves change dynamically on the basis of observed activity.

Neural Networks

Neura network algorithms [2] are emerging as a new artificial intelligence technique that
can be applied to real-life problems. The use of artificia intelligence for detecting
intrusions on computer systems is now widely considered as the only way to build
efficient and adaptive intrusion detection systems. Among the main uses of neural

networks for intrusion detection is to learn the behavior of actors (i.e. users, daemons) in



the system. However neural networks are still a computationally intensive technique and

are not widely used in intrusion detection.

2.2. Knowledge Based I ntrusion Detection

Knowledge Based Intrusion Detection techniques base their detection mechanism on a
database comprised of specific attacks and system vulnerabilities. The intrusion detection
system contains information about these vulnerabilities and looks for attempts to exploit
them. When such an attempt by a malicious party to compromise the security of the
system is detected, an alarm is triggered. Knowledge based intrusion detection is also
known as misuse detection or detection by appearance, since it depends on recognizing a

known pattern of malicious activity.

2.2.1. Signature AnalysisUsing State Transition Diagrams

In this project, the intrusion detection methodology revolves around the knowledge-based
paradigm. The actual detection of attacks on the encrypted exchanges is done by using
state transition analysis of attack signatures, stored in the knowledge base. This approach
to knowledge based intrusion detection depends on the representation of attacks, on the
encrypted exchanges between principals, as signatures, which can be modeled as finite
state machines. Although this mechanism of knowledge-based intrusions is being used to
detect attacks in this project, the underlying detection model lends itself to other
mechanisms such as Colored Petri Nets (CPNSs).

2.2.2. Colored Petri Nets

Colored Petri Nets (CPNs) [2] can also be used in order to represent signatures of attacks
on encrypted exchanges between principals. Positive aspects of petri nets are their
generaity, ssimplicity and the fact that they can be represented graphically. Complex

signatures can be represented easily using colored petri nets due to their generality.

10



3. Scopeof the Project

The Intrusion Detection Engine described here, uses knowledge based signature analysis
to detect attacks on encrypted exchanges between principals. The scope of the project,
underlying assumptions and the role of this prototype in SEADS is discussed below.

3.1. Roleof theIDE in SEADS

The Secure Enclave Attack Detection System (SEADS) [6] is a network monitoring
system. Security protocols, which constitute encrypted exchanges between principals, are
excellent targets for attack by sophisticated intruders and are vulnerable to such attacks.
SEADS monitors executing protocols and detects malicious and questionable activity by
leveraging protocol-specific knowledge gleaned from forma method analysis and other
sources. SEADS protects trusted services and their users through dynamic anaysis of
security protocols. It does this by analyzing ongoing secure enclave transmission activity
and comparing it against an accumulated knowledge base.

Knowledge
e
Network Monitor

Figure 1. SEADS



The three components of SEADS are the Activity Monitor, the Knowledge Base and the
Intrusion Detection Engine.
1) The Activity Monitor: The activity monitor is responsible for keeping track of the

ongoing security protocol activity. For instance, whenever a valid principal
wishes to start a secure protocol session with another valid principal, it informs
the activity monitor of its intent. Say a principal (A) wishes to start a protocol
session. Each time one of the principals sends or receives a message from another
principal, it informs the monitor about this event, and also provides information
about this event like protocol name, session number and message number. If we
assume protected communication between the monitor and principals, the monitor
will always have total information about all the protocol sessions being executed

within the secure enclave. This information allows the IDE to detect attacks.

2) The Knowledge Base: The knowledge base component of SEADS is a database of
attack signatures on the various security protocols. This database is populated

based on previous research or newly discovered attacks on security protocols. The

knowledge base grows dynamically as new attack signatures are added.

3) Thelntrusion Detection Engine: The IDE is responsible for detecting anomalous

protocol activity within the secure enclave. It achieves this by comparing the
message events sent to it by the monitor against the stored attack signaturesin the
knowledge base. If any protocol activity is found to be an attack or suspicious, the
IDE will generate an appropriate signal.

3.2. Assumptions
The following assumptions were made during the design and development of the IDE
prototype.
Communication between the Monitor and principals is reliable and secure.
Communication between the principals themselves is not secure, i.e. a principa

may send a message to another principal and tell the monitor that it did so, but the

12



monitor may never receive the message receipt confirmation from the other

principal.

Communication between the Monitor and the IDE is reliable and secure.

Based upon research done during the development and design of this project, the

following points should be noted.

The IDE can classify its detection in two broad categories. single session attack

detection and multi-session attack detection.

The IDE attack detection is limited to those attack signatures, which exist in the
SEADS knowledge base.

3.3. Functionality

The IDE prototype provides the following functionality.

a)

b)

f)

o)

All attacks whose signatures exist in the knowledge base are signaed as
positive attacks.
Any attack whose signature does not exist in the knowledge base is
signaled as suspicious.
If any protocol session terminates abnormally, the IDE will report this
activity as being suspicious.
Normal protocol activity will not cause any notification signals.
The attack reports generated by the IDE will provide full details including:
Principals involved in the attack session.
Protocol Name
Signature of the attack (if existing in the knowledge base)
Time of the attack.
A graphical user interface (GUI) which alows the user to generate attack
reports for attacks on specific protocols, or attacks during specific times.
The GUI will aso alow the user to back up the active attack report file to
which the IDE writes the detected attack information.
Along with the above functional features, the IDE will consistently

13



interface with the other two modular components of SEADS i.e. the

activity monitor and the knowledge base.

14



4. Detection Methodology

As mentioned in section 2.2.1 the detection mechanism of the IDE is based on the
knowledge-based paradigm. The IDE detects anomalous, malicious or suspicious

protocol activity occurring within the secure enclave of valid principals.

4.1. Constructing Signatures of Attacks

A very important feature of the IDE is that the detection mechanism does not rely upon
knowledge of the payload of the messages exchanged between the principals during
protocol sessions. This is because the IDE detects attacks based upon the signatures of
attacks on security protocols. We show how the formal definition of a security protocol is
trandated into a signature, which can be used by the IDE to detect attacks.

Consgder the Needham and Schroeder Conventional (symmetric) Key Protocol (NSCKP)
described in [5]. This protocol constitutes three principas: A, B and the trusted third
party server S. The aim of this protocol is to establish a secret key Kab that is to be used

by the principals A and B to encrypt their future exchanges.

Notation:
Text following the “ : “ symbol constitutes the actual message payload
exchanged between principals.
E( K : D1, D2, D3) means that the plain text message (D1, D2, D3) is encrypted
under the key K.
An arrow pointing right (A = B) indicates a message sent from A to B.
An arrow pointing left (B < A) indicates a message received by B from A.

The protocol is described as below:
1) A> S:A B,Na

2) S—> A:E(Kas Na, B, Kab, E(Kbs: Kab, A))
3) A—-> B:E(Kbs: Kab, A)

15



4) B> A:E(Kab: Nb)
5) A= B:E(Kab:Nb—1)

Here is a step-wise description of what the protocol achieves.

Step 1: The principal A requests from the server S, akey to be used for secure

Step 2:

Step 3:

Step 4:

Step 5:

communication with B. A includes a random number generated specially for this

run of the protocol. This nonce (random number) Nais used to ensure that

message (2) istimely.

S creates a key Kab (the secret key for both A and B to use in future exchanges),
and creates message (2). Only A can decrypt this message successfully because it
is encrypted with the key that it shares with S (Kas). In doing so A will obtain the
key Kab and check that the message contains the nonce Na.

A passes to B the encrypted message component E(Kbs: Kab, A) as message (3).

Principal B decrypts this message to discover the key Kab and that it isto be
used in communication with A. B then generates a nonce Nb, encrypts it (using
the newly obtained key Kab), and sends the result to A as message (4).

Principal A, who possesses the appropriate key Kab, decryptsit, forms Nb — 1,
encrypts it and sends the result back to B as message (5). B decrypts this and
checks that the message is correct.

At the end of a correct run of the protocol, both principals should be in possession of the

secret key Kab newly generated by the server S.

The above description of the protocol [1] in five steps includes information about the

payload data exchanged by the principals. However as previously mentioned, the IDE

16



does not rely on this information for its detection mechanism. The above protocol

description can be abstracted out into the following signature:

1) A>S
2) SEA
3) S>A
4 A€ S
5 A>B
6) B€ A
7) B>A
8 A€ B
9 A>B
10)B € A

Each step of the above signature can be considered to be an event. Thus A sending a
message to S is considered as a ‘send’ event from A to B and similarly S receiving a
message from A is a ‘receive’ event by S from A. An important feature of the above
protocol signature is that it also includes the message receiving events. This means that
principal A sending a message to principa S (as in event 1), and correspondingly
principal S receiving the same message (event 2) will be represented as two distinct
events in the protocol signature used by the IDE. All the events marked in bold are the

message receive events.

Consider a scenario during the run of the above protocol in the secure enclave. If
principal A sends a message to the server S as part of the first step of the protocol, it will
inform the activity monitor of SEADS about this. Since a public network is being used
for the message transfer between A and S on insecure lines, the message may get lost or
may be intercepted by an intruder. In either case the server S will never receive the
message sent by A. As aresult S will not inform the monitor that it actually received a
message from A. Thus, the sequence of events logged in the monitor will show a message

17



sent by A to S, but not received by S, as evident by the lack of the receive notification by
Sto the monitor. It is prudent therefore to include the message receipt as a separate

event in the protocol signature.

The above signature comprising of ten events is actually a signature of a normal run of
the Needham and Schroeder Conventional Key Protocol.

Let us illustrate how the above protocol is subject to an attack, which compromises what
the protocoal is actualy intended to achieve. This attack on the Needham and Schroeder
Conventional (symmetric) Key Protocol was demonstrated by Denning and Sacco [4].

Consider message (3) of the actual protocol description given above. Although B
decrypts this message and assumes legitimately that it was created by the server S, there
is nothing in the message to indicate that it was actually created by S as part of the
current protocol run. Thus, suppose, a previously distributed key K’ab has been
compromised (say by cryptanalysis) and is known to an intruder Z. Z might have
monitored the network when the corresponding run was executed and recorded message
(3) consisting of E(Kbs: K’ab, A). He can now fool B into accepting the key as new by

the following protocaol.

(3) Z(A) > B : E(Kbs: K’ab, A)

4B > ZA): E(K'a: Nb)

(5) Z(A) > B: E(K'a: Nb-1) Note: The notation Z(A) stands for Z
masquerading as A.

Now, B believes he is following the correct protocol. Z is able to form the correct
response in (5) because he knows the compromised key K’ab. He can now engage in a

communication with B using the compromised key and masquerade as A.

18



Let us generate a signature recognizable by the IDE for the above attack on the Needham
and Schroeder protocol.

1) BEA
2) B> A
3) B€A

The above signature comprises of only three events, two receive events and a send event.

Since the malicious intruder (Z), is not part of the secure enclave, it will not co-operate
with the activity monitor and hence will not inform the monitor whenever it sends or
receives messages. Thus the above attack signature will consist only of events, reported

by principal B (avalid principal), to the monitor.

4.2. Use of Finite State Machines

In section 4.1 we have described in detail how the attack signatures are constructed from
the description of security protocols. The IDE interfaces with the activity monitor to
receive events corresponding to protocol sessions executing within the enclave and
compares the events with the attack signatures stored in the knowledge base. The

comparison mechanism in the IDE is achieved by using Finite State Machines.

Each time the IDE receives an event from the monitor, which corresponds to the first
event of a new protocol session, it looks in the knowledge base and constructs a finite

state machine for each signature stored in the knowledge base for that particular protocol.

4.2.1. Signature Format in the Knowledge Base

Each signature is stored in the Knowledge Base in the following format:

begin XX NUM type
statel principal (=/€) principal state2 msgNum sessNum
statel principal (=/€) principal state2 msgNum sessNum

19



Notation:

begin/end: Indicates that the signature starts/ends at this line.

XX:

NUM:

type:

statel:

state?:

>/

principal:

The abbreviated name of the protocol.
NSCKP — Needham and Schroeder Conventional Key Protocol

A numeric value which indicates if the signature to follow is one of a correct
run of the protocol or an attack.

NUM >= 0 indicates that the signature is an attack signature

NUM = -1 indicates that the signature is that of a normal run of the protocol.

Indicates the type of attack this signature represents. Possible values are:
S — Single session attack.

R — Replay attack.

P — Parallel session attack.

(See section 4.3 for a discussion about the above three attack types.)

Indicates the Finite State Machine (FSM) state before the event (send or
receive) takes place. (ss. start state, sl:state 1, etc.)

Indicates the Finite State Machine (FSM) state after the event (send or
receive) has taken place. (sl:state 1, .... fs:fina state)

send or receive event.

May be the single letter identifiers of principalsviz. A, B, S etc.

20



msgNum: The message sequence number in the current run of the protocol.

sessNum: Unused field that may be used to add protocol session numbers if needed.
Thisfield will always be set to 1 in the current implementation.

Consider an actual signature in the knowledge base. This signature is of the attack
described in section 4.1 on the Needham and Schroeder Conventiona Key Protocol

(NSCKP).

begin NSCKP 0 S
ssB& Aslil

slB> As221

2B« Afs31

end

4.2.2. Construction of the Finite State Machine

The IDE corstructs Finite State Machines for each signature stored in the knowledge
base, corresponding to a protocol session that the IDE is monitoring for attacks. The state
transition diagram for attack signature #0 on the NSCKP protocol (as described in section
4.2.1) is shown below.

Current State Event Next State Message Number
SS B& A S1 1
S1 B>A S2 2
S2 B A FS 3

Initialy the transition machine will be in the start state (SS). As the IDE receives events
from the monitor for this particular protocol session it will advance the FSM (for this
signature) if the events coming in match those in the attack signature. Upon a transition to
the final state (in any of the finite state machines corresponding to the attack signatures of
the protocol) the IDE will signa an attack notification if the signature is an attack

21



signature. If the finite state machine corresponding to the normal run of the protocol
reaches the final state (FS) the IDE will not raise any notification aerts, since a correct

run of the protocol has just concluded.

4.3. Attack Detection

The IDE uses distinct detection methodologies for protocol attacks, depending on the
number of sessions over which the attack takes place. Attacks on security protocols may
be over only a single session of the protocol or may utilize information gleaned over

previous runs of the protocol. Thus, attacks detected by the IDE may be classified as:

1.Single session attacks

2.Multi-session attacks

4.3.1. Single Session Attacks

Single session attacks are those attacks which may or may not use information gleaned
over previous sessions of the protocol like encryption keys. However they are not related
temporally in any way with those sessions. The attack demonstrated on the Needham and
Schroeder Conventional Key Protocol (NSCKP) in section 4.1. can be considered as a
single session attack even though its success depends on a previously compromised key
from another session. The detection of single session attacks by the IDE is simply a
matter of the relevant attack finite state nmachine reaching the final state, upon which the

IDE will signal a notification.

4.3.2. Multi-Session attacks

Multi-session attacks are those attacks which use information gleaned over previous
sessions of the protocol. However such attack sessions have to use the information within
a certain time period of the reference sessions (from which the information is taken), in

order to successfully subvert the protocol.

For the purposes of detecting multi-session attacks the IDE classifies all of them into one

of two categories:

22



Replay Attacks
Parallel Session Attacks

4.3.2.1.Replay Attacks

Replay attacks use information extracted from a normal run of a protocol. This
information is used before it expires (say within the FRESHNESS time, if the
information is actually a key) within the attack session of the same protocol. The
detection of such an attack on a protocol by the IDE will not only depend on the
successful passage through all the states of the finite state machine for the attack

signature, but also on the timing aspects relative to a normal run of the protocol.

The IDE will signal such activity as a positive attack only if it occurs within 10 seconds
of anormal run of the protocol. The wait constant has been chosen to be 10 seconds for
the IDE prototype, for demonstration purposes only. However the actual FRESHNESS
time may vary from protocol to protocol and may aso depend on the type of application
being run by the principals. If the time difference between the attack session and the
reference session is greater than the wait time, the IDE will flag this activity as suspicious
behavior.

4.3.2.2.Parallel Session Attacks
A padlel sesson attack occurs when two or more protocol runs are executed
concurrently and messages from one are used to form messages in another. As a smple

example consider the following one-way authentication protocol [1]:

1) A B:E(Kab:Na
2) B> A:E(Kab:Na+1)

Successful execution should convince A that B is operational since only B could have
formed the appropriate response to the challenge issued in message (1). An intruder can
play the role of B both as responder and initiator. The attack works by starting another

protocol run in response to the initial challenge.

23



11) A= Z(B) : E(Kab: Na)
21) Z(B)> A : E(Kéb: Na)
22) A ZB) : E(Kab:Na+1)
12) Z(B)> A :EKab:Na+1)

Here A initiates the first protocol with message (1.1). Z now pretends to be B and starts
the second run of the same protocol, with message (2.1), which is ssimply a replay of
message (1.1). A now replies to this challenge with message (2.2). Buit this is the precise

value A expects to receive back in the first protocol run. Z therefore provides this

message as message (1.2).

The IDE is capable of detecting such attacks by checking whether the time for whichthe
first protocol blocks at a particular step is long enough for another complete run of the
protocol to complete. After the second run is complete, the first protocol resumes and

completes its remaining steps.

4.3.3. Limitationsto the Attack Detection Capabilities of the IDE

There are certain types of attacks on security protocols called man-in-the middle attacks,
where a malicious intruder may intercept exchanges between valid principals of the
enclave. However, the intruder modifies the message in such a manner that the structure
of the message is still what the receiving party expects. As a result principal A might
send a message to principa B. This message is intercepted by an intruder (say M). M

now modifies the message and forwards it to B.

Within the secure enclave, A reports the sending of the message to the activity monitor
and B also reports the receiving of the message from A, to the monitor. In such a manner
the entire protocol exchange will look like a correct run of the protocol to the IDE, and
such attacks may not be detected.

24



However strictly speaking, this limitation is actually a fundamental flaw of the protocol,
which allows messages to be altered in such a way as to maintain the correct structure of
the expected message. The receiving principal will therefore not have any reason to
believe that the message came from someone other than a valid principal belonging to the

enclave.

25



5. Design of the Intrusion Detection Engine

This section will provide an insight into the design that went towards implementing the
Intrusion Detection Engine. A justification of the major design decisions is aso given in
the section. The design of the IDE uses the object-oriented paradigm. The entire problem
was broken down into smaller components, and appropriate classes were developed for

entities, where necessary.

5.1. Architectural Design
Here are some of the issues, which had to be taken into account in the design phase of
this project.
Handling multiple concurrent sessions of different protocols executing within the
enclave and keeping track of each.
Detecting attacks spanning over different active protocol sessions (Parallel
session and replay attacks).
Ensuring detailed reporting of detected attacks and/or suspicious activities.
Interfacing with the Monitor and the Knowledge Base

Maintaining a consistent and reliable attack detection capability.

5.1.1 Design Decisions
The IDE is multi-threaded with a single thread to serve as the thread dispatcher. Every
time the IDE receives an event from the activity monitor, which corresponds to the first

event of a new protocol session, the IDE will spawn athread to monitor all the FSMs for

that particular protocol. Protocol A Session 1

Protocol A Session 2

Activity Events IDE Thread
Monitor > Dispatcher P Protocol B Session 1

ﬁ Protocol C Session 1

26



Figure 2:Thread Design Channeling the events to the relevant thread
Any further events coming in from the activity monitor belonging to a protocol session

which is already being monitored by an IDE thread, are channeled to the relevant thread.
To keep track of all the threads existing within the system, a ThreadList class was
employed, which would hold the following information for each thread:

Protocol Name

Session Number

Principals involved

Thread identifier

Signal to which the thread listens, whenever the IDE receives an event meant for
it.

5.1.1.1.Functionality of Threads

Given below are the functions that each thread performs for the IDE.
Advance the FSM for each signature (normal or attack) for that particular
protocol, if an event match occurs.
Raise aerts upon detection of an attack or conclusion of a normal protocol
session.
Write the detailed attack information to a text file.
A thread will die upon detection of an attack/normal session or suspicious
activity. However if a particular protocol hangs with no further events coming
into the IDE, the thread will die after a timeout period and it will signa the
activity as anabnormal termination

When a thread dies the corresponding entry from the ThreadList will be removed.

The reason threads are chosen as an option for the IDE is:
The upper limit on the number of concurrent threads spawned by a process is
limited only by the virtual memory on the system.
There are no synchronization issues to be taken care of as al the threads have

their own memory space and can also access the globa variables. Any data

27



structure that is accessed by al the threads, has been protected by means of a
critical section.

5.2. Design Flowchart

The overal design of the IDE can be represented by means of flow chart for greater
clarity. (Seefigure 3.)

28



Activity
Monitor

) IDE
A (Thread Dispatcher

YES
New p| Create New
Session?? Thread
NO
Channel the Event NO £
Event to the relevant Match? ’ Suspicious
monitoring thread
Timeout
YES
Advance |  ........ Advance
FSM FSM
. o \ 4
Continue monitoring NO YES
< —» Notify and
for attacks Write to attack
log file

Figure 3: Design Flowchart

29




6. The Graphical User Interface
In this project, a graphical user interface (GUI) was implemented for an overall view of
the attacks / suspicious activities detected within the enclave. The GUI provides the

following capabilities.

6.1. Reporting Attacksto the user
The user can specify the time duration and the protocol name to obtain a detailed report
of al the attacks (on the specific protocol) that took place during that period.

The report includes:
The name of the protocol subject to attack.
The principas involved in that session.
The attack signature from the Knowledge base corresponding to that attack
The time that the attack took place.
Thetype of that attack.

6.2. Backup of the Active Attack Log File.

The GUI aso allows the user to back up the active attack report file to another file. The
GUI will still read from both files to create the attack reports, but the IDE threads will
only be writing to the newly empty active file.

30



7. Teging

Upon completion of each significant milestone, the IDE was tested to ensure that the

existing product as well as the new additions functioned correctly. Test cases were
developed in order to ensure that the IDE does indeed provide all the functionality that is

mentioned in section 3.3.

Accordingly we will mention each individual functional claim and provide the test results

to prove that it is satisfied.

a)

b)

d)

Detection of Positive Attacks: The environment being monitored by the
IDE was systematically subjected to attacks of each of the three types viz.
Single session, Replay and Parallel Session attacks. The IDE was able to
detect al three types of attacks.

Detection of suspicious activity: Event sequences not corresponding to
any attacks or normal protocol runs were ssmulated for protocols. The IDE
was correctly able to report such activity as unrecognizable suspicious
activity.

Detection of abnormal termination: A protocol session was simulated in
which there is abnormal termination before the current run has reached its
completion. In such a case, the IDE thread monitoring this session, times
out after the TMEOUT period and reports abnormal termination of the

protocol.

Detailed Reporting Capability: In each of the above three cases, the IDE
will generate a detailed report about the attack and add this information to

the attack log file.
The attack reports generated by the IDE will provide full details including

Principals involved in the attack session.

31



Protocol Name

Signature of the attack (if existing in the knowledge base)
Time of the attack.

Type of the attack.

€) Graphical User Interface: The GUI was tested to check whether a user

f)

could get a comprehensive report on the attacks specified by him, over the

specified time duration.

Consistent Interface with the Activity Monitor: During its normal
functioning, the IDE seamlessly interfaced with the Monitor and there
were no losses of events between these two modules, or any loss of

functionality of one due to the other.

32



8. Conclusion

In this project | have designed and implemented a Knowledge Based Intrusion Detection
Engine to detect attacks on security protocols executing within a secure enclave. This
project will provide the necessary extra level of protection for encrypted exchanges,

which was mentioned in section 1.2.

Extensive research on the characteristics of security protocols enabled this detection
methodology to achieve its desired functionality. Extracting the description of security

protocols into sequences of events, allows the IDE to detect attacks on those protocols.

The IDE will detect any attacks or suspicious activity on security protocols executed by
valid principals operating within a secure enclave. The detection of the IDE compares
protocol activity gathered by the Activity Monitor against the attack signatures stored in
the Knowledge base.

A Graphical User Interface (GUI) was also developed in order to facilitate an overall
report of attacks that have been detected by the IDE, along with their occurrence times.

33



9. FutureWork

In this project the Intrusion Detection mechanism uses the Knowledge Based paradigm
and incorporates state transition analysis to represent attacks on protocols. A further
direction that this research could take is to use Colored Petri Nets (CPNs) mentioned in
section 2.2.2. to detect attacks on the protocols.

Consider an example [2] of the functionality provided by CPNs for intrusion detection. If
our knowledge base contains information, that a person attempting to login 5 times
unsuccessfully within the span of one minute, is a malicious intruder, then we have the

following CPN.

t=T1 t=T2

Unsuccessful Unsuccessful Unsuccessful Unsuccessful  Unsuccessful
Login Login Login Login Login

S1 S2 S3 A S5 S6

(start) (final)
Figure4. CPN

Figure 4. shows a CPN, which will issue an alarm when the number of unsuccessful
logins within one minute exceeds five. Each vertica bar represents the transitions. A
trangition, from say state Sl to state S2 can only occur if there is a token in state S1 and
there has been an unsuccessful login attempt. The time of the first unsuccessful login
attempt is stored in the token variable t. The final transition from state S5 to state S6 can



only occur if thereis atoken in S5, an unsuccessful login attempt and the time difference

between this attempt and the first unsuccessful login attempt is less than a minute.

Behavior based intrusion detection is also another possible way to detect intrusions in
secure enclaves. Neural networks could be used in order to learn legitimate protocol
behavior and use this as a leverage to detect any anomalous or abnormal activity in the

secure enclave.

35



10. Appendix

A. Resources used during the project
Project Development Environment: This project was implemented using the Microsoft

Visual C++ development environment. All the code was written in C++.

For the Graphical User Interface, the Microsoft Foundation Class library was used to
develop the graphical windows and other components.

In order to manage the multi- threading aspects of the implementation, the Win32 API

was also used.

L essons from this project

Over the course of this Master’s project | was able to enhance and hone my skills in a
number of aspects of Computer science. | learnt a great deal about Network Security and
the execution of security protocols. In addition to the implementation aspects of this
project, a major issue was handling the interfaces with the other modules of SEADS,
which was a good experience. Due to the nature of this project | learnt a lot about multi-

threaded Windows programming and developing graphical user interfaces.

36



B. Class Diagrams

The Class Diagrams for classes which provide the core functionality of the back end of

the IDE, along with a brief description of their attributes are given below. Each class

diagram has a header that is the name of the class. All the attributes and the methods are

given below the header.

1)

Event
Attributes

pl: string

type: string

p2:string
msgSegNum : int
timestamp: time t

Objects of the event class are used to store information about a single event such as

A—>BorB <A

plisastring, which represents the first principal of an event.

p2 is a string, which represents the second principal of an event.

type is a string which holds the type of the event i.e. “send” or “receive’
msgSegNum is an integer, which holds the message sequence number in the
protocol.

timestamp is an object of the time _t class used to hold the time at which the event

OcCcurs.

37



2)

Eventlndex

protocolName: string
principals : map<string,string>
sessonNum: int
sessionld: int
vectorlndex : int

vectorSize : int

The objects of the Eventlndex class are used to reference individual events in the data

structure of events maintained by the Activity Monitor.

protocolName: string value which holds the protocol name for that particular
event.

principals: Standard template Library (STL) map structure which maps actua
principal names to single letter names like A, B, S etc. This variable indicates the
principals involved in the protocol.

sessionNum: an integer value, which stores the session number (sequential) for
each protocol involving the same principals.

sessionld: A number generated by the principals when they begin a protocol
session.

vectorindex: Index of the event in the data structure which isa STL vector.
vectorSize: Length of the protocol session (in terms of number of events) as
stored in the data structure.

38



3) FSM

fsmNumber : int
currentState : int
protName string
NUMEWVLS : int
machineType : string
FA : vector<Event>
StopFSM : int

advanceFSM(...)
createMaching(...)
checkAttackSe(q(....)
checkAttackReplay(....)
checkAttackParallel(...)
checkNormal Session(....)
writeToFilg(....)

Objects of the FSM class are used to hold all information about a single finite state
machine for a particular signature existing in the knowledge base. This classis the
software implementation of the finite state machine.

fsmNumber: integer value, which indicates which signature in the Knowledge

base, the FSM corresponds to.

currentState: integer, which holds the current state of the FSM.

39



protName: string value, which indicates which protocol this FSM has been
created for.

numEvts: number of events existing in the knowledge base signature
corresponding to this FSM.

machineType: string, which indicates if this FSM is one monitoring, attacks on a
normal protocol signature or an attack signature.

FA: a STL vector structure, which holds all the events corresponding to the
signature for this FSM.

stopFSM: aflag indicating if the FSM is still active or terminated.

Methods:
advanceFSM ( ): This method will advance the state of the finite state machine
upon occurrence of an event match.
createMaching( ): This method reads the knowledge base of signatures and
popul ates the FSM object with relevant information based on reading a particular
signature.
checkAttackSeq( ) : This method checks whether the FSM has advanced to its
final state for a single session attack to be signaled.
checkAttackReplay( ) : This method checks whether the FSM has advanced to its
final state for areplay attack to be signaled.
checkAttackParallel( ') : This method checks whether the FSM has advanced to its
final state for a parallel session attack to be signaled.
checkNormal Sessionl( ) : This method checks whether the FSM has advanced to
its final state for anormal run of the protocol to have concluded.
writeToFile( ): This method will write the information about the detected attack or
suspicious activity to the attack log file.

40



4) Threadinfo

protName : string
sessonNum : int
sessionid : int
principals : map<string,string>
threadld : unsigned int
threadEventHandle : HANDLE

Objects of the Threadinfo class hold information about each thread monitoring individual
protocol sessions. Each protocol session is uniquely identified by the protocolName,

session number and the principals involved in the protocol.

protName: string variable, which is used to store the protocol name.

sessonNum: an integer value, which stores the session number (sequential) for
each protocol involving the same principals.

sessionld: an integer value which is a random number generated by the principals.
threadld: an unsigned integer value (corresponding to DWORD in Win32) used to
store the thread identifier.

threadEventHandle: a Win32 HANDLE to the signal event signaled by the
dispatcher IDE thread, when it receives an event belonging to a protocol session
which is being monitored by this thread.

41



5) ThreadList

threadM anager list<ThreadInfo>

An object of this class is used to store the globa information about all the threads
spawned by the IDE, which are currently active.
threadManager: This is an STL list data structure comprising of objects of the
Threadinfo class.

42



C. ThelDE Source Code
The code that went into the project is attached in the following pages. The code is

organized into the following files:

| DE Backend

1.Seads_Util.h: This header file contains the class declarations and global function
prototypes, which are used by the IDE.

2.Seads_Util.cpp: This is the implementation file containing the function definitions of
the various class member functions and global functions.

3.Seads General.h: This header file contains classes shared between the Activity
monitor implementation and the IDE.

4.Seads Monitor.cpp: This implementation file contains the code for the

interface between the Activity Monitor and the IDE. The Activity Monitor actually
creates an IDE thread, which runs continuously. Only relevant code from this file has
been attached.

|DE Graphical User | nterface

1.Dialogs.h: Thisisthe header file, which contains the declarations for the Attack Report
Dialog Box class.

2.Dialogs.cpp: This file contains the implementation for the methods declared in
“Dialogs.h”.

3.CIDEDoc.h: This header file contains the declarations for the CIDEDoc class (a
Document class), which is part of the Document/View, architecture of the Microsoft
Foundation Class library (MFC) used to develop the GUI.

4.CIDEDoc.cpp: Thisfile contains the CIDEDoc class method definitions.

5.CIDEView.h: This header file contains the declarations for the CIDEView class (a
View class) - another part of the Document/View architecture of MFC.

6.CIDEView.cpp: Thisfile contains the CIDEView class method definitions.

Some of the other code, which is primarily generated by the development environment,
has not been attached.

43



g
/1 SEADS Wil.h
IILITTIITIII ]

#i fndef _SEADS UTILITY_H
#define _SEADS_UTI LI TY_H

#i ncl ude <string> /1 For the string STL contai ner
#i ncl ude <vector> /] For the vector STL container
#i ncl ude <map> /1 For the STL maps

#i ncl ude <list> /1

#i ncl ude <process. h>

#i ncl ude <fstreanr
#i ncl ude <ctinme>

#i

ncl ude "SEADS Ceneral . h"

#def i ne KBASE "SEADS Signature_File.txt"
#define QUTFILE "attackReport.txt"
#define QUTFILE GU "report.txt"

usi ng nanespace std;
/1 dass to keep track of each session nonitoring thread

// Holds all the relevant information for a single thread
class Threadlnfo

{
public:
string prot Nane; /'l protocol name
int sessi onNunber; /] session nunber (sequential)
int sessionld, /1 session nonce (random gener at ed)
naneMap princi pal s; /1 principals invol ved

/1 prot Nane, sessionNunber and principal s uni quely
identifies a session

DWORD t hr eadl d; /1 unique thread identifier
HANDLE t hr eadEvent Handl €; /1 handle to the event which the dispatcher thread wll
signal .

b

/1l dass to keep track of all session threads created.
cl ass ThreadLi st

public:
|'i st <Thr eadl nf o> t hr eadManager ; /1 list of individual Threadl nfo objects.
/1 corresponding to the nunber of alive sessions.

i

class d obal Vari abl es

{

public:
d obal Vari abl es();
~d obal Vari abl es() ;
/'l dobals shared between di spatcher thread and FSM t hr eads
CRITI CAL_SECTION outfile_cs; // critical section for the output file
CRI TI CAL_SECTI ON tList_cs; [/ critical section to access the ThreadLi st
CRI TI CAL_SECTI ON cout _cs; /1 critical section for consol e out put
ThreadLi st tList;

b



/1 dass for shared objects between the nonitor and the
cl ass ThreadPar aneters

e

public:
d obal Vari abl es gv;
HANDLE evt Handl e;
Moni tor *nPtr;

/1 FSM cl ass which holds a SINGLE attack/ normal signature.
class FSM

{
public:

FSM);

int advanceFSM Thr eadPar aneters *, Event, Event | ndex );

voi d createMachi ne(int, vector<string> int);

int checkAttackSeq(ThreadParaneters *, Event| ndex);

int checkAttackRepl ay( ThreadParaneters *, Event|ndex );

int checkAttackParall el (ThreadParaneters *, Eventl ndex);

i nt checkNor mal Sessi on( Thr eadPar aneters *);

int witeToFile(ThreadParaneters *, Eventlndex, string);

int stopFSM

string detectType; // if attack detected by FSM.what type?

private:
int fsm\unber;

int currentState;
string protNane;

int nunEvts;

string machi neType,; /1 attack or nornal

vect or <Event > FA;

string attackType; /1 sequential or replay or parallel session. (SR P)

int bl ockTi ne; /1 time for which the session should block for parallel session
attacks

int bl ockEvt; /1 event at which the session should bl ock.

b

/] Thread Procedure
unsi gned __stdcal |l SessionAttackFunc ( LPVA D hol der );

/1 Wility functions

voi d get Thr eadl nf o( Thr eadPar aneters *, Threadlnfo *, DWORD);
HANDLE get Event Handl e ( ThreadParaneters *, Eventlndex *ei);
voi d evt ToString(Event, char *);

i nt nunSi gnatures(const char *, vector<string> *, int *);
int event Conpare(Event, Event);

int witeSuspicious(ThreadParaneters *, Eventlndex ,string,string);
voi d renoveThr eadEnt ry( DWORD, Thr eadPar aneters *);

int checkTi me( Thr eadPar ameters *, Event | ndex );

int checkTineParall el (ThreadParaneters *, Eventlndex, int, int );

#endi f

45



/***************************************
SEADS Uil . cpp

Sachi n Gor egaoker

Last Modified: 7/5/2001

I ntrusion Detection Engine

****************************************/

/*****************************************************************
This File contains the utility function definitions as well as
the various class nenber function definitions for the IDE
The di spatcher thread nethod is contained in this file.

******************************************************************I

#i ncl ude <string> /1 For the string type
#i ncl ude <i ostreanr
#i ncl ude <fstreanv /1 File reading and witing

#include "SEADS Wil.h" [/ Header file with the class definitions

/*****************************************************************

This function conpares two Event class objects and determnes if
they are t he sane.
Return value: 1 if there is an event match.

0, otherw se

********'k'k*******************************************************/

nt event Conpare(Event A, Event B)

~——

if( A pl==B.pl && A type==B.type &% A p2==B.p2 )
return 1;
el se return 0;
}

/] Constructor for the class d obal Vari abl es
/1 Contains the initializations for the critical sections

d obal Vari abl es: : d obal Vari abl es()

InitializeCritical Section(&outfile_cs);
InitializeOritical Section(&tList_cs);
InitializeCritical Section(&cout_cs);

}

/! Destructor for the class d obal Vari abl es.
/1 Deletions of the critical sections are contained in the destructor.

d obal Vari abl es: : ~d obal Vari abl es()
Del eteCritical Section(&outfile_cs);

Del eteCritical Section(&tList_cs);
Del eteCritical Section(&cout_cs);

}
/1 Constructor for the class FSM
FSM : FSM)
{
st opFSME=0; /1 Indicating the status of the particular FSM
nunEvt s=0; /1 Nunber of events in the FSM
current St at e=0; /!l Current State of the FSM
bl ockTi mre = 0; /1 blocking tinme for parallel session attacks.
}

/*********************************************************

46



This function reads fromthe vector which contains the
signatures read in fromthe KBASE. Then it will create
the FSM for each signature belonging to the protocol
being nonitored for attacks.

This function will populate the FA vector w th individual
events.

*********************************************************/

void FSM : creat eMachi ne(int id, vector<string> buffer, int bufLength)
{

int i=0,j=0;

int fsnCreated=0;

char *tenp=new char[100];

char *chari d=new char[100];

char *token;
char *delimter=" ";

whi | e(i <buf Length && !fsnCreat ed)
{

strcpy(tenp, buffer[i++].c_str());
token=strtok(tenp,delimter);

i f (strcnp(token, "begin")==0)
{
pr ot Name=strt ok(NULL, del i m ter);

t oken=strt ok(NULL, del imter);

i f(strcnp(token,itoa(id,charid, 10))==0)
{

i f(id<0)

machi neType="nor nal *;
el se

machi neType = "attack";

attackType = strtok(NULL, deliniter);

f smNunber =i d;

whil e(1)

{
Event evt;

strcpy(tenp, buffer[i++].c_str());
token=strtok(tenp,delimter);

i f(strcnp(token,"end")!=0)

token=strtok(NULL, delimter);

evt. pl=t oken;
t oken=strtok(NULL, delimter);

i f(strcnp(token,"->")==0)
evt.type="send";

el se
evt.type="recv",

t oken=strt ok( NULL, del i m ter);
evt. p2=t oken;

token = strtok(NULL,delimter);
evt. msgSegNumFat oi (strtok(NULL, delimter));

47



FA. push_back(evt);

/1 get the session nunber

strtok(NULL, delimter);

/1 get the block time if parallel session attack

char *s = 0;
s = strtok(NULL, delimter);
if(s)
{
bl ockEvt = nuntvts;
bl ockTime = atoi(s);

}
nunEvt s++;
j
el se
{
f snOr eat ed=1;
br eak;
}

/***********************************‘k*************************

This function will advance the state of the FSM and if there
happens to be an attack, it will display the appropriate
attack notification.

Returns 1 if an attack protocol session has term nated
Returns 2 if an normal protocol session has term nated
Returns 0 ot herwi se.

**************************************************************I

int FSM :advanceFSM ThreadParaneters *tp, Event evt, Eventlndex ei)

{
i f(!stopFSM
i f (event Conpare(evt ,FA[currentState]))

EnterCritical Section(& p->gv. cout_cs);

cout<< " An event match has occurred in FSM #" << fsmN\unber << endl;
LeaveCritical Secti on(&t p->gv. cout _cs);

current St at e++;

/1 check if the fsmis a fsmnonitoring replay attacks
i f(attackType. conpare("R') == 0)

int check = checkAttackReplay(tp,ei);
i f (check)

return 1;

else return O;

48



/1 single session attacks
el se if(attackType. compare("S"') == 0)

{
int check = checkAttackSeq(tp,ei);
i f (check)
return 1;
el se
return O;
}

/] parallel session attack
el se if(attackType. compare("P') == 0)

{
int check = checkAttackParallel (tp,ei);
i f (check)
return 1;
el se
return O;
}
el se
{
i f (checkNor mal Sessi on(tp))
return 2;
el se return 0;
}
}
el se
{
st opFSM = 1;
return O;
}
}
el se
/] st opFSML,;
return O;
}

}

/*******************************************************

This function will determne if the FSM has advanced

sufficiently such that the attack in progress exactly
mat ches one fromthe KBASE which is a single session

att ack.

Returns 1 if an attack activity has occurred.

Returns O ot herw se.

*******************************************************/

int FSM : checkAttackSeq( ThreadPar aneters *tp, Eventlndex ei)

{
if(currentState==nunkEvts && strcnp(nmachi neType.c_str(), "attack")==0)
{
EnterCritical Section(&t p->gv. cout_cs);
COUt << endl << R R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEE A << endl
<< "HFxxkkx Gl NGLE SESS| ON ATTACK******" << endl
<< Mhkkhkkhhkhkhkhkdhkhhhdhhdhdhhdhrddxdkxhhxtx" << endl
<< endl;
witeToFile(tp,ei,"S");
cout<< "A single session attack on the " << prot Nane
<< " protocol [FSM#" << fsmNunber << "] has been detected!!" << endl <<
endl ;

LeaveCritical Secti on( & p- >gv. cout _cs);
st opFSM = 1;
det ect Type = "attack";

49



return 1;

}

el se return O;

}

/*******************************************************

This function will determine if the FSM has advanced
sufficiently such that the attack in progress exactly

mat ches one fromthe KBASE which is a multi-session

replay attack.

Returns 1 if an attack or suspicious activity has occurred.
Returns O ot herw se.

*******************************************************/

int FSM : checkAt t ackRepl ay( Thr eadParaneters *tp, Event | ndex ei)

{
i f (current State==nunEvts && strcnp(machi neType.c_str(),"attack")==0)
{
if(checkTime(tp,ei))

EnterCritical Section(& p->gv.cout_cs);

COUt << endl << Whhhhhhhhhkhhhkhkhkhkhhhhddxdxdxdxdxdxdxxxhxxx" << endl
<< "*********EPLAY A‘I‘I’AG(***********" << endl
<< Whkhkhhhhkhkhkhkhkhdxdhdhddddhhddddhhhhhhhrxrx! << endl
<< endl;

witeToFile(tp,ei,"R");

cout << "A REPLAY attack on the " << prot Nane

<< " protocol [FSM#" << fsmNunber << "] has been detected!!" << endl
<< endl;
LeaveCritical Secti on(&t p->gv. cout _cs);
st opFSM = 1;
det ect Type = "attack";
return 1,
}
el se
EnterCritical Section(& p->gv.cout_cs);
COUt << endl << LRSS SRR SRR S ST EEEEEEEEEEEESEE A << endl
<< MExFAkxRRGUSP] Cl QUS ACTI VI TY**x**xxt << endl
<< AR S S S S S S S SRR R R R R SRR EEEEEEEEREEEE I << endl7
witeToFile(tp,ei,"SS");

cout << "Suspicious behavi our was detected on the "<< prot Nanme

<< " protocol!! "<< endl << endl;

LeaveCritical Secti on(& p->gv. cout_cs);

st opFSM = 1,
det ect Type = "attack";
return 1,
}
}
else return O;
}

/*******************************************************

This function will determine if the FSM has advanced
sufficiently such that the attack in progress exactly
mat ches one fromthe KBASE which is a Parall el -session

50



att ack.
Returns 1 if an attack or suspicious activity has occurred.
Returns O ot herw se.

*******************************************************I
int FSM :checkAttackParall el (ThreadParaneters *tp, Eventlndex ei)
i f(current Stat e==nunEvts && strcnp(machi neType. c_str(), "attack")==0)
i f (bl ockTi me == 0)

EnterCritical Secti on(&t p->gv.cout_cs);

COUt << AR R R R R S S S L << endl

<< "There is a possibility that a parallel session attack" << endl

<< " is under way!!" << endl

L Mkkkkkkkkkkkkhkhkhkhkhkhkhkhhhhhhhhhhhhhhkhkhkhkhkh kb x" endl

endl ;
LeaveCriti cal Section(&t p->gv.cout_cs);
st opFSM = 1;
detect Type = "attackPP";
return 1,

el se

int check = checkTi neParallel (tp,ei, bl ockTi ne, bl ockEvt);
i f(check)

EnterCritical Section(&t p->gv.cout_cs);

COUt << endl << Mk k kA kA A AAAAA AKX A A A AR A A A A Ak Ak Kk kxx" << endl

<< "rxFAPARALLEL SESSI ON ATTACK******" << end|
Qg MAKK KKK KKK KKK KKK KKKKKKKKKKKKXXXXXX" << and]

<< endl;

witeToFile(tp,ei,"P");

cout << "A PARALLEL SESSION attack on the " << protNane

<<

<< " protocol [FSM#" << fsnmNunber << "] has been detected!!" <<

endl << endl;
LeaveCriti cal Section(&t p->gv. cout_cs);

st opFSM = 1,
det ect Type = "attackP';
return 1,
}
el se

EnterCritical Section(&t p->gv. cout_cs);
COUt << endl << AR S S S S S EE S EEEEEEEEEEEEEEE S A << endl

<< mEwxExxxGUSP| O OUS ACTI VI TY<**#5%%" << end|

<< LR S S S S SR SRR EEEEEE RS EEE S SRR EEEEEE S S A << endl .
’

witeToFile(tp,ei,"SS");
cout << "Suspi ci ous behavi our was detected on the "<< prot Name
<< " protocol!! "<< endl << endl;
LeaveCriti cal Secti on(&t p- >gv. cout_cs);
det ect Type = "attack";
St opFSM = 1,
return 1;

}

el se
return O;

/*******************************************************

51



This function will determine if the FSM has advanced
sufficiently such that the session in progress exactly
mat ches a normal session fromthe KBASE

Returns 1 if an normal session has occurred.

Returns O ot herw se.

*******************************************************I

int FSM : checkNor nal Sessi on( Thr eadPar anet ers *t p)

if(currentState == nunEvts && strcnp(machi neType.c_str(),"normal ") == 0)
{
EnterCritical Section(&t p->gv.cout_cs);
COUt << R R R R R R R R I R R R R R R R R R R R <<
endl ;
cout << "A normal session of the " << protName << " protocol has concl uded"
<< endl ;
COUt << LR R R R S R R <<
endl << endl;
LeaveCritical Section(&t p->gv. cout_cs);
st opFSM = 1;
det ect Type = "normal ";
return 1;
}
el se
return O;

}

/*******************************************************

This function is used for detecting parallel session
attacks to check if a previously concluded normal session
has concluded within the tine frame that an attack

sessi on bl ocks.

Returns 1 if the tinme el apsed between the two sessions
[reference session and attack session] allows for the
possiblity of a parallel session attack.

Returns O ot herwi se.

*******************************************************/

int checkTi meParall el (ThreadParaneters *tp, Eventlndex ei,int blockTine,int blockEvt)
{

Event evtRefl, evtRef2,evtParl, evtPar2; // Event object hol der variabl es.

Event | ndex tenpl ndex;

ei .vectorlndex = bl ockEvt - 1,

evtRef1 = tp->nPtr->queryMonitor(&ei);

ei .vectorlndex = bl ockEvt;

evtRef2 = tp->nPtr->queryMonitor(&ei);

i nt nunBessi ons;

vect or <Pri nci pal sSessi ons> ps;

ps=t p- >nPt r - >quer ySessi ons( ei . pr ot ocol Nane) ;
int size = ps.size();

for (int i=0; i<size; i++)

if(ps[i].principals == ei.principals)

nunBessi ons = ps[i]. nunBessi ons;
br eak;

}

i nt nextSession = ei.sessionNum + 1;
for(int j=nextSession; j < nunBessions; j++)

ei .vectorlndex = 0;

ei .sessionNum = j;

t p->nPt r - >quer yMoni tor (&ei ) ;

ei .vectorlndex = ei.vectorSize- 1,
Sl eep(500) ;

52



evtPar2 = tp->nPtr->queryMnitor(&ei);

/1 Check if the second interleaved session is a parallel attack session.

i f(evtPar2.type. conpare("attackParall el SessionOver") == 0)
{

ei .vectorlndex = 0;
evtParl = tp->nPtr->queryMonitor(&ei);

if( (difftime(evtPar2.tineStanp, evtParl.tineStanp) <= (float) bl ockTi me)

&& (difftime(evtParl.tineStanp, evtRefl.tineStanp) > 0)
&% (difftime(evtRef2.timeStanp, evtPar2.tineStanp) > 0))

{
return 1;
}
}
}
return O;

}

/*******************************************************

This function is used for detecting Replay attacks
to check if a previously concluded normal session
has concl uded within the FRESHNESS ti me for a Repl ay
attack to possibly take place.

Returns 1 if the time el apsed between the two sessions
[reference session and attack session] is |less than
Freshness tine

Returns O ot herw se.

*******************************************************/

int checkTi me( ThreadParaneters *tp, Eventlndex ei)

{

const doubl e FRESHTI ME = 10;

Event | ndex hol der;

hol der. principals = ei.principals;

hol der . prot ocol Nane = ei . prot ocol Nane;
Event prevEvent, currEvent;

currEvent = tp->nPtr->queryMonitor(&ei);

i nt nunBessi ons =ei . sessi onNum
for(int j=0; j < nunBessions ; j++)

hol der . sessi onNum = j;

hol der . vector |l ndex = 0;

t p- >nPt r - >quer yMoni t or ( &hol der);

hol der. vectorl ndex = (hol der.vectorSize - 1);
prevEvent = tp->nPtr->queryMonitor(&hol der);

/* cout << " The two tine stanps are :" << endl ;
cout << " New Event: " << currEvent.tinmeStanp << endl;
cout << " dd Event: " << prevEvent.timeStanp << endl;*/

cout << "Tinme waited between sessions is:

<< difftime(currEvent.timeStanp, prevEvent.tineStanp) << endl;

i f(prevEvent.type. conpare("nornal Sessi onOver") ==

if(difftine(currEvent.tineStanp, prevEvent.tineStanp) <= FRESHTI ME )

return 1;
/] break;

}

el se conti nue;

53



return O;

}

/***************************************************************

This function will enable the reporti ng of attack information
by neans of a text file. This file will have information Ilike:
Protocol name, type of attack, tine of attack, parties involved.

***************************************************************/

int FSM:witeToFil e(ThreadParaneters *tp, Eventlndex ei,string type)

LECETEEETEE il

char *lockFile = "lock.txt";
HANDLE f Handl e;

whi | e(1)

{

fHandl e = (HANDLE) CreateFil e(l ockFile, GENERI C_READ, 0, NULL,
CREATE_NEW FI LE_ATTRI BUTE_NORVAL, NULL);

i f(fHandl e == | NVALI D_HANDLE_VALUE)

EnterCritical Section(& p->gv. cout_cs);
cout << "File already |ocked" << endl;
LeaveCri ti cal Secti on( &t p->gv. cout_cs);
/1Sl eep(5000) ;

d oseHandl e(f Handl e) ;

el se
br eak;

LHEEEEEEEEE i bl iy

/] of stream out Report Fi | e( QUTFI LE, ios::app);
of streamout Qui Fi | e( QUTFI LE_QUI , i os: : app);
if(loutQuiFile)

{
cerr << "File could not be opened for witing!" << endl;
Cl oseHandl| e(f Handl e) ;
Del et eFi |l e(l ockFile);
return O;
}
/[*if( 'outReportFile )
{
cerr << "File could not be opened for witing!" << endl;
d oseHandl e(f Handl e) ;
Del et eFi | e(l ockFile);
return O;
ye

out@Qui File << "Attack" << "\ n";
out@Qui File << protNanme << "\ n";

tine_t Itinme;
time( &time );
outQuiFile << Itime << "\n";

string st;
string at Type;
/1 Parallel session detected
if(type == "P")
{

at Type = "Paral l el Session";
st = "There was a PARALLEL SESSION attack on the ";

54



}
/1 Replay attack detected
else if(type == "R")

at Type = "Repl ay";
st = "There was a REPLAY attack on the ";

}
I/ single session attack detected
else if(type == "S")
{
at Type = "Single Session";
st = "There was a SINGLE SESSION attack on the ";
}
/] suspicious activity detected
else if(type == "SS")
{
at Type = "Suspi ci ous behavior";
st = "Suspicious behavi our was detected on the ";

}

char tenp[30];

st . append( pr ot Nan®) ;
st. append(" protocol");

st.append(" [Signature #");

st. append(itoa(fsm\unber,tenp, 10));
st.append("].");

st. append("\n");
st.append("This attack involved the follow ng principals:\n");

int i=1,
map<string,string> :iterator pos;
for(pos = ei.principals.begin(); pos != ei.principals.end(); ++pos)

st. append(itoa(i,tenp, 10));
st.append(". ");

st. append( pos->second);

out Qui Fil e << pos->second << " ";
st.append(": ");

st. append(pos->first);

out Cui File << pos->first << " *;
st.append("\n");

I ++;

out@QiFile << "I'" << "\ n";
outQii File << atType << "\n";
outQui File << fsm\unber << "\n" << "\n";

out Qui Fil e. cl ose();

. " (.
/*Out Report FI I e << *********************************************************\ n ;

outReportFile << st << '\n' << "Attack Detected on: " << ctime( &tine ) <<'\n';
out ReportFile.close();*/

C oseHandl e(f Handl e) ;
Del et eFi | e(l ockFile);
return 1;

}

/***************************************************************

This function will enable the reporting of attack information
such as abnormal term nation or suspicious protocol activity
by neans of a text file. This file will have information Ilike:
Protocol name, type of attack, tine of attack, parties involved.

***************************************************************/

int witeSuspicious(ThreadParaneters *tp, Eventlndex ei,string protName, string type)

{

55



char *lockFile = "lock.txt";
string at Type; /] abnormal termination or suspicious behavior
HANDLE f Handl e;

whi | e(1)
{
fHandl e = (HANDLE) CreateFile(lockFile, GENERI C READ, 0, NULL,
CREATE_NEW FI LE_ATTRI BUTE_NORVAL, NULL);

i f(fHandl e == | NVALI D_HANDLE_VALUE)
{
EnterCritical Section(& p->gv. cout_cs);
//cout << "File already | ocked" << endl;
/1 Sl eep(5000) ;
LeaveCri ti cal Secti on( & p->gv. cout_cs);
C oseHandl e(f Handl e) ;

}
el se
br eak;

/| of stream out Report Fi | e(QUTFI LE, i os::app);
of streamout Qui Fi | e( QUTFI LE_QUI , i os: : app);
/[*if( 'outReportFile )

{
cerr << "File could not be opened for witing!'" << endl;
G oseHand! e(f Handl e) ;
Del eteFi |l e(l ockFil e);
return O;
I

if(loutQuiFile)
{
cerr << "File could not be opened for witing!" << endl;

G oseHand! e(f Handl e) ;
Del eteFil e(l ockFil e);
return O;

}

out@Qii File << "Attack" << "\ n";
out@ui File << protNanme << "\ n";

tinme_t Iting;

time( &time );

outQuiFile << Itime << "\'n";
string st;

/] suspicious activity detected
if(type == "SU")

st = "Suspi ci ous behavi our was detected on the “;
at Type = "Suspi ci ous behavior";

else if(type == "AB")
{

st = "Abnornmal termination was detected on the ";
at Type = "Abnornmal termnation";

st . append( pr ot Nane) ;
st. append(" protocol");

st. append("\n");
st.append("This attack involved the follow ng principals:\n");
int i=1;

56



/

unsi gned __ stdcall

{

map<string,string>: :iterator pos;
char tenp[10];

for(pos = ei.principals.begin(); pos != ei.principals.end(); ++pos)

st. append(itoa(i,tenp, 10));
st.append(". ");

st . append( pos->second);

out Qui Fil e << pos->second << " ";
st.append(": ");

st. append(pos->first);

outQui File << pos->first << " *;
st.append("\n");

i ++;

out@QiFile << "I'" << "\'n";
outQui File << atType << "\n";
out@QiFile << "-1" << "\n" << "\n";

q " (.
/*OutReportFIIe << *********************************************************\n’

outReportFile << st << '\n' << "Attack Detected on:

out ReportFile.close();*/
out Qui Fil e.close();

C oseHandl e(f Handl e) ;

Del et eFi | e(l ockFile);
return 1;

R R R S S Sk o R R R R S S

Entry function for the threads nonitoring
attacks on distinct sessions.

*******************************************/

/1 Local variables

int attack=0;
vector<string> buffSig;
DWORD t hSt at us;

int vecLen=0;

FSM *fs;

int sigs=0, evtlndex=0;
bool newEvent = true;
bool evtSignal = fal se;
buffSig.clear();
Threadl nfo thlnfo;
DWORD cur r Thr eadl d;

currThreadl d = Get Current Threadl d();
Event | ndex ei;
int suspicious

:O;
int waitTine = O;

ThreadParaneters *tp = (ThreadParaneters*)| p;
get Threadl nfo(tp, & hinfo, currThreadld);

ei .principals = thlnfo. principals;

ei . protocol Nane = thl nfo. prot Naneg;

ei . sessi onNum = t hl nf 0. sessi onNunber ;
ei.sessionld = thlnfo. sessionld;

bool kill Thread = fal se;

int numMits = 0;

while( 1)

bool di dTi neQut
i nt machi neOver

fal se;
0;

57

Sessi onAtt ackFunc (LPVA D | p)

" << ctime( &time) << '\n';



thStatus = Wit For Si ngl eCbj ect (t hl nfo. t hreadEvent Handl e, 3000);
if(thStatus == WAI T_OBJECT_0)

if(numMits > 0)
numMits = 0;

di dTi mreQut = fal se;

evt Signal = true;

}
el se if(thStatus == WSA WAI T_TI MEQUT)
di dTi nreQut = true;
//cout << "IN TI MEQUT" << endl ;
evt Signal = true;
if(numMits > 6) /1 Tinmeout period == 18 seconds

kill Thread = true;

br eak;
}
}
el se
{
cout << " Problens!! " << endl;
evt Signal = fal se;
}

if(evtSignal)

whi | e(1)
{

i f (newEvent)

sigs = nunSi gnatures(thlnfo.protNanme.c_str(), &uffSig, &veclen);
EnterCritical Section(&t p->gv. cout_cs);
cout << "\nThere are "<< sigs << " signatures of the "
<< thilnfo.protName << " protocol." << endl;
LeaveCriti cal Secti on( & p->gv. cout _cs);

f s=new FSM si gs];
for(int j=0;j<sigs;j+t)
fs[j].createMachine((j-1),buffSi g, vecLen);
newEvent = fal se;
/1 query nonitor
ei .vectorlndex = evtlndex;
Event e = tp->nPtr->queryMnitor(&ei);
if(e.type == "NoEvent")
{

evt Signal = fal se;
i f(didTi meCut)

NuUMAMi t s++;
br eak;

machi neQver = 0;
for(int j=0;j<sigs;j++)

s[j].advanceFSMtp, e, ei);
f(fs[j].stopFSM == 1)

machi neOver ++;

f
i
{
}
i f (machi neOver == sigs)

58



int regAttack = O;
for(j=(sigs-1);j>=0;j--)

if(fs[j].detectType == "attackPP")
{

regAttack = 0;
attack = 3;
evt | ndex++;
ei .vectorlndex = evtlndex;
br eak;

}
if(fs[j].detect Type == "attackP")
{

regAttack = 0;
attack = 1;
evt | ndex++;
ei .vectorlndex = evtlndex;
br eak;

else if(fs[j].detectType == "nornal ")

regAttack = 0;

attack = 2;

evt | ndex++;

ei .vectorlndex = evtlndex;
br eak;

}
else if(fs[j].detectType == "attack")
{

regAttack = 1,
attack = 1;

}
if(attack == 1 && regAttack)

evt | ndex ++;
ei.vectorlndex = evtlndex;

}
i f(attack)

br eak;
el se

{
}

suspi cious = 1;

evt | ndex++;

}// end inner while

} // end outer if
i f(attack)
br eak;
} /1 end outer while

i f(suspicious &% kill Thread)

EnterCritical Section(& p->gv. cout_cs);
COUt << Mhkkhkkhhkhhhkhhkhhhhhhhkdhhhhdhdhhdhdhhdhdhhhhdhrdrkhkrdrxrrhhx" << endl .
cout << "There is a possibility of suspicious activity on the " << endl
<< thinfo.protName << " protocol." << endl;
COUt << LRSS EEEEEEEEEEREREEEEEEEREEREREREEEEEEEEEEEEEEEEEEEEEEEE A << endl << endl .
LeaveOritical Section(& p->gv. cout_cs);
t p->nPt r->del et eSessi on(&ei , "attackSessi onOver");
wri t eSuspi ci ous(tp, ei,thlnfo.protNane, "SU");

59



el se if(kill Thread)

EnterCritical Section(&t p->gv.cout_cs);

COLIt << LU R R Rk kS S kS Sk S S S R kS R << endl .
cout << "Wait TIMEQUT expired!!" << endl
<< "Abnormal Term nation was detected on the
<< thinfo.protName << " protocol." << endl;

COUt << AU R R S R R R << endl << endl,

LeaveCritical Section(&t p->gv. cout_cs);

<< endl

t p->nPtr- >del et eSessi on(&ei , "att ackSessi onOver");
wr it eSuspi ci ous(tp, ei,thlnfo. prot Nane, "AB");
}

el se

if(attack == 3)
{
t p->nPtr- >del et eSessi on( &ei , "att ackPar al | el Sessi onOver");

if(attack == 1)
t p->nPtr- >del et eSessi on( &ei, "attackSessi onOver");

else if(attack == 2)

{
t p->nPtr- >del et eSessi on( &ei, "nor nal Sessi onOver");

EnterCritical Secti on(&t p->gv. cout_cs);

cout << "Thread just died!!" << endl;

LeaveCritical Secti on(&t p->gv. cout _cs);

//cout << "Alive threads: " << tp->gv.tList.threadManager.size() << endl;
renmoveThreadEntry(currThreadl d, tp);

return O;

/************************************************

This function will retrieve the event handle
for the particular thread, nmonitoring a session
and protocol conbination.

Ret urns a HANDLE.

************************************************/

HANDLE get Event Handl e ( ThreadParaneters *tp, Eventlndex *ei)

|'i st<Threadlnfo>::iterator pos;

HANDLE t Handl e;

EnterCritical Section(& p->gv.tList_cs);

for(pos = tp->gv.tList.threadManager. begin(); pos != tp-
>gv. tList.threadManager.end(); ++pos)

if( !(pos -> protNane. conpare(ei->protocol Nane)) && (pos -> sessionNunber == ei-
>sessi onNun) && (pos ->principals == ei->principals))

tHandl e = pos -> threadEvent Handl e;
br eak;

}
LeaveCritical Section(& p->gv.tList_cs);

return tHandl e;

}

/************************************************************

This function will return informati on about a thread and

60



popul ate a Threadl nfo object, given a Threadld.

************************************************************/

voi d get Thr eadl nf o( Thr eadPar aneters *tp, Threadl nfo *thlnfo, DWORD thl D)
{

|'i st<Threadlnfo>::iterator pos;

EnterCritical Section(&t p->gv.tList_cs);

for(pos = tp->gv.tList.threadManager. begin(); pos != tp-
>gv. tList.threadManager.end(); ++pos)

i f(pos -> threadEvent Handl e == t p- >evt Handl e )
{

pos -> threadld = thl D

t hl nf o- >princi pal s = pos->principal s;

t hl nf o- >pr ot Nane = pos- >pr ot Nan®;

t hl nf o- >sessi onNunber = pos->sessi onNunber ;

t hl nf o- >sessi onld = pos- >sessi onl d;

t hl nf o- >t hr eadEvent Handl e = pos- >t hr eadEvent Handl e;
thl nfo->threadld = pos->t hreadl d;

br eak;

}

LeaveCritical Section(& p->gv.tList_cs);

}

/************************************************************

This function will renove the entry for a term nated thread
fromthe tList vector which keeps track of all the alive
t hreads.

************************************************************/

voi d renmoveThr eadEnt r y( DWORD t hl d, Thr eadPar aneters *t p)
{

list<Threadl nfo>::iterator pos, posl;

EnterCritical Section(& p->gv.tList_cs);

for(pos = tp->gv.tList.threadvanager.begin(); pos != tp-
>gv. tList.threadManager.end(); ++pos)

{
if( pos ->threadld == thld)
{

t p- >gv. tLi st.t hreadManager . er ase( pos) ;
br eak;

}
LeaveCritical Section(& p->gv.tList_cs);

/***************************************************************************

This function will read the KBASE of signatures, given a protocol Nane
and will popul ate a vector container (of strings) with all the attack/nornal
signatures corresponding to this protocol.

AR AR R EEEEEEEEEEEREEEEEEEEEEEEEEEEEE RS RS REE R

i nt nunSi gnatures(const char *prName, vector<string> *buffer, int *veclLen)

char inBuffer[256], *token, *delimter =" ";
int endd0fSig = 0;

61



int nunBig = 0;
int i=0;

ifstreamfin;
fin. open(KBASE);

if(fin.fail())
{
cout << "Cannot open " << KBASE << endl;
return O;
}
while(!fin.eof () & ! (endOrSig))
{
fin.getline(inBuffer,256,'\n");
char *tenp=new char[100];
strcpy(tenp,inBuffer);
token = strtok(inBuffer, delimter);
i f(strcnp(token, "begin") == 0)
{
token = strtok(NULL, delimter);

//read signatures for this protocol
i f(strcnp(token, prNane) == 0)

buf f er - >push_back(t enp);

i ++;
whi | e(1)
{
fin.getline(inBuffer,256,'\n");
buf f er - >push_back(i nBuf fer);
i ++;
token = strtok(inBuffer, delimter);
i f(strcnp(token,"end") == 0)
{
nunsSi g++;
if(fin. eof())
br eak;
conti nue;
}
i f(strcnp(token, "begin") == 0)
{
strtok(NULL, deliniter);
token = strtok(NULL, delimter);
i f(strcnp(token,"-1") == 0)
endO'Sig = 1;
i--;
br eak;
.
conti nue;
}
}

62



}

fin.close();
*veclLen=i;
return nunSig;

63



FEEEETTEEE i i in
/1 SEADS General.h
FEEEELEEE b nrrn

#i fndef SEADS_GENERAL_H
#defi ne SEADS_GENERAL_H

#defi ne FD_SETSI ZE 10000

#i ncl ude <w nsock2. h>
#i ncl ude <i ostreany
#i ncl ude <fstreanr

#i ncl ude <string>
#i ncl ude <vector >
#i ncl ude <queue>
#include <list>
#i ncl ude <map>

#i ncl ude <set>

#i ncl ude <process. h>

#i ncl ude <cstdi o>

#i ncl ude <cst dar g>

#i ncl ude <cstdlib>

#i ncl ude <cstring>

#i ncl ude <cti me>

usi ng nanespace std;

typedef nmap<string, string> naneMap;

cl ass Event| ndex

{
public:
string protocol Narre
nanmeMap pri nci pal s; [/ parties invol ved
i nt sessi onNum //1d generated by nonitor (sequential order)
int sessionld, //1d generated by principals
i nt vectorl ndex; /lorder in which session nmsgs are recv. Not
neccesarily the same as Event:: nmsgSeqNum
int vectorSize; /lcurrent size of vector...this is subject to
change
i

/1 Event class which corresponds to all the
/1 information for events reported to the IDE by the
/1 monitor. ( A send B 1 tinestanp)

cl ass Event

{
public:
string pl;
string type
string p2
int nmsgSeqNum
tinme_t tinmeStanp;
s

//this class contains the nunber of sessions per group of principals
cl ass Principal sSessi ons

{
public:
nameMap princi pal s
int nunBessi ons
H

cl ass Monitor

{



public:

Moni tor ();
~Moni tor();

void start();

void processMessages();

void wel coneMessage();

void printContents();

void storeEvent (Event*, Event | ndex*);

int par seMessage( char *, Event *, Event | ndex*) ;

/I Monitor's interface used by the |IDE

void deleteSession(Event|ndex*, string);

Event queryMonitor (Event|ndex *);

vect or <Pri nci pal sSessi ons> querySessi ons(string);

DWORD event Tot al ;

HANDLE hPr oducer, hConsuner, hl DE;

unsi gned int producerl D, consurerlD, idelD
private:

CRI Tl CAL_SECTI ON cs;

CRI TI CAL_SECTI ON noni t or DB_CS;

3
#endi f

65



NN NNy
/1 Relevant parts of code from SEADS Monitor. cpp

/1 (IDE — Monitor) interface code portions.

/1 Col | aboration with Alex Mel endez (Activity nonitor project)
NN NN NNy

void main()
Monitor m
0, producer| D);

&m
0, &n consurner | D) ;
0, &midel D );

m hPr oducer
m hConsurer
m hl DE

(HANDLE) _begi nt hr eadex(NULL, O, t hePr oducer, (void *)&m
(HANDLE) _begi nt hr eadex( NULL, O, t heConsuner, (voi d *) &m
(HANDLE) _begi nt hr eadex( NULL, O, t hel DE ,(void *)&m

HANDLE t hr eadLi st[3];

t hreadLi st [ 0] m hPr oducer ;
threadLi st[ 1] m hConsuner ;
t hreadLi st[ 2] m hl DE;

DWORD wai t Resul t;
wai t Result = Wit For Mul ti pl eObj ect s(3,threadLi st, TRUE, | NFI NI TE) ;

i f(wai tResult == WAI T_OBJECT_0)

{
DWORD exi t Code;
Get Exi t CodeThr ead(m hPr oducer, &exi t Code) ;
cout << "The producer has finished!" << endl;
Sl eep(10000);

}

unsi gned __stdcal |l thel DE(LPVO D I p)

{
Monitor *m = (Monitor*)lp;

/1 ** main.cpp declarations

Thr eadPar aneters tp;

HANDLE hChi | dThr ead[ 1000] ; I/ create handles for threads.
/1 hChi | dThread = new HANDLE[ 10] ;
DWORD wai t Resul t;

int i=0, dunpl ndex=0;

bool evtlndexSignal = fal se;

Event e;

Event I ndex ei;

/1 ** end of main.cpp declarations
/1 DWORD t hr eadl d;

Sl eep(2000) ;
m >wel coneMessage() ;

COUt << "*************************************************\ n"

"**%% | ntrusion Detection Engine Qperational ****\n"
"*************************************************\n"
<< endl;
whi | e(1)
{
wai t Result = Wit For Si ngl eQbj ect (si gnal | DE, 10000);
i f(waitResult == WAl T_OBJECT_0)

evt | ndexSi gnal = true;

}
else if(waitResult == WBA WAI T_TI MEQUT)

66



EnterCritical Section(&evt | ndexCs);
i f(!evtlndexQueue. enpty())

evt | ndexSi gnal = true;

LeaveCriti cal Section(&evtl ndexCs);

i f (dunpl ndex++ > 3)
{

}

m->print Content s();
EnterCritical Section(&t p.gv.cout_cs);
EnterCritical Section(& p.gv.tList_cs);

cout << "Alive Threads : " << tp.gv.tList.threadManager. size();

LeaveCritical Section(& p.gv.tList_cs);

LeaveCritical Section(&t p.gv.cout_cs);
dunpl ndex=0;

i f (evtlndexSignal)

whi | e(1)
{

Sessi onAt t ackFunc,

/I need to read the queue
EnterCritical Secti on(&evt | ndexCs);
i f(!evtlndexQueue. enpty())

{

}

el se

ei = evtlndexQueue.front();
evt | ndexQueue. pop();
e = m >queryMonitor(&ei);

evt | ndexSi gnal = fal se;
LeaveCOritical Section(&evt | ndexCs);
br eak;

LeaveCritical Secti on(&evt | ndexCs);

/1if

if(e.
{

(voi

initial event
nmsgSegNum == 0)

EnterCOritical Section(&p.gv.cout_cs);
cout << "**** NEW SESSI ON ****" << endl;
LeaveCOritical Section(& p.gv.cout_cs);

/] Create the event kernel object which will be used

[/l to signal that thread in the future.
DWORD t hr eadl d;

tp. evtHandl e = CreateEvent( NULL, FALSE,
tp.mPtr = m

Threadl nfo tlnfo;

tInfo.threadEvent Handl e = tp. evt Handl g;
tInfo.protName = ei.protocol Nane;

tI nfo.sessi onNunber = ei.sessi onNum
tInfo.sessionld = ei.sessionld,
tInfo.principals = ei.principals;

EnterCritical Section(& p.gv.tList_cs);

FALSE, NULL);

tp. gv. tList.threadVanager. push_back(t| nfo);

LeaveCritical Section(& p.gv.tList_cs);

I/l Oreate the session FSMthread

hChi |l dThread[i ++] = (HANDLE) _begi nt hreadex( NULL, O,

d *) &p, 0, (unsigned *) & hreadld);
[*if(i == 09)

67



delete [] hChildThread,
hChi | dThread = new HANDLE[ 10] ;
i =0;

1

/1 Get the event handle to signal the rel event thread.
HANDLE t Handl e = get EventHandl e (&p, &ei);

BOOL evt St at us Set Event (t Handl e) ;

i f(!evtStatus)

cout << "Unable to set nmanual event!!" << endl;
Sl eep(50);
}
el se
{

//not a new session

HANDLE tHandl e = getEventHandl e (& p, &ei);
BOOL evtStatus = Set Event (t Handl e);

Sl eep(50);

/*** end of Sachin's code ***/

cout << "\n**the |IDE has died**\n" << endl;
return O;

68



#if 1defined(AFX DI ALOGS H 5BD05A04_2B7F 4F1F_B059_D5161DF17CDC__| NCLUDED )
#def i ne AFX_DI ALOGS_H_5BD05A04_2B7F 4F1F _B059 D5161DF17CDC | NCLUDED

#i f _MSC_VER > 1000
#pragnma once

#endif // _MBC_VER > 1000
FEEEEEEEEEr i rrn
/1 Dialogs.h : header file
/1l

struct conboHol der

/1 Varibles to store previous conbo box sel ection val ue.
int n_Frompm
int n_FronDay;
int n_FronHour;
int n_FronM n;
int n_FronMont h;
int n_ToApm

int n_ToDay;

int n_ToHour;
int n_ToM n;

int n_TohMont h;

b
/1 Arrays to fill up the conbo boxes.

static CString nonths[12] =
{

"Jan",
"Feb",
“Mar",

A,
"My,
"Jun",

s
/*static int hours[12] =

1,2,3,4,5,6,7,8,9, 10,11, 12
bl

static CString hours[12] =

"O1", " 02", "03" "04", "05" "06", "07". "08", "09", "10" "11", "12"
b

static int days[31] =

1,2,3,4,5,6,7, 8,9, 10,
11,12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31
H
/*static int mns[60] =
01, 02, 03, 04, 05, 06, 07, 08, 09, 10,
11,12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40,

69



41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59

i

*/

static CString m ns[60] =

{
00", "01", "02", "03"," 04", "05" "06","07", "08", "09" "10",
“11*,"12","13", " 14", " 15", 16", 17", " 18", " 19", " 20",
nppn mpgn wogn wogn woge o uogu uogn uogn gy
"31","32","33","34","35", "36","37","38","39", "40",
"A1" A2 43" v 44" v ABY v AB" AT 48" "49" "50".
"51","52","53","54", "55" "56"," 57", "58", " 59"

b

static CString apni2] =

{

"AM' " PM
b

N NN NN NNy
/1 CReportlnfoDi al og dial og

class CReportinfoD alog : public CD al og

/1 Construction
public:

CReportlInfoD alog(int fCall,struct conmboHol der cHol d, CWhd* pParent = NULL); 1/
standard constructor

/1 Dialog Data
[ 1 {{ AFX_DATA( CRepor t | nf oDi al og)
enum{ I DD = | DD_REPORT_I NFO };
CConboBox m_conboFr omApm
CCorboBox m_conboToMont h;
CConboBox m _conboToM n;
CCorboBox m_conboToHour ;
CConboBox m _conboToDay;
CConboBox m _conboToApm
CConboBox m_conboFr omvbnt h;
CConboBox m_conboFr onM n;
CConbo Box m_conboFr onHour ;
CConboBox m_conboFr onDay;
CString mprotNang;
/1}} AFX_DATA

/1 conbo data hol der vari abl es
CString mFrompm
int m_FronMont h;
int mFronM n;

int mFronHour;
int mFronDay;
CString m ToApm
int m TohMont h;

int mToM n;

i nt m ToHour;

int m ToDay;

int firstCall;
struct conboHol der cHol der;

/] Overrides
/1 O assWzard generated virtual function overrides
[ 1 {{ AFX_VI RTUAL( CRepor t | nf oDi al og)
pr ot ect ed:
virtual voi d DoDat aExchange( CDat aExchange* pDX); // DDX/ DDV support

70



111} AFX_VI RTUAL

/1 1npl enentation
pr ot ect ed:

/] Generated nmessage nap functions
[ 1 {{ AFX_MSE CReport | nf oDi al og)
virtual BOOL OnlnitDialog();

af x_nmsg voi d OnSel changeConbo();
/1}}AFX_MBG

DECLARE_MESSAGE_NAP()

b
11 {{ AFX_I NSERT_LOCATI ON} }
/1 Mcrosoft Visual C++ will insert additional declarations i mediately before the

previous |ine.

#endif // !defined( AFX_DI ALOGS_H_5BD05A04 2B7F 4F1F B059_D5161DF17CDC_ | NCLUDED )

71



/1 Dialogs.cpp : inplenentation file
11l

#i ncl ude "stdafx. h"
#i nclude "1 DE. h"
#i ncl ude "D al ogs. h"

#i f def _DEBUG

#def i ne new DEBUG_NEW

#undef TH S_FI LE

static char THHS FILE[] = _ FILE ;
#endi f

/1 #i ncl ude "1 DEDoc. h"
N NN NN NN NN
/1 CReportlnfoD al og dial og

CReport | nfoD al og: : CReport | nfoDial og(int fCall,struct conboHol der cHol d, Cwhd* pPar ent
/*=NULL*/)
CDi al og( CReport I nfobDi al og: : 1 DD, pParent)

{
[T {{AFX_DATA I N T(CReport I nf oDi al og)
mprotName = _T("");
113}}ARX DATA INT
firstcall = fcall;
cHol der = cHol d;

}

voi d CReport | nfoDi al og: : DoDat aExchange( CDat aExchange* pDX)

{
CDi al og: : DoDat aExchange( pDX) ;
[ 1 {{ AFX_DATA_NMAP( CReport I nf oD al og)
DDX_Control (pDX, | DC_FROM APM COVBO, m conboFr omApm) ;
DDX_Control (pDX, | DC_UPTO MONTH COMBO, m conboToMont h);
DDX_Cont rol (pDX, |1 DC_UPTO M N_COVBO, m conboToM n);
DDX_Control (pDX, |DC_UPTO HOUR COVBO, m conboToHour);
DDX_Cont rol (pDX, | DC_UPTO DAY_COMBO, m conboToDay) ;
DDX_Control (pDX, | DC_UPTO APM COVMBO, m conboToApn) ;
DDX_Cont rol (pDX, | DC_FROM MONTH COVBO, m conboFr orrvbnt h) ;
DDX_Control (pDX, | DC_FROM M N_COMBO, m conboFronM n);
DDX_Cont rol (pDX, | DC_FROM HOUR COMBO, m conboFr ontHour ) ;
DDX_Control (pDX, | DC_FROM DAY _COMBO, m conboFronDay);
DDX_Text (pDX, | DC_PROTOCOL_EDI T, m prot Nane) ;
DDV_MaxChar s(pDX, m prot Nane, 70);
/1}} AFX_DATA_NAP

}

BEG N_MESSAGE_MAP( CReport | nfoDi al og, CDi al og)
[ 1 {{ AFX_MSG_MAP( CReport | nf oD al og)
ON_CBN_SELCHANGE( | DC_FROM _APM COVBO, nSel changeConbo)
ON_CBN_SELCHANGE( | DC_FROM DAY_COMBO, OnSel changeConbo)
ON_CBN_SELCHANGE( | DC_FROM HOLR_COMBO, nSel changeConbo)

| CBN_SELCHANGE( | DC_FROM M N_COMBO, OnSel changeConbo)

| CBN_SELCHANGE( | DC_FROM MONTH_COMBO, OnSel changeConbo)

| CBN_SELCHANGE( | DC_UPTO_APM COMBO, OnSel changeConbo)

| CBN_SELCHANGE( | DC_UPTO _DAY_COVBO, nSel changeConbo)
ON_CBN_SELCHANGE( | DC_UPTO HOUR OOMBO, (nSel changeConbo)
ON_CBN_SELCHANGE( | DC_UPTO_M N_COVBO, nSel changeConbo)
ON_CBN_SELCHANGE( | DC_UPTO _MONTH_COMBO, OnSel changeConbo)
1Y} AFX_MSG_MAP

END_MESSAGE_NVAP()

29282

NN NN NNy
/1 CReportl|nfoD al og nessage handl ers

72



BOOL CReport | nfoDial og:: Onl ni t D al og()

Chi al og: : OnlnitDi al og();
char str[30];

/] TODO Add extra initialization here
/1 Load the nmonths of the year into the conbo box.
for(int i=0; i<12; i++)
{
m_conboFr om\Vbnt h. AddStri ng(nont hs[i]);
m _conboToMont h. AddSt ri ng(rmonths[i]);

}
/'l Load the days of the nonth into the conbo box.
for(i=0; i<31; i++)
{
m _conboFr onDay. AddSt ri ng(itoa(days[i],str, 10));
m conboToDay. AddSt ri ng(itoa(days[i],str, 10));

/1 Load the hours into the conmbo box.
for(i=0; i<12; i++)
{
m_conboFr omHour . AddSt ri ng(hours[i]);
m _conboToHour . AddStri ng(hours[i]);

/1 Load the mnutes into the conbo box.
for(i=0; i<60; i++)
{
m_conboFronM n. AddString(mns[i]);
m _conboToM n. AddString(mns[i]);

}
/!l Load AMPMinto the conmbo box.
for(i=0; i<2; i++)
{
m_conboFr omApm AddSt ri ng(apniil);
m_conboToApm AddString(apnii]);
}

/1 Initial DO splay

if(firstCall == 0)

{
[lfirstCall = 1;
m_conboFr omvbnt h. Set Cur Sel (0);
m cormboToMont h. Set Cur Sel (0);
m _conboFr onDay. Set Cur Sel (0);
m _conboToDay. Set Cur Sel (0);
m_conboFronM n. Set Cur Sel (0);
m _conboToM n. Set Cur Sel (0);
m_conboFr omApm Set Cur Sel (0);
m_conboToApm Set Cur Sel (0);
m _conboFr omHour . Set Cur Sel (0);
m_conboToHour . Set Cur Sel (0);

/1 Initializations of dialog box variables (attached to conbo box controls)

m_FromApm = apn{ m conboFr omApm Get Cur Sel ()] ;
m FromMVont h = m _conboFr omvbnt h. Get Cur Sel () ;
m _FronDay = days[ m conboFronmDay. Get Cur Sel ()];

m FronHour = atoi ((const char *) hours[ m conboFronHour. GetCurSel ()]);

m FromM n = atoi ((const char *) nmins[mconboFromM n. Get CurSel ()]);
m ToApm = apni m conboToApm Get Cur Sel ()];

m ToMont h = m conboToMont h. Get Cur Sel () ;

m ToDay = days[ m conboToDay. Get Cur Sel ()];

m ToHour = atoi ((const char *) hours[ mconboToHour. Get CurSel ()]);
m ToM n = atoi ((const char *) mns[mconboToM n. Get CurSel ()]);

el se
m_conboFr omvbnt h. Set Cur Sel (cHol der . n_Fr omvbnt h) ;
m_conboToMnt h. Set Cur Sel (cHol der. n_ToMont h) ;

m conboFr onDay. Set Cur Sel (cHol der. n_Fr onDay) ;
m _conboToDay. Set Cur Sel (cHol der. n_ToDay) ;

73



m _conboFr onM n. Set Cur Sel (cHol der. n_FronmM n);
m_conboToM n. Set Cur Sel (cHol der. n_ToM n);
m_corboFr omApm Set Cur Sel ( cHol der . n_Fr omApn) ;
m_conboToApm Set Cur Sel (cHol der. n_ToApn);
m_conboFr onHour . Set Cur Sel (cHol der. n_Fr omtHour) ;
m_conboToHour . Set Cur Sel (cHol der. n_ToHour) ;

/1 Initializations of dialog box variables (attached to conbo box controls)
m_FromApm = apni m conboFr omApm Get Cur Sel ()];

m_From\vont h = m_conboFr onMont h. Get Cur Sel () ;

m _FronDay = days[ m conboFronDay. Get Cur Sel ()];

m_FronHour = atoi ((const char *) hours[ mconboFronHour. GetCurSel ()]);
m FromM n = atoi ((const char *) m ns[mconboFromM n. Get CurSel ()]);

m ToApm = apni m conmboToApm Get Cur Sel ()];

m ToMont h = m conboToMont h. Get Cur Sel () ;

m ToDay = days[ m conboToDay. Get Cur Sel ()];

m ToHour = atoi ((const char *) hours[ mconboToHour. Get CurSel ()]);

m ToMn = atoi ((const char *) mns[mconboToM n. GetCurSel ()]);

}

return TRUE; // return TRUE unless you set the focus to a control
/1 EXCEPTION: OCX Property Pages should return FALSE
}

voi d CReport | nfoDi al og: : OnhSel changeConbo()

/] TODO Add your control notification handler code here
// m prot Nane = dl g. m prot Nare;

m_FromApm = apni m conboFr omApm Get Cur Sel ()];

m_Fromvont h = m_conboFr omvbnt h. Get Cur Sel () ;

m FronDay = days[ m conboFronDay. Get Cur Sel ()];

m FronHour = atoi ((const char *) hours[ m conboFronHour. Get CurSel ()]);
m FromM n = atoi ((const char *) m ns[mconboFronM n. Get CurSel ()]);

m ToApm = apni m conboToApm Get Cur Sel ()];

m ToMont h = m conboToMont h. Get Cur Sel () ;

m ToDay = days[ m conboToDay. Cet CurSel ()];

m ToHour = atoi ((const char *) hours[ m conboToHour. Get CurSel ()]);
mToMn = atoi ((const char *) mins[mconmboToM n. Get CurSel ()]);

cHol der. n_From\Vont h = m conboFr omvont h. Get Cur Sel () ;
cHol der. n_ToMonth = m_conmboToMont h. Get Cur Sel ();
cHol der. n_FronDay = m conboFronDay. Get Cur Sel () ;

cHol der. n_ToDay = m conboToDay. Get Cur Sel ();

cHol der.n_FronM n = m conboFronM n. Get Cur Sel ();

cHol der.n_ToM n = m conboToM n. Get Cur Sel ();

cHol der . n_FromApm = m conboFr omApm Get Cur Sel () ;

cHol der. n_ToApm = m conboToApm Get Cur Sel ();

cHol der. n_FromHour = m conboFr omHour . Get Cur Sel () ;
cHol der. n_ToHour = m conboToHour. Get Cur Sel ();

74



/! | DEDoc.h : interface of the Cl DEDoc cl ass
/1

N NN NN NNy

#if 1defined( AFX_| DEDOC_ H_B57ECC08_4DF7_4EEF 8125 60DBE4FDEFE7 | NCLUDED )
#def i ne AFX_| DEDOC_H_B57ECCD8_4DF7_4EEF 8125 _60DSEAFDEFE7 | NCLUDED_

#i f _MSC_VER > 1000
#pragnma once
#endif // _MSC_VER > 1000

#i ncl ude "D al ogs. h"
#i ncl ude "BackupDi al og. h"
#i ncl ude <fstreane

#i ncl ude <vector>
#i ncl ude <string>
#i ncl ude <map>

#i ncl ude <tine. h>

#define INFILE "report.txt"
#def i ne BACKUPFI LE "backup. t xt"

usi ng nanespace std;

/1 This class holds the nenbers which will be used to display |ines of
/] output to the GU

class Disp : public Cbject

L
public:
/1 Methods
Disp();
virtual void Serialize(CArchive &ar);

/1 Data menbers
CString attack;
CString invol ves;
CString principals;
CString bl ankLi ne;
CString tine;

b

/] This class contains all the information about a single attack
/1 The active attack report file is read into objects of this class
/] one by one.

class Attacklnfo

{

public:
Attackl nfo();
CString protNanre; /1 protocol on which the attack takes place.
int attacktinme; /] time of the attack
CString attackType; // type of attack - single session/ replay etc.
int fsm\unber; /1 attack signature nunber

map<string, string> naneMap; // principals involved

i

class CIDEDoc : public CDocunent

protected: // create fromserialization only
Cl DEDoc() ;
DECLARE_DYNCREATE( Cl DEDoc)

/1 Attributes

public:
[/ variables to hold the dialog box input fromthe user

75



CString m prot Nang; /1 protocol name field input

CString mdisplay; /1 display string

CString mwel cong; /1 string for the wel come nmessage
CString m FromApm /1 AM PM sel ection

int mFronDay; /] Day of the nonth selection

int mFronHour;

int mFronM n;

int m FronMont h;
CString m ToApm

int m ToDay;

int m ToHour;

int mToM n;

int m TohMont h;

int firstCreatebDi al og;

struct conboHol der cHolder; // structure to hold previous selections of the conbo

box.

int displayNum /1 0 if welcome message to be displayed, 1 otherw se
vect or <At t ackl nf o> report Dat a; /] vector to hold the attack info. fromfile.
time_t initTime,;

tinme_t final Ting;

i nt numAtt acks;

CString openLi ne;

Di sp *display; // data class to hold the report output to be displayed

/1 Operations

public:
int ReadAttackFile(CString);
void CreateDi splay(Disp *,int);
voi d ConstructTi me();
void fil eBackup();

/] Overrides
/1 dassWzard generated virtual function overrides
/1 {{ AFX_VI RTUAL( CI DEDoc)
publi c:
virtual BOOL OnNewDocunent ();
virtual void Serialize(CArchive& ar);
virtual BOOL OnOpenDocunent (LPCTSTR | pszPat hNane) ;
virtual void Del eteContents();
virtual void Ond oseDocunent ();
/1}} AFX_VI RTUAL

/1 1npl enentation
public:
voi d Get DocSi zes(int, CSi ze&, CSi ze&, CSi ze&) ;
virtual ~Cl DEDoc();
#i f def _DEBUG
virtual void AssertValid() const;
virtual void Dunp(CDunpCont ext & dc) const;
#endi f

pr ot ect ed:

/1 Generated nmessage nap functions
pr ot ect ed:
11 {{ AFX_M5QE Cl DEDoc)
af x_msg voi d OnTool Report();
af x_msg voi d OnMenuBackup();
[1}} AFX_NMSG
DECLARE_MESSAGE_MAP()
i

R
/1 {{ AFX_| NSERT_LOCATI ON} }

/1 Mcrosoft Visual C++ will insert additional declarations imediately before the
previous |ine.

#endif // 1defined( AFX_| DEDOC H B57ECCO8_4DF7_4EEF 8125 60DBE4FDEFE7__| NCLUDED )

76



/1 | DEDoc.cpp : inplenentation of the Cl DEDoc cl ass
11l

#i ncl ude "stdafx. h"
#i ncl ude "1 DE. h"

#i ncl ude "1 DEDoc. h"

#i f def _DEBUG
#defi ne new DEBUG_NEW

#undef THI S_FILE
static char THIS FILE[] = _ FILE ;
#endi f

THELEIEEEE bbb bbb irrrrrrd
/1 C DEDoc

| MPLEMENT _DYNCREATE( Cl DEDoc, CDocunent )

BEG N_MESSAGE_MAP( Cl DEDoc, CDocunent)
1 {{ AFX_MBG_MAP( Cl DEDoc)
ON_COWWAND( | D_TOOL_REPORT, OnTool Report)
ON_COMMAND( | D_MENU_CREATE, OnTool Report)
ON_COWWAND( | D_MENU_BACKUP, OnMenuBackup)
11T} AFX_MBG_MAP

END_MESSAGE MAP()

NN NN NN NN NNy,
/1 Cl DEDoc construction/destruction

Cl DEDoc: : Cl DEDoc()

{
/] TODQO add one-tine construction code here
m wel come = "Wl come to the | DE Report Generator!";
mdisplay =" ";
di spl ayNum = 0O;
numAt t acks 0;
openLine =" ";
cHol der. n_Fr omApm
cHol der . n_Fr onDay
cHol der. n_FronHour = 0;
cHol der.n_FronM n =
cHol der . n_Fr om\vbnt h
cHol der. n_ToApm = O;
cHol der. n_ToDay = O;

cHol der.n_ToM n = O;
cHol der. n_ToMont h
firstCreateD al og

}

Cl DEDoc: : ~Cl DEDoc( )
{
}

BOOL Cl DEDoc: : OnNewDocunent ()

i f (!CDocurrent:: OnNewDocunent ())
return FALSE;

// TODO add reinitialization code here
/1 (SDI docunents will reuse this docunent)

return TRUE;

N NN NN NN NN NN NNy,
/1 ClDEDoc serialization

77



voi d Cl DEDoc: : Seri al i ze( CArchi ve& ar)
{

}

NN NN NNy
/1 Cl DEDoc diagnostics

#i f def _DEBUG
voi d C DEDoc: : AssertValid() const

{
CDocunent : : AssertValid();
}
voi d C DEDoc: : Dunp( ChDunpCont ext & dc) const
{

CDocurnrent : : Dunp(dc) ;
}
#endi f // _DEBUG

TLETEIELET i it irnni
/1 C DEDoc conmands

/1 Handl er when the user hits the create report button.
voi d Cl DEDoc: : OnTool Report ()
{
/] TODO Add your command handl er code here
Del et eCont ent s() ;
CReportInfobD al og dl g(firstCreateD al og, cHol der);
firstCreateDi al og = 1;
dl g. m prot Nane = m pr ot Nane;

of stream fout;
fout. open("debug. txt");
int nodal = dl g. Dohbdal ();

i f (nmodal == | DCANCEL)

di spl ayNum = 0;
Updat eAl | Vi ews(NULL) ;
return;

LI se if(nmodal == | DOK)

/'l Retrieve value entered by the user
cHol der = dl g. cHol der;
m prot Name = dl g. m_pr ot Nane;
m _FromMont h = dl g. m_Fron\ont h;

m_FromApm = dl g. m_Fr omApm
m FronDay = dl g. m FronDay;
m _FronHour = dl g. m FronHour;
m FromM n = dl g. m FronM n;
m ToApm = dl g. m ToApm

m ToDay = dl g. m ToDay;

m ToHour = dl g. m ToHour ;

m ToM n = dl g. m ToM n;

m ToMont h = dl g. m ToMbont h;

fout << "From Month: " << m Fromvbnth << endl;
fout << "FromDay: " << m FronDay << endl;
fout << "To Month: " << m ToMonth << endl;
fout << "To Day: " << m ToDay << endl;

fout.close();
Construct Ti me() ;
numAt t acks = ReadAttackFi | e(m prot Nane) ;

78



di spl ay = new Di sp[ numAt t acks] ;

i f(numAttacks >0)

{
openLine = "Attack Report";
Creat eDi spl ay(di spl ay, numAt t acks) ;
}
el se

m di splay = "There are no attacks at this tinme matching your specifications!!";

di spl ayNum = 1;
Updat eAl | Vi ews( NULL) ;

R NN NN NNy
/11 readAttackFile

/11 This function reads the attack Report file and

/1l extracts relevant information to be displayed to the GU
R NN NN NN NNy

int Cl DEDoc: : ReadAttackFil e(CString prot Nane)

/1 File locking code follows
char *lockFile = "lock.txt";
HANDLE f Handl e;

whi | e(1)
{

fHandl e = (HANDLE) CreateFil e(l ockFile, GENERI C_READ, 0, NULL,
CREATE_NEW FI LE_ATTRI BUTE_NORMAL, NULL);
i f(fHandl e == | NVALI D_HANDLE_VALUE)
{
DWORD gl e = CetLastError();
G oseHandl e(f Handl e) ;

el se
br eak;

/1 End of file |ocking code

HANDLE fi | eHandl e;

fileHandl e = (HANDLE) CreateFil e(I NFI LE, GENERI C_READ, 0, NULL, OPEN_EXI STI NG,
FI LE_ATTRI BUTE_NCRVAL, NULL) ;

i f(fileHandl e == | NVALI D_HANDLE_VALUE)

{

return -1;

}
DWORD fil eSi zeLow, fileH gh,*fileSizeH gh;
fileSizeH gh = &f il eH gh;
fileSizeLow = GetFil eSize(fileHandl e, fil eSizeH gh);
of stream fout;
fout. open("debug.txt",ios::app);
fout << fileSizeLow << endl;
fout << *fileSizeH gh << endl;
fout.close();
G oseHandl e(fil eHandl e) ;
if(fileSizeLow > 20000)
fil eBackup();

ifstreaminReportFile(INFILE, ios::in);
if( 'inReportFile )
{

//cerr << "File could not be opened for witing!" << end;
return -1,

/] parse the file contents for relevant information

79



int i=0;

char *delimter =" ";

string smal | Name, | ongNang;

char buffer[100];

reportData.clear();

/'l Read fromthe active SEADS file viz "report.txt"

whi I e(!inReportFile eof())
{

i nReportFile.getline(buffer,60,'\n");
if(strecnp(buffer,"Attack") == 0)
{

Attacklnfo ai;
i NReportFile.getline(buffer,60,'\n");
i f(protNane == buffer || protName == "ALL")
{
ai . protName = buffer;
i nNReportFile.getline(buffer,60,'\n");
ai . attacktine = atoi (buffer);
i nReportFile.getline(buffer,60,'\n");
smal | Nane = strtok(buffer,delimter);
| ongName = strtok(NULL, delimter);

ai . naneMap. i nsert (map<string, string>::val ue_t ype(snal | Nane, | ongNane) ) ;
smal | Nane = strtok(NULL, delimter);
whil e(smal | Nane 1= "1")

| ongNane = strtok(NULL, delimter);

ai . nameMap. i nsert (map<string, string>::val ue_type(smal | Nare, | ongNane) ) ;
smal | Nane = strtok(NULL, delimter);

}

inReportFile.getline(buffer,60,'\n");

ai . attackType = buffer;
inReportFile.getline(buffer,60,'\n");

ai . fsmNunber = atoi (buffer);

if(ai.attacktime <= final Tine & ai.attacktime >= initTinme)

{
report Dat a. push_back(ai);
i ++;

}

}

}
d oseHandl e(f Handl e) ;
Del et eFi | e(l ockFile);

/!l Read fromthe back up file "backup.txt"
i fstream i nBackupFi | e( BACKUPFI LE, i 0s::in);
if( !inBackupFile )
/lcerr << "File could not be opened for witing!" << endl;

return -1;

}

whi | e(!i nBackupFi | e. eof ())
{

i nBackupFi |l e. getline(buffer,60,'\n");

if(strenp(buffer,"Attack") == 0)

{
Attacklnfo ai;
i nBackupFi | e. getline(buffer,60,'\n");
i f(protNane == buffer || protName == "ALL")

ai . protName = buffer;

80



i nBackupFi | e. getline(buffer,60,'\n");
ai . attacktine = atoi (buffer);

i nBackupFi | e. getline(buffer,60,'\n");
smal | Nane = strtok(buffer,delimter);
I ongNarme = strtok(NULL, delimter);

ai . nameMap. i nsert (map<string, string>::val ue_type(smnall Nane, | ongNane)) ;
smal | Nane = strtok(NULL, delimter);
while(smal Il Narre 1= "I'")

| ongName = strtok(NULL, delimter);

ai . nameMap. i nsert (map<string, string>::val ue_t ype(snal | Nane, | ongNane) ) ;
smal | Nane = strtok(NULL, delimter);

}

i nBackupFi |l e. getline(buffer,60,'\n");

ai . attackType = buffer;

i nBackupFi | e. getline(buffer,60,'\n");

ai . fsm\unber = atoi (buffer);

if(ai.attacktime <= final Time & ai.attacktime >= initTimnme)

repor t Dat a. push_back(ai ) ;
i ++;

}

return i;

}

FEELEEEEEEE bbb r b bbb nrir g
/1 This function will construct the tine in seconds el apsed

/1 since January 1 1970, based

/1 upon the users input for day/nonth/hour/m nutes and seconds.
FEELEEEEEEE bbb r b bbb nrir g

voi d Cl DEDoc: : Construct Ti ne()
{

struct tmtinestruct;
i f(m_FromApm == "PM)

i f(m_FronmtHour == 12)
timestruct.tmhour = 0;
el se
timestruct.tmbhour = mFronHour + 12;

}

el se

timestruct.tmhour = m Frontour;
timestruct.tmisdst = -1;
timestruct.tmnday = m FronDay;
tinestruct.tmmn = mFronM n;
tinmestruct.tmnmon = m Fronont h;
tinmestruct.tmsec = O;

tinmestruct.tmyear = 101,
initTime = nmktime(&inmestruct);
struct tmtinestructl;

i f(m.ToApm == "PM)

{

tinestructl.tmhour = m ToHour + 12;

}
el se

timestructl.tmhour = m ToHour;
tinmestructl.tmisdst = -1,

81



timestructl.tmnday = m ToDay;

tinmestructl.tmmn = mToM n;
timestructl.tmnmon = m ToMont h;
tinmestructl.tmsec = O;

timestructl.tmyear = 101;

final Time = nktine(&inmestructl);

FHOEEEEEEEE bbb bbb rrrnr g
//This function will create the GJ attack report display to show
//the attack information.
NN NN NNy
void Cl DEDoc: : CreateDi splay(Di sp *d,int i)

{

for(int j=0; j<i; j++)
char str[20];
d[j].attack += itoa(j+1,str,10);
d[j].attack +=". ";
if(reportData[j].attackType == "Suspicious behavior" || reportData[j].attackType ==
"Abnorrmal termnation")

d[j].attack += reportData[j].attackType + " was detected on the ";

el se
d[j].attack += "A " + reportData[j].attackType + " attack was detected on the ";
d[j].attack += reportData[j].protName + " protocol.";
char tenp[30];
if(reportData[j].fsm\unber >=0)
{

CString num= itoa(reportData[j].fsm\unber,tenp, 10);

d[j].attack += " (Signature #" + num+ ")";
}
d[j].involves +=" The foll owi ng principals were involved: ";
int k=1,

map<string,string>::iterator pos;
for(pos = reportData[j].nameMap. begin(); pos != reportDatalj].nameMap. end(); ++pos)

d[j].principals +=" "
d[j].principals += itoa(k,str, 10);
d[j].principals +=". "
d[j].principals += pos->first.c_str();
d[j].principals +=": "
d[j].principals += pos->second.c_str();
d[j].principals += ".";

k++;

}

d[j].blankLine =" ";

int timeSec = reportData[j].attacktime;

struct tm*tml = localtime((const long *) &tinmeSec);

dijl].time += " Attack Tinme: “;
d[j].tine += asctinme(tnl);

82



N NN NN NNy
//Handl er for the action the user takes by hitting the
// menu backup button. This button will back up the
/lactive attack report file.

PELTEETLEEE bbb rgl
voi d Cl DEDoc: : OnMenuBackup()

{
// TODO Add your conmand handl er code here
/1 Handl er for backing up the attack report file.
CBackupDi al og cdl g;
i f(cdl g. DoMobdal () ==l DOK)
di spl ayNum = 0;
Updat eAl | Vi ews( NULL) ;
/1 do nothing
/1 File backup code witten bel ow
char *lockFile = "lock.txt";
HANDLE f Handl e;
whi | e(1)
fHandl e = (HANDLE) OreateFil e(l ockFile, GENERIC READ, 0, NULL,
CREATE_NEW FI LE_ATTRI BUTE_NORMAL, NULL);
i f (fHandl e == | NVALI D_HANDLE VALUE)
//cout << "File already |ocked" << endl;
G oseHandl e(f Handl e) ;
el se
br eak;
/1 End of file Iocking code
fileBackup();
C oseHandl e(f Handl e) ;
Del et eFi | e(l ockFile);
/1 File locking code follows
}

N NN NNy
/1 Function which results in the backing up of the active attack
/lreport file "report.txt" to another file "backup.txt"
I NN NNy
voi d Cl DEDoc: : fil eBackup()

{

HANDLE hSrc, hDest;
DWORD dwRead, dwWitten;

char pBuffer[1024];

hSrc = CreateFil e(I NFILE, GENERI C_READ, 0, NULL,

OPEN_EXI STING FI LE_ATTRI BUTE_NORVAL, 0);

hDest = Creat eFi | e( BACKUPFI LE, GENERIC WRI TE, 0, NULL,
CREATE_ALWAYS, FILE_ATTR BUTE_NORVAL, 0);

do

83



ReadFi | e(hSrc, pBuffer, sizeof(pBuffer), &iwRead, NULL);
if (dwRead != 0)
WiteFil e(hDest, pBuffer, dwRead, &IwWWitten, NULL);
} while (dwRead !'= 0);

G oseHandl e(hSrc);
d oseHandl e( hDest) ;
of stream fout;
time_t Iting;
tine(& tine);

fout. open(|I NFI LE, i os: :out);

fout << "Last backup on ";

fout << ctime(&tine) << "\n\n" ;
fout.close();

}

voi d Cl DEDoc: : Get DocSi zes(int m Hei ghtLine, CSize &sizeTotal, CSize &sizePage, CSize
&si zeli ne)

{
i nt nHei ght;
int nWdth;
const int FUDGE_H = 400;
const int FUDGE V = 400;

i f(displayNum == 0)
{

nHei ght = 200 + FUDGE_H,
nwWdth = 200 + FUDGEV,
si zeTotal = CSize(nWdth, nHeight);
}
el se
{
nHei ght = numAttacks * 10 * m Hei ghtLi ne + FUDGE_H,
nWdth = 200 + FUDGE_V,
si zeTotal = CSize(nWdth, nHeight);
}
si zePage = CSize(sizeTotal.cx /10, sizeTotal.cy /10);
si zeLine = CSi ze(si zePage. cx /10, sizePage.cy /10);

Att ackl nfo:: Attackl nfo()
{

// do not hi ng

FEOEETEEEEEE bbb iy
/1 Disp class inplenentation

/11 MPLEMENT_SERI AL(Di sp, CObject, 1)
Di sp:: D sp()
{

/1 do nothing



void Disp::Serialize(CArchive &ar)

{
/1 do not hi ng
}

BOOL Cl DEDoc: : OnQpenDocunent ( LPCTSTR | pszPat hNane)

if (!CDocunent:: OnQpenDocunent (| pszPat hNane) )
return FALSE;

// TODO Add your specialized creation code here

return TRUE;

voi d Cl DEDoc: : Del et eCont ent s()
// TODO Add your specialized code here and/or call the base class

}
voi d Cl DEDoc: : Ond oseDocunent ()

/] TODO Add your specialized code here and/or call the base class

CDocunent : : Ond oseDocunent () ;

85



// IDEView.h : interface of the Cl DEView cl ass
/1
I NN NNy

#if 1defined( AFX | DEVI EWH_53E7EC96_DB841_45F9_AACD_769E9D2BAB29 | NCLUDED )
#define AFX_| DEVI EWH_53E7EC96_DB41_45F9_AACD 769E9D2BAB29 | NCLUDED

#i f _MSC_VER > 1000
#pragnma once
#endif // _MSC_VER > 1000

class CIDEView : public CScroll View

{

protected: // create fromserialization only
CIDEView);
DECLARE_DYNCREATE( Cl DEVi ew)

/1 Attributes
public:
Cl DEDoc* Get Docunent () ;
i nt m_nHei ght Li ne;
i nt m nPageW dt h;
i nt m nPageHei ght;
i nt mnMapMde;

/1 Qperations
public:

/] Overrides
[/l dassWzard generated virtual function overrides
[ 1 {{ AFX_VI RTUAL( Cl DEVi ew)
publi c:
virtual void OnDraw(CDC* pDC); // overridden to draw this view
virtual BOOL PreCreat eW ndow( CREATESTRUCT& cs);
virtual void Onlnitial Update();
virtual void OnPrepareDC(CDC* pDC, CPrintlnfo* plnfo = NULL);
pr ot ect ed:
virtual BOOL OnPreparePrinting(CPrintlnfo* plnfo);
virtual void OnBeginPrinting(CDC* pDC, CPrintlnfo* plnfo);
virtual void OnEndPrinting(CDC* pDC, CPrintlnfo* plnfo);
virtual void OnPrint(CDC* pDC, CPrintlnfo* plnfo);
/1}}AFX_VI RTUAL

/1 1nplementation
public:
virtual ~C DEView();
#i f def _DEBUG
virtual void AssertValid() const;
virtual void Dunp(CDunpCont ext& dc) const;
#endi f

pr ot ect ed:

/'l Generated nessage nap functions
pr ot ect ed:
11 {{ AFX_NM5Q Cl DEVi ew)
/1 NOTE - the dassWzard will add and renove nenber functions here.
/1 DO NOT EDI T what you see in these blocks of generated code !
[1}} ARX_MBG
DECLARE_MESSAGE_MAP()
H
#i fndef _DEBUG // debug version in | DEVi ew cpp
inline ClDEDoc* Cl DEVi ew. : Get Docunent ()
{ return (Cl DEDoc*)m pDocunent; }
#endi f
NN NN NN NN NN NNy

/1 {{ AFX_| NSERT_LOCATI ON} }

86



// Mcrosoft Visual C++ will insert additional declarations imediately before the
previous |ine.

#endif // 1defined( AFX_| DEVI EWH 53E7EC96_D841_45F9_AACD_769E9D2BAB29 | NCLUDED )

87



/1 IDEView cpp : inplenentation of the C DEVi ew cl ass
/1

#i ncl ude "stdafx. h"
#i ncl ude "1 DE. h"

#i ncl ude "1 DEDoc. h"
#i ncl ude "1 DEVi ew. h"

#i f def _DEBUG

#def i ne new DEBUG_NEW

#undef TH S_FI LE

static char THIS FILE[] = _ FILE_;
#endi f

RNy
/1 C DEVi ew

| MPLEMENT_DYNCREATE( Cl DEVi ew, CScrol | Vi ew)

BEG N_MESSAGE_MAP( Cl DEVi ew, CScrol | Vi ew)
[ 1 {{ AFX_M5G_MAP( Cl DEVi ew)
/1 NOTE - the dassWzard will add and renove mappi ng macros here.
/1 DO NOT EDI T what you see in these bl ocks of generated code!
/1}} AFX_MSG VAP
/1 Standard printing commands
ON_COMVAND( | D_FI LE PRI NT, CscrollView :OnFilePrint)
ON_COMMAND( | D_FI LE_PRI NT_DI RECT, CScrol |l View : OnFil ePrint)
ON_COWAND( | D_FI LE_PRI NT_PREVI EW CScrol | View : OnFi | ePri nt Previ ew)
END_MESSAGE_MAP()

NN NN NN NN NNy,
/1 CI DEVi ew construction/destruction

Cl DEVi ew. : Cl DEVi eW()

/1 TODO add construction code here

}

Cl DEVi ew. : ~Cl DEVi ew()
{
}

BOOL Cl DEVi ew: : PreCr eat eW ndow( CREATESTRUCT& cs)

/] TODG Modify the Wndow class or styles here by nodifying
/1 the CREATESTRUCT cs

return CScrol | Vi ew : PreCreat eW ndow(cs);
}

NN NN NNy,
/] ClI DEVi ew dr awi ng

const int MARG N _LEFT = 30;
const int LINES = 30;

voi d Cl DEVi ew. : OnDr aw( CDC* pDC)
Cl DEDoc* pDoc = Get Docurent () ;
ASSERT_VALI D( pDoc) ;
CSi ze si zeTot al , si zePage, si zeli ne;
si zeTotal = sizePage = sizelLine = CSize(0,0);
/] TODO add draw code for native data here
i f (pDoc- >di spl ayNum == 0)
{

pDoc->Get DocSi zes(m nHei ght Li ne, sizeTotal, sizePage, sizelLine);
Set Scrol | Si zes( MM _TEXT, sizeTotal, sizePage, sizeLine);

88



/| pDC- >Text Qut (100, 100, pDoc->m wel cone) ;
CBi t map bit map;
CDC dcMenory;
bi t map. LoadBi t map( | DB_BI TMAPL) ;
dcMenory. O eat eConpat i bl eDC( pDO) ;
dcMenory. Sel ect Obj ect ( &bi t map) ;

pDC->Bi t Bl t (250, 100, 500, 500, &lcMenory, 0, 0, SROCOPY) ;

}
el se
{
ASSERT(m nHei ght Li ne > 0);
int nLines = 5;
i f(pDoc -> numAttacks <=0)
{
pDoc- >CGet DocSi zes(m nHei ght Li ne, sizeTotal, sizePage, sizeline);
Set Scrol | Si zes(MM LCENGLI SH, si zeTotal , sizePage, si zelLi ne);
pDG >Text Qut (MARGA N_LEFT, -nLines * m nHei ghtLine, pDoc->mdisplay);
el se
{
pDoc- >CGet DocSi zes(m nHei ght Li ne, sizeTotal, sizePage, sizeline);
Set Scrol | Si zes(MV LOENGLI SH, si zeTotal, sizePage, si zeLine);
pDG >Text Qut (MARG N_LEFT, - nLines++ * m nHei ght Li ne, pDoc->openLi ne);
for(int i=0;i < pDoc ->numAttacks;i++)
pDC- >Text Qut (MARA N_LEFT, -nLi nes++ * m nHei ght Li ne,
pDoc->di spl ay[i] . bl ankLi ne);
pDC- >Text Qut (MARA N_LEFT, -nLines++ * m nHei ght Li ne,
pDoc->di spl ay[i]. attack);
pDC- >Text Qut (MARA N_LEFT, -nLines++ * m nHei ght Li ne,
pDoc->di spl ay[i]. bl ankLi ne) ;
pDC- >Text Qut (MARA N_LEFT, -nLines++ * m nHei ght Li ne,
pDoc->di spl ay[i].invol ves);
pDC- >Text Qut (MARA N_LEFT, -nLi nes++ * m nHei ght Li ne,
pDoc->di spl ay[i]. bl ankLi ne) ;
pDC- >Text Qut (MARA N_LEFT, -nLines++ * m nHei ght Li ne,
pDoc->di spl ay[i]. princi pal s);
pDC- >Text Qut (MARA N_LEFT, -nLines++ * m nHei ght Li ne,
pDoc- >di spl ay[i] . bl ankLi ne) ;
pDC- >Text Qut (MARA N_LEFT, -nLi nes++ * m nHei ght Li ne,
pDoc- >di spl ay[i] . bl ankLi ne) ;
pDC- >Text Qut (MARA N_LEFT, -nLi nes++ * m nHei ght Li ne,
pDoc->di spl ay[i].tine);
nLi nes++;
}
}
}

}

NN NNy,
/] CIDEView printing

BOOL Cl DEVi ew. : OnPrepar ePrinti ng(CPrintlnfo* plnfo)

{
FEHCTTEEEEEEr i n

Cl DEDoc* pDoc = Get Docurent () ;
ASSERT_VALI D( pDoc) ;

CSi ze sizeTotal, sizePage, sizeline;
si zeTotal = sizePage = sizelLine = CSize(0,0);

pDoc- >Get DocSi zes(m nHei ght Li ne, si zeTot al , si zePage, si zelLi ne) ;
int nunPages = (int) sizeTotal.cy/(mnPageHei ght);

i f (nunPages < 1)

89



nunPages = 1;
pl nf o- >Set MaxPage( nunPages) ;

/1 default preparation
return DoPreparePrinting(plnfo);

}

voi d Cl DEVi ew. : OnBegi nPrinti ng(CDC* pDC, CPrintlnfo* plnfo)

{
/] TODO add extra initialization before printing
/] Get the printer's resolution in mllimeters
int nHorzSi ze = pDG >Cet Devi ceCaps( HORZSI ZE) ;
int nVertSize = pDG >Cet Devi ceCaps( VERTSI ZE) ;

m nPageW dt h = (doubl e)nHorzSi ze / 25.4 * 100. 0;
TRACE(" m nPageW dt h = %\ n", m nPageW dt h) ;

m nPageHei ght = (doubl e)nVertSi ze /25.4 * 100. 0;
TRACE(" m nPageHei ght = %\ n", m nPageHei ght) ;

}
voi d Cl DEVi ew. : OnEndPri nti ng(CDC* /*pDC/, CPrintlnfo* /*plnfo*/)

/] TODO add cleanup after printing
}

NN NNy
/1 Cl DEVi ew di agnostics

#i f def _DEBUG
voi d Cl DEVi ew. : Assert Valid() const

CScrol | View : AssertValid();
}

voi d Cl DEVi ew. : Dunp( ChDunpCont ext & dc) const

CScrol | Vi ew. : Dunp(dc);
}

Cl DEDoc* Cl DEVi ew. : Get Docurent () // non-debug version is inline

ASSERT( m pDocurrent - >l ski ndOf ( RUNTI ME_CLASS( Cl DEDoc) ) ) ;
return (Cl DEDoc*)m pDocurent ;

}
#endi f //_DEBUG

NN NN NNy
/1 Cl DEVi ew nessage handl ers
void Cl DEVi ew. : Onl ni ti al Updat e()

{
CScrol | View :Onlnitial Update();

/] TODO Add your specialized code here and/or call the base class
Cd i ent DC dc(this);

/'l Declare a TEXTMETRI C vari abl e.

TEXTVETRIC tm

/1 fill up the variable info.

dc. Get Text Metrics(&n;

m nHei ghtLi ne = tmtnHeight + tmtnExternal Leadi ng;
m nMapMode = MM LCENGLI SH;

CSi ze si zeTot al , si zePage, si zeli ne;

si zeTotal = sizePage = sizelLine = CSize(0,0);

Cl DEDoc* pDoc = Get Docurnent () ;
ASSERT_VALI D( pDoc) ;

90



pDoc- >CGet DocSi zes(m nHei ght Li ne, si zeTot al , si zePage, si zelLi ne) ;

Set Scrol | Si zes(m nMaphdde, sizeTotal, sizePage, sizeLine);

voi d Cl DEVi ew. : OnPr epar eDC(CDC* pDC, CPrintl nfo* plnfo)
{

// TODO Add your specialized code here and/or call the base class

CScrol | Vi ew. : OnPrepar eDC( pDC, pl nfo);
i f(pDC->lsPrinting())

{
int nPages = plnfo->mnCurPage - 1;
int y = (nPages) * -m nPageHei ght;
pDC- >Set W ndowOr g( 0, vy);

}

}
voi d ClDEView : OnPrint (CDC* pDC, CPrintlnfo* plnfo)

/1 TODO Add your specialized code here and/or call the base class
ASSERT_VALI D( pDO) ;

{

}
CScrol | View : OnPrint (pDC, plnfo);

91



11. References

[1] John Clark & Jeremy Jacab, “ Attacking Authentication Protocols’, High Integrity
Systems 1(5):465-474, August 1996.

[2] H.Debar, M.Dacier, A.Wespi, “Towards a Taxonomy of Intrusion Detection
Systems’, Elsevier Science B.V 31 (1999) 805-822

[3] Dorothy E. Denning, “An Intrusion-Detection Model”, From 1986 | EEE computer
Society Symposium on Research in Security and Privacy.

[4] Dorothy Denning and G.Sacco, “ Timestamps in Key Distribution Protocols’,
Communications of the ACM, 24(8), August 1981, pp. 533-534.

[5] Roger M. Needham and Michael Schroeder, “U sing Encryption for Authentication in
Large Networks of Computers’, Communications of the ACM, 21(12), December
1978, pp. 994-995.

[6] Alec Yasinsac, “ Detecting Intrusions in Security Protocols’, Proceedings of First

Workshop on Intrusion Detection Systems, in the 7" ACM Conference on Computer

and communications Security, June 2000, pp. 5-8.

92



