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ABSTRACT 
 
 
 
 
 In this paper we show how the Cryptographic Protocol Analysis Language 

Evaluation System (CPALES) was used in the analysis of the Transport Layer 

Security (TLS) protocol.  CPALES was also used to reveal flaws in one of the se-

curity protocols developed by Kao and Chow.  The TLS protocol is actually com-

posed of a set of subprotocols.  The difficulties of analyzing a protocol of this na-

ture and the resulting improvements made to CPALES are discussed.  We dem-

onstrate the ability of the system to analyze TLS for insecurities arising from in-

teractions among subprotocols. 
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1. INTRODUCTION 
 
 
 
 
Security protocols provide algorithms for communicating securely.  An inse-

cure medium is made secure using the tools of cryptography.  These tools in-

clude symmetric key cryptography, public key cryptography, hashing, signatures, 

certificates, key agreement, and other mechanisms.  These are the tools that al-

low secure communication.  Security protocols attempt to use these tools to gen-

erate secure interactions.  However, security protocols can be flawed and sub-

verted.  One method of finding these flaws involves the use of formal methods, 

which were originally used to analyze programs and algorithms. 

Protocols specify the actions of a set of principals.  This resembles the ac-

tions and operations of a function, algorithm or a program.  Like a program, a 

protocol can have flaws that prevent it from operating correctly.  Many proposed 

protocols are short and simple.  However, even with the most basic specifica-

tions, flaws have often been discovered only belatedly.  This can be attributed to 

the environment in which security protocols’ operate.  Here, the messages sent 

between principals can be read, modified and deleted by anyone while traveling 

between the two principals.  This was likened to “programming Satan’s com-

puter” [1] by Anderson and Needham.  This view has been supported by the dis-
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covery of security flaws in protocols years after they were initially proposed.  The 

Needham and Schroeder public key protocol [21] is good example.  Gavin Lowe 

discovered a weakness in the protocol seventeen years after its publication [16]. 

This is not an isolated incident.  Flaws have turned up in many protocols, forc-

ing the realization that protocols are difficult to design correctly.  Protocols are of-

ten utilized in critical systems.  Formal methods have been a traditional remedy 

for the correct design and testing of complex and critical systems.  The high cost 

of formal methods is offset by the necessity for correctness in security applica-

tions and the difficulty in verifying security through informal means.   

Different methodologies for verifying protocols have been explored.  These 

have been termed “inference construction methods”, “attack construction meth-

ods”, and “proof construction methods” by Gritzalis and Spinellis [10].  Attack 

construction methods attempt to create sets of attacks from the algebraic proper-

ties of the protocol.  It utilizes models of the actual computations to formally 

model protocols and to prove theorems about the protocols.  The “inference con-

struction method” analyzes the state of belief and/or knowledge of the partici-

pants in a protocol.  These are usually termed protocol analysis logics.  The most 

recognized logics, BAN [2], GNY [9], and SvO [25] are similar in operation.  They 

deal with authentication and key distribution.  The beliefs of the principals in a 

protocol are examined to see if the appropriate beliefs are reached.  The demon-

stration of this, aids in the discovery of flaws and verification of protocols.  The 

last method is similar to inference construction methods, but typically involves 
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more involved specification of protocols, and often requires generation of possi-

ble actions for analysis. 

These analysis methods have enjoyed success in the analysis of traditional 

protocols found in the literature.  Unfortunately for the users of these methods, 

standards bodies and protocol designers have not limited their designs according 

to the capabilities of the analysis tools.  These new protocols utilize collections of 

subprotocols that give users the flexibility to choose their method of exchange.  

This has led to a gap between the complexity of the protocols and the ability of 

the analysis tools to handle that complexity. 

The closing of this gap has just begun.  As of yet, only the NRL Protocol Ana-

lyzer has provided the necessary means to handle the new protocols.  It has 

been used to analyze IKE [18].  The NRL Protocol Analyzer models attacks with 

a set of rules that govern the actions of an intruder.  This tool falls into the family 

of tools utilizing attack construction methods.  Up to this point, proof construction 

and inference construction methods have not been created to analyze these 

families of protocols.  To help close this gap even further we have utilized the 

CPALES system [29], [30], [31] developed by Dr. Yasinsac to analyze one of 

these new protocols, TLS [6].   

The path that led us to the analysis of TLS began with the initial analysis of 

more traditional protocols with the CPALES system.  We hoped to utilize this tool 

to discover unknown characteristics of selected protocols.  In fact, we were able 

to discover some characteristics of a protocol not mentioned in the literature.  

This success convinced us to extend the system to handle the complex newer 
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protocols.  This required modifications to the system so the hashing, secure func-

tions, and key agreement as well as subprotocol interactions could be modeled.  

In particular the analysis of subprotocols also presented a problem with regards 

to an explosion in predicate size. 

The main result of this paper is concerned with analysis of the TLS protocol.  

The modifications to made CPALES in order to obtain these results will also be 

discussed.  Other topics discussed will provide background information that will 

explain the CPALES system of analysis and the TLS protocol.  An interesting re-

sult gathered before work began on the analysis of TLS will also be mentioned.  

The analysis of TLS will demonstrate the ability of the system to model subproto-

col interactions.   

The paper will be organized as follows.  An overview of the protocol analysis 

environment will be given in Section 2, which will include an explanation of 

weakest precondition reasoning, and BAN logic.  Then we will go over analysis of 

several traditional protocols in Section 3.  This will include an in depth description 

of the flaws found in the Kao Chow protocol [12].  We will then briefly describe 

the TLS protocol in Section 4.  The CPAL implementation of the TLS protocol will 

be explained in Section 5.  The problems posed by the analysis TLS protocol and 

the features implemented and used in CPALES to handle the more modern pro-

tocols are covered in section 6.  Finally we will discuss the evaluation of TLS in 

section 7.  Section 8 will give a conclusion and some thoughts raised by this 

work. 
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2. PROTOCOL ANALYSIS ENVIRONMENT 
 
 
 
 
Yasinsac recently announced a workbench [31] for the evaluation of proto-

cols.  This tool is an integration of the inference construction methods with proof 

construction methods, utilizing BAN logic and weakest precondition reasoning 

respectively.  The workbench has been used to evaluate the effects of protocols 

upon the principal’s state, as well as their inferred beliefs.   

The workbench includes a specification language, the weakest precondition 

reasoning engine, and an implementation of the PVS system to prove predicates 

produced from BAN specifications run through the reasoning engine. It uses the 

Cryptographic Protocol Analysis Language (CPAL) to explicitly specify the princi-

pal’s actions in a protocol.  The CPALES software performs “weakest precondi-

tion” (WP) evaluation on a CPAL specification.  Weakest Precondition reasoning 

provides a precondition that represents the conditions necessary for the protocol 

to satisfy its goals.  This provides a valuable proving environment for protocols, 

especially large commercial protocols like SSL, IKE and SET.   

The CPALES system also allows the BAN specifications to be added to the 

protocol actions.  CPALES can then create a predicate based on the BAN as-

sumptions and assertions that is dependent upon the position of the BAN state-
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ments in the protocol.  This makes the resulting proof dependent upon the order 

in which beliefs are acquired and fixes problems that BAN can have with this 

[24].  The BAN predicate produced is then proved in the proving software PVS 

[22].  An overview of the whole analysis process is given in Figure 1. 

 
 
 

CPALES 
 

CPALES 
 

PVS Proof 
Checker 

 

Modify 
Assumptions? 

 

 
 

Figure 1. Protocol Analysis Flowchart 
 
 
 
 

2.1 Weakest Precondition Reasoning 

 
This analysis method utilizes predicate transformers for operations that define 

the weakest precondition for a post-condition [8].  For example, given the state-

ment, X := Y, and the post-condition, X == Z, the predicate transformation for as-
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signment would require the substitution of Y for all occurrences of X in the post-

condition.  This evaluation method is used to automatically verify goals regarding 

the comparison of data values in protocols.  Consider the protocol described in 

Figure 2. 

 
 
 

A -> B: Na 
B -> A: {Na, A}K 

 
Figure 2.  ISO Sym. Key Two-Pass Unilateral Auth. Protocol 

 
 
 
 

This protocol utilizes a nonce value Na to provide authentication.  In order for 

the protocol to be correct, the key used by B to encrypt Na and the key used by A 

to decrypt would need to be the same.  The above specification is typical for the 

description of protocols and is often termed standard notation.  However, it is not 

amenable to meaningful analysis with weakest preconditions.  By utilizing more 

detailed specifications, more detailed results may be garnered.  In this case, the 

specification that A must decrypt the message received from B is not specified 

and is instead assumed.  To handle this deficiency, the cryptographic protocol 

analysis language (CPAL) is utilized to describe protocols.  The CPAL descrip-

tion of the above protocol is shown in Figure 3. 

The => and <- operators utilized above described the send and receive op-

erations respectively.  Encryption and decryption of a term x is described with the 

e[x]K and d[x]K.  The := symbol represents assignment, and the == symbol 
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represents equivalence.  And finally the assert(x) statement is used to describe a 

goal or post-condition for the protocol.  As you can see, the CPAL specification 

contains much more information.  This extra detail allows ambiguities to be 

avoided.  Of special note for analysis with weakest preconditions is the assertion.  

An assertion is required in order for a meaningful result to be produced. Table 1 

describes some weakest precondition transformations [29].  Figure 4 shows the 

transformation of the predicate as the statements are evaluated.  The CPAL 

specification is given on the left, while the condition that will allow the assertion to 

be satisfied, also termed the verification condition, is given on the left.  Note that 

the statements are evaluated from the end to the beginning. 

 
 
 

A:  => B(Na); 
B: <-(nonce); 
B: => A(e[<nonce, A>]K); 
A: <-(msg); 
A: (response, A) := d[msg]K; 
A: assert(Na == response); 

 
Figure 3.  CPAL Specification for ISO 

 

 
(A.K == B.K)->(Na == <Na,A>.1) /\  

(A.K != B.K)->(Na == d[e[<Na,A>]B.K]A.K.1) 
A: => B(Na);     (Na == d[e[<Na,A>]B.K]A.K.1) 
B: <-(nonce);     (Na == d[e[<Bq.nonce,A>]B.K]A.K.1) 
B: => A(e[<nonce,A>]K);  (Na == d[e[<nonce,A>]B.K]A.K.1) 
A: <-(msg);     (Na == d[Aq.emsg]A.K.1) 
A: (response,A) := d[msg]K;  (Na == d[msg]A.K.1) 
A: assert(Na == response); (Na == response) 

 
Figure 4.  Weakest Precondition Reasoning for ISO 
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2.2 Utilizing Logics with WP 

BAN and other analysis logics have been utilized to describe the beliefs that 

may be acquired within a security protocol.  Weakest precondition reasoning can 

enhance the ability of logics to analyze protocols.  Most logics provide few 

mechanisms to handle the order in which the beliefs of the principals are 

reached.  This was a weakness noticed by Snekkenes [24].  CPALES can rectify 

this problem through the use of weakest precondition transformations to deter-

mine how the ordering of assumes and asserts within the structure affect the 

verification condition. 

 
 
 

Table 1.  Selected Weakest Precondition Transformations 
 
Operation Statement Result 

Assign wp(“A:x:=e;”,P(A.x) P(A.e) 

Sec Send wp(“A:->B(msg);”,P(Bq.msg)) P(A.msg) 

Receive wp(“B:<-(msg);”,P(B.msg)) P(Bq.msg) 

if - else wp(if C {S1} else {S2;}”, P) C->wp(“S1;”,P))&(~C->wp(“S2;”,P)) 

Stmt Cat wp(“S1;S2”,P) wp(S1,wp(“S2;”,P)) 

Assert wp(“assert(Q);”,P) (P and R) 

Sym enc wp(“d[e[X]k1]k2”,P(d[e[X]k1]k2) (k1==k2)->P(X)&(k1!=k2)->P(old) 

 

 

To include analysis logics in this system, we must include the presumptions 

and goals of the protocol.  This is done by insertion of the propositions within the 
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CPAL specification.  In this way, the specification of the actions can serve as a 

framework for the assumption and assertion.  Figure 5 gives the CPAL-BAN logic 

specification for the protocol in Figure 3. 

 
 
 

A: assume(A.K == B.K); 
A: assume(X.believes(A.A, X.goodkey(A,K,B))); 
A: assume(X.believes(A.A, X.fresh(A.Na))); 
A: -> B(Na); 
B: <-(nonce); 
B: -> A(e[nonce,A]K); 
A: <-(msg); 
A: assume(X.sees(A.A, msg)); 
A: (response,A) := d[msg]K; 
A: assert(Na == response); 
A: assume(X.believes(A.A, X.said(A.B, A.Na)) IMPLIES 

X.believes(A.A, X.said(A.B, (A.Na, goodkey(A.A,A.K,A.B)))); 
A: assert(believes(A, believes(B, goodkey(A,K,B)))); 

 
Figure 5.  CPAL BAN logic specification for ISO 

 
 
 
 

All of the objects in the assumptions and assertions are associated with the 

data specified in the protocol actions.  The combined specification can then be 

evaluated in the CPALES program to provide a verification condition.  In this 

case it adds to the expressiveness of BAN logic by ordering the assumption and 

assertions.  Typically these logics make no distinction upon where in the protocol 

particular beliefs are reached.  This leads to an abstraction.  A permutation of the 

message ordering can result in an insecure protocol.  This complicates the 

analysis since an ordering of the propositions is not done in typical logical analy-

sis. 
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Here is a demonstration of the ordering done by the CPALES system upon 

assumptions and assertions.  To make this easier to understand, simple equality 

functions were used.  To similar specifications are given in Figures 5 and 6.  In 

the correctly specified example in Figure 5, first assert is the important one.  The 

second assert is just there to keep the simplification of the proposition from re-

moving the last assumption.  The verification condition for the correct ordering is 

given in Figure 8 while the result from the incorrect specification is given in Fig-

ure 9. 

The difference between the verification conditions is a result of the weakest 

precondition transformations.  The important feature is the way in which assume 

statements affect the post-condition. 

What this indicates is that the assumption made after the assertion cannot be 

used to prove the assertion.  The /\ conjunction separate the eq(b,c) assumption 

from the eq(a,c) assertion preventing the proof.  This can be seen in the sequent 

produced by PVS shown in Figure 10. 

The second proof shown in Figure 11 is incomplete because only the first as-

sumption is in the antecedent of the consequent eq(a,c).  The nothing term was 

added to illustrate that the eq(b,c) formula is only in a position to prove nothing.  

PVS proofs are constructed by producing terms in the antecedent that match the 

terms found in the consequent.  The second proof cannot be completed because 

the necessary formula is missing. 
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A: assume(A.eq(A.a,A.b)); 
A: assume(A.eq(A.b,A.c)); 
A: A.X := A.eq(A.a,A.c); 
A: assert(A.X); 
 

Figure 6.  Correct Assumption Ordering 
 

 
 
 
 
A: assume(A.eq(A.a,A.b)); 
A: A.X := A.eq(A.a ,A.c); 
A: assert(A.X); 
A: assume(A.eq(A.b,A.c)); 
A: assert(A.nothing); 
 

Figure 7.  Incorrect Assumption Ordering 
 
 

 
 
 
 
((A.eq(A.a,A.c) or  
not (A.eq(A.b,A.c))) or not (A.eq(A.a,A.b))) 
 

Figure 8.  WP result from Correct Ordering 
 

 
 

 
 
 
(((A.nothing or not (A.eq(A.b,A.c))) 
 and 
A.eq(A.a,A.c)) or not (A.eq(A.a,A.b))) 
 

Figure 9.  WP result from Incorrect Ordering 
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{-1}  (eq(b, c)) 
{-2}  (eq(a, b)) // antecedent 
  |------- 
{1}   eq(a, c)  // consequent 
this simplifies to:  
 
goal :   
{-1}  eq(a, b) AND eq(b, c) IMPLIES eq(a, c) // This is inst. lemma 
[-2]  (eq(b, c)) 
[-3]  (eq(a, b)) 
  |------- 
[1]   eq(a, c) 
Rule? (split -1) 
Splitting conjunctions, 
this yields  3 sub goals:  
 
goal.1 :   
{-1}  eq(a, c) 
[-2]  (eq(b, c)) 
[-3]  (eq(a, b)) 
  |------- 
[1]   eq(a, c) 
which is trivially true. 
 
goal.2 :   
[-1]  (eq(b, c)) 
[-2]  (eq(a, b)) 
  |------- 
{1}   eq(a, b) 
[2]   eq(a, c) 
which is trivially true. 
 
goal.3 :   
[-1]  (eq(b, c)) 
[-2]  (eq(a, b)) 
  |------- 
{1}   eq(b, c) 
[2]   eq(a, c) 
which is trivially true. 
Q.E.D. 
 

Figure 10.  PVS Proof of Correct Ordering 
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  |------- 
{1} (((nothing OR NOT (eq(b, c))) AND eq(a, c)) OR NOT (eq(a, b))) 
Rule? (flatten) 
Applying disjunctive simplification to flatten sequent, 
this simplifies to:  
 
goal :   
{-1}  (eq(a, b)) 
  |------- 
{1}   ((nothing OR NOT (eq(b, c))) AND eq(a, c)) 
Rule? (split +) 
Splitting conjunctions, 
this yields  2 sub goals:  
 
goal.1 :   
[-1]  (eq(a, b)) 
  |------- 
{1}   (nothing OR NOT (eq(b, c))) 
Rule? (flatten) 
Postponing goal.1. 
 
goal.1 :   
{-1}  (eq(b, c)) 
[-2]  (eq(a, b)) 
  |------- 
{1}   nothing  
Rule? (postpone) 
 
goal.2 :   
[-1]  (eq(a, b)) 
  |------- 
{1}   eq(a, c) 
 

Figure 11.  PVS Proof of Incorrect Ordering 
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2.3 PVS proofs of BAN logic 

 
The specification of BAN logic assumptions and assertions within the CPAL 

specification allows the production of a logical predicate utilizing BAN logic termi-

nology.  This predicate can then be evaluated with BAN logic adapted for the 

PVS system.  BAN logic utilizes logical postulates to enable the belief goals of 

principals to be proven.  The postulates as utilized with PVS are given in func-

tional notation.  Typically the function possesses a descriptive name that can be 

used to explain its meaning.  For instance, the function believes(P, goodkey(P ,K 

,Q)) can be read as P believes goodkey(P ,K ,Q).  Note as well that the goodkey 

function implies that the specified key is good for communication between the 

two principals.  Figure 13 shows some BAN logic postulates in PVS syntax.   

 

 
((((A.believes(A.A,A.believes(A.B,A.goodkey(A.A,A.K,A.B))) 
 or 
not ((not (X.believes(A.A,X.said(A.B,A.Na))) 
 or 
X.believes(A.A,X.said(A.B,X.cat(A.Na,X.goodkey(A.A,A.K,A.B))))))) 
 or 
not (X.sees(A.A,e[<A.Na,A>]A.K))) 
 or 
not (X.believes(A.A,X.fresh(A.Na)))) 
 or 
not (X.believes(A.A,X.goodkey(A.A,A.K,A.B)))) 
 

Figure 12.  CPALES BAN Verification Condition for ISO 
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Once the verification condition has been developed as shown in Figure 12, it 

can be adapted for use in a theorem proving system like PVS.  BAN like logics 

have typically been proven by hand.  The theorem proving system PVS, takes 

the ordered verification condition to produce a sequent.  By utilizing PVS, large 

verification conditions can be processed, ordering of assumptions can be seam-

lessly incorporated into proofs, and some automation is possible. 

 
 
 

msg_m1:  AXIOM FORALL (P,Q,KPQ,X: bool):   

 believes(P,(goodkey(P,KPQ,Q))) AND sees(P,e(X,KPQ)) IMPLIES  

 believes(P,said(Q,X)) 

msg_m2: AXIOM  FORALL (P,Q,PUB_Q, PUB_Q_INV, X:bool):  

 believes(P,pubkey(Q,PUB_Q)) and sees(P,e(X,PUB_Q_INV)) 

IMPLIES believes(P,said(Q,X)) 

N_verif: AXIOM  FORALL (P,Q,X: bool): 

 believes(P,fresh(X)) and believes(P,said(Q,X)) IMPLIES  

 believes(P,believes(Q,X)) 

juris: AXIOM  FORALL (P,Q,X: bool):  

  believes(P,controls(Q,X)) and believes(P,believes(Q,X)) IMPLIES 

believes(P,X) 

sees1: AXIOM  FORALL (P,X,Y: bool): sees(P,cat(X,Y)) IMPLIES   

 sees(P,X) and sees(P,Y) 

 

Figure 13.  BAN Logical Postulates for PVS 
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3. TRADITIONAL PROTOCOL EVALUATION 
 
 
 
 

The major work of this paper is concerned with the analysis of TLS.  This 

was not the initial focus of the work.  This work started as a survey of security 

protocols with the CPALES system in order to learn more about its capabilities as 

an analysis tool and to hopefully discover unknown characteristics of the ana-

lyzed protocols.  A couple of flaws were discovered in one of these protocols.  

The process of discovering this flaw will be used to demonstrate the CPALES 

system and to highlight some of its abilities.   

The protocols that we chose for this analysis were pulled from a set of fifty-

one protocols described by Clark and Jacob [5].  The draft by Clark and Jacob 

described the protocols and the attacks they were susceptible to from their own 

informal analysis and examination of the literature.  This information and a report 

[4] given by Brackin were used to aid in specifying the protocols and in the com-

parison of results.  Our analysis of the protocols was not comprehensive.  We 

specified thirty-nine of the protocols in CPAL using the CPALES system help with 

the specifications.  Nine of these protocols were also given BAN logic specifica-

tions.  Proofs using the PVS system were performed on the Carlsen protocol and 

the second Kao Chow protocol.   
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Upon surveying the Brackin report, it was noticed that Brackin’s system had 

trouble with some of the protocols.  So these protocols were analyzed to see if 

similar problems were encountered with our analysis.  In the case of the Neu-

mann and Stubblebine [20], and KLS protocol [17], both of these protocols are 

vulnerable to external interleaved reflected replay attacks as classified by Syver-

son [27].  In this type of attack, the intruder starts a new protocol run after the at-

tacked protocol starts and uses the two sets of messages to construct a suc-

cessful attack.   

In general, logics are not adept at detecting these vulnerabilities.  BAN in par-

ticular cannot find this type of attack since one of its premises is that a principal 

can identify its own messages.  If it cannot, then BAN will not find an attack using 

this weakness.  Other logics like GNY can represent some similar types of attack.  

However, all logics of this type encounter difficulty in eliciting their presence.  The 

problem is that the realization of a message’s potential to be replayed must be 

recognized by the analyzer.  The logic itself provides no hints.   

The Neumann Stubblebine protocol is also subject to a causal consistency at-

tack [26].  This type of attack is also not detected with logical analysis.  The 

Brackin tool assumes that a type check finds these attacks.  Again this type of at-

tack cannot even be represented in BAN logic.  Syverson suggested a way to 

represent the attack, however the flaw is not amenable to discovery with this 

suggestion.  These limitations to the BAN system prevented us from proving the 

attacks shown in Clark and Jacob for the Neumann Stubblebine and the KLS 

protocols.   
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The next protocols to be evaluated were the three Kao-Chow protocols [12].  

These were chosen since they were purported to fix the problems encountered 

by KLS and Neumann Stubblebine protocols.  Problems with the description 

given by Clark and Jacob necessitated a reference to the original paper.  The 

first protocol is recognized by Kao and Chow to be susceptible to the same at-

tack as the Needham Schroeder symmetric key protocol [7].  To combat this, 

they included a second key in the protocol to be used for encryption in the proto-

col while the session key would be used for encryption upon completion of the 

protocol.  A description of the protocol in standard notation is given in Figure 14.  

They suggested that the second key (Kt) should be considered secure.   

 
 
 

A->S:  A, B, Na 
S->B:  {A, B, Na, Kab, Kt}Kas, {A, B, Na, Kab, Kt}Kbs 
B->A:  {A, B, Na, Kab, Kt}Kas, {Na, Kab}Kt, Nb 
A->B:  {Nb, Kab}Kt 
 

Figure 14.  Second Kao Chow Protocol 
 

 
 
 

They reasoned that Kt is only used with a very small amount of material mak-

ing it difficult to crypto-analyze.  In addition, the material it encrypts is very ran-

dom in nature since Na should be a new random number and Kab should not be 

guessable.  Clark and Jacob do not explain these details.  Knowing what the au-

thor’s intended, I tried to analyze the protocol with the assumption that Kt was 

secure.  I did this by assuming that B believes that the key he receives in the fifth 
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field of the ticket from the server is good.  The full CPAL-BAN logic specification 

is begun in Figure 15 and finished in Figure 16.  The BAN logic goals used in the 

specification were given by Kao and Chow in their specification for the protocol. 

 The second Kao Chow protocol does not meet all of its goals.  The above as-

sumptions are enough to prove the given assertions only because invalid as-

sumptions were added.  The first invalid assumption is given as the 13th state-

ment.  The message received from the server (e[<A,B,Na,Kab,Kt>]Kbs) has 

nothing in it that Bob considers fresh.  Therefore the idealized message 

X.goodkey(B.A,B.Kab,B.B),X.goodkey(B.A,B.Kt,B.B) cannot have the nonce veri-

fication rule applied to it.  The nonce verification rule allows a principal who re-

ceives a message to believe that a principal who said the message believes what 

is in the message if the receiver believes the message is “fresh.”   

A message can be considered fresh if it contains something that a principal 

knows was created during the current run of the protocol.  Since this postulate 

may not be applied, Bob cannot acquire any belief in the goodness of Kab at this 

time.  The unsupported assumption:  

believes(B.B,fresh(cat(goodkey(B.A,B.Kab,B.B),goodkey(B.A,B.Kt,B.B) 

allows B to eventually believe that Kab and Kt are goodkeys.   

In a typical logical analysis it would not matter where an assertion was made 

in a protocol.  With CPALES analysis, it is important to find the earliest time an 

assertion can be made to take advantage of the ordering of the predicate done 

by the system.  In this case, Bob needs to have a belief in Kab in order for Alice 

to acquire belief in Bob’s belief.   
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SETUP, not attacked 
S: => A(<B, Kas>); 
A: <-(msga); 
A: (B, Kas) := msga; 
A: assume(X.believes(A.A, X.goodkey(A.A, A.Kas, A.S))); 
S: => B(<B, Kbs>); 
B: <-(msgb); 
B: (B, Kbs) := msgb; 
B: assume(X.believes(B.B, X.goodkey(B.B, B.Kbs, B.S))); 
 
START 
1. A: assume(X.believes(A.A, X.fresh(A.Na))); 
A: => S(<A, B, Na>); 
S: <-(msg1); 
S: (A, B, Na) := msg1; 
 
5. S: => B(<e[<A, B, Na, Kab, Kt>]Kas, e[<A, B, Na, Kab, Kt>]Kbs>); 
B: <-(msg2); 
B: (tickAS, tickBS) := msg2; 
B: assume(X.sees(B.B, B.tickBS)); 
B: (A, B', Na, Kab, Kt) := d[tickBS]Kbs; 
10. B: assume(X.believes(B.B,X.controls(B.S, 
       X.goodkey(B.A,B.Kab,B.B)))); 
11. B: assume(X.believes(B.B,X.controls(B.S,X.goodkey(B.A,B.Kt,B.B)))); 
12. B: assume(X.believes(B.B,X.said(B.S, 
        X.cat(B.A,X.cat(B.B,X.cat(B.Na,X.cat(B.Kab,B.Kt)))))) >> 
        X.believes(B.B,X.said(B.S, 
        X.cat(X.goodkey(B.A,B.Kab,B.B),X.goodkey(B.A,B.Kt,B.B))))); 
13. B: assume(X.believes(B.B, X.fresh(X.cat(X.goodkey(B.A,B.Kab,B.B), 

      X.goodkey(B.A,B.Kt,B.B))))); -- *** INVALID belief ** 
14. B: assert(B == B'); 
15. B: assert(believes(B, goodkey(A, Kab, B)));  
B: assume(X.believes(B.B, X.goodkey(B.A, B.Kt, B.B))); 
 
B: assume(X.believes(B.B, X.fresh(B.Nb))); 

 
Figure 15.  CPAL-BAN Spec. for 2nd Kao Chow Protocol 
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B: => A(<tickAS, e[<Na, Kab>]Kt, Nb>); 
A: <-(msg3); 
20. A: (tickAS, chalA, Nb) := msg3; 
A: assume(X.sees(A.A, A.tickAS)); 
A: assume(X.sees(A.A, A.chalA)); 
A: (A', B', Na', Kab, Kt) := d[tickAS]Kas; 
A: assert(<A, B, Na> == <A', B', Na'>); 
25. A: assume(X.believes(A.A, X.controls(A.S,  
          X.goodkey(A.A, A.Kab, A.B)))); 
A: assume(X.believes(A.A, X.controls(A.S, 
          X.goodkey(A.A, A.Kt, A.B)))); 
A: assume(X.believes(A.A,X.said(A.S, 
          X.cat(A.A,X.cat(A.B,X.cat(A.Na,X.cat(A.Kab,A.Kt)))))) >> 
          X.believes(A.A, X.said(A.S,  
          X.cat(A.Na, 
          X.cat(X.goodkey(A.A, A.Kab, A.B), 
                    X.goodkey(A.A,A.Kt,A.B)))))); 
A: assert(believes(A, goodkey(A, Kt, B))); 
A: assert(believes(A, goodkey(A, Kab,B))); 
30. A: (Na'', Kab') := d[chalA]Kt; 
A: assert(<Na,Kab> == <Na'',Kab'>); 
32. A: assume(X.believes(A.A, X.said(A.B, X.cat(A.Na,A.Kab))) >> 

X.believes(A.A, X.said(A.B, X.cat(A.Na,  
X.goodkey(A.A,A.Kab,A.B))))); 

A: assert(believes(A, believes(B, goodkey(A, Kab, B)))); 
 
A: => B(e[<Nb, Kab>]Kt); 
35. B: <-(msg4); 
B: assume(X.sees(B.B, B.msg4)); 
B: Nb_Kab := d[msg4]Kt; 
B: assert(Nb_Kab ==  <Nb, Kab>); 
B: assume(X.believes(B.B,X.controls(B.A, 
     X.fresh(X.goodkey(B.A,B.Kab,B.B))))); 
B: assume(X.believes(B.B,X.said(B.A,X.cat(B.Nb,B.Kab))) >> 
          X.believes(B.B,X.said(B.A, 
          X.cat(B.Nb,X.cat(X.goodkey(B.A,B.Kab,B.B), 
          X.fresh(X.goodkey(B.A,B.Kab,B.B))))))); 
40. B: assert(believes(B, believes(A, goodkey(A, Kab, B)))); 
 
Figure 16.  CPAL-BAN Spec. for 2nd Kao Chow protocol (cont.) 
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Bob’s belief in Kab should be transferred in the third message given on line 

eighteen.  In a traditional BAN analysis, a belief cannot be asserted within the 

protocol.  In our specification, we make the assertion on line fifteen, that “B: as-

sert(believes(B, goodkey(A, Kab, B)));.”  This means that Bob believes that Kab is a 

good key for Alice and Bob to use.  The assertion is made before Bob encrypts 

Kab with Kt.  This encryption of Kab with the good key Kt allows Alice to eventu-

ally assume that Bob believes Kab is a good key.  If in the analysis Bob’s asser-

tion that it believes Kab is a “goodkey” was not made until after the fourth mes-

sage of the protocol, then there would be no need for the invalid assumption of 

the 13th statement.  Thus the ordering of the Ban logic goals has an effect upon 

the analysis.  If the assertion is made at the end of the protocol, then the infor-

mation available from the last message from Alice to Bob may also be utilized to 

satisfy the assertion. 

A problem still remains with this protocol.  This is discovered if we remove 

the requirement that Alice believe that Bob believes the key Kab is good.  This 

should also mean that Bob could drop the invalid assumption made with the thir-

teenth statement regarding the freshness of the message Bob receives from the 

server.  Actually, Bob still needs some help to acquire the belief that Kab is a 

goodkey.  This may be achieved with a somewhat weaker, but still invalid as-

sumption regarding Bob’s trust in Alice.   

When Bob receives the fourth message from Alice, it contains Bob’s nonce 

and the session key Kab encrypted with Kt.  Bob already believes that Kt is a 

“goodkey” for communication between him and Alice.  However, he has not yet 
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acquired any confidence in Kab without the invalid assumption.  Typically, part of 

the process of transferring a belief between principals requires that the receiving 

principal believes that the sending principal has jurisdiction over that particular 

belief.  For instance, it is typical for a key distribution center to have jurisdiction 

over the “goodness” of keys.  As was stated earlier, Bob is prevented from be-

lieving that the server believes the key is good because Bob does not believe 

anything in the message from the server is fresh.  So only the last message from 

Alice can give Bob the beliefs necessary to acquire belief in the goodness of 

Kab.  One solution is for Bob to trust Alice to provide a “goodkey.”  In this case, 

there is no reason for the server in the protocol.  This is too strong of an assump-

tion to make. 

Bob’s lack of belief in the freshness from the server is the root of this prob-

lem.  A weaker assumption can be made to solve this proof.  That is that Alice 

says the key is fresh by sending to Bob in the fourth message.  In order for this 

assumption to make a difference, Bob must also trust Alice to have jurisdiction 

over the freshness of the message that Kab is good.  This is specified in the 38th 

and 39th statements shown in Figure 16.  The first statement assumes that Bob 

can utilize Alice as a server for the freshness of Kab.  Typically, protocols try to 

avoid giving principals this kind of power.  This is the second invalid assumption 

of the protocol.  After the fourth message, Bob will be able to acquire belief in the 

“goodness” of Kab if it trusts Alice to insure its freshness. 

 The authors (Kao & Chow) appeared to realize that Bob could not believe 

Kab until Alice endorsed the freshness of Kab when they said Kt is “used by Bob 
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to encrypt Na and Kab to tell Alice that Bob temporarily trusts both keys Kab and 

Kt.”  Does this mean that this temporary belief should convey a permanent belief 

in Alice?  Since Alice does not receive any more messages from Bob, there can 

be no further confirmation provided by the second message.  The temporary be-

lief is in fact permanent.  For the protocol to reach its goal of Alice acquiring a 

second level belief in the goodness of Kab, requires a fifth message from Bob to 

Alice for Alice to acquire this belief.  There is no fifth message, so the protocol 

fails to achieve this goal. 

 These vulnerabilities are real, if somewhat weak.  However, both could lead 

to attacks on the protocol.  Now that these weaknesses have been revealed by 

our analysis with CPALES with BAN, we can consider some possible attacks to 

exploit these two weaknesses.  The second vulnerability arises from Bob’s trust 

of Alice to guarantee the freshness of Kab.  This means that Alice could endorse 

an old Kab without Bob knowing that the key was old.  The initial weakness 

arises from the fact that Alice acquires the invalid belief that Bob believes Kab is 

a goodkey.  Believing that Bob will accept the encrypted message Alice will feel 

safe to start a session.  Then Alice may send a long, expensive encryption to 

Bob after she sends the fourth message.  Bob will not trust the contents of the 

message if the confirmation provided by Alice in message four is blocked.  This 

attack is detailed in Figure 17. 

 The second attack shown in Figure 18 allows Alice to create an insecure ses-

sion.  Alice does not need to retransmit the information in order to reveal the in-

formation transmitted in the session.  She could choose an old key that had been 
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broken by a third party.  Then the session itself would reveal the information, re-

ducing the risk that an additional outside message would reveal the untrustwor-

thiness of Alice.  The initial message could also be sent, if it was felt the blocking 

of the second message from the server to Bob was less noticeable than Alice not 

sending a message to the server in the first place. 

 
 
 

1) A=>S:  A, B, Na 
2) S => B: {A, B, Na, Kab, Kt}Kas, {A, B, Na, Kab, Kt}Kbs 
3)B => A: {A, B, Na, Kab}Kas, {Na, Kab}Kt 
4)A => B: (Blocked) 
4a)A => B: {long message}Kab 
 

Figure 17.  1st attack on Kao Cow 2 
 

1)Skipped 
2)S(A) => B: {A, B, Na’, Kab, Kt}Kas, {A, B, Na’, Kab, Kt}Kbs 
3)B => A: {A, B, Na’, Kab}Kas, {Na’, Kab}Kt 
4)A => B: {Nb, Kab}Kt 
 
 

Figure 18.  2nd attack on Kao Chow 2 
 
 
 
 
 The Brackin report and the Clark and Jacob review do not expose these 

flaws of the Kao Chow protocols.  At least partly Brackin misses this feature of 

the protocol since his specification does not allow a key to be considered im-

mune to an old session key attack.  The ability to make that assumption allowed 

other weaknesses in the protocol to be discovered.  The position in which beliefs 

were acquired was also shown to be important through the use of weakest pre-
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condition reasoning to arrange the verification condition.  With this ordering, the 

BAN logic system was enhanced by the forcing the specification to be ordered.  

This allowed the reviewer to examine the importance of order in the proof. 



 28

 
 
 
 

4. TRANSPORT LAYER SECURITY STANDARD 
 
 
 
 

The Transport Layer Security standard (TLS) [6] is a refinement of the Se-

cure Socket Layer (SSL).  According to the TLS specification, this standard was 

produced by the Internet Engineering Task Force (IETF) to provide “privacy and 

data integrity between two communicating applications.”  Like the SSL protocol it 

was based on, TLS provides a suite of protocols utilizing various cryptographic 

functions in different combinations.  This allows users of the standard the flexibil-

ity to choose a solution from this set that best fits their needs or capabilities.  The 

danger here is that interactions between the subprotocols could lead to new in-

securities. 

 Until the recently, most security protocols had only one sequence of mes-

sages that would lead to a satisfied condition.  This was true for protocols pro-

posed in the literature and early implemented protocols like Kerberos.  More re-

cent protocols such as SSL have proposed a suite of protocols that could be 

agreed upon by two principals.  This allowed different key systems, levels of se-

curity and levels of authentication to be agreed upon by the two principals.  

These choices were added to increase the functionality of the system.  They also 

make the specifications complex in comparison to the older protocols. 
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 Figure 19 describes a limited protocol suite.  In this case, Alice and Bob can 

choose from three subprotocols to run their session.  Once a principal has cho-

sen a subprotocol he cannot switch to another subprotocol.  Since both principals 

decide independently which subprotocol to run, they may decide to run subproto-

cols, which were not designed to interact.  In the TLS protocol, the subprotocols 

to be run are negotiated in the clear.  Therefore, interference with these negotia-

tion messages can cause inappropriate protocol interactions.  Later in the paper, 

we will show how this leads to a flaw in the TLS protocol. 

 

 

Figure 19.  Protocol Suites and Subprotocol Interactions 
 

Messages 

Principal B Principal A 

Protocols Protocols 
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 The TLS protocol is a proposed protocol standard of the IETF task force.  

The “… goal of the TLS protocol is to provide privacy and data integrity between 

two communicating applications.”  Two layers, the record protocol and the hand-

shake protocol, make up the TLS protocol.  The record protocol uses an encryp-

tion key negotiated by handshake protocol to provide security.  It also provides 

services to handle compression, fragmentation, and message authentication.  

The handshake protocol handles negotiation between the two parties to deter-

mine the characteristics of the session including, compression methods, encryp-

tion methods, the protocol version, the session identifier, peer certificate, and 

whether it is the resumption of an old session. 

These negotiations are handled by subprotocols that make up TLS, and use 

standard practices such as public key encryption, public key signatures, Diffie-

Hellman key agreement, certificates, nonces, hashing and other tools to achieve 

such goals as authentication, privacy and key exchange.  Each negotiation ses-

sion will result in the choice of and use of one of these subprotocols, which are 

termed ciphersuites.  It is these tools that make up the composition of the sub-

protocols. 

Key establishment protocols typically allow two principals to securely negoti-

ate a shared key for communication session.  This is one of the features of TLS.  

In order to make TLS as flexible as possible, the protocol also allows the secure 

negotiation of other security and communication mechanisms.  These include the 

key exchange algorithms, the signature schemes, the accepted certificates, the 

encryption algorithm, the hashing function, and the compression algorithm to be 
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used.  The implementation of these different choices can be characterized by a 

set of subprotocols, which encompass these choices.   

The TLS specification gives twenty-eight different ciphersuite definitions.  In 

TLS a ciphersuite defines the key exchange method, a signature method, the au-

thentication, the encryption algorithm to be used for the key that is established, 

and the hashing function used.  Typically, the server or the client can do authen-

tication.  The ciphersuite may specify whether the server will be authenticated.  

The server may also request authentication of the client after the ciphersuite has 

been negotiated.  The form of the certificate that provides authentication must be 

determined.  Thus this adds even more possibilities. 
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5. IMPLEMENTATION OF TLS IN CPAL 
 
 
 
 

In our implementation of TLS in CPAL, we made certain choices regarding 

the representation of the protocol.  These choices were made to create a man-

ageable specification and to eliminate the details that had no effect upon the se-

curity of the protocol given our assumptions.  In this section we will how TLS was 

specified, the reasoning behind our implementation.  To get a general idea of the 

subprotocols that are represented look at table 2.  For the most part, the sub-

protocols utilize different cryptographic algorithms, but also require different sets 

of actions to describe that protocol.  The Resume protocol utilizes an old session 

identifier and a shared secret between the two parties to resume the session.  In 

the Anonymous protocol, neither the server nor the client provides a certificate to 

assure their identities.  This leaves the anonymous protocol vulnerable to man in 

the middle attacks.   

The DHE protocol utilizes Diffie-Helman key agreement to exchange keys.  

DHE key exchange uses new Diffie Helman parameters for each session, 

whereas DH key exchange utilizes fixed parameters that are the same for each 

session and produce the same value for each connection between the same 

principals.  The DHE_CA protocol requires authentication of the client as well as 
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the server.  This is also the case for other protocols with the CA string in their 

names. 

 
 
 

Table 2.  Subprotocol Attributes 
 

Subprotocol Name Key Exchange Authentication Public Key Use  

Resume None Old Secret No 

Anonymous DH None No 

DHE_CA DH ephemeral Both Signatures 

DHE DH ephemeral Server Only Signatures 

DH_CA DH fixed Both Signatures 

DH DH fixed Server Only Signatures 

RSA_EXP_LS_CA PK w/short enc. key Both Enc & Sigs w/ long PK 

RSA_EXP_LS PK w/short enc. key Sever Only Enc & Sigs w/ long PK 

RSA_EXP_CA PK w/short enc. key Both Enc & Sigs w/ short K 

RSA_EXP PK w/short enc. key Sever Only Enc & Sigs w/ short K 

RSA_CA PK w/long key Both Enc & Sig w/ long key 

RSA PK w/long key Sever Only Enc & Sig w/ long key 

 
 
 
 
 The RSA protocols utilize public key encryption for the client to send a ses-

sion key to the server.  The differences between the protocols entail whether the 

client is authenticated, whether the encryption key is shorter than 512 bits so that 

it would be legal for export by the old standards, and whether it used a signature 

key longer than 512 bits.  When TLS was specified, legal restrictions prevented 
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asymmetric encryption keys longer than 512 bits.  However, they did not prevent 

signature keys longer than 512 bits.  Therefore, the TLS protocol allows the client 

and server to utilize the longer key for authentication, while a temporary shorter 

public encryption key signed by the server is used to encrypt the secret. 

Combined, these protocols describe the TLS protocol.  In order to determine 

which protocol actions are executed as the principals proceed through the nego-

tiation, conditional branches are needed to describe a comprehensive imple-

mentation of the specification.  Appendix A describes the general flow of the pro-

tocol in an extended standard notation.  Conditional branches and goto state-

ments are utilized to control which protocol is executed.  The important 

characteristic of this specification versus other protocols is the requirement for 

conditional branches. 

If you examine the specification in appendix A, you should notice that there 

are conditional branches throughout the protocol.  This is not the only way the 

protocol could be implemented.  Another way to describe the protocol would be 

to move all of the tests to the beginning of the protocol when the cipher-suite is 

selected.  Once the selection has been made and a subprotocol is chosen, no 

more choices need to be made regarding which subprotocol is being executed.  

In terms of network programming, once a subprotocol was selected a thread 

could be spawned to handle that connection.  Then that thread would execute  

the appropriate actions for that cipher-suite.  No more references to which ci-

phersuite was selected need to be referenced by the program’s control. 
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The CPAL representation of TLS described in appendix B is different from 

that given in appendix A.  Looking at the standard notation for TLS, you may not 

realize that any control decisions made by one principal can only affect the other 

through a message.  In the standard notation, only one principal would perform a 

conditional test.  In the CPAL notation, each principal tests its state to determine 

which actions to execute when a message is received.  Notice also that a new 

set of conditional branches must be specified by each principal each time a mes-

sage is received even though they may have already done these branches be-

fore.  This repetition is required since CPAL cannot specify blocking or execution 

functions. 

These restrictions on the capabilities of CPAL do not prevent the representa-

tion of TLS.  The standard does not specify many implementation details regard-

ing how principals are to control their sessions.  They can use a single, or a 

multi-threaded one if they wish.  The fact that CPAL cannot model these different 

implementations is not a problem.  The important characteristic of the CPAL 

specification is that correctly models the TLS standard and not a particular im-

plementation of it. 

A cursory examination of the CPAL specification for TLS may indicate to the 

examiner that the specification allows switching between the subprotocols after 

the cipher-suite has been determined.  If it did, the CPAL specification would not 

match the TLS standard.  This is not the case.  The variable that determines the 

subprotocol characteristics is not modified after selection.  Therefore, if all of the 

conditionals depend on this ciphersuite value, and the value is not modified later 



 36

in the protocol, the branches to be executed have been determined even though 

those branches may have not been reached.  This makes the CPAL specification 

logically equivalent to an implementation that spawned a thread to run a particu-

lar ciphersuite. 

In the general CPAL TLS specification, each message except for the initial 

one from the client requires a conditional test to determine the message compo-

sition.  The first conditional encountered is utilized by the server to determine if 

the proposed session identifier (SID) is from a valid old session.  If it is, then that 

session identifier will be sent back to the client otherwise a new one will be gen-

erated.  The initial message sent from the client also specifies a list of acceptable 

ciphersuites (CSL).  Our specification does not model the effects of this list.  In-

stead the server is free to choose any cipher suite.  Therefore, the server is not 

limited in his choices.  For this general specification, this should not affect the 

rest of the protocol, since the analysis should examine all of the subprotocols.  

Therefore, it can be considered that the client sent a list containing all of the ci-

phersuites.  In order to model a partial list, a different specification would need to 

be made. 

The ciphersuite specifies a number of different subprotocols.  The conditions 

needed to specify the different subprotocols utilize a set of values.  These values 

are generated by a specific function that models the extraction of a particular ci-

phersuite characteristic from the CS value.  This allows one value to be used to 

create the set of conditions.  Since functions of the same name are identical for 

all principals, this can be used to create identical values for the two principals. 
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As noted previously, the different subprotocols of TLS are implemented in the 

specification utilizing the if/else branch of the CPAL language.  Nested branches 

are utilized to group similar subprotocols in the same block.  They are con-

structed in a fashion so that only one subprotocol may be entered in the block.  

Each subprotocol describes the message it will send.  When the block is left, the 

message is sent.  The other principal receives the message and the next condi-

tional block is entered.  This continues until the end of the protocol. 

The protocol described leaves out some details of the TLS specification.  

Certain capabilities of protocols do not affect the analysis of the protocol.  For 

example, the TLS specification can indicate that a subprotocol will use DSS or 

RSA signing.  Although these signing mechanism utilize different algorithms, use 

of one over the other does not change any of the operations specified by CPAL.  

In general protocol analysis considers that all cryptographic algorithms are se-

cure.   Therefore, there is no effect upon our analysis if RSA signing is used in-

stead of DSS signing or vice versa.  These and other choices were left out of the 

specification in CPAL since they would just be adding different names to the 

same operations.  If there were known interactions between various crypto-

graphic algorithms, then the specification would need to algorithms in question.  

This reasoning is also used to exclude representations of MD5 vs. SHA hashing, 

DES vs. (DES_CBC or 3DES) and others.   

The different digital encryption algorithms are also precluded from represen-

tation since their only affect on the handshake protocol is the size and format of 

the key.  No encryption is performed with DES keys in the handshake protocol.  
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There is a caveat to this.  Some algorithms provide more security than others.  

One argument for the inclusion of choices that provide different levels of security 

is if those choices affect the operation of the protocol being analyzed.  The 

RSA_EXP (w/short signature keys) and RSA cases have been separated in the 

specification even though their implementations are identical except for key size.  

This would not appear to be meaningful however.  One could just as easily de-

scribe the RSA protocol as using long and short encryption keys. 
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6. MODIFICATIONS TO CPALES 
 
 
 
 

Implemented protocols such as TLS and IKE are based on the same con-

cepts as the simpler protocols listed by Clark and Jacob.  These protocols typi-

cally implement a suite of protocols so that a range of features may be chosen 

for each session of the protocol.  However since most analysis tools have only 

examined sequential protocols, analysis of these newer protocols has been re-

stricted to analysis of the subprotocols.  This analysis is certainly useful, however 

formal analysis of the entire protocol is often left wanting.  Without consideration 

of interactions between the subprotocols, the reviewers have not formally ana-

lyzed the entire protocol.  Authors utilizing formal methods have looked at the 

protocols suites SSL 3.0 [19] and TLS [23].  However, in both of these cases, the 

protocol was not treated as a whole.  Although analysis of IKE by Meadows’ [18] 

did examine the whole protocol, the system uses different methods with different 

capabilities. 

The combination of the subprotocols can make the analysis considerably 

more complicated.  CPAL was developed with the functionality to handle this type 

of protocol.  Specifically, CPAL contains if/else statements that allow branching 

between the different states of the protocol.  Unfortunately, although the ability to 
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handle this feature was implemented in CPALES, it was not utilized in the initial 

work.  One reason being that most analysis had of course not included these 

types of protocols before.  Traditional protocols analysis has focused on simple 

protocols.  These protocols use no branching and are often quite short.  Of 

course, even these small protocols have proven to pose a considerable cha l-

lenge.  With the advent of SSL and other protocol suites, the need for formal 

analysis tools capable of analyzing these systems has arisen. 

The specific threat to these protocol suites is the potential for attacks that in-

terleave the subprotocols.  A single protocol is susceptible to attacks that inter-

leave messages from one subprotocol with another.  In a protocol composed of 

subprotocols it is possible that the subprotocol will be susceptible to attacks us-

ing messages from different protocols as well as its own.  Kelsey and Schneier 

have argued that given the same key material, a protocol may always be con-

structed which can be used to subvert the security of a given protocol [15].   

Most protocol suites are designed to allow different levels of security in a 

session.  This allows the possibility that a weak protocol may be switched for a 

stronger protocol if strong safeguards are not in place.  One problem of an earlier 

version of SSL, the precursor to TLS, was its potential to be tricked into running 

an earlier version of the protocol even though both parties could use the later and 

stronger protocol.  This type of attack would also be applicable to TLS since it al-

lows the specification of the protocol version to be utilized. 

A large variety of cryptographic functions and algorithms are implemented in 

TLS.  Earlier work with the CPALES system had focused on the more traditional 
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protocols.  In these protocols, the ability to handle symmetric key encryption, 

public key encryption was usually enough.  Newer protocols have added features 

such as hashing, key agreement, and the aforementioned subprotocols.  All of 

these features are utilized by TLS.  In order to analyze TLS and other protocols 

like it, CPALES needed to be extended. 

 
6.1 Advanced Cryptographic Algorithms 
 
 

CPALES does not implement function passing.  This makes it difficult to com-

pare hashes for authentication and integrity purposes.  The comparison of two 

hashes would not be found identical by CPALES since one principal could not 

send a hash function to another.  Assuming the equivalence of two functions was 

also problematical since CPAL syntax required functions to specify their argu-

ments.  Therefore, any assumption regarding a function would only be valid for 

the arguments chosen.  A simple solution utilized the encryption operation.  This 

is possible since a secure hash function has similar properties to one-way en-

cryption.  Both produce a result that should not be invertible.  The encryption op-

eration is standard between participants and the operations can be compared 

and found to be equal if the operations were done with the same key.  So to 

simulate a hash one does the operation e[message]hash.  Then if another princi-

pal wants to do the same operation, you just send the hash key to that principal 

and he can do the same operation.  A more accurate implementation utilized 

public key encryption without a defined decryption key.  This way, a secure one-

way hash could be modeled. 
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The above solution is far from ideal.   It has the potential to confuse a hash-

ing operation with public key encryption.  Further examination of the problem in-

dicated that instead of sending functions between principles, a simpler solution 

would make all functions identical across the principal’s environments. 

 
 
 

pubA := f(prime, gen, secA) 
pubB := f(prime, gen, secB) 
f(prime, pubA, secB) == f(prime, pubB, secA) 
f(prime, f(prime, gen, secA), secB) == f(prime, f(prime, gen, secB), secA) 
 

Figure 20.  Diffie-Hellman Key Agreement 
 
 
 
 

This does not accurately model reality, yet it is no weaker than assuming en-

cryption operations are identical across boundaries.  So to handle this, the prefix 

names for the function identifiers were changed in the CPALES code.  Instead of 

assigning functions the prefix for the principal they were created in, all prefixes 

received the same string as their id.  Now when functions with the same name 

are used in different environments, their results can be the same.  This removes 

the need to utilize the encryption operators.  A drawback or an advantage of this 

system is that obfuscation can no longer be modeled as a security method.  This 

could be considered an advantage since obfuscation is generally derided as a 

means of providing security. 

The implementation of key agreement at first appeared to be difficult.  If it 

were implemented like the encryption operation, it would have required changes 
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in most of the sections of the CPALES code.  A simpler solution utilized the ca-

pability for comparison of functions.  For it to work, the relationships shown if Fig-

ure 20 had to be followed 

 The solution used a special case for comparison of functions with the name 

“dhy”.  In this case, special positional considerations were needed to model the 

characteristics of the Diffie-Hellman functions.  These match the comparisons 

shown in Figure 20. 

 
6.2 Improvement to Composite Assignment 
 
 

One enhancement dealt with how mismatched composite assignments were 

handled (e.g. (A,B,C) := <X,Y>;).  In a linear protocol, this case should not occur 

in a correctly functioning protocol that is not being attacked.  The original 

CPALES program treated this as a specification problem and would terminate the 

analysis when this occurred.  This was helpful for finding incorrect specifications.  

However, when subprotocols were specified, this feature had to be changed.  

Along different branches, messages would be created with different numbers of 

elements.  Typically two principals would reach an agreed upon state so that a 

message sent for one state would be received in a matching state for the receiv-

ing principal.  However, the weakest precondition system does not recognize if 

these states are matching to determine whether the predicate should be modi-

fied, instead, it modifies the predicate so that if they are not matching, the result-

ing predicate will be trivially true.  The result of this is that, during the processing 

of the protocol statements, assignment of different sized lists cannot be avoided.  
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A new way to handle this situation needed to be devised.  The specification 

fragment given in Figure 21 illustrates an occurrence of this problem. 

 
 
 

B: =>A(<cond,a,b,c>);  
A: <-(list); 
A:(cond,a,b,c) := list; 
A: if (cond) then {msg := <a,b>;} else {msg := <a,b,c>;} 
A: =>B(msg); 
B: <-(msg); 
B: if (cond) then { 

(x,y) := msg;  
assert(<x,y> == <a,b>);}  

    else { 
(x,y,z) := msg;  
assert(<x,y,z> == <a,b,c>);}  

 
Figure 21.  List Assignments in the if/else Statement 

 
 
 
 

The difficulty is that msg may contain a two or three element list.  Therefore, 

(x,y,z) may be assigned to (a,b) in the system.  The behavior of a system when 

this situation is encountered needs to be considered.  If this is not an error, then 

once the entire predicate is simplified, then mismatched conditionals should 

cause the affected predicate to be trivially true, e.g. ~P \/ P => TRUE.  When this 

was an error it needed to be noticed.  In this case the affected predicate would 

not be trivially true.  A naming system was devised for these values.  The values 

were given unique names so that they would not be removed from the predicate 

by simplification.  In an actual implementation of the protocol in an application, 

the behavior of the protocol would depend on whether the value z was overwrit-
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ten with an unspecified piece of memory, kept the same, or an error condition 

would develop.  Our solution does not allow the value to keep the same value it 

had before the assignment, however, in all likelihood; a protocol should not ex-

hibit this type of behavior, and so finding the irreducible comparison in the simpli-

fied predicate should indicate a problem with the protocol. 

 
6.3 CPAL branching limitations and Simplification improvements 

 
When the specification of TLS was begun, the incomplete protocol was 

tested as the protocol grew.  It was during this time that several challenges of 

analyzing collections of protocols with CPALES were encountered.   

One limitation of CPALES encountered was inability to model messages sent 

inside an “if/else” block.  The implementation as it stands cannot handle this 

without having misaligned send and receives.  The protocol shown in Figure 22 

causes an imbalance in the send/receive queue utilized by the CPALES system 

to keep track of the alignment between send and receive operations.  The 

send/receive queue is actually not a queue at all.  It is a numbering system that 

ensures send and receive operations are not applied out of order.  In this system, 

each send, must be followed by one receive operation.  The above specification 

would cause a problem since it would find two sends before a receive was en-

countered.  The system does not discern that only one message will be sent.  

Figure 23 displays another complication. 

S may or may not have sent a message.  However, the system will still 

“send” the message even though f(x) may not be true.  Therefore, C may then 
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receive a message that was never sent.  To avoid adding a potential complicated 

feature, it was decided to not use send and receive operations within if/else 

blocks.  Instead messages are assembled inside conditional blocks, to be sent 

when the conditional block is left.  This restricts the syntax of send and receives 

operations.  However, it should still allow enough flexibility for protocols to be de-

scribed in a manner equivalent to the proscribed forms. 

 
 
 

C: => S(X); 
S: <-(X); 
S: if (f(X)) then {=>C(Y);} else {=>C(Z);}   
C: <-(msg); 
 

Figure 22.  Misaligned Send/Receive Example: 1 
 

 

C: => S(X); 
S: <-(X); 
S: if (f(X)) then {=>C(Y);} 
C: <-(msg); 
 

Figure 23.  Misaligned Send/Receive Example 2 
 

 

Another problem encountered with the analysis of subprotocols deals with 

the simplification of the verification condition.  In this case, the reduction routines 

in place did not have power to perform the simplifications necessary for analysis 

of TLS with CPALES.  Improved simplification routines needed to be written. 
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Before delving into these improvements to CPAL, lets examine the necessity 

for simplification during generation of the weakest precondition.  It was after par-

tial CPAL specifications of the TLS protocol were run through the evaluation pro-

gram that this condition was recognized.  For the protocols evaluated previously, 

simplification could wait until the weakest precondition had been generated.  At 

worst each statement in these protocols would only increase the number of 

predicates in linear fashion. 

In contrast if/else statements are much more expensive.  An if-else or if-no-

else statement will roughly cause a doubling in the size of a large predicate.  

Consequently, a series of branching statements can cause the size of the predi-

cate to grow exponentially.   

Initial partial specifications of TLS encountered this growth problem when the 

system where the analysis was executing ran out of memory.  Less catastrophic 

was the use of virtual memory by the program as the predicate increased in size.  

Although this did not stop the program, the use of the disk slowed the speed the 

program to a crawl.   

To fight this problem the predicate size needed to be reduced as the weakest 

precondition engine was generating the predicate.  Initially, the size of problem 

was not appreciated.  Initially the simplification algorithms in place were utilized 

during predicate generation process.  Some simplifications were made, however 

the process was not powerful enough to stem the growth of the predicate. 

As TLS was being specified, the size of the predicate grew larger and larger.  

However, when ported to PVS, this predicate was simplified substantially, if not 
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completely.  PVS’s ability to reduce the predicate after reductions were at-

tempted in CPALES indicated that the creation of a more effective simplification 

engine would be possible. 

A series of improvements were attempted to create a more powerful simplifi-

cation engine.  Most of these initial efforts failed, however they did indicate the 

weaknesses of the system.  This led to improvements that finally led to a worka-

ble system. 

A function to put the predicate into conjunctive normal form had been written 

for CPALES.  Putting the predicate in this form optimizes the simplification of dis-

juncts.  Unfortunately, the original simplification routines could not take ad-

vantage of this.  The effectiveness of the simplification routines was hampered by 

the fact that it only looked at the two children of a predicate.  This restricted it 

from reducing some predicates.  For example, look at this predicate: (A or (B or 

~A)).  This should simplify to true.  However, the original routine could only com-

pare A with (B or ~A), and B with ~A, so no simplification could take place. 

In order to perform the above simplification with the restricted power of the 

simplification routine requires that predicates be distributed.  Therefore, (A or (B 

or ~A)) would be transformed to (A or B) or (A or ~A).  However, it was slow, 

could cause tremendous growth in predicate size, and it still did not allow identity 

simplification.  That is, that (A or (B or A)) should reduce to (A or B).  The distri-

bution of A on (A or B) still does not permit the simplification with the limited rou-

tines, which only look at the two children of a predicate.   
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To simplify this, a routine needed to be created, which could cross over par-

ent nodes to compare formulas.   For example, (A or (B or A)) would normally be 

seen as (A or B or A) which can easily be seen to reduce to (A or B).  This proc-

ess when broken down requires that all possible two-argument combinations of 

the predicate must be compared.  Notice that the relationships between the ele-

ments in the predicate (A or (B or A)) are same.  That is why it can be written as 

(A or B or A) without changing the meaning.   

We decided to change this structure in order to facilitate the comparisons be-

tween elements in predicate fragments constructed with the same connective.  A 

list fits this requirement.  With a list structure, there is no hierarchy to worry about 

when simplifications are done.  Once this list had been created, all the possible 

combinations could be searched for with loops.  As simplifications were made, 

formulas could be removed from the list without consideration of position in the 

predicate.  Then when simplifications were finished, a normal hierarchical predi-

cate was created from the list. 

There are some limitations to this strategy.  For one, it can only be complete 

if all possible combinations among formulas with the same connective are made 

available.  To make the simplification job easier, the predicate needed to be nor-

malized.  In particular, it needed to be placed in conjunctive normal form for sim-

plification of \/ lists and in disjunctive normal form for the simplification of /\ lists.  

These forms allowed the lists to be easily extracted from the predicate. 

At this point the basic elements to provide effective simplification were in 

place.  Now it was only a question of how these routines should be used.  After 
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some experimentation it was discovered that the disjunctive normalization was 

too expensive to be effective, so this was omitted.  Simplification of \/ lists and 

then /\ lists was performed after conjunctive normalization.  The new predicate 

was replaced with the old if normalization and simplification resulted in a larger 

predicate.  At first, simplification was called after every statement evaluation.  

When this was found to be overzealous, simplifications calls were limited to WP 

statement transformations that caused the predicate to double in size. 

Before this process of simplification was begun, the program would terminate 

before completion when it ran out of memory.  Once the modifications described 

above were performed, the complete TLS specification could be evaluated in 

fourteen hours.  A final optimization was realized by examination of debugging 

statements.  That revealed that the /\ list simplification was only producing simpli-

fications of the form (P /\ TRUE) to P.  This type of simplification does not require 

the expense of the comparison of all the possible two element combinations in a 

list to perform a complete simplification.  The cost of performing the combinations 

of a list grows with the square of the number of elements of the list.  For exam-

ple, the possible combinations in an n element list are (1 + 2 + … + n-1) or n(n-

1).  Finding all of the TRUE elements in a list requires that all of the one-element 

combinations be found.  In an n list of course require n operations.  This optimi-

zation reduced the evaluation time to approximately three hours from fourteen 

hours. 
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7. ANALYSIS OF TLS 
 
 
 
 

The goal of our analysis of TLS with the CPALES system was to discover 

harmful interactions between the various subprotocols.  Just as importantly, we 

wished to demonstrate how these interactions could be represented and mod-

eled by the CPALES system.  Our first task was to create a correct implementa-

tion of TLS.  Some of the details regarding this specification are explained in sec-

tion 5.  Our complete specification of TLS is in appendix B. 

The CPAL specification provides a base for the analysis of TLS.  Analysis 

with CPALES reveals whether the TLS protocol satisfies its goals.  All of the ac-

tions and goals of all of the principals specified in the protocol are examined in 

this process.  This can be helpful in the search for protocol flaws.  The ability to 

specify a correct protocol provides a good working environment from which to 

examine the protocol for security flaws.  The specification provides an environ-

ment in which attacks can be added to determine their effectiveness.  In addition, 

once a correct specification has been made, assumptions regarding logical be-

liefs can be added within this framework.   

In the remainder of this analysis portion, we will discuss the examination of 

interactions between TLS protocols.  We will also discuss how to produce a 
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predicate that examines whether an assertion for one protocol may be satisfied 

by messages from another protocol.  This is done through the creation of special 

tests that reveal unspecified interactions between subprotocols.  Finally, we will 

discuss a specification that models an attack developed by Wagner and Schneier 

[WS96].  This attack was initially discovered in the SSL 3.0 protocol, but remains 

effective in the TLS protocol. 

 
7.1 Understanding the Subprotocol Interactions in TLS 
 
 

In the TLS protocol there are limitations upon the interactions between sub-

protocols.  One of these limits is that the ciphersuite is chosen at one point in the 

protocol and cannot be changed later on.  This means that a principal’s actions 

are restricted to those of one subprotocol once a ciphersuite value has been ac-

cepted.   Therefore, a principal may not send a message from one subprotocol in 

one session, and send out a message from a different subprotocol later on in that 

same session.  Therefore, trustworthy principals cannot be tricked into switching 

between subprotocols more than once. 

This does not mean that the subprotocols will always match up between 

principals in a session that is under attack.  An attacker could still modify the 

original ciphersuite specification so that the two communicating principals run dif-

ferent subprotocols.  Since the ciphersuite value is not a part of every message, 

a principal may not know if a message received was necessarily generated for 

that protocol.  Consequently, there is the possibility that a message from the 
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wrong subprotocol may be accepted.  If so, this might lead to a weakness that 

can be exploited.   

The TLS specification in appendix B is comprehensive and meets its goals 

as specified.  Examination of how this occurs can be instructive to understanding 

how the different subprotocols manipulate the predicate as it is being modified by 

weakest precondition transformations.  As the reasoning engine evaluates the 

protocol, the predicate generated by earlier statements will be passed through 

every subprotocol.  A simple example of this process is shown in Figure 24.  The 

specification was designed so that if A and B are equivalent that predicate will 

simplify to true.  The if conditionals were given different names, A and B, to high-

light their origin.  The top line of Figure 24 shows the weakest precondition for 

the two if else statements on the bottom left portion of the Figure.   

 
 
 

(~A \/ ~B \/ (y==y)) /\ (~A \/ B \/ (y==z)) /\ (A \/ ~B \/ (z==y)) /\ (A \/ B \/ (z==z)) 
 
~A \/ ((~B \/ (y==y)) /\ (B \/ (y==z))) /\ (A \/ ((~B \/ (z==y)) /\ (B \/ (z==z))) 
 
if (A) then {x := y}   A=>((~B \/ (y==y)) /\ (B \/ (y==z))) /\ 
 
else {x := z}    ~A=>((~B \/ (z==y)) /\ (B \/ (z==z))) 
 
       ~B \/ (x==y) /\ (B \/ (x==z)) 
 
if (B) then {assert(x == y)} B=>(x==y) /\ (~B \/ (x==z)) 
 
else {assert(x == z); 
 

Figure 24.  WP Reasoning with if else branches 
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Note in the top line of Figure 24 that when the two conditional values A and B 

are both preceded or not preceded by the ~ symbol that the comparisons speci-

fied by the assert statements are equivalent.  This corresponds to the correct 

branches being taken.  When the wrong branches are taken, the comparisons do 

not match up.  These portions of the predicate will still simplify to true since if A 

and B are equivalent, A \/ ~B must be TRUE.  So in brief, in a correctly specified 

predicate logically inverted conditional statements cancel out interactions be-

tween inappropriate subprotocols.  When the appropriate subprotocols interact 

the assertion comparison must match for the protocol to work as designed. 

Sometimes we do not desire the elimination of inappropriate interactions.  In-

stead we want to get a look at the comparisons produced by the interaction of the 

mismatched subprotocols.  These interactions will become visible in the predi-

cate if simplification of the mismatched conditionals is prevented.  These predi-

cate fragments will be eliminated only if the interaction between the two subpro-

tocols satisfies the goals for those subprotocols.  These goals are typically com-

parisons that examine whether two va lues are equal.  A flaw may be discovered 

through the discovery of identical or near identical comparisons.  A flaw may also 

be discovered if a predicate fragment that should be produced by an interaction 

is not found.  This means that the interaction between two subprotocols satisfied 

the goal for the asserted protocol. 

This analysis strategy was utilized on TLS.  An intruder was added to the 

specification so that the initial ciphersuite message could be intercepted and re-

placed with another ciphersuite chosen by the intruder.  This change in values al-
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lows the effects of subprotocol interactions to be retained within the predicate by 

preventing A \/ ~A simplification mentioned before.  The predicates fragments 

produced by the subprotocol interactions are now visible in the resulting predi-

cate. 

This type of analysis was performed for the client’s RSA_EXP subprotocol, 

which produced a verification condition that could be examined for close mes-

sage matches.  In order to simplify the resulting predicate, only the verification 

performed by the client on the server’s key exchange message is considered.  A 

fragment of the predicate produced can be seen in Figure 25.  To see how this 

predicate describes the protocol interactions, the meaning of a fragment will be 

explored.  The CS value provided by the intruder, termed “I.iCS” in the Figure, 

prevents the conditionals below from eliminating one another.  A combination of 

this type:  

(S.Anon==f.Auth(S.CS)) or ~(S.Anon==f.Auth(S.CS)) 

i.e. ~ P \/ P => TRUE, would normally eliminate incorrect mixing of predicates.  

With one of the S.CS values replaced by I.iCS, this reduction cannot occur.  As a 

result the states produced by running mismatched subprotocols are displayed.   

In the two \/ lists seen in Figure 25, the initial equivalence comparisons are 

composed of the values used to determine which subprotocol each principal 

runs.  The comparisons containing the S.CS value correspond to the conditionals 

that determine the subprotocol used by the server.  The comparisons containing 

the I.iCS value determine the subprotocol executed by the client.  These two va l-

ues are the arguments to functions that represent the extraction of the appropri-
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ate ciphersuite value from the CS variable.  The values these functions are com-

pared with, S.Anon, S.DH, S.DHE, S.ClientCert, S.RsaExp, S.RSA, S.SignOnly 

indicate whether the subprotocol utilizes server authentication, Diffie-Hellman key 

exchange, ephemeral Diffie-Hellman keys, client authentication, export RSA key 

exchange, strong RSA key exchange, and strong RSA keys for signatures only 

respectively.   

The last of these equivalence comparisons originates from the assertion 

specified in the protocol.  The logical relation between the assertion comparison 

with the subprotocol conditional comparisons, links the asserted condition to a 

particular interaction of subprotocols.  For the first disjunction in Figure 25 we can 

ascertain that the server was running a subprotocol with the following character-

istics: new session, server authentication, Diffie-Hellman key exchange, and 

ephemeral keys without client authentication.  The client was running a subproto-

col with these characteristics: server authentication, Diffie-Hellman key ex-

change, and fixed keys without client authentication.  To discern this, the re-

viewer must realize that each of the disjuncts except for the assertion must be 

false for the assertion to affect the logical value of the predicate.  Then examina-

tion of last comparisons in the disjunction will reveal whether the interaction of 

these two protocols could produce an unwanted satisfaction of the protocol’s re-

quirements. 

The first of the two subprotocol interactions that were responsible for the 

predicate fragment shown in Figure 25 is caused by an unforeseen interaction 

between the subprotocols of TLS while the second interaction is attributed to the 
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appropriate interaction.  This interaction results when the client uses ephemeral 

RSA key exchange and the server uses ephemeral Diffie-Hellman key exchange.   

 
 
 

 …AND 
((S.oldSession(C.SID)) or 
((S.Anon == f.Auth(I.iCS)) or 
((S.DH == f.KEM(I.iCS)) or 
(not ((S.RsaExp == f.KEM(I.iCS)) or 
(not ((S.SignOnly == f.PK(I.iCS)) or 
((S.ClientCert == f.Cert(I.iCS)) or 
((S.Anon == f.Auth(S.CS)) or 
(not ((S.DH == f.KEM(S.CS)) or 
(not ((S.DHE == f.DH(S.CS)) or 
((S.ClientCert == f.Cert(S.CS)) or 
(f.hash(<C.Nc,S.Ns,<S.P,S.G,f.dhy(<S.P,S.G,S.X>)>>) == 
f.hash(<C.Nc,S.Ns,<S.P,S.G,f.dhy(<S.P,S.G,S.X>)>>))))))))))) 
 AND  
(S.oldSession(C.SID) or 
((S.Anon == f.Auth(I.iCS)) or 
((S.DH == f.KEM(I.iCS)) or 
(not ((S.RsaExp == f.KEM(I.iCS))) or 
(not ((S.SignOnly == f.PK(I.iCS))) or 
((S.ClientCert == f.Cert(I.iCS)) or 
((S.Anon == f.Auth(S.CS)) or 
((S.DH == f.KEM(S.CS)) or 
(not ((S.RsaExp == f.KEM(S.CS))) or 
(not ((S.SignOnly == f.PK(S.CS))) or 
((S.ClientCert == f.Cert(S.CS)) or 
(f.hash(<C.Nc,S.Ns,<S.mod,S.exp>>) == 
f.hash(<C.Nc,S.Ns,<S.mod,S.exp>>)))))))))))) 
 AND … 

 
Figure 25.  Pred. Fragment of Subprotocol Interactions 

 
 
 
 
 The last comparison models the checking of the key exchange values sent 

by the server with the signature of the hash of those same values.  As you can 
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see, the two values in the comparison are identical.  Therefore, the check does 

not recognize that these values are actually Diffie-Helman values, not RSA val-

ues.  This makes the Wagner and Schneier attack possible.  This predicate result 

indicates the same the weakness in SSL 3.0 found by Wagner and Schneier [28].  

Thus this result demonstrates that CPALES can be used to analyze subprotocol 

interactions for unforeseen interactions that compromise a protocol’s security. 

 
7.2 Modeling the Wagner and Schneier Attack 
 

CPALES allows the representation of the interaction between two subproto-

cols.  In other words, it allows one to see how the protocol suites of two different 

principals interact.  This provides a good environment for the search for weak-

nesses in a protocol.  An attack may be modeled not only against a single sub-

protocol, but the entire protocol suite used by a principal.  One should be able to 

create an attack on a subprotocol, and then run it against the entire suite.  The 

fact that the subprotocol is part of a suite should not make the subprotocol any 

weaker.  The inclusion of all the subprotocols within one specification also allows 

attacks utilizing interactions among subprotocols to be accurately specified. 

To demonstrate the ability to represent protocol inte ractions, the Wagner 

Schneier attack was specified in CPAL for the TLS protocol.  In SSL this attack 

could be launched against ephemeral RSA and ephemeral Diffie-Hellman public 

keys.  The attack exploited the fact that the key exchange mechanism for these 

two algorithms used very similar methods to exchange the parameters.  This al-

lowed an intruder to convince one principal to use the key exchange message for 
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Diffie-Hellman while the other expects the RSA key exchange.  Wagner and 

Schneier explain that this attack could be prevented if the method of key ex-

change was signed as well as the key exchange parameters themselves.  As it 

is, Diffie-Helman values supplied for the RSA public key will be insecure given 

their mathematical properties when used in the RSA public key algorithm.  There 

is still a vulnerability to this attack in TLS.  The export version of the RSA algo-

rithm can still utilize ephemeral keys, which allows the attack to proceed. 

Our representation of this attack, allows for the choice between subprotocols.  

A model that did not permit branching could not fully represent the attack.  The 

modeling of if/else branches within CPALES allows the values that determine 

which subprotocol is chosen to have an actual effect in the model.  This allows 

our specification to include a set of subprotocols.  In a more traditional repre-

sentation of the attack, the client and the server would not have this choice avail-

able.  Instead they would only carry out the actions of the particular subprotocol 

required by the attack.  Meaning that the specification could only include one 

subprotocol for each principal. 

For your reference the CPAL specification of Wagner and Schneier attack on 

the TLS protocol is given in Appendix C.  This specification is limited to two sub-

protocols to make it easier to examine the critical portions of this attack.  The first 

job of the intruder in this attack is to intercept the client hello and server hello 

messages.  This allows the attacker to change the ciphersuites specified by the 

client and the server.   
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Our representation deviates from this by not having the intruder intercept the 

client hello message.  This means that the attack depends upon the client speci-

fying RSA and the Diffie-Helman as choices in the client hello message.  If it only 

sent the RSA ciphersuite in the list then the server would not choose Diffie-Hell-

man as the ciphersuite.  This does not prevent the attack from occurring or reflect 

any weakness in the representation; it is just done to simplify the specification of 

the attack.  It also demonstrates that the attack can be run even without intercep-

tion of the initial message. 

The server should believe it is running the Diffie-Helman subprotocol with 

ephemeral keys and no client authentication.  The server chooses its Diffie-Hell-

man parameters and sends them to the client.  The intruder listens to this mes-

sage to acquire the parameters.  The client receives the Diffie-Hellman parame-

ters and interprets them as the RSA public key.  Note that at this time a meticu-

lous application could discover this attack.  First of all, the structure it receives 

contains three parameters instead of the two required for the public key.  The first 

two parameters are the correct size for the public key parameters so there is no 

discrepancy there.  The third parameter should not be expected and makes the 

collection of parameters larger than a public key structure would.  In addition, 

when the sent parameters are checked with the signed hash of the parameters 

there is another discrepancy.  If the client assembles the hash from the extracted 

parameters instead of the sent structure, the two hashes will not match.  The ex-

tracted parameters do not include the third Diffie-Hellman parameter so the hash 
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of the extracted parameters will not match the signature.  This difference will not 

be detected if the parameter structure sent by the server is validated instead. 

The client will then generate a secret and encrypt it with the insecure public 

key material.  This is sent along with the message authentication code generated 

from the secret and the messages it sent and received.  The intruder blocks this 

message and deciphers the weak encryption of the secret.  The deciphering was 

difficult to model given that it depended upon mathematical properties.  To allow 

the intruder to decrypt the message, an assumption was made that the intruder 

could decrypt a message encrypted with the weak key provided by the server.  

The assumption is weak since it only works if the first two Diffie-Hellman pa-

rameters chosen by the server are utilized in a public key encryption. 

The intruder must then create Diffie-Hellman parameters to send to the 

server.  Since the intruder chose the parameters it will, by the property of the Dif-

fie-Hellman key generation system, be able to generate the same secret that the 

server will.  The intruder can then utilize this secret to generate message authen-

tication codes that will spoof the server.  The server could prevent being de-

ceived here if it had demanded that the client authenticate itself.  The intruder 

would not have been able to generate the verification message since it does not 

posses the client’s private key. 

The server will then be satisfied when it receives the message authentication 

codes for the session.  The intruder can then block the server’s message au-

thentication code and create its own using the secret intercepted when it deci-
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phered the weak encryption.  This completes the attack, which completely sub-

verts the protocol when the client accepts the RSA export ciphersuite. 
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8. CONCLUSIONS 
 
 
 
 

CPALES allows the combination of logical analysis with weakest precondition 

reasoning to produce a verification condition.  The operation of several protocols 

found in the Clark and Jacob library were specified and evaluated in CPAL/BAN.  

This process was able to elicit a weakness in the Kao Chow protocol that has not 

been noted before.  The ordering of assumptions and assertions in the specifica-

tion allowed by CPAL aided the elicitation of our specification. 

Formal analysis of collections of protocols has lagged behind their develop-

ment.  Most formal analysis of these protocols has focused on the security of the 

subprotocols.  These results were used to make informal judgments about the 

entire protocol’s security.  Until recently examining protocol families has not been 

a requirement of protocol analysis.  It can be expected that as time goes by, se-

curity applications will offer more choices that will complicate this analysis further.  

In this case, CPALES is well suited to handle the increased complexity.  The abil-

ity to model the flows of data with CPALES should become more useful as it be-

comes more difficult to verify this correctness by hand.  Currently, logical analysis 

of these types of protocols has been limited to the subprotocols.  Hopefully, this 
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can change with the use of the weakest precondition engine to analyze logical 

specifications of the whole protocol.   

Although Meadows has already utilized the NRL protocol analyzer the IKE 

family of protocols.  Our system should add a new dimension to the analysis of 

protocol suites.  This should be expected given that our system utilizes different 

methodologies to examine the protocols. 

Currently, logical analysis of TLS is restricted by the lack of support for key 

agreement within BAN logic.  One powerful extension would be the addition of 

the SvO logic to the workbench.  This logic is a refined version of the BAN logic 

utilized in our system.  It utilizes an independent semantics that can aid in the 

verification process.  It also allows key agreement protocols to be analyzed.  

Since protocols like TLS and IKE utilize Diffie-Helman key agreement.  It will al-

low these protocols to be analyzed without having to make our own extension to 

the BAN system.  Other logics such as Autlog [13], BGNY[3], Kailar [11], Kessler-

Neumann [14], could also be adapted to provide additional features for the logic 

and our system.  Logics to handle protocols other than key exchange and au-

thentication such as auctions, fair exchange, or electronic commerce would ex-

tend the ability of the system to analyze these types of protocols.  The ability to 

handle a wide range of logical analysis schemes with the addition of their PVS 

specification gives the CPALES system great flexibility. 

Our analysis of TLS and other security protocols in this work is valuable for 

several reasons.  It allowed us to learn more about the protocols analyzed and 

the capabilities of CPALES. We were able to find weaknesses in the Kao Chow 
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protocols.  Through the analysis of TLS, it was shown that harmful interactions 

between subprotocols could be discovered with CPALES.  The interaction be-

tween subprotocols that are the basis of Wagner Schneier attack were accurately 

specified and proven.  With the extensions made to CPALES, other protocols 

complex such as IKE and SET can also be analyzed with this system.  This 

analysis should provide greater confidence in the security of these collections of 

protocols. 
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APPENDIX A 

 
 
 
 

TLS Handshake Protocol in Std. Notation 
 
 
C -> S: ProtVer, Rc, SID, CSL, CML 
S: If (SID NEW) then goto Negotiate New Session 
 

Resume Session 
S -> C: ProtVer, Rs, SID(old),CS, CM 
S -> C: X 
S -> C: PRF(master, “finished”, hash(Previous Messages)) 
C -> S: X 
C -> S: PRF(master, “finished”, hash(Previous Messages)) 
End 
 

Negotiate New Session 
S -> C: (ProtVer, Rs, SID (new), CS, CM) 
S:  if (Key Exch. is Auth) then goto Authenticated Server 
 

Anonymous Server 
S -> C: p, g, Ys 
S -> C: X 
C -> S: Yc 
C -> S: X 
C -> S: PRF(master, “finished”, hash(Previous Messages)) 
S -> C: X 
S -> C: PRF(master, “finished”, hash(Previous Messages)) 
End 
 

Authenticated Server 
S: if (Key Exch is ~RSA) then goto Diffie-Helman 
 

RSA 
S: if (Key Exch is RSA_EXP & Long Sign K) then goto Temp Key 
 

Encryption Key in Certificate 
S -> C: {S, Ks+}Kca- 
S: goto Client Response 

 
Temp Key 

S -> C: {S, sKs+}Kca- 
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S -> C: Ks+, {hash(Rc + Rs + Ks+)}sKs- 
S: goto Client Response 
 

Diffie-Helman 
S: if (Key Exch is DHE) then goto DHE 
 

DH (RSA & DSS signing) 
S -> C: {S, (p, g, Ys), sKs+}Kca- 
S: Goto Client Response 
 

DHE (RSA & DSS signing) 
 
S -> C: {S, sKs+}Kca-,(p, g, Ys), {hash(Rc + Rs + (p, g, Ys))}sKs- 
 

Client Response 
S:if (No Client Cert) THEN goto Client Key Exchange 
S -> C: (CTL, CAL) 
S -> C: X 
C -> S: {C, Kc+}Kca- 
 

Client Key Exchange 
C: if (Key Exch is RSA or RSA_EXP) then 

C -> S: {Prot. Ver., PreMaster}Ks+ 
C: else if (Key Exch is DHE) THEN 

C -> S: Yc 
C: else if (Key Exch is DH) THEN 

C -> S: 0 
 
C: if (no Client Cert or Key Exch DH) then goto Client Finished 
 

Certificate Verify 
C -> S: {hash(PreviousMessages)}sKc- 
 

Client Finished 
C -> S: X 
C -> S: PRF(master, “finished”, hash(Previous Messages)) 
S -> C: X 
S -> C: PRF(master, “finished”, hash(Previous Messages)) 
End 
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APPENDIX B 
 
 
 
 

TLS Specification in CPAL 
 
 

S: => C(oldMaster); 
C: <-(oldMaster); 
X: assume(global.decrypt(CA.sKs+,S.sKs-)); 
X: assume(global.decrypt(S.sKs-,CA.sKs+)); 
X: assume(global.decrypt(S.Ks-,S.Ks+)); -- temporary KE key 
X: assume(global.decrypt(S.sKca+,CA.sKca-)); 
X: assume(global.decrypt(C.sKca+,CA.sKca-)); 
X: assume(global.decrypt(CA.sKc+,C.sKc-)); 
S: modexp := <mod,exp>; 
 
CA: => S(ep[<S, sKs+>]sKca-); 
S: <- (certS); 
CA: => C(ep[<C, sKc+>]sKca-); 
C: <- (certC); 
CA: fdhpS := <P,G,dhy(<P,G,X>)>; 
CA: fdhpC := <P,G,dhy(<P,G,Y>)>; 
CA: => S(<ep[<S, fdhpS,sKs+>]sKca-,X>); -- assume X is secure. 
S: <- (CertNSecret); 
S: (DHcertS, Xf) := CertNSecret; -- Cert with fixed DH params + fixed secret 
S: (S,fdhpS,sKs+) := dp[DHcertS]sKca+; 
S: (Pf,Gf,dhYsf) := fdhpS; 
CA: => C(<ep[<C, fdhpC,sKc+>]sKca-,Y>); 
C: <- (CertNSecret); 
C: (DHcertC, Yf):= CertNSecret; 
C: (C,fdhpC,sKc+) := dp[DHcertC]sKca+; 
C: (Pf,Gf,dhYcf) := fdhpC; 
 
-- Get equivalent test cases. 
S: => C(<Anon,DH,DHE,RsaExp,SignOnly,Rsa,ClientCert>); 
C: <-(checks); 
C: (Anon,DH,DHE,RsaExp,SignOnly,Rsa,ClientCert) := checks; 
 
-- START 
 
C: CH := <PVc, Nc, SID, CSL, SML>;  
C: => S(CH); 
S: <-(CH); 
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S: (PVc, Nc, tSID, CSL, SML) := CH; 
S: if (oldSession(tSID)) then {SID := tSID;} else {SID := new;} 
S: SH := <PVs, Ns, SID, CS, CM>;  
 
S: =>C(SH);  
C: <-(SH);  
C: (PV, Ns, sSID, CS, CM) := SH; 
 
S: KEmeth := KEM(CS); 
S: AuthMeth := Auth(CS); 
S: CertMeth := Cert(CS); 
S: PKmeth := PK(CS); 
S: DHmeth := DH(CS); 
 
S: if (SID == tSID) then { 
      mac := hash(<CH,SH>); 
      FINs := prf(<oldMaster,mac>); 
      msg3 := FINs; 
   } 
   else {if (AuthMeth == Anon) then { 
      SKE := <P,G,dhy(<P,G,X>)>; 
      msg3 := SKE; 
   } 
   else {if (KEmeth == DH) then { 
      if (DHmeth == DHE) then { 
         if (CertMeth == ClientCert) then { 
            SC := certS;  
            dhp := <P,G,dhy(<P,G,X>)>; 
            SKE := <dhp,ep[hash(<Nc,Ns,dhp>)]sKs->; 
            CR := <CertTypeLst,CertAuthLst>;  
            msg3 := <SC,SKE,CR>; 
         } 
         else { 
            SC := certS;  
            dhp := <P,G,dhy(<P,G,X>)>; 
            SKE := <dhp,ep[hash(<Nc,Ns,dhp>)]sKs->; 
            msg3 := <SC,SKE>; 
         } 
      } 
      else { -- DH 
         if (CertMeth == ClientCert) then { 
            SC := DHcertS; 
            CR := <CertTypeLst,CertAuthLst>;  
            msg3 := <SC,CR>; 
         } 
         else { 
            SC := DHcertS; 
            msg3 := SC; 
         } 
      } 
   } 
   else {if (KEmeth == RsaExp) then { 
      if (PKmeth == SignOnly) then { -- sKs+ is longer than 512 bits. 
         if (CertMeth == ClientCert) then { 
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            SC := certS; 
            Ks+ := <mod,exp>; 
            SKE := <Ks+,ep[hash(<Nc,Ns,Ks+>)]sKs->; -- Ks+ is enc pk 
            CR := <CertTypeLst,CertAuthLst>; 
            msg3 := <SC,SKE,CR>; 
         } 
         else { 
            SC := certS; 
            Ks+ := <mod,exp>; 
            SKE := <Ks+,ep[hash(<Nc,Ns,Ks+>)]sKs->; -- Ks+ is enc pk 
            msg3 := <SC,SKE>; 
         } 
      } 
      else { -- sKs+ is <= 512 bits 
         if (CertMeth == ClientCert) then { 
            SC := certS; 
            CR := <CertTypeLst,CertAuthLst>; 
            msg3 := <SC,CR>; 
         } 
         else { 
            SC := certS; 
            msg3 := SC; 
         } 
      } 
   } 
   else {if (KEmeth == Rsa) then { 
      if (CertMeth == ClientCert) then { 
         SC := certS;  
         CR := <CertTypeLst,CertAuthLst>; 
         msg3 := <SC,CR>; 
      } 
      else { 
         SC := certS;  
         msg3 := SC; 
      } 
   } -- END of else if (KEmeth == Rsa) 
   else { 
      msg3 := nothing3; 
   } 
   } -- END of else if (KEmeth == RsaExp) 
   } -- END of else if (KEmeth == DH) 
   } -- END of else if (AuthMeth == Anon) 
   } -- END of if (SID == tSID) 
S: => C(msg3); 
 
C: <-(msg3); 
C: KEmeth := KEM(CS); 
C: AuthMeth := Auth(CS); 
C: CertMeth := Cert(CS); 
C: PKmeth := PK(CS); 
C: DHmeth := DH(CS); 
C: if (SID == sSID) then { 
      FINs := msg3; 
      mac := hash(<CH,SH>); 
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      test := prf(<oldMaster,mac>);  
      assert(FINs == test); 
      prvMsgs := hash(<CH,SH,FINs>); 
      FINc := prf(<oldMaster,prvMsgs>); 
      msg4 := FINc; 
   }  
   else {if (AuthMeth == Anon) then { -- DH_anon 
      SKE := msg3; 
      (P,G,dhYs) := SKE; 
      CKE := dhy(<P,G,Y>); 
      preMaster := dhy(<P,dhYs,Y>); 
      master := prf(<preMaster,Nc,Ns>); 
      msgCheck := hash(<CH,SH,SKE,CKE>); 
      FINc := prf(<master,msgCheck>); 
      msg4 := <CKE,FINc>; 
   }  
   else {if (KEmeth == DH) then { 
      if (DHmeth == DHE) then { -- DHE_X* 
         if (CertMeth == ClientCert) then { 
            (SC,SKE,CR) := msg3; 
            (S, sKs+) := dp[SC]sKca+; 
            (dhp,signH) := SKE;  
            keyCheck := dp[signH]sKs+;  
            keyTest := hash(<Nc,Ns,dhp>); 
            assert(keyCheck == keyTest); 
            (CertTypeLst,CertAuthLst) := CR;  
            (P,G,dhYs) := dhp; 
            CC := certC; 
            CKE := dhy(<P,G,Y>); 
            CV := ep[hash(<CH,SH,SC,SKE,CR,CC,CKE>)]sKc-;  
            preMaster := dhy(<P,dhYs,Y>); 
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,SKE,CR,CC,CKE,CV>); 
            FINc := prf(<master,msgCheck>); 
            msg4 := <CC,CKE,CV,FINc>;  
         } 
         else { 
            (SC,SKE) := msg3; 
            (S, sKs+) := dp[SC]sKca+; 
            (dhp,signH) := SKE;  
            keyCheck := dp[signH]sKs+;  
            keyTest := hash(<Nc,Ns,dhp>); 
            assert(keyCheck == keyTest); 
            (P,G,dhYs) := dhp; 
            CKE := dhy(<P,G,Y>); 
            preMaster := dhy(<P,dhYs,Y>); 
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,SKE,CKE>); 
            FINc := prf(<master,msgCheck>); 
            msg4 := <CKE,FINc>; 
         } 
      } 
      else { -- DH_DSS & DH_RSA 
         if (CertMeth == ClientCert) then { 
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            (SC,CR) := msg3; 
            (S,fdhpS,sKs+) := dp[SC]sKca+;  
            (CertTypeLst,CertAuthLst) := CR;   
            CC := DHcertC; 
            CKE := null;   
            (Ps,Gs,dhYs) := fdhpS; 
            assert(<Ps,Gs> == <Pf,Gf>); 
            preMaster := dhy(<Pf,dhYs,Yf>); 
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,CR,CC,CKE>);  
            FINc := prf(<master,msgCheck>); 
            msg4 := <CC,CKE,FINc>; 
         } 
         else { -- DH_anon 
            SC := msg3; 
            (S,fdhpS,sKs+) := dp[SC]sKca+; 
            (Ps,Gs,dhYs) := fdhpS; 
            assert(<Ps,Gs> == <Pf,Gf>); 
            --dhYc := dhy(<Pf,Gf,Yf>);  
            CKE := <Pf,Gf,dhYcf>;  
            preMaster := dhy(<Pf,dhYs,Yf>); 
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,CKE>); 
            FINc := prf(<master,msgCheck>); 
            msg4 := <CKE,FINc>; -- there is no CV for DH 
         } 
      } 
   } 
   else {if (KEmeth == RsaExp) then { 
      if (PKmeth == SignOnly) then { -- sKs+ > 512 bits 
         if (CertMeth == ClientCert) then { 
            (SC,SKE,CR) := msg3; 
            -- sKs+ is > 512 bits, too large to enc. by old US law. 
            (S,sKs+) := dp[SC]sKca+; 
            -- Ks+ is <= 512 bit enc. key, compliant to old enc. laws. 
            (keyparams,signH) := SKE; 
            (mod,exp) := keyparams; 
            Ks+ := <mod,exp>; 
            keyCheck := dp[signH]sKs+;  
            keyTest := hash(<Nc,Ns,keyparams>); 
            assert(keyCheck == keyTest); 
            (CertTypeLst,CertAuthLst) := CR;  
            CC := certC; 
            preMaster := new; 
            CKE := ep[<PVc,preMaster>]Ks+; -- diff with below 
            CV := ep[hash(<CH,SH,SC,SKE,CR,CC,CKE>)]sKc-; 
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,SKE,CR,CC,CKE,CV>); 
            FINc := prf(<master,msgCheck>); 
            msg4 := <CC,CKE,CV,FINc>;  
         } 
         else { 
            (SC,SKE) := msg3; 
            (S,sKs+) := dp[SC]sKca+; 
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            -- Ks+ is < 512 bit enc. key, compliant to old enc. laws. 
            (keyparams,signH) := SKE; 
            (mod,exp) := keyparams; 
            Ks+ := <mod,exp>; 
            keyCheck := dp[signH]sKs+;  
            keyTest := hash(<Nc,Ns,keyparams>); 
            assert(keyCheck == keyTest); 
            preMaster := new; 
            CKE := ep[<PVc,preMaster>]Ks+; 
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,SKE,CKE>); 
            FINc := prf(<master,msgCheck>); 
            msg4 := <CKE,FINc>; 
         } 
      } 
      else { -- sKs+ is <= 512 bits 
         if (CertMeth == ClientCert) then { 
            (SC,CR) := msg3; 
            -- sKs+ is < 512 bit enc. key, compliant to old enc. laws. 
            (S,sKs+) := dp[SC]sKca+; 
            -- assertion of peer identity here? 
            (CertTypeLst,CertAuthLst) := CR;   
            CC := certC; 
            preMaster := new; 
            CKE := ep[<PVc,preMaster>]sKs+; 
            CV := ep[hash(<CH,SH,SC,CR,CC,CKE>)]sKc-; 
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,CR,CC,CKE,CV>); 
            FINc := prf(<master,msgCheck>); 
            msg4 := <CC,CKE,CV,FINc>; 
         } 
         else { 
            SC := msg3; 
            (S,sKs+) := dp[SC]sKca+; 
            -- Ks+ is < 512 bit enc. key, compliant to old enc. laws. 
            preMaster := new; 
            CKE := ep[<PVc,preMaster>]sKs+; 
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,CKE>); 
            FINc := prf(<master, msgCheck>); 
            msg4 := <CKE,FINc>; 
         } 
      } 
   }   
   else { if (KEmeth == Rsa) then { -- sKs+ <= 512, so can encr & sign 
      if (CertMeth == ClientCert) then { 
         (SC,CR) := msg3; 
         (S, sKs+) := dp[SC]sKca+; 
         CC := certC; 
         preMaster := new; 
         CKE := ep[<PVc,preMaster>]sKs+; 
         CV := ep[hash(<CH,SH,SC,CR,CC,CKE>)]sKc-; 
         master := prf(<preMaster,Nc,Ns>); 
         msgCheck := hash(<CH,SH,SC,CR,CC,CKE,CV>); 
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         FINc := prf(<master,msgCheck>); 
         msg4 := <CC,CKE,CV,FINc>; 
      } 
      else {  
         SC := msg3; 
         (S, sKs+) := dp[SC]sKca+; 
         -- assertion of peer identity? 
         preMaster := new; 
         CKE := ep[<PVc,preMaster>]sKs+; 
         master := prf(<preMaster,Nc,Ns>); 
         msgCheck := hash(<CH,SH,SC,CKE>); 
         FINc := prf(<master,msgCheck>); 
         msg4 := <CKE,FINc>; 
      } 
   }  
   } 
   } 
   } 
   } 
 
C: => S(msg4); 
S: <-(msg4); 
S: if (SID == tSID) then { 
      FINc := msg4; 
      msgCheck := hash(<CH,SH,FINs>); 
      FINcheck := prf(<oldMaster,msgCheck>); 
      assert(FINc == FINcheck); 
   } 
   else {if (AuthMeth == Anon) then { -- DH_anon 
      (CKE,FINc) := msg4; 
      dhYc := CKE; 
      preMaster := dhy(<P,dhYc,X>); 
      master := prf(<preMaster,Nc,Ns>); 
      msgCheck := hash(<CH,SH,SKE,CKE>); 
      FINcheck := prf(<master,msgCheck>); 
      assert(FINc == FINcheck); 
      msgCheck := hash(<CH,SH,SKE,CKE,FINc>); 
      FINs := prf(<master,msgCheck>); 
      msg5 := FINs; 
   } 
   else {if (KEmeth == DH) then { 
      if (DHmeth == DHE) then { -- DHE_X* 
         if (CertMeth == ClientCert) then { 
            (CC,CKE,CV,FINc) := msg4; 
            (C, sKc+) := dp[CC]sKca+; 
            dhYc := CKE; 
            certCheck := dp[CV]sKc+; 
            certTest := hash(<CH,SH,SC,SKE,CR,CC,CKE>); 
            assert(certCheck == certTest); 
            preMaster := dhy(<P,dhYc,X>); 
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,SKE,CR,CC,CKE,CV>); 
            FINcheck := prf(<master,msgCheck>); 
            assert(FINc == FINcheck); 
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            msgCheck := hash(<CH,SH,SC,SKE,CR,CC,CKE,CV,FINc>); 
            FINs := prf(<master,msgCheck>); 
            msg5 := FINs; 
         } 
         else { 
            (CKE,FINc) := msg4; 
            dhYc := CKE; 
            preMaster := dhy(<P,dhYc,X>); 
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,SKE,CKE>); 
            FINcheck := prf(<master,msgCheck>); 
            assert(FINc == FINcheck); 
            msgCheck := hash(<CH,SH,SC,SKE,CKE,FINc>); 
            FINs := prf(<master,msgCheck>); 
            msg5 := FINs; 
         } 
      } 
      else { -- DH_DSS & DH_RSA 
         if (CertMeth == ClientCert) then { 
            (CC,CKE,FINc) := msg4; 
            (C,fdhpC,sKc+) := dp[CC]sKca+; 
            (Pc,Gc,dhYc) := fdhpC;  
            assert(<Pf,Gf> == <Pc,Gc>);   
            preMaster := dhy(<Pf,dhYc,Xf>);   
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,CR,CC,CKE>); 
            FINcheck := prf(<master,msgCheck>); 
            assert(FINc == FINcheck); 
            msgCheck := hash(<CH,SH,SC,CR,CC,CKE,FINc>); 
            FINs := prf(<master,msgCheck>); 
            msg5 := FINs; 
         } 
         else { -- DH_anon 
            (CKE,FINc) := msg4; 
            --dhYs := CKE; incorrect 
            (Pc,Gc,dhYc) := CKE; 
            assert(<Pf,Gf> == <Pc,Gc>);   
            preMaster := dhy(<Pf,dhYc,Xf>);  
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,CKE>); 
            FINcheck := prf(<master,msgCheck>); 
            assert(FINc == FINcheck); 
            msgCheck := hash(<CH,SH,SC,CKE,FINc>); 
            FINs := prf(<master,msgCheck>); 
            msg5 := FINs; 
         } 
      } 
   } 
   else {if (KEmeth == RsaExp) then { 
      if (PKmeth == SignOnly) then { -- sKs+ > 512 bits 
         if (CertMeth == ClientCert) then { 
            (CC,CKE,CV,FINc) := msg4; 
            (C, sKc+) := dp[CC]sKca+; 
            certCheck := dp[CV]sKc+; 
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            certTest := hash(<CH,SH,SC,SKE,CR,CC,CKE>); 
            assert(certCheck == certTest); 
            (PVc,preMaster) := dp[CKE]Ks-; 
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,SKE,CR,CC,CKE,CV>); 
            FINcheck := prf(<master,msgCheck>); 
            assert(FINc == FINcheck); 
            msgCheck := hash(<CH,SH,SC,SKE,CR,CC,CKE,CV,FINc>); 
            FINs := prf(<master,msgCheck>); 
            msg5 := FINs; 
         } 
         else { 
            (CKE,FINc) := msg4; 
            (PVc,preMaster) := dp[CKE]Ks-; 
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,SKE,CKE>); 
            FINcheck := prf(<master,msgCheck>); 
            assert(FINc == FINcheck); 
            msgCheck := hash(<CH,SH,SC,SKE,CKE,FINc>); 
            FINs := prf(<master,msgCheck>); 
            msg5 := FINs; 
         } 
      } 
      else { -- sKs+ is <= 512 bits 
         if (CertMeth == ClientCert) then { 
            (CC,CKE,CV,FINc) := msg4; 
            (C, sKc+) := dp[CC]sKca+; 
            certCheck := dp[CV]sKc+; 
            certTest := hash(<CH,SH,SC,CR,CC,CKE>); 
            assert(certCheck == certTest); 
            (PVc,preMaster) := dp[CKE]sKs-; 
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,CR,CC,CKE,CV>); 
            FINcheck := prf(<master,msgCheck>); 
            assert(FINc == FINcheck); 
            msgCheck := hash(<CH,SH,SC,CR,CC,CKE,CV,FINc>); 
            FINs := prf(<master,msgCheck>); 
            msg5 := FINs; 
         } 
         else { 
            (CKE,FINc) := msg4; 
            (PVC,preMaster) := dp[CKE]sKs-; 
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,CKE>); 
            FINcheck := prf(<master,msgCheck>); 
            assert(FINc == FINcheck); 
            msgCheck := hash(<CH,SH,SC,CKE,FINc>); 
            FINs := prf(<master,msgCheck>); 
            msg5 := FINs; 
         } 
      } 
   } 
   else { if (KEmeth == Rsa) then { -- sKs+ <= 512, so can enc & sign 
      if (CertMeth == ClientCert) then { 
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         (CC,CKE,CV,FINc) := msg4; 
         (C, sKc+) := dp[CC]sKca+; 
         certCheck := dp[CV]sKc+; 
         certTest := hash(<CH,SH,SC,CR,CC,CKE>); 
         assert(certCheck == certTest); 
         (PVc,preMaster) := dp[CKE]sKs-; 
         master := prf(<preMaster,Nc,Ns>); 
         msgCheck := hash(<CH,SH,SC,CR,CC,CKE,CV>); 
         FINcheck := prf(<master,msgCheck>); 
         assert(FINc == FINcheck); 
         msgCheck := hash(<CH,SH,SC,CR,CC,CKE,CV,FINc>); 
         FINs := prf(<master,msgCheck>); 
         msg5 := FINs; 
      } 
      else {  
         (CKE,FINc) := msg4; 
         (PVc,preMaster) := dp[CKE]sKs-; 
         master := prf(<preMaster,Nc,Ns>); 
         msgCheck := hash(<CH,SH,SC,CKE>); 
         FINcheck := prf(<master,msgCheck>); 
         assert(FINc == FINcheck);       
         msgCheck := hash(<CH,SH,SC,CKE,FINc>); 
         FINs := prf(<master,msgCheck>); 
         msg5 := FINs; 
      } 
   }  
   } 
   } 
   } 
   } 
S: => C(msg5); 
C: <-(msg5); 
C: if (SID == sSID) then { 
      we := are_finished; 
   } 
   else { 
      if (AuthMeth == Anon) then { 
         FINs := msg5; 
         msgCheck := hash(<CH,SH,SKE,CKE,FINc>); 
         FINCheck := prf(<master,msgCheck>); 
         assert(FINs == FINCheck); 
      } 
      else {if (KEmeth == DH) then { 
         if (DHmeth == DHE) then { 
            if (CertMeth == ClientCert) then { 
               FINs := msg5; 
               msgCheck := hash(<CH,SH,SC,SKE,CR,CC,CKE,CV,FINc>); 
               FINCheck := prf(<master,msgCheck>); 
               assert(FINs == FINCheck);-- 
            } 
            else { 
               FINs := msg5; 
               msgCheck := hash(<CH,SH,SC,SKE,CKE,FINc>); 
               FINCheck := prf(<master,msgCheck>); 
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               assert(FINs == FINCheck); 
            }  
         } 
         else { -- DH_DSS & DH_RSA 
            if (CertMeth == ClientCert) then { 
               FINs := msg5; 
               msgCheck := hash(<CH,SH,SC,CR,CC,CKE,FINc>); 
               FINCheck := prf(<master,msgCheck>); 
               assert(FINs == FINCheck); -- prob 
            } 
            else { 
               FINs := msg5; 
               msgCheck := hash(<CH,SH,SC,CKE,FINc>); 
               FINCheck := prf(<master,msgCheck>); 
               assert(FINs == FINCheck); 
            } 
         } 
      } 
      else {if (KEmeth == RsaExp) then { 
         if (PKmeth == SignOnly) then { -- sKs+ > 512 bits 
            if (CertMeth == ClientCert) then { 
               FINs := msg5; 
               msgCheck := hash(<CH,SH,SC,SKE,CR,CC,CKE,CV,FINc>); 
               FINCheck := prf(<master,msgCheck>); 
               assert(FINs == FINCheck); 
            } 
            else { 
               FINs := msg5; 
               msgCheck := hash(<CH,SH,SC,SKE,CKE,FINc>); 
               FINCheck := prf(<master,msgCheck>); 
               assert(FINs == FINCheck); 
            } 
         } 
         else { -- sKs+ is <= 512 bits 
            if (CertMeth == ClientCert) then { 
               FINs := msg5; 
               msgCheck := hash(<CH,SH,SC,CR,CC,CKE,CV,FINc>); 
               FINCheck := prf(<master,msgCheck>); 
               assert(FINs == FINCheck); 
            } 
            else { 
               FINs := msg5; 
               msgCheck := hash(<CH,SH,SC,CKE,FINc>); 
               FINCheck := prf(<master,msgCheck>); 
               assert(FINs == FINCheck); 
            } 
         } 
      } 
      else { if (KEmeth == Rsa) then { -- sKs+ <= 512 
         if (CertMeth == ClientCert) then { 
            FINs := msg5; 
            msgCheck := hash(<CH,SH,SC,CR,CC,CKE,CV,FINc>); 
            FINCheck := prf(<master,msgCheck>); 
            assert(FINs == FINCheck); -- 
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         } 
         else { 
            FINs := msg5;  
            msgCheck := hash(<CH,SH,SC,CKE,FINc>); 
            FINCheck := prf(<master,msgCheck>); 
            assert(FINs == FINCheck); -- 
         } 
      }  
      } 
      } 
      } 
   } 
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APPENDIX C 
 
 
 
 

Wagner and Schneier  
Key Exchange Algorithm Rollback attack 

On TLS 
 
 

X: assume(global.decrypt(CA.sKs+,S.sKs-)); 
X: assume(global.decrypt(C.sKca+,CA.sKca-)); 
S: assume(S.RsaExp <> S.DH); 
S: PG := <P,G>; 
X: assume(global.decrypt(I.Ks-,S.PG));  
 
CA: => S(ep[<S, sKs+>]sKca-); 
S: <- (certS); 
CA: => C(ep[<C, sKc+>]sKca-); 
C: <- (certC); 
 
S: -> C(<Anon,DH,DHE,RsaExp,SignOnly,Rsa,ClientCert>); 
I: <-(checks); 
I: (Anon,DH,DHE,RsaExp,SignOnly,Rsa,ClientCert) := checks; 
I: =>C(checks); 
C: <-(checks); 
C: (Anon,DH,DHE,RsaExp,SignOnly,Rsa,ClientCert) := checks; 
 
-- START 
 
C: CH := <PVc, Nc, SID, CSL, SML>;  
C: -> S(CH); 
I: <-(CH);  -- skipped interception since current spec. doesn't use it. 
I: (PVc, Nc, tSID, CSL, SML) := CH; 
I: => S(CH);  
S: <-(CH); 
S: (PVc, Nc, tSID, CSL, SML) := CH; 
S: SID := tSID; 
S: CS :=  <NO,DH,DHE,NO,NO>; 
S: (AuthMeth, KEmeth, DHmeth, CertMeth, PKmeth) := CS; 
S: SH := <PVs, Ns, SID, CS, CM>; 
 
S: ->C(SH); 
I: <-(SH); -- message interception 
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I: (PV, Ns, sSID, CS, CM) := SH; 
I: CS := <NO,RsaExp,NO,NO,SignOnly>;  
I: iSH := <PV, Ns, sSID, CS, CM>; 
I: =>C(iSH); 
C: <-(SH);  
C: (PV, Ns, sSID, CS, CM) := SH; 
C: (AuthMeth, KEmeth, DHmeth, CertMeth, PKmeth) := CS; 
 
S: if (KEmeth == DH) then { 
            SC := certS;  
            dhYs := dhy(<P,G,X>); 
            dhp := <P,G,dhYs>; 
            SKE := <dhp,ep[hash(<Nc,Ns,dhp>)]sKs->; 
            msg3 := <SC,SKE>; 
   } 
   else {if (KEmeth == RsaExp) then { 
            SC := certS; 
            Ks+ := <mod,exp>; 
            SKE := <Ks+,ep[hash(<Nc,Ns,Ks+>)]sKs->; -- Ks+ is enc pk 
            msg3 := <SC,SKE>; 
   } 
   } 
 
S: -> C(msg3); 
I: <-(msg3); -- message interception 
I: (SC,SKE) := msg3; 
I: (PGdhYs,sig) := SKE; -- use own ciphersuite choice 
I: (P,G,dhYs) := PGdhYs; 
I: Ks+ := <P,G>; 
 
I: =>C(msg3); 
C: <-(msg3); 
C: if (KEmeth == DH) then { 
            (SC,SKE) := msg3; 
            (S, sKs+) := dp[SC]sKca+; 
            (PGdhp,signH) := SKE; 
            (P,G,dhp) := PGdhp;  
            keyCheck := dp[signH]sKs+;  
            keyTest := hash(<Nc,Ns,PGdhp>); 
            assert(keyCheck == keyTest); 
            dhYs := dhp; 
            CKE := dhy(<P,G,Y>); 
            preMaster := dhy(<P,dhYs,Y>); 
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,SKE,CKE>); 
            FINc := prf(<master,msgCheck>); 
            msg4 := <CKE,FINc>; 
   } 
   else {if (KEmeth == RsaExp) then { 
            (SC,SKE) := msg3; 
            (S,sKs+) := dp[SC]sKca+; 
            -- Ks+ is < 512 bit enc. key, compliant to old enc. laws. 
            (modexp,signH) := SKE;  
            (mod,exp) := modexp;   
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            Ks+ := <mod,exp>; 
            keyCheck := dp[signH]sKs+;  
            keyTest := hash(<Nc,Ns,modexp>); 
            assert(keyCheck == keyTest); 
            preMaster := new; 
            CKE := ep[<PVc,preMaster>]Ks+; 
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,SKE,CKE>); 
            FINc := prf(<master,msgCheck>); 
            msg4 := <CKE,FINc>; 
   }         
   } 
 
C: -> S(msg4); 
I: <-(msg4); 
I: (CKE,FINc) := msg4; 
I: (PVc, preMasterC) := dp[CKE]Ks-; 
I: gassert(I.preMasterC == C.preMaster); 
I: iCKE := dhy(<P,G,Y>); 
I: preMasterS := dhy(<P,dhYs,Y>); 
I: msgCheck := hash(<CH,SH,SC,SKE,iCKE>); 
I: masterS := prf(<preMasterS,Nc,Ns>); 
I: FINi := prf(<masterS,msgCheck>); 
I: msg4 := <iCKE,FINi>; 
 
I: => S(msg4); 
S: <-(msg4); 
S: if (KEmeth == DH) then { 
            (CKE,FINc) := msg4; 
            dhYc := CKE; 
            preMaster := dhy(<P,dhYc,X>); 
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,SKE,CKE>); 
            FINcheck := prf(<master,msgCheck>); 
            assert(FINc == FINcheck); 
            msgCheck := hash(<CH,SH,SC,SKE,CKE,FINc>); 
            FINs := prf(<master,msgCheck>); 
            msg5 := FINs; 
   } 
   else {if (KEmeth == RsaExp) then { 
            (CKE,FINc) := msg4; 
            (PVc,preMaster) := dp[CKE]Ks-; 
            master := prf(<preMaster,Nc,Ns>); 
            msgCheck := hash(<CH,SH,SC,SKE,CKE>); 
            FINcheck := prf(<master,msgCheck>); 
            assert(FINc == FINcheck); 
            msgCheck := hash(<CH,SH,SC,SKE,CKE,FINc>); 
            FINs := prf(<master,msgCheck>); 
            msg5 := FINs; 
   } 
   } 
S: -> C(msg5); 
I: <-(msg5); 
I: master := prf(<preMasterC,Nc,Ns>); 
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I: msgCheck := hash(<CH,iSH,SC,SKE,CKE,FINc>); 
I: FINi := prf(<master,msgCheck>); 
I: msg5 := FINi; 
 
I: =>C(msg5); 
C: <-(msg5); 
C: if (KEmeth == DH) then { 
            FINs := msg5; 
            msgCheck := hash(<CH,SH,SC,SKE,CKE,FINc>); 
            FINCheck := prf(<master,msgCheck>); 
            assert(FINs == FINCheck); 
   }  
   else {if (KEmeth == RsaExp) then { 
            FINs := msg5; 
            msgCheck := hash(<CH,SH,SC,SKE,CKE,FINc>); 
            FINCheck := prf(<master,msgCheck>); 
            assert(FINs == FINCheck); 
   } 
   } 
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