

The Monitor and Principals
By

Edwin A. Melendez

The Monitor and Principals

2

Contents

Abstract 5

1. Introduction

2. Background on Intrusion Detection Systems

3. Secure Enclave Attack Detection System

3.1. The Needham-Schroeder Protocol

3.2. Detecting an attack on NSP

3.3. The Topology of SEADS

3.4. Creating SEADS

4. The Monitor

4.1 The Monitor’s Database

4.2 The Monitor’s Threads

4.3 The Monitor’s Code

5. The Principal Simulation Environment

5.1 The Components of the PSE

5.2 The Principal Simulator

5.3 The Principal Dispatcher

5.4 The Principals

6. Test and Results

7. Conclusion

6

7

9

9

11

12

14

14

14

16

18

19

19

20

25

26

28

29

Appendix

1. Test and Results

2. Computer Skills needed for the project

30

34

Bibliography 37

The Monitor and Principals

3

Dedication

 My family provides me with inspiration and support. In part, I am who I am

thanks to them. I am a lucky person to have such a loving family. My father, Edwin, is

always there to give me advice and lend a helping hand. My mother, Carmen, never fails

to show me the bright side of life and put a smile on my face. My brother, Jeffrey

Melendez, is my role model. He impresses me and I look up to him for motivation.

Finally my little brother and teen sister, Jonathan and Mariela live far away from me but I

still keep them close to my heart.

The Monitor and Principals

4

Acknowledgments

 I would like to thank Dr. Alec Yasinsac, my major professor, for all his effort in

mentoring me. The weekly meetings and many discussions that we shared were

necessary for the successful completion of this project. I am also grateful to the Systems

group for their administration of the security lab. Lastly, I would like to thank my other

two lab members, Sachin Goregaoker and Nikhil Patel, for their feedback and motivation.

The Monitor and Principals

5

Abstract

 With the unprecedented growth of computer networks in the past decade, the need

for security is now bigger than ever. An intrusion detection system or IDS can add a

level of security to a computer network by monitoring all the users in its environment.

Generally, an IDS detects attack by analyzing the payload in messages or commands.

Recently, a way of detecting intruders without looking at the contents of a message was

introduced [1]. The technique is applied to the specific problem setting of security

protocols.

Security protocols are used for authentication and encryption key exchange.

However, many of these protocols are flawed and vulnerable to attacks. The Secure

Enclave Attack Detection System or SEADS examines the pattern of send and receives

events in the execution of a protocol to detect intruders. This detection system consists of

three major parts: the monitor, intrusion detection engine and knowledge base.

Since network messages may be encrypted, until now there was no known method

of collecting information for security protocol intrusion detection. However, the

SEADS’s monitor uses a novel technique of gathering meta- information of network

messages to detect attacks.

My master’s project involves the creation of the monitor. In addition to this, I

have developed a principal simulation environment used to test SEADS.

The Monitor and Principals

6

1. Introduction

In the 1990’s we experienced the dawn of the Internet revolution. Now the

Internet is growing at an unprecedented rate and is embedding itself in the fabric of our

society. The average American can now trade stocks, check bank accounts, and buy

goods online. Unfortunately, this new convenience comes with a price. Network

security has not grown in par with the Internet and as a result many Internet users are

vulnerable to attacks.

An intrusion detection systems or IDS can add a level of security to a computer

network by monitoring all the users and activity in its environment. Generally an IDS

detects attack by analyzing the payload in messages or commands. However, in many

cases this is not practical due to the fact that messages are often encrypted. Recently, a

novel way of detecting intruders without looking at the contents of a message was

introduced [1]. This system is called the Secure Enclave Attack Detection System or

SEADS and it analyses meta- information about packets on the network. SEADS is

applied specifically to the domain of security protocols.

Security protocols are commonly used on networks for authentication purposes

and for the distribution of encryption keys. Since these protocols are used when secure

channels of communication are established, they must be designed to be free from attack.

Nevertheless, the literature shows that many of these protocols are vulnerable to intrusion

by sophisticated intruders [4].

Normally, formal methods of verification are used whenever new security

protocols are introduced. Nevertheless, formal methods have lacked the power to prove

the absence of errors in protocols. Another limitation of formal methods is that they

examine protocols offline, most likely in someone’s research lab. As of now, there are no

methods available to check a protocol online while it is being executed. These

limitations make the implementation and use of security protocols vulnerable to attacks.

The Monitor and Principals

7

My master’s project entails the development of a monitor that gathers events from

encrypted sessions. The monitor uses a novel technique of gathering meta-information

about network messages. Until now there existed no known method of collecting

information for security protocol intrusion detection.

An integral element of my master’s project was to develop a principal simulation

environment. Principals are the names given to the processes that participate in the

execution of security protocols. This simulated environment is used to test the

functionality of the monitor by simulating normal, suspicious and attack behavior.

The rest of this paper is organized with the following objective in mind: present

background information about intrusion detection systems, explain the inner workings of

SEADS as described in [1] and finally provide a detailed description of the monitor and

the principal simulation environment.

2. Background on Intrusion Detection Systems

Numerous intrusion detection systems have been created and applied to a wide

range of problems [2]. They can be used on networks to provide an extra layer of

security. However, they do not provide security alone. IDSs are designed to complement

and assist other forms of security. This interoperability between security systems is

essential and represents the time-tested principle of defense in depth.

The Common Intrusion Detection Framework or CIDF is a movement to develop

ways to allow intrusion detection engines to interoperate with other programs [5]. One of

their attempts is to architecturally divide the IDS into 4 major independent components

that can be reused in other systems. These components consist of the following:

1. Event Generator

The Monitor and Principals

8

2. Event Analyzer

3. Event Database

4. Response Unit

The event generator is the component that samples activity from the network

environment and convert the information into objects that can be used by other

components. After converting the information into objects, the generator stores the

objects in the event Database. The event analyzer retrieves the objects from the event

database and analyses them in order to detect intrusions.

There are two main designs that are available to the event analyzer for detecting

attacks: 1) the knowledge-based design and 2) the behavioral-based designs [6]. In

theory, an IDS can use either or both design approaches to detect intruders.

The knowledge-based design detects intruders by pattern-matching user activity

to known attack signatures. The signatures are kept in a database containing a repertoire

of information describing normal, suspicious or attack behavior. A signature is a

description of a behavior. For instance, in an operating system, an attack signature may

consist of the following sequence of user commands:

…

su <correct password>

rm –R /*

If the event analyzer detects a sequence of events that matches a corresponding attack

signature, then an attack has been detected.

The behavioral-based design uses statistical methods or artificial intelligence in order

to detect attacks. Profiles of normal activity are created and stored in a database. Any

activity gathered by the event generator that deviates from the normal profile in a

statistically significant way can be deemed as suspicious activity or an attack.

The Monitor and Principals

9

3. Secure Enclave Attack Detection System (SEADS)

3.1 The Needham-Schroeder Protocol

To show how an intrusion detection program can detect an attack on a security

protocol an example will be shown. The Needham-Schroeder Protocol or NSP is a

popular and widely used key distribution and authentication protocol. This protocol was

first introduced in [12] in 1978 and now countless papers show how intruders can spoof

the participants by replaying messages. Nevertheless, this protocol is still widely used.

The protocol contains the following messages:

1. A -> S: A,B,na

2. S -> A: {na,B,kab,{kab,A}kbs}kas

3. A -> B: {kab,A}kbs

4. B -> A: {nb}kab

5. A -> B: {nb-1}kab

This protocol achieves two-way authentication between participants A and B plus

A and B are now in the possession of a common private key, which can be used to create

a secure connection between the two. The protocol uses public-key encryption and the

assistance of a central authentication server. In the first step of the protocol, A tells the

authentication server S that he wishes to communicate with B. In return, the server

replies with a message encrypted with A’s public-key, kas.

{na,B,kab,{kab,A}kbs}kas

Inside the encrypted message lie the following items:

1. na – a generated random number called a nonce. The nonce is used to show

the freshness of subsequent messages.

The Monitor and Principals

10

2. B – B’s identification name.

3. kab - A private key whom A and B will share after the protocol has

concluded.

4. {kab,A}kbs – A message destined for B encrypted with B’s public key.

On step three, A sends to B the encrypted message received from S. B in turn replies to

A with a nonce, nb, encrypted with the new private key, kab. A then proofs to B that he

has the new key by sending to B a modified nb encrypted with kab.

The NSPKP protocol consists of 5 messages and it involves the participation of

three parties. Since the messages in this protocol are encrypted, the contents of the

message cannot be used to detect attacks. We must use other type of information. For

instance, every message in the NSPKP protocol is sent by one participant and received by

another. This series of send and received events are valuable information that does not

involve the decryption of messages. The NSPKP protocol is shown below as a series of

send and receive events:

1. A -> S

2. S <- A

3. S -> A

4. A <- S

5. A -> B

6. B <- A

7. B -> A

8. A <- B

9. A -> B

10. B <- A

Notice that the number of events in the protocol is twice the number of messages.

This is due to the obvious fact that every message has a sender and receiver.

The Monitor and Principals

11

3.2 Detecting an Attack on NSPKP

 It is now time to show an attack on NSPKP and show how the intrusion is

detected. This particular attack was conceived in [3] and is referred to as the Lowe’s

attack. It requires the intruder to intercept messages from one session, opening a second

session and replaying the intercepted messages on the second session.

 Recall the last three message of the NSPKP.

3. A -> B: {kab,A}kbs

4. B -> A: {nb}kab

5. A -> B: {nb-1}kab

 The attack on NSPKP is shown below:

1-1. A -> M: {kab,na}kbs

 2-1. M -> B: {kab,na}kbs

 2-2. B -> M: {nb}kab

1-2. M -> A: {nb}kab

1-3. A -> M: {nb-1}kab

 2-3. M -> B: {nb-1}kab

Even though NSPKP encrypted the messages, the intruder, M, was still able to obtain

authentication from both parties, A and B. The intruder does not have to decipher the

payloads in order to perform this attack. Instead, the intruder relies on copying and

replaying messages. In the example shown above, M intercepts a message from A that

was destined for B. He then opens a new session with B using the message he obtained

from A. Subsequently, B replies to M with its reply, which in turn M uses to reply back

to A. This technique of copying and replying messages continues in steps 1-3 and 2-3.

The Monitor and Principals

12

In order for this attack to be possible, the intruder needs to be sophisticated

enough to remove and insert messages in the network at will. Unfortunately, the

technology to do this is available to many intruders.

The attack on the NSPKP protocol shown above, can be describe with the

following series of send and receive events:

Session 1 Session 2

1. A -> S

2. S <- A

3. S -> A

4. A <- S

5. A -> B

6. ---

7. ---

8. A <- B

9. A -> B

10. ---

1. ---

2. ---

3. ---

4. ---

5. ---

6. B <- A

7. B -> A

8. ---

9. ---

10. B <- A

The absence of events 1-5 in session 2 is not necessarily an attack signature since A can

open multiple sessions with B using the reply it obtained from the authentication server,

S, on session 1. However, the missing events 6,7 and 10 in session 1 and events 8 and 9

in session 2 are enough to declared the presence of an intruder.

3.3 The Topology of SEADS

SEADS assumes secure communication between the monitor and principals.

Inside this protected environment, the principals can safely forward information to

The Monitor and Principals

13

SEADS. However, the principals communicate between one another via public networks

such as the Internet.

According to this topology, the intruder only interacts with the principals on the public

network.

 Since SEADS is such a large program, a divide and conquer approach was used in

its design. The program was conceptually divided into three parts similar to the ones

described in the CIDF model presented in section 2. The three parts are:

1. The Monitor

2. The Intrusion Detection Engine (IDE)

3. The Knowledge Base (KB)

If we compare these components to the ones in the CIDF model, the monitor in SEADS

is equivalent to the event generator and the event database. This is because the monitor

gathers information from the network, converts the information to objects and stores

these into an internal database. The intrusion detection engine and the knowledge base

together are analogous to the event analyzer. The IDE uses the knowledge-base design

described in section 2. It retrieves objects from the monitor’s database and searches for

the presence of attacks by comparing these with signatures stored in the KB. The KB is a

repository of normal, suspicious and attack signatures.

Internet

Principals

Intruder

SEADS

Secure Enclave Attack Detection System (SEADS)

Internet

Principals

Intruder

SEADSInternet

Principals

Intruder

SEADS

Secure Enclave Attack Detection System (SEADS)

Figure 3.3

Principals

The Monitor and Principals

14

3.4 Creating SEADS

The creation of SEADS began in a software engineering class taught by Dr. Alec

Yasinsac in the fall of 2000. In this class, the project requirements were gathered, a

preliminary design constructed and a crude prototype was developed. Three students,

Sachin Goregaoker, Nikhil Patel and I continued the work on SEADS in the spring and

summer of 2001. During this time, almost all of what is now SEADS was redesigned and

recoded because the software produced in the software engineering class was not

expandable. There were a few reasons for this. The main two reasons were: 1) our

inexperience in programming for the Win32 platform and 2) the time constraint of

developing a complicated piece of software in one class.

The project was divided into three parts. Sachin and Nikhil were responsible for

creating the intrusion detection engine and knowledge base respectively. I was involved

in the development of the monitor. In addition to this, I developed the Principal

Simulation Environment.

 The software that was developed runs on the Windows 2000 platform. It was

written in C++ on the MS Visual C++ compiler. The code also uses the Win32 API, the

Microsoft Foundation Classes (MFC) and the Standard Template Library (STL).

4. The Monitor

4.1 The Monitor’s Database

 In an intrusion detection system, the monitor is the component that gathers

network traffic between principals. It packages this information into objects and stores

them in the monitor’s internal database.

The Monitor and Principals

15

The monitor is novel because it gathers information without looking at the

contents of the network traffic. The information that is collected is meta- information

about the traffic. In order to accomplish this, the principals are required to report events

to the monitor. You may recall from section 3, that during the execution of a protocol, a

series of messages are exchanged between principals. Each message in the protocol

consist of two events: a send and a receive event. These send and receive events are the

ones forwarded to the monitor.

Each time a principal reports to the monitor it packages the event in the following

format:

[PN][Parties][Nonce][Event]

Each field in the packet has a purpose. Their description is listed below:

1. PN – the name of the protocol executed by this principal in this session

2. Parties – this is a list of all the principals participating in the session

3. Nonce – this number is used to differentiate between sessions among the same

group of principals

4. Event – a send or receive event. This information also contains the two

principals involved. For instance, A->B or A<-B.

A session represents one execution of a security protocol. At any given time, the monitor

can be gathering information from countless of sessions involving different principals. It

is crucial for the monitor to efficiently convert the packet into an event object and store it

in its database. Figure 4a shows how an event object is stored

The Monitor and Principals

16

As shown above, a session can be identified from any other session with its PN, Parties

and Nonce fields. Each session in turn has a collection of events.

 It is worth noting that this organization of events by the monitor aids the intrusion

detection engine in detecting attacks. This is due to the fact that many known attacks

span multiple sessions involving the same group of principals [4]. Since the monitor’s

database stores events according to the group of principals involved, it is easy and fast for

the IDE to retrieve this information.

4.2 The Monitor’s Threads

 The monitor was designed to be robust and able to handle a multitude of sessions.

One possible scenario for the monitor is handling hundreds of sessions concurrently. To

accomplish this, a multi-threaded design was chosen for the monitor. This design is

commonly referred to in the literature as the consumer-producer thread design. In this

“DSP” “WP” …

[102,230,159]

[102,132,221]

…

session 1 session 2 …

A -> B

B <- A

…

Packet received from a principal

[PN] [parties] [nonce] [event]

The Monitor’s Database

“DSP” “WP” …

[102,230,159]

[102,132,221]

…

session 1 session 2 …

A -> B

B <- A

…

“DSP” “WP” …

[102,230,159]

[102,132,221]

…

session 1 session 2 …

A -> B

B <- A

…

Packet received from a principal

[PN] [parties] [nonce] [event]

The Monitor’s Database

Figure 4.1

The Monitor and Principals

17

case, the consumer is a thread, which is constantly listening to network socket

connections and managing all the open sockets. Any information the consumer reads

from a socket is quickly placed in a queue. The producer thread takes the packets waiting

in the queue, checks them for proper format, converts them to event objects and then

stores the objects in the monitor’s database. After storing an object in the database, the

producer thread signals the IDE engine about the presence of new events. In turn, the

IDE uses a well-defined interface provided to it by the monitor to retrieve events from the

monitor’s database. This consumer-producer thread design helps the monitor handle

many concurrent sessions by shifting the bottleneck from the network socket’s I/O and

into the internal, dynamic queue of the monitor. Figure 4.2 illustrates the monitor’s

threads collaborating in a consumer-producer thread design.

The Monitor and Principals

18

4.3 The Monitor’s Code

 The monitor was coded in Visual C++ for the Win32 platform. Win32 kernel

objects such as sockets, threads, events and critical sections were used extensively in the

code. The sockets allowed the monitor to listen for network traffic and the threads were

used in the coding of the consumer-producer monitor design. The events were used for

Network Thread

Database Thread

IDE

DB

1. The principals send
events to the monitor

2. The network thread reads the
events from the monitor’s network
socket

3. The network thread places the
events in the monitor’s queue

4. The database thread reads
events from the queue

5. The database thread
places the processed
event object in the
database

6. The database thread
signals the IDE about
updating the database

7. The IDE reads the new
events from the database.

The Monitor’s Use Case Scenario

…

Network Thread

Database Thread

IDE

DB

1. The principals send
events to the monitor

2. The network thread reads the
events from the monitor’s network
socket

3. The network thread places the
events in the monitor’s queue

4. The database thread reads
events from the queue

5. The database thread
places the processed
event object in the
database

6. The database thread
signals the IDE about
updating the database

7. The IDE reads the new
events from the database.

The Monitor’s Use Case Scenario

…

Figure 4.2

The Monitor and Principals

19

signaling and synchronizing and the critical sections were used to assure the integrity of

the monitor’s data structures.

Standard Template Library containers were also used. For instance, the monitor’s

database was created with maps, linked- lists, and vectors. Since these containers grow

dynamically, the monitor’s database can hold as much data as possible limited only by

the computer’s memory. To learn more about the coding of the monitor please refer to

the sections on the Appendix titled “Computer Skills Needed For The Project”.

5. The Principal Simulation Environment

5.1 The Components of the Principal Simulation Environment

 In order to test the functionality and correctness of SEADS, a network

environment of principals was developed. These principals were created with the

intelligence to initiate and engage in sessions involving other autonomous principals.

The principals run on any Windows computer and they have the ability to execute any

given protocol signatures over the network. As required, the principals always report the

completion of events to the monitor. In addition, the principals have the ability to engage

in different types of activity such as normal, suspicious or attack behavior.

 The Principal Simulation Environment is a sizable system and is therefore divided

into three different programs:

1. The Principal Simulator

2. The Principal Dispatcher

3. The Principals

The Principal Simulator provides the user- interface for creating an environment of

principals. Each simulation requires the input of parameters that are used to configure

the system. Some of the configuration parameters that the user can customize are the

The Monitor and Principals

20

number of sessions to be executed, the computers involved in the simulation and the

protocols and signatures that the principals will execute. After the simulation has been

created, it is the job of the Principal Dispatcher to instantiate the principals at a given

computer when instructed to do so by the Principal Simulator. The autonomous

principals then communicate with each other, execute protocols and report events to the

monitor. The figure 5.1 illustrates how the three components interact to produce a

simulation.

5.2 The Principal Simulator

Figure 5.1

Principal
Simulator1. The user interacts with

the Principal Simulator to
create and configure a
simulation.

The Principal Simulation Environment’s Use Case

PD PD PDPD PD

2. When the user clicks on run, the Principal Simulator
instructs the Principal Dispatchers at every participating
computer to create the principals according to the
configuration parameters entered by the user.

3. The Principal
Dispatcher creates
the principals

4. The Principals
communicate
with each other

Principal
Simulator1. The user interacts with

the Principal Simulator to
create and configure a
simulation.

The Principal Simulation Environment’s Use Case

PDPD PDPD PDPDPDPD PDPD

2. When the user clicks on run, the Principal Simulator
instructs the Principal Dispatchers at every participating
computer to create the principals according to the
configuration parameters entered by the user.

3. The Principal
Dispatcher creates
the principals

4. The Principals
communicate
with each other

The Monitor and Principals

21

The Principal Simulator is the program that configures the network environment

of principals. This is a GUI program that provides the user with an easy to use interface

to create and run simulations.

 All the commands necessary to work with the simulator are presented as menu

items in the menu bar. The toolbar also contains the most commonly used commands

such as run, new, edit, save and print. The user can create a new simulation by clicking

on the new command. This command will show a dialog box that permits the user to add

activities to the simulation. A simulation consists of activities and each activity requires

the following configuration parameters:

1. Protocol name

2. Number of Sessions.

3. Do all sessions consist of the same group of principals? (Check box)

4. Configure Sessions – What signature will the principals execute? (normal,

suspicious or attack)

The Monitor and Principals

22

5. Start time

In order to assist the user in selecting a protocol name, the program reads the file

containing the protocol signatures and populates the “Protocol Name” combo box with

the available protocols.

When the user clicks on the “Configure Sessions” button the following dialog box

is displayed:

The Monitor and Principals

23

Again the program reads the protocol signature file to populate another combo box listing

the attack signatures available for this particular protocol. The attack signatures are

numbered from 0 to (n-1) where n is the total number of signatures given for the protocol.

Once the user has finished adding activity to the simulation, all the configuration

parameters are printed to the screen as shown below:

The Monitor and Principals

24

After the creation of a simulation, the user has the choice of editing, saving,

printing or deleting the simulation. If he clicks on the edit button, a dialog box is shown

that will allow the user to add or remove activities from the simulation.

The Monitor and Principals

25

Once the user has finally loaded a simulation in the Principal Simulator he is

ready to run it. When the user clicks on run, the Principal Simulator communicates with

every Principal Dispatcher running on all the Participating computers. The Principal

Dispatcher in turns creates the principals that will run on his computer.

5.3 The Principal Dispatcher

 Why is there a need to have a Principal Dispatcher? The reason for having a

Principal Dispatcher has to do with the inability of creating processes on a computer

remotely. This inability is expected since the ability to start remote processes on a

computer can be seen as a security breach.

One solution around this problem is to create a process in every computer that

listens to the network on a pre-established port number. The Principal Simulator sends

instructions to each Principal Dispatcher at this port number. The instructions contain the

number of Principals to be created and configuration parameters for each. After getting

the instructions, the dispatcher creates each Principal. Below is a figure showing what

the Principal Dispatcher looks like.

The Monitor and Principals

26

5.4 The Principals

Principals are autonomous network programs that engage in sessions with other

principals. They execute protocols and report events to the monitor. The design issue for

this program was figuring out the easiest way to create a principal that could engage in

normal and attack behavior when instructed? The answer was to provide a file containing

signatures of normal, suspicious and attack behavior that the principals could read and

execute.

 This file, named “Simulation_File.txt”, is almost identical to the one provided to

the intrusion detection engine by the knowledge base. The file is divided by protocols

and each protocol contains at most one normal signature. Any additional signatures in

the file represent suspicious or attack scenarios. An example of a signature present in the

file is the one shown below executing a normal session of the Denning-Sacco Protocol or

DSP:

begin DSP -1

A -> S

S <- A

S -> A

A <- S

A -> B

B <- A

end

When the Principal Dispatcher creates the Principal the first step is to read

“Simulaiton_File.txt”. After picking the selected signature from the database the

Principal determines the number of other Principals involved. This number may differ

The Monitor and Principals

27

since different security protocols differ in the number of participating entities. However,

all protocols involve at least two principals.

 The next step is to determine the initiating principal. The initiator is responsible

for creating a random number called a nonce. As you may recall, the monitor identifies

sessions by using the protocol name, group of principals and nonce. The initiating

principal is now ready to send the first message to the corresponding party. During the

execution of the protocol signature the principals report the event to the monitor. Figure

5.4 shows the flow chart of the Principal program.

The Principal’s Use Case

The Monitor and Principals

28

 The principals have the special ability to open multiple sessions with the same

group of principals. They can accomplish this feat with the assistance of threads. This

feature is necessary since some protocols require the execution of parallel sessions. In

addition, opening multiple sessions allows for the simulation of particular sophisticated

attacks. These types of attacks usually involve the intruder opening multiple sessions

with the same group of principals.

6. Test and Results

 Extensive testing and demos were conducted to test the functionality of the

Monitor and the Principal Simulation Environment. In all the tests, the software executed

Send the next message
to the corresponding
principal. Forward

message to the monitor

Start

Read knowledge database

Open network connections to
monitor and other principals

Process configuration information
supplied by the principal simulator

Initialization

If Initiator?

send the first message
to the corresponding
principal. Forward

message to the
monitor

Yes Wait for
messages
from other
principals

No

Message
received

If protocol
is over or
timeout?

No

Yes

End

Send the next message
to the corresponding
principal. Forward

message to the monitor

Start

Read knowledge database

Open network connections to
monitor and other principals

Process configuration information
supplied by the principal simulator

Initialization

If Initiator?

send the first message
to the corresponding
principal. Forward

message to the
monitor

Yes Wait for
messages
from other
principals

No

Message
received

If protocol
is over or
timeout?

No

Yes

End

Figure 5.4

The Monitor and Principals

29

according to specifications. In addition, the monitor was successfully integrated with the

intrusion detection engine. In all the tests, SEADS detected the simulated suspicious and

attack behavior.

 Stress tests were also conducted to test the robustness of the software. These tests

primarily involved overloading the network with a multitude of sessions executing

different protocols and involving different principals. The Principals were successful at

generating a large volume of traffic and the monitor was able to gather all event

information from the principals.

 Some of the most significant tests are listed on the Appendix under “Test and

Results”.

7. Conclusion

Why implement the monitor? How can the creation of this software contribute to

security research? This monitor program shows that relevant and useful information can

be gathered without having to examine the payload of messages exchanged between

principals. This is very significant since encryption is becoming increasingly popular and

will be widely used by computers in the future.

An integral part of my project was the creation of the Principal Simulation

Environment. The monitor needs the active participation of the principals in order to

collect the meta- information from the network traffic. The principals are autonomous

network programs that execute signatures between each other and report the events to the

monitor.

If future work were to be done, what kind of improvements would the monitor

obtain? One thing that would be useful is to recreate the interface of the monitor

according to the specifications listed by the Common Intrusion Detection Framework. In

The Monitor and Principals

30

this way, the monitor could theoretically be reused in other intrusion detection systems

looking for a Windows monitor program. As you may recall, CIDF is a movement to

divide intrusion detection systems into portable parts that can be reuse in other systems.

CIDF was discussed in section 2. Another possible modification to the monitor would be

to make it platform independent and mobile. In this way, the monitor could be deployed

in different systems running a variety of operating systems.

The Monitor and Principals

31

Appendix

1. Test and Results

 All tests were conducted in the newly created Computer Science Security Lab

called SAIT. During the tests, six workstations running Windows 2000 were used. Two

of the workstations were SUN Microsystems running Windows 2000 via a SUNPCI card.

All the PCs were equipped with a Pentium III processor and 128MB of RAM. The tests

were created using the Principal Simulator program presented in this paper. After the

tests were created they were saved to files with .sop extensions. These tests are listed

below:

Test # 1 – “StressTest_5.sop”

 The file “StressTest_5.sop” contains a compilation of 11 sessions divided into 5

activities. The session parameters are listed in the following table:

Activity # and

Protocol Name

Session # Signature Group of

Principals

Starting Time Total # of

Principals

1 Attack #0 0 seconds

2 Normal 2 seconds 1. DSP

3 Normal

Different

Groups
4 seconds

3*3 = 9

1 Attack #0 0 seconds
2. DSP

2 Attack #0
Same Group

2 seconds

3

1 Attack #0 4 seconds
3. ISKOPUAP

2 Attack #0

Different

Groups 6 seconds

2*2 = 4

1 Attack #0 5 seconds
4. ISKTPUAP

2 Attack #0
Same Group

7 seconds

2

1 Attack #0 8 seconds
5. ORP

2 Attack #1
Different Group

10 seconds

2*3 = 6

Total # of Principals 24

Status of Test Success

The Monitor and Principals

32

Note that the number of principals involved in each session is determined by the protocol

being executed. For instance, the DSP protocol requires the participation of three

principals.

The main objective of this test was to examine the correctness of the simulator.

Could the Principal Simulation Environment create principals that executed according to

the parameters entered by the user? Specifically, the principal’s starting time and its

attack signature.

Test # 2 – “ParallelStress.sop”

 The file “ParallelStress.sop” contains a compilation of 8 sessions divided into 4

activities. The session parameters are listed in the following table:

Activity # and

Protocol Name

Session # Signature Group of

Principals

Starting Time Total # of

Principals

1 Attack #0 0 seconds
1. WLAPF

2 Normal
Same Group

3 seconds

3

1 Attack #0 1 seconds
2. WLAPF

2 Normal
Same Group

13 seconds

3

1 Normal 2 seconds
3. ORP

2 Attack #1
Same Group

4 seconds

3

1 Normal 4 seconds
4. ORP

2 Attack #1
Same Group

16 seconds

3

Total # of Principals 12

Status of Test Success

The main objective of this test was to show that the Principal Simulation Environment is

capable of simulating parallel and replay session attacks. These types of attacks involve

the same group of principals engaging in multiple sessions. In parallel session attacks,

the first session starts and then blocks for a predefined amount of time. While the first

session is blocking, the second session executes. Once the second session is finished, the

first session unblocks and continues executing until it finishes. Replay session attacks are

similar to parallel session attacks except that the two sessions do not interleave. Recall

The Monitor and Principals

33

that information about any given attack is available on the signature file. The principal’s

job is to read the proper signature and execute it accordingly. This test showed that the

principals were able to execute complicated signatures available on the file

“Simulation_File.txt”.

Test # 3 – Combination

 This test consisted of running the monitor for one hour and seeing if it could

handle a magnitude of sessions. In this test, several test files were executed repeatedly.

The “Other Files” listed below are test files that are variations of the StressTest_5.sop

and ParallelStress.sop files.

Test File Number Of Times Executed Total # of Principals

1. StressTest_5.sop > 25 > 24 * 5

2. ParallelStress.sop > 10 > 12 * 5

3. Other Files > 10 > #P * 10

Status of Test Success

This test showed that the monitor is robust, stable and accurate. It handled a great deal of

information and operated for a prolonged period of time. The large number of sessions

generated a great deal of network traffic, which the monitor had to store in its database.

After the test, the monitor’s database was analyzed and as hoped, there was no loss of

information. In addition, all the events were accurately organized in the database.

The Monitor and Principals

34

2. Computer Skills Needed For The Project

The Monitor and the Principal Simulation Environment are network and

multithreaded software that runs on the Windows platform. They use complex data

structures and algorithms. Moreover, the Principal Simulation Environment uses GUI

programming for its user interface. In all, this was complicated software to write and it

required the learning of new programming skills. The following is a list of skills used

during the coding phase of this project:

I. STL Containers – The Standard Template Library containers are

template classes that can contain literary any data type including other

containers. The containers can grow dynamically as you add elements and

their interface is standardized and easy to use. The containers used in my

project are listed below:

a. Maps – these are associative arrays implemented as binary trees. They

are also called dictionaries. They are convenient since they allow the

programmer to index the array with different data types.

b. Linked- lists – these containers are useful if you require a data structure

that can efficiently delete or add items anywhere on the list.

c. Vectors – useful if you need a dynamic array.

d. Queues and Strings

One of the fundamental designs of STL is based on the separation between data

and operations. All the containers provide iterators with similar interfaces to

read the containers. Therefore, if the programmer wishes to change the

container type in the middle of the project the code changes little. This idea is

shown pictorially below:

The Monitor and Principals

35

II. Win32 Programming – It was very rewarding and convenient

programming for Windows thanks to the many tools and documentation

available. First of all, credit has to be given to the Visual C++ compiler.

It is superb. It really helps the programmer be more productive. Its

debugger, color coded text, wizards, controls and pop-up combo-boxes

and other features makes the life of the programmer a lot easier. The

Visual C++ compiler also has the assistance of the MSDN library, which

documents the Win32 API. The library contains hyperlinks that makes it

easy to navigate the documentation.

The Win32 API was also convenient. Threads, network sockets,

events and critical sections are all considered kernel objects. They are

robust and well documented. Event objects were used as signal for

reading sockets, and synchronizing threads. The critical section objects

were used to maintain the integrity of the data structures when multiple

accesses by different threads were a possibility.

The Microsoft Foundation Library or MFC was used to create the

GUI of the program. MFC provides the programmer the ability to easily

create user- interfaces with features that users have come to expect from

software. One of these features is printing capability. In general, MFC

allows the programmer to create programs that have the “look and feel”

and streamline characteristics of popular Window programs.

Your CodeContainers Containers

Iterator Iterator

STL is based on a separation of data and operations

Your CodeContainers Containers

Iterator Iterator

Your CodeContainers ContainersContainers Containers

Iterator IteratorIterator IteratorIterator Iterator

STL is based on a separation of data and operations

The Monitor and Principals

36

One drawback about Win32 programming in general is its

propriety nature. It refuses to be POSIX compliant. POSIX is an interface

standard and it stands for Portable Operating System Interface. If a

program is written with the POSIX interface when using sockets, threads

and other kernel objects then the program can easily be ported to other

computer platforms. However, Microsoft worst nightmare would be if

Windows programs were easily ported to other computers. Therefore, it is

very hard or nearly impossible to write program for windows that are

platform independent.

The Monitor and Principals

37

Bibliography

[1] Alec Yasinsac, "Detecting Intrusions in Security Protocols", Proceedings

of First Workshop on Intrusion Detection Systems, in the 7th ACM

Conference on computer and Communication Security, June 2000

[2] Alec Yasinsac, "Active Protection of Trusted Security Services", Technical

Report TR--000101, Department of Computer Science, Florida State

University, Jan 2000

[3] Gavin Lowe, “Breaking and Fixing the Needham-Schroeder Public Key

Protocol Using FDR”, In Proceedings of TACAS, Vol. 1055 of Lecture

Notes in Computer Science, pp147-166, Springer-Verlag, 1996

[4] John Clark and Jeremy Jacob, “A Survey of Authentication Protocol

Literature: Version 1.0”, 1997

[5] Brian Tung, Common Intrusion Detection Framework (CIDF)-website,

www.gidos.org

[6] Dorothy E. Denning, “An Intrusion-Detection Model”, From 1986 IEEE

Computer Society Symposium on Research in Security and Privacy,

pp118-131

[7] Aaron Cohen and Mike Woodring, Win32 Multithreaded Programming,

O’Reilly Press, 1998

[8] Nicolai M. Josuttis, The C++ Standard Library, Addison-Wesley, 1999

[9] Chuck Sphar, Learn Microsoft Visual C++ 6.0 Now, Microsoft Press, 1999

The Monitor and Principals

38

[10] Anthony Jones, Network Programming for Microsoft Windows, Microsoft

Press, 1999

[11] Robert C. Martin, “UML Tutorial”, www.uml.org, Nov. 1998

[12] Roger M. Needham, Michael D. Schroeder, “Using Encryption for

Authentication in Large Networks of Computers”, Communications of the

ACM December 1978 vol. 21 #12, pp.993-999

