
THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

A CASE-BASED FRAMEWORK FOR META INTRUSION DETECTION

By

JIDONG LONG

A Dissertation submitted to the
Department of Computer Science

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Degree Awarded:
Summer Semester, 2006

The members of the Committee approve the Dissertation of Jidong Long defended on

May 18, 2006.

Daniel G. Schwartz
Professor Directing Dissertation

Jerry Magnan
Outside Committee Member

Mike Burmester
Committee Member

Lois Hawkes
Committee Member

Xiuwen Liu
Committee Member

Approved:

David Whalley, Chair
Department of Computer Science

Joseph Travis, Dean, College of Arts and Sciences

The Office of Graduate Studies has verified and approved the above named committee members.

ii

To my parents.

iii

ACKNOWLEDGEMENTS

My Ph.D. Program has turned out to be a long and challenging, but rewarding, journey.

I would not have made it this far without the help of many people. My advisor Dr. Daniel

G. Schwartz has taught me to be a hardworking and effective researcher. He was always

supportive of every idea I came up with for my research and patient in helping me to refine

them. I want to express many thanks to Dr. Jerry Magnan, Dr. Xiuwen Liu, Dr. Mike

Burmester, and Dr. Lois Hawkes for serving on my dissertation committee, providing helpful

suggestions, and enriching my knowledge. I would also like to thank Dr. Sara Stoecklin, an

expert in software engineering, who has shaped me into a good programmer.

I am also grateful to have been part of a collaborative research project wherein we studied

problems of critical infrastructure protection for the US army. The intercommunication with

researchers from other universities, namely the University of Wisconsin, George Washington

University, and the University of Central Florida, has greatly opened my mind and extended

my scope of understanding. I offer my special thanks to the DARPA GCP Project for

allowing me use their software to evaluate my work.

I have benefited greatly from people who have kindly answered my email questions. I

am thankful to Joshua Haines, Richard Lippmann, and David Fried of MIT Lincoln Lab,

Dr. Stephanie Forrest of the University of New Mexico, Wenke Lee of Georgia Institute

of Technology, and Dingbang Xu of North Carolina State University for helping me better

understand their works.

Two good friends of mine, also the team members of our project, Patel Mahesh and

Wayne Liu, were great sources for ideas, and fun. Their participation was invaluable. I

thank them for making my graduate study enjoyable and memorable.

Finally, I would like to show my true appreciation for the love and support of my family.

I dedicate this dissertation to my parents, who continually encourage me to make my best

effort to realize my dreams. I also thank my brother for being so supportive and caring for

iv

me.

— Jidong

v

TABLE OF CONTENTS

List of Tables . viii

List of Figures . ix

Abstract . xi

1. INTRODUCTION . 1
1.1 Problem Statement and Our Approach 4
1.2 Dissertation Contributions . 6
1.3 Dissertation Outline . 8

2. Meta Intrusion Detection . 10
2.1 Rationale for Meta Intrusion Detection 11
2.2 Elements of Meta Intrusion Detection . 12
2.3 Intrusion Detection Message Exchange Format 14
2.4 Related Work in Meta Intrusion Detection 18
2.5 Problems with Current Meta IDS and Our Approach 19

3. Case-Based Reasoning . 22
3.1 Basics . 22
3.2 The Reasoning Process . 23
3.3 Case-Based Reasoning Applications . 24
3.4 The Adaptive Similarity Measure for CBR 25
3.5 Our Case-Based Framework for Meta Intrusion Detection 30

4. Data Mining . 36
4.1 Approaches . 37
4.2 Related Work on Data Mining in Intrusion Detection 38
4.3 A Novel XML Distance Measure . 39
4.4 A Supervised Clustering Algorithm . 51
4.5 Evaluation of Our Data Mining Techniques with Snort 53

5. Alert Correlation . 62
5.1 Related Work . 63
5.2 Explicit Alert Correlation . 64
5.3 Case-Oriented Alert Correlation . 65

vi

5.4 Enhanced Case-Oriented Alert Correlation 68

6. Experimental Evaluation . 80
6.1 The Experiment with DARPA 1998 data sets 80
6.2 Experiment with DARPA 2000 datasets 90
6.3 Experiments with DARPA Cyber Panel Program 92

7. CONCLUSION . 99
7.1 Summary . 99
7.2 Dissertation Contributions . 101
7.3 Drawbacks . 102
7.4 Future Work . 103
7.5 Closing Remarks . 104

APPENDIX . 105

A. Hungarian Algorithm . 105

REFERENCES . 107

BIOGRAPHICAL SKETCH . 114

vii

LIST OF TABLES

4.1 Overall results of the first experiment on DARPA 1998 data 53

4.2 Clustering results on DARPA 1998 data . 60

4.3 Distribution of ‘ftp-write’ sessions over assigned pure clusters 61

4.4 Distribution of ‘satan’ sessions over assigned pure clusters 61

6.1 Clustering results of the initial cases generated for the DARPA 1998 training
data.The last column is singletons. 88

6.2 Overall results of the first experiment on DARPA 1998 data 89

6.3 Overall results of the first experiment on DARPA 2000 data 93

6.4 Experimental results with (1,1,1) . 95

6.5 Experimental results with (5,5,5) . 95

6.6 Experimental results with (10,10,10) . 96

6.7 Experimental results with (1,5,10) . 96

6.8 Experimental results with (10,5,1) . 96

viii

LIST OF FIGURES

2.1 The relationships of the components of meta intrusion detection 14

2.2 Overview of IDMEF Data Model . 16

2.3 An Instance of Analyzer Class in an XML Document 18

3.1 A Simple Case-Based Reasoning System . 24

3.2 The Reflective Architecture . 26

3.3 The Reflective Framework Of the Similarity Measure 28

3.4 UML diagram of the core similarity modules. 29

3.5 The XML representations of a case, a problem and an alert 32

3.6 The Framework of Case-Based Meta Intrusion Detection System 33

4.1 Sample documents XML-1 (left) and XML-2 (right) 43

4.2 Algorithm 1: distance between two attribute sets. 45

4.3 Algorithm 2: distance between two elements. 46

4.4 A distance matrix and its maximal matching with a virtual element 47

4.5 Algorithm 3: distance between two element sets 48

4.6 XML-3 . 49

4.7 A Sample Distance Matrix . 53

5.1 Reduction of alert correlation to matching problems 67

5.2 An example of case-oriented alert correlation 69

5.3 arbitrary matching (a) and (b) and Ordered matching (c) and (d). 70

5.4 Possible matchings for the xi. 73

ix

5.5 Decomposition of optimization problem into subproblems. 73

5.6 An example of reduction of order matching to shortest path on a graph . . . 76

5.7 Algorithm of ordered maximal matching . 77

5.8 Initialize the cache table . 78

5.9 An example of changes in a cache table . 78

6.1 the fragment of a list file . 81

6.2 The data flow in Preprocess . 83

6.3 The IDMEF representation of STIDE outputs 83

6.4 the Overview of Training . 85

6.5 the Overview of Testing . 86

6.6 The three steps of case library construction. 86

6.7 An example of selecting the representative 87

6.8 Service Plot for DDoS1.0 . 92

x

ABSTRACT

Intrusion Detection has become an essential component of security mechanisms for

information systems. Traditional Intrusion Detection Systems generally apply a single

detection model and data source. Thus, they tend to suffer from large numbers of errors.

To address this issue, the concept of meta intrusion detection was recently introduced.

It suggests combining the results from multiple sensors with the aim of providing global

decisions and avoiding errors.

This dissertation describes a novel case-based reasoning framework for meta intrusion

detection, including its rationale, design, implementation, and evaluation. Briefly, a case

consists of a problem-solution pair, where a problem is an attack and its solution is the type

of the attack. Attacks are represented as the collection of alerts arising from sensors. The

alerts are encoded in an XML language.

Three experiments were conducted. The first used the 1998 DARPA data sets. Two

sensors were employed. For each session, all alerts generated formed a pattern. These

patterns were then clustered, and representatives from the clusters were chosen to build a

case library. For this purpose an XML distance measure was created, to measure the distance

between patterns in XML representation. The clustering very effectively distinguished

normal sessions from attack sessions.

A key issue in meta intrusion detection is alert correlation, that is, determining which

alerts are results of the same attack. The above employed what we have called explicit alert

correlation. This makes use of session information contained in the alerts.

xi

The second experiment used the 2000 DARPA data sets containing denial of service

attacks. Here the original contribution has been a new case-oriented approach to alert

correlation which does not require the presence of session information. The experiment

showed that this approach can be very effective in detecting new attacks.

The third experiment made use of the DARPA Grand Challenge Problem program.

This experiment explored case-oriented alert correlation with two underlying methods, one

based on the Hungarian algorithm and one employing dynamic programming. It was found

that both methods are effective for attack detection, and produce almost identical results.

However, the dynamic programming is significantly more efficient.

xii

CHAPTER 1

INTRODUCTION

Computer and network systems, or information systems in general, are extensively used in

modern society. They have become both an irreplaceable part of society’s infrastructure and

the targets of attacks as well. Therefore, security mechanisms are needed to protect them.

The security of an information system is compromised when an intrusion takes places.

An intrusion can thus be defined as “any set of actions that attempt to compromise the

integrity, confidentiality, or availability of a resource”[1]. Nowadays, intrusions are generally

associated with attacks launched over the Internet against remote systems. It is difficult

to prevent such attacks by the use of classical information security technologies, such as

authentication and cryptography, because system and application software typically contain

exploitable weaknesses due to design and programming bugs. It is both technically difficult

and economically expensive to build and maintain an information system that is free of

security flaws and not susceptible to attacks. In addition, attackers take the initiative in

exploiting unforeseen interactions between software components and protocols. Successful

attacks inevitably take place despite the best security precautions. Since it is impossible to

prevent security flaws and attacks, intrusion detection is needed as a last line of defense.

This field has been studied for more than twenty years since Anderson’s report [2]. A

variety of approaches have been explored. Generally speaking, the whole intrusion detection

technology is based on two primary assumptions: (1) system activities are auditable or

observable via some information sources, such as system logs, sequences of system calls, and

network traffic; and (2) normal and intrusive activities have distinct behaviors, for example,

an intrusive activity makes the system fail to provide a certain service. Moreover, such

distinction can be manifested somehow in some information sources. The task of intrusion

detection is therefore to identify normal or/and intrusive activities through the information

1

sources. In order to make it do so, a detection model is necessary that characterizes normal

and/or abnormal behaviors in the form of patterns. In addition, a technique should be

applied to compare the unknown behaviors with the constructed detection models and

indicate those deemed intrusive. In short, targets under protection, audit data (information

sources), detection models, and detection techniques are the essential elements of intrusion

detection.

According to the types of patterns of interest, there are two general categories of intrusion

detection techniques: misuse detection and anomaly detection. Misuse detection (e.g.,

NetSTAT [3]) looks for patterns of known attacks and any behavior that conforms to the

pattern of a known attack is considered intrusive. By contrast, anomaly detection (e.g.,

NIDES/STAT [4]) looks for patterns of normal behaviors. The deviation of current behavior

from normal behavior is considered as potentially intrusive. Alternatively, intrusion detection

can be also classified as either host-based or network-based. Host-based intrusion detection

(e.g., STIDE [5][6]) uses information sources for a host computer and aims to detect attacks

against that particular host. Typical host-based information sources include Sys logs and

SUN’s BSM (Basic Security Module) audit. Network-based intrusion detection (e.g. Snort

and Bro) uses network packets as the information source to detect attacks. It can be used

to detect attacks against hosts or against the network itself.

Accuracy is the key issue for any IDS. Although intrusion detection has been explored for

a long time, current IDSs still suffer from a large number of mistakes (false positive and false

negatives). A false positive happens when an intrusion detection system fires an alert while

there is actually no attack. A false negative happens when an intrusion detection system is

not able to detect an attack. Two important causes contribute to mistakes by IDSs. First,

both misuse detection and anomaly detection have weaknesses. Misuse detection is mainly

criticized for being unable to detect new and unforeseen attacks because it only works on

patterns of known attacks. Although anomaly detection can detect new attacks, it tends

to generate a lot of false positives due to the difficulty of defining, collecting, and updating

normal behavior when establishing the detection model. The second cause is the limited

information sources used by IDSs. Most IDSs only use a single information source to detect

attacks. That is certainly insufficient to provide a good coverage for some attacks. Especially

with the widespread use of the Internet, intrusions are becoming more and more complicated.

Sophisticated attackers usually incorporate actions spanning over multiple steps, operating

2

systems, and applications to make intrusions successful. For example, some distributed

denial of service (DDoS) attacks need to perform IP scans from a remote host to find live

machines in a network, and then apply a well-known vulnerability (e.g., buffer overflow)

to gain the root access of a victim machine, and finally use that machine to send a flood

of network packets to other machines. These intrusive activities are normally recorded in

different audit data sources. It is impossible to get a global picture of this attack if only host

data source or network traffic is checked. Besides accuracy, extensibility and adaptability

are also critical to IDSs. However, almost all IDS projects in the past have largely been

pursued in isolation. Much of the effort within a project is specific to a certain data source

and a certain detection model. Components, such as collection methods and analysis results,

were rarely intended to be shared across IDSs. Furthermore, both new detection approaches

and new intrusions are continuously appearing. It is imperative that IDSs be extensible to

incorporate additional abilities and, meanwhile, be adaptable to new attacks in a timely

manner.

Meta intrusion detection is an emerging concept introduced in the intrusion detection

community to help develop better IDSs, meeting the desirable goals, namely, that they be

accurate, extensible, and adaptable. The basic idea behind the concept is combining analysis

results from multiple IDSs, also called ‘sensors’ in the context of meta intrusion detection.

Each sensor is an independent IDS and interfaces with other intrusion detection components

via messages containing analysis results. Incorporating new modules with extra detecting

ability are as simple as adding a new sensor. Thus, meta intrusion detection tends to have

good extensibility. As these sensors may apply complementary intrusion detection models

and work on complementary audit data sources, the meta IDS is potentially able to make

more comprehensive decisions than each individual sensor.

The intrusion detection community has made some valuable progress in meta intrusion

detection research. For example, the IETF Intrusion Detection Working Group (IDWG) has

proposed an alert description language, called Intrusion Detection Message Exchange Format

(IDMEF). It is increasingly being accepted as the standard alert format. Current research in

meta intrusion detection has been largely concentrated on the problem of alert correlation,

namely, determining whether alerts from different sensors are caused by the same attack

event. A variety of approaches (e.g. [7][8][9][10]) have been proposed. However, building a

meta IDS still heavily relies on human involvement, e.g., hard-coding prior knowledge. This

3

manual and ad hoc nature of the development process is time-consuming and error-prone

and limits the benefits and advantages of meta IDSs over traditional IDSs.

1.1 Problem Statement and Our Approach

This thesis research studies the problem of: how to design an “automated” meta intrusion

detection system effective in detecting attacks and adaptable to detecting new attacks. To

be more specific, there are three main tasks:

• How exactly to combine the results from multiple sensors in order to provide global

decisions. This task is often referred to as alert correlation by intrusion detection

community and is an essential requirement of meta intrusion detection.

• How to make the process of developing the system automated. Although complete

automation is unrealistic, we hope the process will rely as little on human involvement

as possible.

• How to provide our meta intrusion detection system with adaptability. This is a

desirable goal for every intrusion detection system. It is concerned with discovering

new types of attacks.

We expect our approach to be able to work with different IDSs and assume that sensors

send alerts in IDMEF, the standard XML alert language. Thus, the information from

sensors is streams of IDMEF Messages. We observed that the application of meta intrusion

detection is analogues to ‘diagnosis’ applications. The success of Case-Based Reasoning

(CBR) approach in diagnosis applications has inspired us to develop a CBR-based framework

for meta intrusion detection. More specifically, we take a different point of view on our

problem and consider intrusion detection as a ‘diagnosis’ process on the protected system

according to the information from sensors deployed at different locations. The historical

attack records are saved as cases in a case library. Information from sensors is formulated as

problems that are compared with the cases in the case library. If there is a case sufficiently

similar to a problem, the problem is then considered as representing an attack situation.

We understand that the effectiveness of this approach highly depends on the design of

cases and problems and how to measure the similarity between a case and a problem. In

4

order to avoid information loss, the collection of original alerts generated from sensors during

an attack or a potential attack is used to describe the situation. As original alerts are IDMEF

messages and take the form of XML, cases and problems are also formulated as objects in

terms of XML representations, and IDMEF alerts are embedded in cases and problems as

XML elements. We seek a thorough analysis approach and make our data analysis algorithms

directly work with XML objects. A novel XML distance measure is designed for our needs.

It serves as the similarity measure applied by the CBR engine to find cases most similar to

problems.

Our CBR approach is analogous to misuse detection, where attacks are identified by

their similarity to previously known attacks. However, unlike other misuse detection models

where the intrusion patterns are manually analyzed and encoded, our approach eliminates

the need for complicated human analysis. An attack is identified as a pattern of alerts

from the various sensors. This pattern forms the problem part of a case, and the identity

(name or type) of the attack forms the solution part of the case. A clustering approach is

applied that groups cases by similarities among their alert patterns (problem parts). Then

the knowledge of the attack identities (the solution parts) enables one, for each cluster, to

determine whether all the cases in that cluster are cases of the same attack. For each such

cluster, one representative case can be chosen as a case for the case library. This has the

effect of greatly reducing the size of the library by eliminating redundancy. This in turn

greatly enhances the run-time performance of the CBR system.

Our approach additionally has features of anomaly detection, wherein it is adaptable to

new attacks. These features are related to the use of a threshold and our alert correlation

approach. Firstly, the threshold allows some deviation from known cases. As long as the

distance between a problem and a case falls in a certain threshold, it will be considered as

representing a certain attack situation. Although the threshold is adjustable, we try to avoid

the guesswork in determining it and develop a learning approach to discover the threshold

that in some sense best agrees with or supports the training data. Secondly, the proposed

case-oriented alert correlation approaches always formulate problems most similar to given

cases. It also provides the CBR-based meta IDS, to some degree, with the ability to detect

new attacks or variants of known attacks.

5

1.2 Dissertation Contributions

This dissertation research makes the following contributions to the fields of data mining,

case-based reasoning, and intrusion detection:

• The CBR Approach for Meta Intrusion Detection. We study the nature of

meta intrusion detection and find it analogous to diagnosis applications. Considering

that the CBR approach has been successful in diagnosis applications, we explored the

application of CBR to meta intrusion detection. This approach saves the previously

known attacks as cases. A problem is defined as a pattern of alerts generated during an

attack. A case consists of a description of the problem plus a solution. The intrusion

detection is thus equivalent to CBR’s reasoning process to find a case similar to a

problem. We designed cases and problems in a straightforward way and let them take

the form of XML objects. Hence, an alert in IDMEF can be easily accommodated

in a case or a problem. The design also eliminates the reliance on expert analysis to

find the complicated relationship between alerts and encode intrusion patterns. The

relationship is already implicit in the description of the problem.

• Adaptive Similarity Measure. A similarity measure is a critical component in any

CBR system. We study various similarity measures popularly used in CBR and other

fields, and find that while these similarity measures will employ different algorithms,

they have basically the same functionality. In a typical CBR system, a case is described

by a set of predefined features. When comparing two cases, their similarity with respect

to each feature is given by an appropriate feature comparator. Then the results of

these comparators for all features are combined according to some rule, giving an

overall measure of similarity of the cases. Thus, a similarity measure can be generally

defined by a set of feature comparators together with a combinational rule. We use

an “adaptive” or “reflective” software architecture wherein case features are associated

with their comparators and combinational rule dynamically via run-time references to

metadata. A new similarity measure can be easily obtained by changing the metadata

file without reprogramming other software components.

• A Novel XML Distance Measure. We study our need for a similarity measure to

compare cases in the form of XML. We develop a distance-based similarity measure for

6

two arbitrary XML documents. The smaller the distance, the more similar. We view

an XML document as a collection of XML elements organized in a tree structure where

there is only one root element. We first introduce the concept of content-free XML

and the way to convert a common XML document into a content-free XML document.

Any XML element in a content-free XML document can be represented as a triple with

component element name, attribute set, and sub-element set. Thus, an XML document

can be represented by a set of elements given in such triple representations. We develop

a series of algorithms for computing the distance between two XML attribute sets, two

XML element sets, and two XML elements. The distance between two XML documents

is determined as the distance between their two root elements.

– Extension to the Hungarian Algorithm for Distance Computation. The

problem of computing the distance between two sets (XML attribute sets or XML

element sets) has been cast into a maximal matching problem (or job assignment

problem). The cost for an element in one set matching with an element in the

other set is defined as the their distance. The Hungarian algorithm solves maximal

matching problems. But it is not perfect for our needs when two sets are not of

equal size. Surplus elements in the larger set can never find matches and they do

not account in the overall distance if the Hungarian algorithm is straightforwardly

applied. In order to make all elements have matches, we create a ‘virtual’ element

in the smaller set for each surplus element in the larger set. A virtual element is

defined as having the maximal distance to any other element.

– Extend Data Analysis Algorithms to Work with Objects in Terms

of XML Representations. Many well-known data analysis algorithms in

knowledge and learning systems work only with objects in attribute-value rep-

resentations. But objects in our approach employ XML representations. If we

transform XML representations to traditional attribute-value representations for

the purpose of using those algorithms, it will cause information loss and redundant

data. We believe it is better to perform analysis directly over it natural forms. We

replace distance functions (or distance measures) used in those algorithms with

our own distance measure to make them work with XML objects. For example, a

hierarchical clustering algorithm is developed based on our XML distance measure

7

and used in the construction of case library; the reasoning process for finding the

most similar case is actually a 1-nearest neighbor algorithm.

• Case-Oriented Alert Correlation. We study alert correlation, one of the critical

problems in field of meta intrusion detection. It is also referred to as problem

formulation in the context of CBR. As there is no knowledge to decide which alerts

from different sensors are caused by the same attack, we choose to use the known cases

in the case library to direct alert correlation. We are aware of the connections between

alerts in a case is still implicit so we consider them as a whole in alert correlation.

Given a known case, we assume there is an on-going attack the same as the one in the

case. We develop our algorithm to look for a group of currently generated alerts that

can best match the alerts in the case. The group of alerts is formulated as a problem.

If it turns out the problem is close to the given case, it is reasonable to believe the

attack represented by the case is likely to have occurred.

• Evaluation. We choose the well-known DARPA data to evaluate our approach. For

our evaluation purpose, Snort and STIDE are picked as sensors to process network

data and host audit data respectively. STIDE was modified to be able to generate

IDMEF alerts. We apply a data mining approach to automatically construct a case

library from DARPA 1998 training data and learn the threshold for intrusion detection.

Our data mining algorithms based on the XML distance measure are shown to be

able to distinguish different types of attacks. The constructed case library (detection

model) was tested with 1998 testing data. The results showed that CBR for meta

IDS made remarkable improvement in detection performance over individual sensors.

Our evaluation on DARPA 2000 dataset has demonstrated that our approach has the

ability to detect the variant of old attacks.

1.3 Dissertation Outline

The rest of thesis is organized as follows. Chapter 2 states in more detail the rationale of

meta intrusion detection, reviews representative research efforts, and examines the challenges

of building meta intrusion detection systems. Chapter 3 briefly describes the technologies of

case-based reasoning and outlines the case-based framework for the application domain of

meta intrusion detection. Chapter 4 describes the data mining approaches, namely, an XML

8

distance measure and a supervised hierarchical clustering algorithm, we have developed.

They serve as the basis for building a case-based meta intrusion detection system. Chapter

5 describes our proposed solutions for the problem of alert correlation, a common challenge

for all meta intrusion detection approaches. Chapter 6 describes the experiments to evaluate

our approaches using three different DARPA datasets. Chapter 7 summarizes the thesis,

discusses main drawbacks and open issues for future work.

9

CHAPTER 2

Meta Intrusion Detection

Meta Intrusion Detection is a quite new concept in the intrusion detection community.

There is still not a generally accepted definition for it so far. Ho [11] describes meta

intrusion detection as “a technology that allows a single security console to accept from

and communicate with all deployed devices that are from different vendors”. Loshin [12],

from Information Security Magazine adds that meta IDS is “a system that can accept alerts

from all deployed security devices, exact useful information and present that information

in a manageable format”. Despite the differences, there are at least two aspects that every

meta IDS should have in common:

• It should work with multiple sensors (or other types of security devices, e.g. firewalls).

For this reason, this technology is also called multi-sensor IDS in some works [7][13].

• It performs data analysis based on meta data, namely, the information from sensors,

mainly alerts, instead of the raw data sources commonly used by traditional IDSs.

With the growing acceptance of IDMEF as the standard alert format for IDSs, meta

data for meta intrusion detection usually takes the form of IDMEF messages.

Meta IDSs may be viewed as the extension of traditional IDSs. Sensors in a meta IDS are

independent IDSs that can apply different detection models and work on different audit data

sources for intrusion detection. They send their results to the meta IDS for further analysis.

As these sensors may apply complementary intrusion detection techniques, e.g. misuse

detection or anomaly detection, and work on complementary data sources, e.g. host-based or

network-based, the meta IDS potentially is able to make more comprehensive decisions than

each individual sensor acting alone. Currently, meta intrusion detection is more generally

referred to as a technology providing cooperation among different IDSs. Based on this point

10

of view, any approach that involves cooperative behaviors among IDSs will fall within the

scope of meta intrusion detection.

2.1 Rationale for Meta Intrusion Detection

Since the first detection model was presented by Dorothy Denning [14], extensive efforts

have led to a variety of intrusion detection techniques, which have been applied to numerous

data sources and platforms. But most intrusion detection related projects have been largely

pursued in isolation. They have concentrated primarily on very specific event streams and

analysis objectives; and components in IDSs were rarely intended to be shared across IDSs.

This is mainly due to incompatible audit and alert formats [15]. Hence, traditional IDSs

normally work alone and are limited by using a single audit data source and a single detection

model. On the one hand, every detection model can apply misuse detection or anomaly

detection. Both detection techniques have weaknesses. Misuse detection is mainly criticized

for being unable to detect new and unforeseen attacks because it only works on patterns of

known attacks. Although anomaly detection can detect new attacks, it tends to generate

a lot of false positives due to the difficulty of defining, collecting, and updating normal

behavior when establishing the detection model. On the other hand, applying a single data

source for intrusion detection cannot provide a good coverage for attacks, especially with

attacks becoming more sophisticated and more widespread. For example, some distributed

denial of service (DDoS) attacks need to perform an IP scan from a remote host to find live

machines in a network, and then apply a well-known vulnerability (e.g., buffer overflow of

some application) to obtain the root access of a victim machine, and finally use that machine

to send a flood of network packets to other machines. These intrusive activities are normally

recorded in different audit data sources. It is impossible to get a global picture of this attack

if only host data source or network traffic is checked.

There is no doubt that IDSs should pursue a high detection rate. However, too many

false positives, for example 100’s per day, can also make IDSs almost unusable, even with a

high detection rate. Experience has taught the intrusion detection community that the most

powerful monitoring solution is one that allows the collection of information from multiple

levels of abstraction in the system, from multiple hardware and software platforms, and

in different data formats [16][17]. The need for meta IDSs arises in the first place from

11

their better detection performance than transitional IDSs. According to [18], meta intrusion

detection can be applied to the following detection scenarios that involve cooperation between

IDSs for the improvement of the overall detection performance:

• Analyzing

• Complementing

• Reinforcing

• Verifying

• Adjusting Monitoring

• Responding

A number of commercial and free IDSs are available and more are becoming available

all the time. Some are aimed at detecting intrusions on the network; others are aimed at

host operating systems; while still others are aimed at applications. Even within a given

category, the products have very different strengths and weaknesses. Hence it is likely that

users will deploy more than a single product, and users will want to observe the output of

these products. The use of meta intrusion detection makes it easy to integrate new IDSs with

new detection approaches and new audit data sources. Thus, Intrusion Detection research

should migrate into commercial products more easily. Such extensibility also contributes to

the need for meta intrusion detection.

In addition, meta intrusion detection is necessary as the solution for enterprise-wide

security deployments. A traditional IDS is no longer suitable for current network topologies

due to their lack of scope. Intrusions nowadays frequently involve multiple organizations

as victims, or multiple sites within the same organization. Typically, those sites will use

different IDSs (Sensors) to monitor different portions of the network. It would be very helpful

to correlate such distributed intrusions across multiple sites and administrative domains.

2.2 Elements of Meta Intrusion Detection

Meta intrusion detection has much in common with traditional intrusion detection simply

because they are all aimed to detect attacks. Meta intrusion detection can be viewed as an

12

extension of traditional IDSs (as shown in Figure 2.1). Hence, it has what all traditional IDSs

should have, although some elements use different terms in the context of meta intrusion

detection.

• Data Sources: the raw information that an IDS uses to detect attacks. Common data

sources include, but are not limited to, network traffic, operating system audit logs,

and application audit logs. Multiple data sources can be involved simultaneously under

the framework of meta intrusion detection.

• Sensors:the components that can collect data from data sources. The sensors are

space to record activity and forward events to the analyzer. Typical sensors include

tcpdump and Basic Security Monitor (BSM). The former is a Unix tool that collects

network traffic and records it as tcpdump data. The latter is a Solaris tool that collects

information about system calls and saves it in the BSM audit files.

• Analyzers: the component that analyzes the data collected by the sensor for signs of

undesired activity or for events that might be of interest to the security administrator

or other intrusion detection components. In most circumstances, analyzers report

critical findings in the form of alerts. In many existing IDSs, the sensor and analyzer

are part of the same component. Thus, we call those IDSs ‘sensors’ in general if they

are deployed for meta intrusion detection. For example, the common rule-based IDS

Snort is actually a combination of a sensor and a rule inference engine. It can collect

network traffic as tcpdump does, and also fire alerts if the attack signatures are found.

We use Snort as a sensor for the evaluation of our case-based meta intrusion detection

approach(Chapter 6). Although the terms, ‘analyzer’ and ‘sensor’, are both used in

the thesis, their difference should be clear from the context of our discussion.

• Monitor: the component where the alerts from various analyzers are collected and

further decisions will be made. A monitor refines the analysis results from analyzers in

order to provide more comprehensive decisions. It may generate hyper-alerts or report

decisions in some other forms to the response system or the users of the IDSs.

• Detection Models that characterize the “normal” or “abnormal” behavior of the

activities. Every analyzer and the monitor have their own detection models. For

13

Figure 2.1: The relationships of the components of meta intrusion detection

example, we use a case-based approach for meta intrusion detection; Snort is one of

the sensors selected for the evaluation of the approach. The detection model of the

monitor is the case library and the detection model of Snort is the set of applied rules.

2.3 Intrusion Detection Message Exchange Format

The IDMEF, proposed by the Intrusion Detection Working Group (IDWG) of the Internet

Engineering Task Force(IETF), is intended to be a standard data format that automated

IDSs can use to report alerts about events that they deem suspicious. Existing IDSs using

different alert formats curbs communication between them. The use of IDMEF enables

interoperability among various IDSs. The most obvious place to implement IDMEF is in the

data channel between a sensor and the monitor to which it sends alerts. But there are other

places where the IDMEF can be useful:

• a single database system that could store the results from a variety of IDSs would

make it possible for data analysis to be performed on a global basis instead of a part

of it. We will see later on in this thesis that cases and problems are constructed from

a database that stores IDMEF alerts from two different sensors, Snort and STIDE;

14

• an event correlation system that could accept alerts from a variety of IDSs would be

capable of performing more sophisticated cross-correlation than one that is limited to

a single IDS. Our case-oriented alert correlation approach discussed in Chapter 7 is

designed to work directly on IDMEF alerts.

• a graphical user interface that could display alerts from a variety of IDSs. A common

data exchange format would make it easier to not only exchange data, but also

communicate about it.

In our approach, all alerts are compliant with the IDMEF.

2.3.1 The Flexibility of IDMEF

Alert information is inherently heterogeneous. Some alerts are defined with very little

information, such as origin, destination, name, and time of the event. Other alerts provide

richer information, such as ports or services, processes, user information, and so on. IDMEF

is flexible to accommodate different needs because it chooses an object-oriented model that is

naturally extensible via aggregation and sub-classing. Sub-classing and aggregation provide

extensibility while preserving the consistency of the model. If an implementation of the data

model extends it with new classes, either by aggregation or sub-classing, an implementation

that does not understand these extensions will still be able to understand the subset of

information that is defined by the data model.

There are different types of Intrusion detection environments. Some analyzers detect

attacks by analyzing network traffic; others use system logs or application audit data. Alerts

for the same attack, sent by analyzers with different data sources, will not contain the

same information. The IDMEF data model defines support classes that accommodate the

differences in data sources among analyzers. In particular, the notion of source and target

for the alert are represented by the combination of Node, Process, Service, and User classes.

Different analyzers have different capabilities. Depending on the environment, one may

install a lightweight analyzer that provides little information in its alerts, or a more complex

analyzer that will have a greater impact on the running system but provide more information

in alerts. The IDMEF data model allows for conversion to formats used by tools other than

intrusion detection analyzers, for the purpose of further processing the alert information. It

15

Figure 2.2: Overview of IDMEF Data Model

defines extensions to the basic schema that allow carrying both simple and complex alerts.

Extensions are accomplished through sub-classing or association of new classes.

There are different kind of operating environments. Depending on the kind of network or

operating system used, attacks will be observed and reported with different characteristics.

The IDMEF data model accommodates these differences. Significant flexibility in reporting

is provided by the Node and Service support classes. If additional information must be

reported, subclasses may be defined that extend the data model with additional attributes.

2.3.2 The XML Implementation of IDMEF

The Extensible Markup Language (XML) is gaining widespread attention as a language

for unambiguously representing, interpreting, and exchanging data across platforms. It is a

meta-language, a language to describe other languages, providing both a syntax for declaring

16

document markup and structure as well as a syntax for using that markup in documents.

XML was chosen by the IDWG for implementing the IDMEF. Its flexibility and popularity

makes it a good choice. To be more specific:

• XML allows the definition of both a custom language to be developed specifically for

the purpose of describing intrusion detection alerts and a standard way to extend this

language for later revisions.

• XML has substantially available supports, including software tools for processing XML

documents and APIs for parsing and validating XML in a variety of languages, such

as Java, C, and C++. Widespread access to tools will make adoption of the IDMEF

easier, faster, and more convenient.

• XML is intended to be an internationally accepted standard and supports common

character encodings (e.g. Unicode and UTP-16).

• XML can support filtering and aggregation if integrated with XSL, a style language.

More features, such as object-oriented extensions and database support, that are being

standardized into XML will be immediately gained, if IDMEP adopts XML.

• XML is free.

The XML data model IDMEF has implemented (in the form of XML DTD or XML

Schema) is graphically presented in Figure 2.2. Each box in the figure stands for a class

that, if it is present, is further refined by its sub-classes or aggregate classes. For example,

all IDMEF messages are instances of the IDMEF-Message class; it is the top-level class of

the IDMEF data model. There are currently two subclasses of IDMEF-Message: Alert and

Heartbeat. Heartbeat messages are used by analyzers to indicate their current status to

monitors. Alert messages are for reporting suspicious events. An alert message is composed

of several aggregate classes such as Analyzer, Source, Target, DetectTime, and so on. These

aggregate classes provide more detailed information about the alert. They are further

described by their subclasses or aggregate classes. Figure 2.3 gives an instance of the Analyzer

class (an XML element with a tag of ‘Analyzer’), illustrating how detailed information is

represented in a real XML file.

17

Figure 2.3: An Instance of Analyzer Class in an XML Document

2.4 Related Work in Meta Intrusion Detection

A first attempt to design an IDS with cooperative functionality between different approaches

was suggested in IDES [19] and then refined in EMERALD [20]. More recently, in the

JAM project, Stolfo et al. have applied a meta-learning approach to combine the results

from different detectors [21][22], which has proven to be effective for fraud and intrusion

detection in financial information systems. Those early efforts view intrusion detection as a

classification problem and use classifiers as detectors. Classifiers do not generate alerts. The

results from them simply indicate some categories. However, such cooperation functionality

is restricted within their own IDSs.

The Common Intrusion Detection Framework (CIDF) is an effort addressing the interop-

erability between different IDSs. It has specified a language that would enable interactions

between intrusion detection components and has outlined the ways in which they would

interact. The CIDF encouraged the creation of IDWG. Much of the work (e.g. IDMEF) of

the IDWG was initially inspired by the ideas in the CIDF.

Current research in meta intrusion detection has largely focused on the problem of

alert correlation which is concerned with determining whether alerts from different security

devices are caused by the same attack. There have been several proposals. Approaches,

18

such as probabilistic alert correlation [10] and alert clustering methods [7][23], are based

on the similarity between alert attributes. Although they are effective in finding similar

alerts, approaches of this type are criticized for not being able to discover deep logical

connections between alerts. Some approaches [24][25] correlate alerts under the guidance

of specified attack scenarios. They are restricted to known attacks or variants of known

attacks. Approaches based on prerequisites and consequences of attacks [13][26][9] may

discover novel attack scenarios. These correlate alerts if the prerequisites of some later alerts

are satisfied by the consequences of some earlier ones. However, in practice, it is impossible

to predefine the complete set of prerequisites and consequences. In fact, some relationships

cannot be expressed naturally with the given set of terms. Some approaches (e.g., [27][8]

apply additional information sources, such as firewalls and system states to assist in alert

correlation. In particular, Morin et al. [27] have proposed a formal model, M2M2, for alert

correlation using multiple information sources.

Some currently well-known research projects towards developing meta-IDS include MI-

RADOR [7][13], M-Correlator [8], and GrIDS [28].

2.5 Problems with Current Meta IDS and Our
Approach

Generally speaking, a meta IDS relies on the outputs of multiple IDSs to improve the overall

detection performance that a single work-alone IDS can not achieve. The outputs of IDSs

are alerts for events that are deemed suspicious. Thus, how to find valuable information from

alert messages for systematic analysis is a critical issue to every meta intrusion detection

approach. A common strategy used by current approaches is abstracting every alert message

with a predefined set of attributes. An important reason for doing that is that popular data

analysis algorithms normally work with data described by a set of attributes (attribute-

value representation). However, alert information is inherently heterogeneous. Some alerts

are defined with very little information, while others provide more detailed information. It

is difficult to define a set of attributes that cover the information for all alerts from different

sensors. Either redundant information or missing information will occur. Moreover, alerts

come as IDMEF messages that take the form of XML. XML represents structured data.

If an XML document is transformed into a set of attributes, its structure information will

be lost. Hence, information loss is inevitable if alerts are described by a predefined set of

19

attributes.

What is worse is that this may impact the adaptability and extensibility of meta IDS.

As new types of attacks, as well as new detection approaches, continue to appear, sensors

may generate alerts with important information that was not anticipated when the meta

IDS was developed. New attributes need to be introduced to represent the new important

information. Without new attributes in the set, the signs of new attacks can become invisible

and the power of new detection approaches can also become useless due to the loss of

important information. Our approach solves the information-loss problem by performing

data analysis directly over objects in terms of XML representation instead of attribute-value

representation. A general distance measure between two arbitrary XML documents was

developed as the basis for our analysis algorithms. A reflective metadata implementation

makes the distance measure adaptive to changes. Users can simply modify the metadata

to specify important information in alerts without reprogramming. Some common effective

data analysis algorithms can apply the XML distance measure with little modification.

The problem of alert correlation is regarded as the most important and challenging issue

in meta intrusion detection research. It is concerned with determining whether alerts from

different security devices are caused by the same attack. The general strategy is to define the

connections between alerts in certain forms, such as rules and terms, (e.g. [26][25][13]) and

use them as the knowledge to guide alert correlation. One problem with this strategy is that

attacks are diverse in nature and it is infeasible to predefine all possible rules even for known

attacks. In fact, some relationships cannot be expressed naturally in rigid terms. Moreover,

discovering the connections between alerts and constructing the knowledge base for alert

correlation need careful investigation by human experts and thus are time-consuming and

error-prone. This also makes the setup of a meta IDS rely heavily on human involvement.

Our approach pursues a way of design that tries to involve the human as little as possible. We

observed that for the purpose of intrusion detection, the detail of relationships among alerts

is unnecessary. Hence, unlike other approaches, our approach avoids revealing the details of

the connections between alerts and simply collects alerts related to the same attack together

as a case. Although the connections between alerts are not specified, they are implicit in

the case. The cases of known attacks are accumulated in the case library that is used as

the knowledge for alert correlation. We developed a case-oriented alert correlation approach.

For each case in the library and from currently generated alerts, it looks for an alert pattern

20

that is most similar to the one in the case. If they are similar enough, it is reasonable to

believe that the alerts in the new pattern are related to an attack of the same type as that

which the case represents.

21

CHAPTER 3

Case-Based Reasoning

Case-based reasoning (CBR) is a method of solving problems by comparing an unknown sit-

uation (termed a ‘problem’) to previously experience ones (termed ‘cases’). The comparison

is accomplished by applying a similarity measure. The most similar case is usually used to

suggest a solution for the unknown situation. Although the entire technology is based on

a simple idea, it has been proven effective in solving quite complicated problems, especially

in diagnosis applications. Inasmuch as intrusion detection bears a considerable amount of

similarity to diagnosis problems, this has inspired us to devise an approach that applies CBR

to meta intrusion detection. This chapter first introduces the basic concepts and methods

of CBR. Earlier work on an adaptive similarity measure framework for CBR [29] is then

described inasmuch as we have used it again here to implement the case-based reasoner used

in our experiments. In addition, this chapter shows our design of the CBR system for the

application domain of meta intrusion detection. A few issues arising particularly from the

design are also mentioned in this chapter. These will be addressed and more clearly stated

in the following sections of this dissertation.

3.1 Basics

Since the 1980’s CBR has grown into a field of widespread interest, both from an academic

and commercial standpoint [30]. Basically, CBR is motivated by observing how humans

reason. When faced with a problem situation, humans often remember how they were able

to solve a similar situation, rather than think through the entire problem from scratch. CBR

is a decision support methodology that uses earlier experiences, or cases, as the basis to make

decisions. It can be defined as “to solve a problem, remember a similar problem you have

solved in the past and adopt the old solution to solve the new problem.”[31] A more formal

22

definition is given in [32]:

“Case-Based Reasoning is a problem solving paradigm which utilizes the specific

knowledge of previous experiences, concrete problem situations (cases). A new

problem is solved by finding a similar past case, and reusing its solution in the new

problem situation. CBR is a cyclic and integrated process of solving a problem

and learning from this experience.”

In a CBR system, expertise is embodied in a library of past cases, where a case is

comprised of a problem-solution pair. A problem is typically described in terms of a set of

predefined features. A solution may simply be an identifier, such as the name or type of an

attack, or a prescribed response. The knowledge and reasoning process used by an expert to

solve the problem is not recorded, but is implicit in the solution.

Different CBR systems may have different application domains. In any such domain the

problem component of the cases will have features appropriate for that domain. In general, a

feature is composed of a feature name and a feature value. A set of predefined features plus

their corresponding values constitute the description of a situation (case). From the view of

describing objects, features are the same as ‘attributes’ commonly seen in other knowledge

and learning systems. We do not make the distinction between features and attributes and

sometimes use these terms interchangeably.

3.2 The Reasoning Process

All case-based reasoning methods have a few operations in common, namely, retrieving,

reusing, revising, and retaining cases. They deal with different issues during the reasoning

process, such as how to find the most related cases and how to enrich the knowledge for the

CBR system. The reasoning process can be generally described as follows (Figure 3.1). A

problem is first formulated or abstracted from the working environment and is then compared

with cases in the case library. The similar cases are retrieved and then used to suggest a

solution for the present problem. The solution is applied and is tested for success back in

the environment. If it turns out that the solution is not good enough to solve the problem,

the solution is revised (possibly found by human experts or other methods afterwards) and,

if the revised solution is effective, a case containing the description of the problem plus the

final solution will be created and retained in the case library for future reference.

23

Figure 3.1: A Simple Case-Based Reasoning System

3.3 Case-Based Reasoning Applications

CBR has been pursued to create numerous applications in a wide range of domains since it

first appeared in commercial tools in early 1990s:

• Diagnosis: case-based diagnosis systems try to retrieve past cases whose symptom lists

are similar in nature to that of the new case and suggest diagnoses based on the best

matching retrieved cases. The majority of installed systems are of this type and there

are many medical CBR diagnostic systems [33].

• Help desk: case-based diagnostic systems are used in the customer service area dealing

with handling problems with a product or service.

• Assessment: case-based systems are used to determine values for a variable by

comparing it to the known value of something similar. Assessment tasks are quite

common in finance and marketing domains.

• Information retrieval and decision support: in decision making, when faced with a

24

complex problem, people often look for analogous problems for possible solution. CBR

systems have been developed to support this problem retrieval process to find relevant

similar problems. CBR is particularly good at querying structured documents.

Case-based reasoning is preferred over more traditional rule-based and model-based

approaches when experts find it hard to articulate their thought processes when solving

problems. Knowledge acquisition for a classical knowledge-based system turns out to be

extremely difficult in a certain class of domains, and is likely to produce incomplete or

inaccurate results. In the domain of intrusion, artificial intelligence techniques have gained

a lot of attention. Attempts have been made to develop rule-based and model-based expert

systems for intrusion detection. Although these systems have been useful for detecting

intrusions, they face difficulties in acquiring and representing the knowledge. The issue

becomes more critical when coping with meta intrusion detection, where intrusion behaviors

are much more complicated. It is not easy to gain a good insight regarding intrusions from

a broader perspective. Moreover, in certain cases, the knowledge about attacks cannot be

naturally described in rigid terms. However, when using case-based reasoning, the need for

knowledge acquisition can be limited to establishing how to characterize cases. In order to

avoid the difficulties in acquiring and representing the knowledge, we present and describe

a case-based reasoning approach to meta intrusion detection which alleviates some of the

difficulties of current approaches.

3.4 The Adaptive Similarity Measure for CBR

A similarity measure is a critical component in any CBR system. Although different systems

may apply different similarity measures for their domains, a similarity measure can be

generally defined by a set of feature comparators together with a combination rule. More

clearly, a case is represented by a set of predefined features. A similarity measure compares

two cases with respect to their “features”, with each feature using a separate “comparator”.

The results of the comparators are combined according to some rule to give an overall measure

of the similarity between the given cases. The combination rule may normalize and/or

weight the results from the comparators to reflect the relative importance of individual

features. Similarity measures differ mainly in the selection of comparators for features and

the combination rule. The existence of many similarity measures does not always give a clear

25

Figure 3.2: The Reflective Architecture

choice of an appropriate measure for a particular domain. Hence, in order to find a good

similarity measure for a particular domain, people usually have to experiment with different

measures and select one that works best. This process often needs repeating programming

work. Moreover, having a fixed similarity measure makes the CBR system only applicable

to limited problem domains.

Previous works [34] have described a CBR framework that can easily be instantiated to

provide a case-based reasoner for virtually any problem domain. This uses an “adaptive”, or

“reflective” software architecture wherein case features are associated with their comparators

dynamically via runtime references to metadata. New instances of the framework are created

simply by changing the metadata. No reprogramming is required. We extend this concept

to allow for dynamic selection also of feature-comparator combination rules. This makes the

framework more adaptive by eliminating the need to reprogram it for each such new rule.

The overall effect is that the entire similarity measure is described by metadata.

3.4.1 Adaptive (Reflective) Architectures

Architectural frameworks capable of dynamically adapting at runtime to new user require-

ments are called “adaptive architectures”, “reflective architectures” or “meta-architectures”

[35]. Such architectures emphasize the flexibility of having business rules and algorithmic

information dynamically configurable. They represent a system of classes, attributes,

26

relationships, and behavior as metadata, rather than as code embedded in an executable

component. The metadata contains the predictable changes to the domain and shifts that

information about the domain from actual source code into metadata. Changes to this

metadata dynamically change the generic code associated with the adaptive system. Thus

by merely changing the metadata, users can change the behavior of the program without

changing the code.

Figure 3.2 illustrates an example of software with adaptive architecture design. Under

the adaptive architecture, components in any software can be divided into two types in terms

of their adaptability. Components of the first type are necessary for the software to function

properly. They are common for all application domains. Components of the second type are

selectable. They have similar functions but they are implemented for different application

domains. Each application domain is associated with a metadata file that specifies which

components are employed for this particular domain. Those components are dynamically

loaded for execution if necessary. When switching to a new application domain, the user

of the software simply writes a new metadata file for the new domain. The software will

automatically instantiate itself according to metadata.

From the description, the key idea in reflective architecture is to use metadata, instead

of behavioral programming, to control the matching of individual features of the particular

CBR domain. In this work, we extend the reasoning capability to allow the selection of not

only the comparator for the individual feature but also of the rule used to combine the results

of the comparators. This is accomplished by adding a reference to the combination rule as

an additional item of metadata. The overall structure of the resulting system is shown in

Figure 3.3.

Adaptive programming offers a solution by allowing trials with various similarity mea-

sures within various domains. It provides a framework to build each comparator and each

combination rule as a separate module, which are then selected dynamically using metadata,

rather than coding them directly within the CBR system itself. Thus, through metadata,

sophisticated users will have the ability to specify all aspects of a similarity measure and

to have those specifications be reflected in the software without the intervention of a

programmer. It is only required that certain limits and constraints be observed so as to

not compromise the existing software.

As indicated in the figure, there will be a library of similarity measures containing the

27

Figure 3.3: The Reflective Framework Of the Similarity Measure

implementations of various similarity measures available for use by the adaptive CBR. This

library will contain both comparators and combination rules, each written as a separate class,

but with combination-rule classes making reference to comparator classes. It should be noted

that combination rules can be quite complex and may need to accommodate comparators

that return values of different types, e.g., Boolean, numeric, or even linguistic (strings). New

similarity measures can be introduced into the library at will. The metadata files specify

both the comparators for features and the combination rule. The CBR system instantiates

the similarity measure according to the selected metadata file for a particular domain.

A common interface is defined for the various implementations. This interface allows

the case-based system to invoke any of the similarity measures using the same code with

the appropriate metadata. Thus the interface acts as a high-level abstraction that lets the

implementation details of the similarity metrics be hidden.

3.4.2 A Common Similarity Measure Interface

The main reason one can use an adaptive architecture for the technology of the similarity

measures is that all such measures have basically the same functionality. This may be

summarized as: (1) accept two cases as input, (2) apply the appropriate comparators to

their various features, (3) combine the results of the comparators according to some rule,

28

Figure 3.4: UML diagram of the core similarity modules.

and then (4) return the result of the combination.

This drives us to design a common interface at a high-level of abstraction usable for

all similarity measures. This higher-level interface is not concerned with the details of the

implementation of each individual similarity measure. A UML diagram of the design is

shown in Figure 3.4.

The class SimilarityMetrics takes the inputs of problem features and case features embod-

ied in the class FeatureList. The combination rule is implemented by the method combine()

in the class SimilarityMetrics. The outcome of the similarity metric is encapsulated in

the class DegreeOfSimilarity. Each instantiation of SimilarityMetrics will either use a new

DegreeOfSimilarity class, or reuse one that has been created previously. The type of value

returned by a similarity measure may be boolean(true or false), double(0-1 possibility), string

(good, fair, excellent, etc), a fuzzy set, or any other type of object. The method isMoreThan

is used to compare two values from the same similarity measure.

Typically, one similarity measure will suffice for any given CBR application domain, in

which case the isMoreThan method is always applied to two values of the same type.

29

3.5 Our Case-Based Framework for Meta Intrusion
Detection

As we have mentioned earlier, the majority of installed CBR systems are diagnostic systems.

If an information system is viewed as the subject to be diagnosed, intrusion detection is like

a diagnosis problem since they have nearly the same objective, discovering abnormal signs.

Considering the success of CBR in diagnosis, CBR can be an effective approach for intrusion

detection. In fact, CBR has already been explored in this field [36]. Our approach differs

from the former effort with respect to where case-based reasoning is applied. The former

applied CBR to a single IDS, whereas we have concentrated on a meta IDS working with

multiple strategically deployed sensors (IDSs).

There are two main problems in current meta intrusion detection research. One is

information loss. The information from sensors are IDMEF messages in the form of XML,

which is structured data. As most available analysis algorithms only work on data formatted

in tables, information loss occurs when XML data are flattened into such tables in order for

those algorithms to process. CBR is known to be particularly good at querying structured

documents. It inherently has advantages over other approaches in dealing with XML data

like IDMEF messages. The other problem in meta intrusion detection is alert correlation.

A common strategy applied in current approaches uses predefined knowledge in some forms,

such as rules or probabilistic models, to guide alert correlation (e.g. [24][26][27]). It is time-

consuming and error-prone to obtain the necessary knowledge because the process relies

heavily on human involvement and is usually conducted in an ad-hoc manner. This issue, in

fact, reflects the difficulties of acquiring and representing the knowledge for building meta

intrusion detection systems. If case-based reasoning is applied, the entire process can be

largely simplified; the need for knowledge acquisition can be limited to establishing how to

characterize cases.

3.5.1 Problems and Cases for Meta Intrusion Detection

Cases and problems have to be clearly defined for a specific domain where CBR is applied.

Our domain is meta intrusion detection. For this we define a problem as a potential attack

and a case as a previously known attack. The conventional approach to characterize cases

and problems is through a set of predefined features. In other words, a case or a problem is

30

described by a set of features together with their values. This is basically the same as the

attribute-value representation employed by other knowledge or learning systems.

The information the meta IDS can obtain during an attack consists of IDMEF alerts from

deployed sensors. Alert information is inherently heterogeneous. Some alerts are defined with

very little information, such as origin, destination, name, and time of the event. Other alerts

provide much more, information, such as ports or services, processes, user information, and

so on. In addition, alert information may contain extended information due to the adoption

of new detection approaches. Thus, predefining a fixed set of features that can cover all

important information in alerts is almost impossible. Instead of doing so, we choose a more

flexible approach to describe cases in our design. The collection of alerts generated from

different sensors during the attack constitutes the description of an attack (or a problem).

Since an alert is an XML object, in order to facilitate the aggregation of alerts, a problem

is also represented in XML. The alerts comprising a problem are organized according to

the sensors that produced them, and alerts from the same senor are sorted in chronological

order. A case consists of the description of an attack and its solution. Figure 3.5 shows the

representations and structures of a case, a problem, and an alert.

The XML representation of objects is inherently different from the attribute-value

representation applied by conventional CBR systems. In an attribute-value representation,

an object is described by a fixed number of attributes (attribute names and attribute values;

attributes are called ‘features’ in CBR). Although the attribute-value representation is

popular and used in a number of knowledge systems, it has a limitation when describing

complex objects, such as trees. An XML document is a tree structure. If an XML object is

transformed into a set of attributes (the process is called ‘flattening a tree’), some information

in it may be lost. Thus, in our approach, data analysis is performed directly over the alerts,

given as XML objects, rather than working on a set of attributes (features) extracted from

the original alerts.

3.5.2 The Framework Overview

Figure 3.6 presents the framework of a case-based meta intrusion detection system. It

illustrates the relationships among different components and how they interoperate as a

system.

A meta intrusion detection system has to work with a group of sensors strategically

31

Figure 3.5: The XML representations of a case, a problem and an alert

deployed at different locations within a certain information system. Each sensor is an

independent IDS and performs data analysis over a certain data source and generates alerts

when signs of intrusions are found. Those sensors do not have to be physically separated.

They can be installed on the same device but watch over different data sources. For example,

provided two IDSs, STIDE and Snort, are installed on the same machine, STIDE applies

the sequence of system calls for intrusion detection, while the Snort uses network traffic to

detect attacks.

Meta intrusion detection differs from traditional intrusion detection approaches in that it

works on middle-level data, namely, the outputs from other IDSs working on raw audit data

sources. Thus, the raw data sources, including training data, testing data, and runtime data

sources, must be fed into the sensors first. Alerts from those sensors serve as the middle-level

data and are the input for the meta IDS. Alerts are collected in a database of alerts. If the

alerts in the databases are generated for training data, given the labeled information (attack

information) in the training data, data mining (DM) or machine learning (ML) approaches

can be applied to construct the knowledge base, including historical cases and background

32

Figure 3.6: The Framework of Case-Based Meta Intrusion Detection System

knowledge, for intrusion detention. If the alerts in the alerts database are from testing data

or runtime data sources, problems will be formulated out of them through an alert correlation

approach that is concerned with determining which alerts are caused by the same attack.

‘Problem’ is a term used in case-based reasoning. In our application domain, it is a pattern

of alerts representing a possible attack.

The knowledge base is critical for intrusion detection. It contains the known cases that

the similarity measure will compare with problems and such background knowledge as the

33

threshold value that separates normal and abnormal behaviors. In addition, the knowledge

base may also assist alert correlation approaches in finding the most relevant alerts. Since

the knowledge base may contain redundancy or missing information that would impact the

detection performances, it normally needs to be refined through data mining or human

analysis. It is always necessary and valid for sophisticated users to be able to manually

update the knowledge base since some knowledge can be more easily obtained through human

analysis rather than algorithms.

The final results from the CBR system go to the end users or the response system where

the actions or countermeasures should be taken in response to detected attacks.

3.5.3 Main Issues of the Design

Although the design of the case-based meta intrusion detection system seems straightforward,

it bears a few problems for implementation mainly due to the choice to use XML represen-

tations for cases and problems. Because of this, traditional similarity measures developed

for data in attribute-value representations (data formatted in tables) will not work in our

system. Moreover, most currently available data mining and machine learning algorithms

only take data in attribute-value representations as input. If we want to take advantage

of existing algorithms and similarity measures, our data in XML representations has to be

transformed into data in tables as attribute-value representations. Our previous discussion,

however, has revealed that doing this would cause loss of useful information in the alerts.

Accordingly, a novel XML similarity was developed in order for our CBR approach to work

with data in XML representations. New data mining and learning algorithms that directly

perform analysis over objects in terms of XML representations also needed to be developed

for the same reason.

Another issue is alert correlation, which is a common problem in meta intrusion

detection research. Most present alert correlation approaches require expertise in certain

forms, such as rules and probabilistic models, obtained in some manner or another. One

of the distinguishing features of case-based reasoning is it simplifies the acquisition and

representation of knowledge. The expertise of a CBR system is just a library of past cases

rather than being encoded in traditional rules. But then, as such, cases do not provide

rules or probabilistic models. So how to correlate alerts without this kind of knowledge

is apparently not an easy task. As the effectiveness of meta intrusion detection, to some

34

degree, relies on how well the problem of alert correlation is dealt with, an effective solution

is necessary to make our approach be applicable.

35

CHAPTER 4

Data Mining

Data mining refers to extracting knowledge from large amounts of data. It is normally

regarded as the evolution of another technology called KDD (knowledge discovery from

databases). From [37],

“KDD is the non-trivial process of identifying valid, novel, potentially useful, and

ultimately understandable patterns in data”.

According to this definition, data mining is a step in the KDD process concerned with

applying algorithms to find patterns in the data. In a sense, data mining is the central

step in the KDD process. The other steps in KDD are concerned with preparing data

for data mining and evaluating the discovered patterns. Typical patterns take the form of

trees, rules, or equations (formulas). Data mining is also looked upon as an application

of machine learning because most algorithms in data mining actually come from the field

of machine learning. Although data mining was first applied to traditional databases, the

notion of database in data mining has a broader meaning and may be taken to include data

repositories of almost any kind. In this paper we are concerned with data sources, such as

tcpdump data and host audit data, which can be used for intrusion detection.

As discussed earlier, IDSs aim at detecting attacks against information systems. The

objective is to raise alerts whenever an attack is in progress, has recently occurred, or

is imminent. There are a number of concepts that can be used to classify IDSs. One

distinction is between host-based and network-based IDSs, determined by the audit source

location. Another is between anomaly detection and misuse detection, determined by the

detection method. But, no mater what classification an IDS belongs to, one basic design

principle is that it should search for attack evidence from various data sources. This process

36

of searching for evidence can be based on the results of a learning process that strives to

identify the defining characteristics of attacks. This learning process can be viewed as a form

of data mining.

More exactly, data mining is good at removing redundant and noisy data from huge

data sets, and these same techniques can be adapted to a core problem of IDS research,

namely, that of reducing the numbers of false positives (i.e., false alerts) and false negatives

(undetected attacks). This is accomplished by providing help for the development of precise

detection models, learning rules from data, performing association analysis, and so on. Thus

data mining can play a significant role in IDS.

Here it should be noted that all applications of data mining to intrusion detection to

date have used data mining in the creation of different kinds of sensors. None so far have

applied data mining at the higher level of a monitoring system such as what we have called

meta intrusion detection.

4.1 Approaches

There are different approaches for data mining, which can be classified according to output

and characterization of algorithms. Most approaches are conducted under a supervised

learning framework. This means the input data is already classified or labeled already.

Typical data mining approaches include:

• Association analysis: the discovery of association rules. Association rules specify

correlations between frequently occurring item sets (items often found together in

transactions).

• Classification (with prediction): the process of finding a model that describes and

distinguishes data classes or concepts, for the purpose of being able to use the

model to predict the class of objects whose class label is unknown. Common data

mining methods of classification include back-propagation, neural networks, Bayes

classification, and decision trees.

• Clustering: unlike in classification, where some classes are given and the goal is to

place objects into those classes based on the objects’ attributes, in clustering the goal

is to identify some classes into which the objects may be grouped by clustering them

37

according to their attributes so that objects within a cluster have high similarity in

comparison to one other, but are very dissimilar to objects in other clusters.

• Outlier analysis: a database may contain data objects that don’t comply with the

general behavior or model of the data. These data objects are outliers. Most data

mining methods discord outliers as noise or exceptions. However, in some applications

such as intrusion detection or fraud detection, the rare events can be more interesting

than the more regularly occurring ones. The analysis of outlier data is referred to as

outlier mining.

4.2 Related Work on Data Mining in Intrusion
Detection

There is a large amount of work concerned with applying data mining or machine learning

to intrusion detection. Since most data mining algorithms come from machine learning, we

only refer to data mining in general. Data mining has many approaches, such as association

analysis, classification and clustering. They all have been explored for intrusion detection. In

W. Lee’s dissertation [38], he pointed out that association analysis can be applied to intrusion

detection in particularly two ways: link analysis and sequence analysis. Link analysis helps

find the correlations between system features that could be used as the basis for constructing

usage profiles. Sequence analysis helps find sequential patterns that can be used to detect

time-based attacks.

Viewing intrusion detection as a classification problem, various classification approaches

have been applied to build an intrusion detection model. Lee and Xiang [39] proposed

one information-theoretic measure, information gain, to measure the performance of using

some features for classification. Valdes et al [40] have described eBayes, based on Bayesian

classification. This has become a new component for the statistical anomaly detector of

EMERALD[20]. Fox et al. [41] attempted modeling system and user behaviors using a kind

of neural network known as a self-organizing map (SOM). This uses a type of unsupervised

learning that can discover underlying structures of the data without prior examples of

intrusive and non-intrusive activities. Ghosh et al. [42] used a back-propagation neural

network to monitor a program running on a system. They improved the performance of

detection by using randomly generated data as anomalous input. Lee et al. [43] proposed

38

using a machine learning approach called RIPPER [44] to learn rules from training data,

Esmaili et al. [36] used cased-based reasoning for intrusion detection, and Bridges et al. [45]

involved fuzzy data mining and genetic algorithms in intrusion detection.

In [46], the authors presented a data-mining algorithm called the Clustering and Clas-

sification Algorithm-Supervised (CCA-S), which was developed specifically for detecting

intrusions. The results showed it obtained a better detection performance than popular

decision-tree algorithms. In the recognition that labeled data is not readily available in

practice, the authors in [47] provided a method based on intersecting segments of unlabeled

data and used the intersection as the base data for clustering. They used the results of

clustering and performed outlier analysis for intrusion detection.

A recently emerging research field, multi-relational data mining (MRDM), is also explored

for intrusion detection. MRDM is based on inductive logic programming (ILP) [48]. Ko [49]

proposed the use of ILP to synthesize first-order logic formulas that describes the operations

of a program that form its normal runs. Unlike the traditional data-mining algorithms that

only take a flat table as input, multi-relational data mining find patterns in more than one

table at the same time. The patterns are normally expressed in first-order logic. The process

of finding first-order logic patterns is referred to as inductive logic programming. Multi-

relational data mining has two advantages over traditional data mining. One is it avoids

information loss and redundant data that occur in traditional data mining approaches. The

other is it allows the use of complex domain-specific background knowledge (described as

first-order rules) in the learning process to produce sound and consistent knowledge.

4.3 A Novel XML Distance Measure

Distance measures are used extensively in data mining and other types of data analysis.

Such measures assume it is possible to compute for each pair of domain objects their mutual

distance. Much of the research in distance measures concentrates on objects either in

attribute-value representation or in first-order representation. With the increasing use of

XML technology as a means for unambiguous exchange of information, more and more data

come in the form of XML documents. We presented a distance measure between two objects

in terms of their XML representation [50]. This measure views an XML object as a tree

in which an XML element is a node. It recursively computes the overall distance between

39

two XML trees from root nodes to leaf nodes. Accordingly, this measure can be applied

in any domain as long as the object of that domain can be provided with a uniform XML

representation.

Distance measures are used extensively in data mining and other types of data analysis.

Dzeroski and Lavrac [51] surveys how distance measures can be applied in predictive learning

and clustering; Wettschereck and Aha [52] discuss applying distance measures in cased-based

reasoning. The central assumption of a distance measure is that it is possible, for a particular

domain under consideration, to specify for each pair of objects their mutual distance (or

similarity). Normally, measurements begin with objects (or instances) described in a certain

representation language and then an appropriate algorithm is applied to obtain distances

among those objects in terms of their representations.

The representation languages are typically classified as being either attribute-value or

relational/first-order. In an attribute-value representation, the objects in a data set can be

summarized in a table, where the columns represent attributes, and each row represents an

object, with the cell entries in that row being the specific values for the corresponding

attributes. In a first-order representation, an object is represented by a ground atom

of a distinguished predicate symbol, where the position on the arguments represents the

attributes, the arguments themselves represent the corresponding attribute’s values, and

these arguments are further defined by their occurrence in some additional set of ground

atoms. Analysis of data in terms of a first-order representation is also referred to as multi-

relational data mining, since the first-order representation provides a more powerful and

reasonable way to describe objects than an attribute value representation.

For attribute-value representations where the attributes have only continuous numerical

values, a Euclidean distance measure is normally applied. For objects having attributes of

different types, methods for combining the attributes into a single similarity matrix were

introduced by [53].

First-order representations, however, need more complicated distance measures. A typical

first-order distance measure can be found in [54]. This was used in many well-known multi-

relational algorithms, such as RDBC [55] and FORC [56]. Other first-order distance measures

may be found in [57] and [58].

With the increased use of XML (Extensible Markup Language) as a means for unambigu-

ous representation of data across platforms, more and more data is delivered in XML. When

40

performing data analysis over such data, this is normally transformed into attribute-value or

first-order representation, if distance measures are involved. Such transformation may result

in information loss. The new representation may not contain all the contents or attributes

of the original. The XML structure may not be preserved either.

In order to provide a more effective method for data analysis over data in XML

representations, this paper presents a distance measure between two objects in terms of these

representations. It looks upon a XML document as a collection of elements organized in a

tree structure. For notational simplification, we transform XML documents into equivalent

ones in which every element has no content and is denoted by its name, attribute set, and

sub-element set; this is done by reconstructing the content of an element as an attribute of

the element. The distance between any pair of elements is determined by their attribute

sets and sub-element sets. This measure recursively computes the overall distance between

two XML objects from root elements to leaf elements, looking for matchings for attribute

sets and sub-element sets at each level. Once a set has more than one matching with the

other, the well-known Hungarian algorithm [59] is applied to find the matching that yields

the minimal overall distance. The distance between two XML objects is then given as this

distance between their root elements. The details of this measure are laid out in the sections

below.

This XML distance measure was developed initially for use with a hierarchical clustering

algorithm to cluster XML documents representing patterns of alerts in the domain of

intrusion detection. The results of that data mining experiment show that the measure

is very effective for this purpose. The results are presented in chapter 6.

4.3.1 Related Work on Similarity of XML documents

Most of the previous works regarding the similarity between two XML documents have

concentrated on structural similarity in XML. Viewing XML documents as trees, Nierman

and Jagadish [60] use the graph edit distance measure to compute the structural similarity

between two XML documents. The algorithm for this distance measure was derived from

one for the edit distance between strings [61]. Given a set of graph edit operations, such as

deletion, insertion, and substitution, the edit distance is defined as the shortest sequence of

edit operations that transform one tree into the other. In practice, a cost may be assigned

to each individual operation to reflect its importance. Typical tree distance algorithms

41

include [62] and [63]. Zhang et al. [64] review the edit distance between XML trees suitable

for various applications. Flesca et al. [65] represent XMl documents as time series and

compute the structural similarity between two documents by exploiting the Discrete Fourier

Transform of the corresponding signals. Bertino et al. [66] worked on the structural similarity

between an XML document and a DTD. Microsoft XML Diff (http://apps.gotdotnet.com/-

xmltools/xmldiff/) is a tool that detects and shows the differences between two XML

documents. Canfora et al. [67] have introduced an XML document similarity measure, based

on a common sub-graph algorithm [68], for evaluating of the effectiveness of information

extractive systems. Dopichaj [69] has suggested applying case-based reasoning (CBR)

technology to integrate background knowledge for better similarity calculation in XML

retrieval.

4.3.2 Representation of XML Documents

XML documents are composed of markup (tags) and content. The most basic component in

an XML document is the XML element, consisting of some content surrounded by matching

starting and ending tags. Elements may be nested within other elements to any depth.

Because other components in an XML document, such as the prolog and any comments, are

not used for representation of content, we assume they don’t contribute to the overall distance

and simply ignore them in our discussion. An example XML document is given below as

XML-1. This document stores purchase information. It has one root element purchaseOrder

that represents the contents as a whole. Other elements, such as shipTo and items, are

nested within purchaseOrder. The element shipTo in turn has five directly nested elements,

name, street, city, state and zip. These represent more detailed data than the containing

element shipTo. Such nesting is common in XML documents and allows for hierarchical data

structure representations. The graphical representation of an XML document is referred to

as an XML tree.

An element in XML may have attributes. For example the element shipTo in XML-1

has an attribute country and it takes the value US. An attribute and its value in XML is a

2-tuple, < a, v > , where a is the attribute’s name, and v is its value. Thus the attribute of

element shipTo can be represented as < country, US >

In addition to attributes, elements can have nested elements or contents, but not both.

More exactly, elements other than leaves in the XML tree representation do not have content,

42

Figure 4.1: Sample documents XML-1 (left) and XML-2 (right)

only other nested elements, whereas leaves have content only (which content may be empty).

For purposes of our distance measure, we wish to represent every element in the same

form. To this end, we create a new attribute for each element that has content. The created

attribute has the same name as the element and it takes the element content as the value

of the new attribute. This results in an XML document that equivalent in terms of its

data representation to the original, but which is entirely content-free. XML-2 is the new

content-free document that results in this manner from XML-1.

In a content-free XML document, an element may be represented as a 3-tuple < n, A,E >,

where n is the name of the element, A = {< a1, v1 >,< a2, v2 >, ..., < an, vn >}, is the set

of attributes of the element, and E = {e1, e2, ..., em} is the set of elements nested within

this element. Since a content-free XML document is just a collection of elements, it can be

completely represented as a collection of 3-tuples of this form. For example, the following

represents XML-2.

epurchaseOrder =< purchaseOrder, {< orderDate, 2004− 11− 15 >}, {eshipTo, eitems} >

eshipTo =< shipTo, {< country, US >}, {ename, estreet, ecity, estate, ecity} >

43

ename =< name, {< name, JohnSample >}, ∅ >

estreet =< street, {< street, ComputerScience >}, ∅} >

ecity =< city, {< city, Tallahassee >}, ∅} >

estate =< state, {< state, FL >}, ∅} >

ezip =< zip, {< zip, 32301 >}, ∅} >

eitems =< items, ∅, {eitem1 , eitem2} >

eitem1 =< item, {< partNum, 242−MU >}, {equantity1 , eUSPrice1} >

eitem2 =< item, {< partNum, 242−GZ >}, {equantity2 , eUSPrice2} >

equantity1 =< quantity, {< quantity, 3 >}, ∅} >

equantity2 =< quantity, {< quantity, 3 >}, ∅} >

eUSPrice1 =< USPrice, {< USPrice, 19.98 >}, ∅} >

eUSPrice2 =< USPrice, {< USPrice, 27.98 >}, ∅} >

4.3.3 Distance Between Two Attribute Sets

For purposes of computing a distance between XML documents, a metadata file is created

which states, for each attribute in the content-free representation of the XML document,

whether, for the purpose of the distance calculation, the value is to be interpreted as numeric

or should be retained as a string. For example, the values of attributes quantity and USPrice

might be interpreted as numeric for purposes of determining the closeness of two prices,

whereas value of attributes orderDate and zip might be retained as a string, since for purposes

of the distance calculation it only matters whether two dates or zip codes are identical or

not. Thus the range of values for an attribute can be of two general types, numeric and

non-numeric. If numeric (whether continuous or discrete), it is given as an interval [r1, r2].

Consider two attributes α1 =< a1, v1 > and α2 =< a2, v2 > . We assume that two

attributes having the same name will also have the same type of values. We define the

distance dist(α1, α2) as follows. If a1 6= a2, i.e., the attributes have different names, then

dist(α1, α2) = 1. If a1 = a2 and the values are non-numeric, then dist(α1, α2) = 0 if v1 = v2,

and dist(α1, α2) = 1 if not. If a1 = a2 and the values are numeric with range [r1, r2], then

dist(α1, α2) = |v1 − v2|/(r1 − r2). Based on this, given two attribute sets A1 and A2, we

compute their distance according to the algorithm given in Figure 4.2. Briefly, for each

attribute α in A1 we determine its distance to the entire collection A2 according to (i) if

there is no attribute having the same name as in A2, the distance is 1, and (ii) if there is

44

Figure 4.2: Algorithm 1: distance between two attribute sets.

an attribute α′ in A2 having the same name as α, the distance is dist(α, α′). Similarly we

determine the distance from each attribute in A2 to the collection A1. Then we add together

all these individual distances and normalize by the total number of distinct attribute names.

4.3.4 Distance between Two Elements and Two Element Sets

The distance between two elements is determined by their attributes and nested subelements.

The algorithm for determining the distance between two elements thus requires determining

the distance between their two sets of subelements. In turn, the algorithm for determining

the distance between two sets of elements requires determining the distance between two

elements. Thus these two algorithms must call each other recursively. The algorithm for

determining the distance between two elements e1 and e2 is given in Figure 4.3. An XML

element can have at most one attribute of the same type, but can have multiple subelements

45

Figure 4.3: Algorithm 2: distance between two elements.

of the same type. For example, in XML-1, the subelements of items are two elements of

type item. Given two element sets, as in this case, it is possible that one will have more

instances to the same element type than the other. Suppose we know the distance between

any two elements (as determined by the foregoing algorithm). The problem of determining

the distance between two element sets can be transformed into a maximal matching problem

analogous to the classical problem of assigning m workers to n jobs, where each worker has

a possibly different cost to finish each of the n jobs. The objective is to find an assignment

with minimal overall cost. This is known to be achievable by the Hungarian algorithm [59].

Here the members of one element set play the role of workers, the members of the other

element set play the role of jobs, and the distances between members play the role of costs.

Given m workers and n jobs, the Hungarian algorithm is applied to the m × n matrix

representing the costs for each worker-job pair, and it assigns at most one worker to each job

and at most one job to each worker. Thus if there are more workers than jobs, some workers

will be unemployed, and if there are a more jobs than workers, some jobs will not get done.

For the purposes of our distance measure, it is desired that any such unmatched elements

contribute also to the overall distance between the two element sets. To this end, we add

some ‘virtual’ elements to the smaller set, so that both sets have the same size, and for each

such virtual element, we let its distance to each element in the opposite set be 1. Thus, if

46

Figure 4.4: A distance matrix and its maximal matching with a virtual element

the original m × n matrix is M , and if m > n, the resulting matrix M ′ will be m ×m and

have the m−n additional rows filled with 1’s. The distance between the two element sets is

then defined as Hungarian(M)/m.

If m is much larger than n, then M ′ will be much larger than M , and applying

the Hungarian algorithm to the former will incur a much greater cost. It turns out,

however, that under the above assumptions Hungarian(M ′) can be computed more simply

as Hungarian(M) + m − n. This is because adding a virtual element to one of the sets,

and defining its distance to the elements in the other sets to be 1, means that, however that

virtual element is matched with an element from the other set, this always adds exactly 1

to the overall cost.

To illustrate, consider two element sets E = {e1, e2} and E = {e′1, e′2, e′3}, with their

distance matrix as given in Figure 4.5. The Hungarian algorithm matches e1 with e′2 and

e2 with e′3 yielding the minimal sum of distances as 0.10 + 0.11. The unmatched e′1, is

then matched with a virtual element, as shown on the right side of Figure 4.5, and its

47

Figure 4.5: Algorithm 3: distance between two element sets

distance to the virtual element is given as 1. The distance between these two sets is thus

dist(E, E) = (0.10+0.11+1)/3 = 0.40. A general algorithm for finding the distance between

two element sets is given in Figure 4.4. Here abs denotes the absolute value.

4.3.5 Distance between Two XML Objects

The distance between two XML objects is formulated as the distance between their two root

elements. In order to show how to compute this distance, XML-3 (Figure 4.6) is given to

compare with XML-1. These documents have the same type of root element, purchaseOrder,

but differ in content. We represent XML-3 as a set of 3-tuples as follows.

e′purchaseOrder =< purchaseOrder, {< orderDate, 2002− 10− 20 >}, {e′shipTo, e
′
items} >

e′shipTo =< shipTo, {< country, US}, {e′name, e
′
street, e

′
city, e

′
state, e

′
zip} >

e′name =< name, {< name, JohnDoe >}, ∅} >

e′street =< street, {< street, ComputerScience >}, ∅ >

e′city =< city, {< city, Tallahassee >}, ∅} >

e′state =< state, {< state, FL >}, ∅} >

e′zip =< zip, {< zip, 32301 >}, ∅} >

e′items =< items, ∅, {e′item1
, e′item2

, e′item3
} >

e′item1
=< item, {< partNum, 242−MU >}, {e′quantity1

, e′USPrice1
} >

e′item2
=< item, {< partNum, 242−GZ >}, {e′quantity2

, e′USPrice2
} >

48

Figure 4.6: XML-3

e′item3
=< item, {< partNum, 242−HF >}, {e′quantity3

, e′USPrice3
} >

e′quantity1
=< quantity, {< quantity, 2 >}, ∅ >

e′quantity2
=< quantity, {< quantity, 2 >}, ∅ >

e′quantity2
=< quantity, {< quantity, 2 >}, ∅ >

e′USPrice1
=< USPrice, {< USPrice, 19.98 >}, ∅ >

e′USPrice2
=< USPrice, {< USPrice, 22.98 >}, ∅ >

e′USPrice3
=< USPrice, {< USPrice, 20.98 >}, ∅ >

Suppose that the attribute quantity is of type numerical with range [1, 10], the attribute

USPrice is numerical with range [0, 100], and all other attributes are non-numerical. The

distance between XML-1 and XML-3 is given as dist(epurchaseOrder, e
′
purchaseOrder). Because

epurchaseOrder and e′purchaseOrder have attributes with the same name, i.e., orderDate, but

these attributes take different values, the distance between their attribute sets is 1, and so,

49

according to Algorithm 3,

dist(epurchaseOrder, e
′
purchaseOrder) = (1 + dist(eshipTo, eitems, e

′
shipTo, e

′
items))/2 (4.1)

The distance matrix for the two element sets eshipTo, eitems and e′shipTo, e
′
items is com-

prised of the four distances dist(eshipTo, e
′
shipTo), dist(eshipTo, e

′
items), dist(eitems, e

′
shipTo), and

dist(eitems, e
′
items). For the first of these, since eshipTo and e′shipTo have identical attributes,

the distance between their attribute sets is 0, and since they differ on only one of their five

sub-elements, the distance between their element sets is 1/5(= 0.2). Hence, by Algorithm 3,

dist(eshipTo, e
′
shipTo) = (0 + 0.2)/2 = 0.1 (4.2)

The second and third of are given by Algorithm 3 simply as

dist(eshipTo, e
′
items) = 1 (4.3)

dist(eitems, e
′
shipTo) = 1 (4.4)

For the fourth, Algorithm 3 says that we need to compute

dist(eitems, e
′
items) = (0 + dist(eitem1 , eitem2, eitem1 , e

′
item2

, e′item3
))/2 (4.5)

This requires that we apply Algorithm 2 to compute the distance between the element

sets eitem1 , eitem2 and e′item1
, e′item2

, e′item3
, which in turn requires computing a 2 by 3 matrix

representing the pairwise distances between their elements. To illustrate, again by Algorithm

3, dist(eitem1 , e
′
item1

) = (0 + dist(equantity1 , eUSPrice1 , e
′
quantity1

, e′USPrice1
))/2. Since the type

of attribute quantity is numerical with range [1, 10], and the type of attribute USPrice is

numerical with range [0, 100], equantity1 has distance (3 − 2)/10 = 0.1 from e′quantity1
and

distance 1 from e′USPrice1
, eUSPrice1 has distance 1 from e′quantity1

and distance (19.98 −
15.98)/100 = 0.05 from e′USPrice1

. Thus, dist(eitem1 , e
′
item1

) = (0+(0.1+0.05)/2)/2 = 0.0375.

The distance between the other pairs can be obtained similarly. This gives the distance

matrix for the two element sets as[
0.0375 0.6 0.555
0.59 0.0375 0.585

]
From this, Algorithm 2 gives the distance between the two element sets as

50

dist(eitem1 , eitem2 , e
′
item1

, e′item2
, e′item3

) = (0.0375 + 0.0375 + 1)/3 = 0.583 (4.6)

Thus, from 4.5 and 4.6,

dist(eitems, e
′
items) = (0 + 0.583)/2 = 0.292 (4.7)

Then, from 4.2, 4.3, 4.4, and 4.7, the distance matrix for eshipTo, eitems and e′shipTo, e
′
items is[

0.1 1
1 0.292

]
Finally, 4.1 yields the overall distance

dist(epurchaseOrder, e
′
purchaseOrder) = (1 + (0.1 + 0.292)/2)/2 = 0.675

4.4 A Supervised Clustering Algorithm

Supervised clustering is a novel data mining technique. It differs from traditional clustering

in that the examples to be clustered are already classified. The goal of supervised clustering

is to identify clusters that have high probability density with respect to a single class.

Finding clustering that is guaranteed to be optimal in terms of a chosen quality measure is

often a difficult task, since it requires an exhaustive search of all possible groupings. Hence,

distance-based clustering algorithms normally use heuristic strategies, of which there are

several varieties, e.g., bottom-up agglomerative clustering and k-means clustering [13]. We

have adopted the former approach, since it is relatively easy to implement and is known to

be quite effective. Because objects to be clustered in our domain are XML documents, our

clustering algorithm applies the XML distance measure introduced in [5] as the underlying

similarity measure. Our supervised algorithm is actually a variation of a traditional clustering

algorithm. In general, the result of applying a clustering algorithm to a collection of objects

produces a collection C of clusters c. The objects in the clusters may be of different types,

depending on their identifying features. In any given cluster, the majority type is the one

that has the most objects. If there are two types with the same largest number of objects,

we simply choose one of them as the majority type. All other types of objects in the cluster

are minority types. A minority object is one that belongs to a minority type.

Given this terminology, we can define a fitness function to evaluate the quality of our

clustering results C, quality(C) = |C| +
∑

c∈C minority(c), where minority(c) denotes the

51

number of minority objects in a cluster c. Lower values for q(C) indicate a better solution.

The objective of the clustering algorithm is thus to find a clustering with the lowest value

of q(C). The construction of the hierarchical clustering proceeds in a bottom-up manner. It

starts with each object forming its own cluster. Two clusters that are closest to each other

are merged into a new cluster. This same procedure is repeated until finally all objects are in

the same cluster. The algorithm needs to keep track of the value of the fitness function and

its corresponding clustering in each iteration, and it returns the clustering with the lowest

value of fitness function as the final solution.

From the description above, the clustering algorithm has to measure the distance between

two clusters in each iteration in order to find the closest pair. In our implementation,

the distance between two clusters is defined as the maximal distance between an object

in one cluster and an object in the other. More specifically, where C = o1, o2, . . . , on,

C ′ = o′1, o
′
2, . . . , o

′
m are two clusters of objects, dist(C, C ′) = max{dist(oi, o

′
j), 1 ≤ i ≤

n, 1 ≤ j ≤ m}. It should be noted that the distance between clusters in the beginning is

simply the distance between two objects, as each object forms its own cluster. In general

there are various ways of defining the distance between two clusters. For example, in

addition to the maximal distance discussed above, it can be defined as the minimal distance,

dist(C, C ′) = min{dist(oi, o
′
j), 1 ≤ i ≤ n, 1 ≤ j ≤ m}, or it could be defined as the

averaged sum of distances, dist(C, C ′) =
P

i

P
j dist(oi,oj)

|C|×|C′| . The maximal distance does not

encourage combining two clusters since it tries to enlarge the distance between two clusters.

Minimal distance does the opposite of maximal distance and the averaged sum of distances is

intermediate between the maximal distance and minimal distance. We choose the maximal

distance because it avoids making minority objects. According to the defined fitness function,

the cost of combining two clusters is # increased minority objects - 1 (# clusters decreased

by 1). Minority objects contribute most to the cost. We hope each combination of two

clusters can decrease the value of fitness function. It is obvious that a good combination

can decrease fitness function at most by one. However, a poor one can make all objects

in one cluster become minority objects with regard to the objects in the other cluster and,

moreover, largely increase the value of fitness function. Hence, maximal distance generally

plays with less risk than minimal distance or averaged sum of distances according to the

defined fitness function.

An example is given here to illustrate how it works. Suppose we start with five objects

52

Figure 4.7: A Sample Distance Matrix

o1, o2, . . . , o5, where o1,o2,and o3 belong to type A; o4 and o5 belong to type B; their distance

matrix is given in Figure 4.7.

Table 4.1: Overall results of the first experiment on DARPA 1998 data

Clustering Results MIN distance between clusters q(C)
C1 = {(o1), (o2), (o3), (o4), (o5)} 0.15 5
C2 = {(o1), (o2), (o3), (o4, o5)} 0.30 4
C3 = {(o1), (o2, o3), (o4, o5)} 0.45 3
C4 = {(o1, o2, o3), (o4, o5)}∗ 0.75 2
C5 = {(o1, o2, o3, o4, o5)} - 3

4.5 Evaluation of Our Data Mining Techniques with
Snort

Snort is well known for triggering large numbers of false alerts [70]. In addition, it fires

alerts on a packet basis and misses the context of attacks, which makes it hard for users

to identify the attacks and even harder when real alerts are mixed with false alerts. In

this section we present a method for applying our data mining techniques to handle Snort

alerts more effectively. Central to this approach is the representation of alerts using the

Intrusion Detection Message Exchange Forma (IDMEF), which is defined in XML. All

the alerts for each network session are assembled into a single XML document, thereby

representing a pattern of alerts. Our experiments with the MIT 1998 DARPA data sets

using our data mining techniques demonstrate that the XML distance measure can find a

53

reasonable distance for two XML documents and the clustering algorithm based on the XML

distance measure can well distinguish various types of patterns of alerts rising from different

normal sessions as well as different attack sessions. The results of the clustering provide

useful information that can be further applied to reduce the number of false positives and

identify attacks on a session basis.

4.5.1 Related Work

Many approaches have been taken toward improving Snort. Wu and Chen [71] proposed a

framework for Snort to make it able to detect sequential attack behaviors. That is, whereas

Snort looks at only one packet at a time, that work tries to identify sequences of packets

that represent attacks and to augment Snort with rules that fire when such sequences are

detected. To this end, they apply data mining techniques to extract attack signatures and

convert them into Snort rules. The Snort detection engine is then accompanied by their

intrusion behavior detection engine, which triggers an alert when a series of incoming packets

matches the signatures representing sequential intrusion scenarios.

Coit et al. [72], Sourdis et al. [73], Liu et al. [74], and Yu et al. [75] apply pattern-

matching techniques to improve the detection speed of Snort. The issue of detection accuracy,

however, was not addressed in any of these works. Efforts to deal with this issue have

nonetheless been explored, using artificial intelligence techniques. In particular, Chavan et

al. [76] use neural networks and a fuzzy inference system, and Schwartz et al. [34] briefly

discuss the possibility of improving the efficacy of Snort through shifting from a rule-based

to a case-based reasoning system. The present paper is an outgrowth from the latter work.

Clustering intrusion detection alerts has also been proved successful in other studies.

Cuppens and Miege [7][13] apply this in a multi-sensor intrusion detection environment,

where the sensors are IDSs of various types and may be either host-based or network-based.

The clustering is based on a distance measure studied by Valdes and Skinner [10]. This

multi-sensor IDS tries to group alerts from the various sensors so that the alerts in any one

group all pertain to the same attack. In this way, it offers a more accurate view of the

system’s status and, in particular, makes it easier to distinguish false alerts from real ones.

Inasmuch as this operates in real-time, it can be viewed as a real-time clustering system.

Our approach makes the assumption that all alerts in a particular network session pertain

to the same attack. Thus, alert correlation is accomplished simply by looking for identical

54

network session identifiers, source IP and port, target IP and port.

Julisch [23][77] applied clustering to intrusion detection alerts to support root cause

analysis. Root causes may be of many different types. Two examples are malfunctioning

software and normal behavior, both of which can cause false alerts. That work was motivated

by the observation that 90% of all alerts stem from a few dozen root causes. A novel alert-

clustering algorithm was proposed to support a human analyst in identifying such root causes.

Alerts in the same cluster tend to have the same cause. Thus, if a cluster represents a set of

false alerts, the frequency of such alerts can be reduced if the cause can be removed.

Ning et al. [26][78] have introduced a technique that constructs attack scenarios by

correlating alerts on the basis of prerequisites and consequences of attacks. The attack

scenario is represented by a hyper-alerts alert correlation graph. In order to facilitate the

investigation of large sets of alerts, several interactive analysis utilities were introduced.

Clustering analysis, one of those utilities, is applied to a set of hyper-alerts correlation

graphs or a hyper-alerts correlation graph (as graph decomposition) to find the common

features. The present research uses clustering for still another purpose. Here we focus on

network sessions, i.e., the entire collection of packets that occur in each such session, and

aim to identify patterns of alerts that are associated with real attacks, as well as patterns

that characterize false alerts raised during normal sessions. Our style of clustering, as well

as the underlying similarity measure, is also different from those employed in the previous

efforts.

4.5.2 Experimental Results

Our work was based on the 1998 MIT DARPA data sets. More specifically, we used the

network training data sets, which contain tcp dump files for each weekday over a 7-week

period, for a total of 35 days. The tcp dump files contain all packets that entered or left

the network during the given day. In addition, we used the associated tcp dump “list” files,

which, for each day, summarize all the network sessions represented by the tcp traffic during

that day. For each such session, this gives the source IP address and port, the destination IP

address and port, the session’s start time, the session’s duration, a flag indicating whether

the session contains a real attack, and, if it does, the name of the attack. The sessions

throughout each day are enumerated in chronological order, with this number serving as a

session ID.

55

The tcp dump data was fed through Snort and all the alerts were captured. Also as

mentioned, we used a Snort output plug-in to convert the alerts into IDMEF. The details of

this format, to the extent that it has been employed in the present experiments, are given

in Chapter 6.

The XML representations of the alerts were then loaded into a database using XML-

DBMS (http://www.rpbourret.com/xmldbms/). This is a middleware program that employs

a special language for mapping the elements of an XML document into tables in a relational

database. The program uses this mapping to automatically read the XML documents and

insert their components into their associated database tables. It can also work in reverse, to

extract information from the database and output it in the original XML format.

Given this database, the alerts associated with each network session were extracted and

put into a file. This was accomplished by going through the tcp dump list files and, for

each network session, executing an SQL select statement based on the session’s source IP

address, source port, destination IP address, destination port, and the session’s duration.

The resulting XML document thus represents the entire collection of alerts that were raised

during the given session, listed in chronological order. In addition, when each such document

was created, it was given a file name that contains the session ID, the information whether

the session was normal or contained a real attack, and, in the case of the latter, the name of

the attack. This made it easy to group together all the files for sessions containing the same

kind of attack, as well as to distinguish those files containing false alerts (i.e., representing

normal sessions).

In total, there were 21 different kinds of attacks detected by Snort. For the most part,

these all occurred in either telnet, http, of ftp sessions. In addition, there were many of these

same types of sessions that were normal, but for which Snort generated false alerts.

From the database, session alert files were extracted for a maximum of 100 sessions for

each kind of attack and, as well, for each of the 3 kinds of normal sessions having false alerts.

The exact counts for each of these are shown in the last row of Table 4.2. For example, for

attack type ‘anomaly’ there were only 9 sessions containing this attack, and for attack type

‘back’ there were 100 or more. In total, 749 such session alert files were selected.

This collection of XML files was then sent to our clustering program. It yielded 45 clusters

as shown in Table 4.2 with a minimal distance of 0.3 among clusters when the fitness function

is optimal. Altogether, 45 clusters were generated. The 35 clusters having more than one

56

object (XML document) are shown in rows 0 through 34. The clusters having only one

object each are counted in the Singletons as shown in the second row to last in Table 4.2. A

cluster is regarded as pure if all objects in it are of the same type; otherwise, it is impure.

As shown in Table 4.2, clusters 14, 31, and 34 are impure, while all others are pure.

The clustering algorithm shows excellent performance for grouping certain types of

sessions. For example, all 100 ‘back’ attack sessions go to pure cluster 32. This indicates

that our clustering algorithm can perfectly distinguish this type from other types. There are

five other such types that have been perfectly clustered, namely, ‘format clear’ (1 session),

‘ffb’ (5 sessions), ‘ffb clear’ (1 session), ‘land’ (17 sessions), and ‘phf’ (2 sessions). Since the

size of most of these clusters is small, there is limited confidence that these same results will

be obtained with larger tests. Nonetheless, the present results are promising inasmuch as

the clustering is pure and these attacks are clearly distinguished from other types.

The clustering algorithm also demonstrates almost perfect performance for grouping other

session types. In particular, ‘ftp write’ has its 4 sessions distributed over 2 pure clusters

having 2 sessions each. In this case, further analysis shows that this may be attributed to

the types of the sessions. As shown in Table 4.3, one cluster results from ftp sessions, and

the other from login sessions. Similarly, the 100 ‘nmap’ sessions are distributed over 2 pure

clusters (7 and 8). There does not appear to be any obvious reason in this case for having 2

clusters. The same applies to ‘normal http’, which has its 100 sessions distributed over pure

15 pure clusters.

Moreover, that algorithm shows good performance in several cases where the clustering

is impure. There are two variations. First is the situation where most of the sessions go into

pure clusters, and a few go into impure clusters. These are ‘guest’ (49 out of 50, giving 98%

correctly clustered), ‘multihop’ (2 out of 3, giving 67% correctly clustered), ‘satan’ (35 out

of 40, giving 88% correctly clustered), and ‘normal ftp’ (97 out 100, giving 97% correctly

clustered). In these cases, the percentage gives the probability that a session of the given

type will be correctly identified by the clustering algorithm. For the ‘satan’ attacks, the

distribution of sessions over several clusters can be explained similarly as for ‘ftp write’.

This is summarized in Table 4.4, which shows the various services with which the clusters

are associated. Here it may be noted that the clustering algorithm effectively identifies the

four named services (eco-i, etc.). The services grouped under ‘others’ and put into Cluster

29 are unnamed services running on infrequently used ports.

57

The second variation for impure sessions is the situation where all, or most, of the

sessions are in impure clusters, but the relative numbers of other types of sessions in those

same clusters is small. These are ‘warezclient’ (100 sessions in a cluster of 104, giving 96%

accuracy) and ‘normal telnet’ (93 sessions in a cluster of 118, giving an accuracy of 79%). In

these cases, the percentage gives the probability that a session in the given cluster will be of

the given session type. It is noteworthy also that all the ‘warez’ variety of sessions (warez,

warezmaster, warezclient) went into the same cluster (giving 98% accuracy for sessions of

this variety).

4.5.3 Discussion

Three points are worthy of mention relative to this research. First is that, the results

of the supervised clustering algorithm suggest a few approaches to improve the detection

performance for Snort. As the algorithm identifies clusters that have high probability density

with respect to a single class, some large clusters, such as clusters 31, 23, 11 and 16 in Table

4.2, containing similar patterns of alerts frequently raised in normal sessions. Those patterns

turn out to be raised by a small set of Snort rules. Hence, just as Julisch has proposed in

[77][23], we can change the snort configuration by blocking those rules to avoid extensive

false positives. However, blocking rules may cause some attacks to be undetectable by Snort.

Instead of doing that, we can apply a higher-level decision making method, such as case-

based reasoning, to record the representative patterns of false alerts in normal sessions and

compare them with runtime patterns of alerts. If they are sufficiently similar to each other,

the new patterns can be regarded as representing possible false alerts and thus be ignorable.

Similarly, representative patterns of alerts can also be extracted from clusters representing

real attacks. Because different types of attacks were well distinguished from each other with

regard to their patterns of alerts, their representatives can be used to identify those types

of attacks in runtime alerts. As patterns of alerts were constructed for sessions, using them

basically extends Snort’s ability to detect attacks on a session basis.

A second point is that our study makes use of the 1998 DARPA data sets created at

MIT’s Lincoln Lab. Here it should be mentioned that this data has the limitations (i) the

total number of real attacks for which Snort generates alerts is rather small, (ii) among these,

most of the attacks are only of four or five different kinds, and (iii) the data is somewhat

outdated inasmuch as there nowadays are many new kinds of possible attacks. For these

58

reasons, our results, although promising, should be regarded only as preliminary. In order to

establish the broader efficacy of our approach, further experiments of the present type will

be warranted when newer such data becomes available.

Third is that, whereas the XML distance measure was created specifically for its use in

the present experiment, i.e., dealing with documents representing patterns of alerts, it could

serve generally for measuring the distance between any types of objects in terms of their

XML representations. Thus this same measure is quite general inasmuch as it could be used

in a wide variety of different kinds of clustering algorithms for performing clustering on a

wide variety of different kinds of objects. In addition, this measure could be similarly useful

in other domains where distance measures are employed, e.g., case-based reasoning [52] and

predictive learning [79]. Even more generally, given that XML provides sufficient expressive

power to represent any kind of object, this same measure can be used for determining the

distance between objects of any type in terms of their XML representations

59

Table 4.2: Clustering results on DARPA 1998 data

an
om

al
y

ba
ck

ej
ec

t
fo

rm
at

cl
ea

r
fo

rm
at

fo
rm

at
fa

il
ffb ffb

cl
ea

r
ft

p
w

ri
te

gu
es

t

la
nd

lo
ad

m
od

ul
e

nm
ap

m
ul

ti
ho

p
ph

f
pe

rl
cl

ea
r

sa
ta

n
sp

y
w

ar
ez

w
ar

ez
m

at
er

w
ar

ez
cl

ie
nt

no
rm

al
te

ln
et

no
rm

al
ht

tp

no
rm

al
ft

p

0 2
1 4
2 4
3 4
4 2
5 2
6 4
7 8
8 92
9 2
10 5
11 24
12 17
13 4
14 1 4 2
15 6
16 15
17 2
18 2
19 3
20 4
21 5
22 7
23 96
24 7
25 11
26 4
27 15
28 5
29 4
30 1
31 9 7 1 1 2 1 1 1 2 93
32 100
33 49
34 1 1 100 2
S 1 1 1 2 1 3 1
T 9 100 7 1 1 1 5 1 4 50 17 3 100 3 3 1 40 2 1 1 100 100 100 100

60

Table 4.3: Distribution of ‘ftp-write’ sessions over assigned pure clusters

ftp-write ftp login
Cluster-0 2 0
Cluster-9 0 2

Table 4.4: Distribution of ‘satan’ sessions over assigned pure clusters

satan eco-i finger u sunrpr others
Cluster-1 4
Cluster-2 4
Cluster-3 4
Cluster-6 4
Cluster-13 4
Cluster-21 5
Cluster-26 4
Cluster-29 4

61

CHAPTER 5

Alert Correlation

Traditional IDSs concentrate on low-level attacks or anomalies, and raise alerts indepen-

dently, though there may be logical connections between them. In situations where there are

intensive intrusions, not only will actual alerts be mixed with false alerts, but the amount

of alerts will also become unmanageable. As a result, it is difficult for human experts or

intrusion response systems to understand the alerts and take appropriate actions. Meta

intrusion detection, on the other hand, is a high-level intrusion detection framework that

incorporates a variety of sensors complementing each other for the purpose of making global

decisions and discarding false alerts. As the data sources for meta intrusion detection are

alert streams (in contrast to network traffic or host audit trails), the key for meta intrusion

detection is alert correlation, ie., determining which alerts from the various sensors are

caused by the same attack. Due to the diversity of both attacks and detection approaches,

there so far has not been found an effective alert correlation approach that can be generally

applied. In most current approaches, alert correlation is accomplished by using well-defined

knowledge such as rules or predicates that can reveal the deep relations of alerts. But in

case-based reasoning systems, the expertise is embodied in a library of past cases rather

than being encoded in classical rules. Since no rules are available, we have explored various

approaches and have proposed two basic kinds for case-based meta intrusion detection. One

kind works in situations when alerts provide sufficient information and simply correlates

alerts through explicit information that reveals the connections between alerts. We call this

explicit alert correlation. The other works in an implicit manner. It takes advantage of the

patterns of alerts in cases and correlates alerts from those patterns. We call this case-oriented

alert correlation. It is more general than the first kind and can be used for situations when

alerts provide either poor or rich information. It should be noted that alert correlation in

62

case-based intrusion detection is actually the process of formulating problems from the point

of case-based reasoning process. The correlated alerts form a pattern of alerts that is the

description of a problem situation and will be compared with cases in the case library.

5.1 Related Work

There have been several proposals that address the problem of alert correlation. Approaches,

such as probabilistic alert correlation [10] and alert clustering methods [7][23], do not use

predefined knowledge other than alerts themselves and are based on the similarity between

alert attributes. Although they are effective in finding similar alerts (e.g. alerts with the

same source and destination IP addresses), approaches of this type are criticized for not

being able to discover deep logical connections between alerts.

Some approaches [24][25] correlate alerts according to the attack scenarios specified by

human users or learned from training data by knowledge discovery approaches (e.g. data

mining and machine learning). A limitation of these methods is that they are restricted to

known attacks or variants of known attacks.

Approaches based on prerequisites and consequences of attacks [13][26][9] may discover

novel attack scenarios. Intuitively, the prerequisite of an attack is the necessary condition for

the attack to be successful, while the consequence of an attack is the possible outcome of the

attack. However, in practice, it is impossible to predefine the complete set of prerequisites

and consequences. In fact, some relationships cannot be expressed naturally with the given

set of terms.

Some approaches (e.g., [27][8]) apply additional information sources, such as firewalls,

and system states in alert correlation. In particular, Morin et al. [27] have proposed a

formal model, M2M2, for alert correlation using multiple information sources. Due to the

multiple information sources used in alert correlation, the method can potentially lead to

better results than those looking at alerts only. However, it invites more human involvement

and makes the development of the intrusion detection system more time-consuming and

error-prone in practice.

63

5.2 Explicit Alert Correlation

Although alert correlation is a complicated problem, alerts sometimes can be correlated

simply through session information namely, source IP address and port and destination IP

address and port. In fact, session information has been considered as key attributes in most

intrusion detection approaches used for building intrusion models, as well as for some other

purposes. For example, Wenke Lee [38] has viewed attributes such as source IP and port and

target IP and port as essential features in describing data items and argue that ‘relevant’

association rules found by data mining should describe patterns related to essential features.

Likewise, the effectiveness of the first class of alert correlation methods introduced in the

previous section relies heavily on session information. Those methods correlate alerts based

on the similarity between alerts attributes. Alerts with the same IP addresses and ports are

inclined to be similar to each other and thus be correlated.

Our explicit alert correlation assumes that alerts with the same session information are

caused by the same attack. Hence, it employs a straightforward application of CBR. If

the runtime alerts all contain the necessary session information, then they can be sorted

according to their sessions, and then, within sessions, be sorted according to the sensors

that produced them. Thus, for each session, we get a pattern of alerts that can be directly

matched with the alert patterns appearing in the cases in the case library, and the detection

process then amounts to retrieving the case that is most similar. The attack described by

the retrieved case is assumed to have taken place. As the explicit approach correlates alerts

without using any information in cases, it seems independent of the cases at first glance.

But, in order to make it work, the cases must be constructed on a session basis first. Even if

a known attack used for building cases spans over multiple sessions, it must be divided into

multiple phases or parts, each of which occurs only in a single session and has a corresponding

case in the case library.

This must be qualified, however, to cover the situation that no cases in the library

are sufficiently similar to the given set to warrant this conclusion. To this end we add a

requirement that the distance between the given set and the pattern in the case must be

below some threshold. In practice, such threshold can be learned by knowledge discovery

approaches or specified by sophisticated users. For instance, in our experiments (Chapter

6), we applied a supervised hierarchical clustering algorithm to refine the case library. This

64

algorithm ends with a set of clusters when a predefined fitness function for resulting clusters

reaches the optimal value. Cases in the same cluster have either identical, or different but

similar, patterns of alerts. Apart from some small amount of possible noise, they should

stand for the same type of attack. As a result, the minimal distance between those final

clusters can be used as the threshold for reasoning since it can best distinguish different

types of cases.

Cases along with the set threshold form an accepting zone for unknown patterns being

similar to known ones. Patterns falling outside of the accepting zone are treated as normal

behaviors. However, the case library can never cover all possible attacks; outside patterns

can be instances of unknown attacks or variants of old attacks. Ignoring them causes the

generation of false negatives. Generally, the solution suggested by a CBR system will be

tested for correctness in the working environment. If it is not good enough to solve the

problem, a new solution may be devised, thus forming a new case to be entered into case

library for future reference. This is how a CBR system enriches itself. For the case-based

meta intrusion detection, we can save outside patterns for later investigation by human

experts, thereby getting humans involved only when necessary.

5.3 Case-Oriented Alert Correlation

The other type of alert correlation approach we have developed is conducted in an implicit

manner. Although cases are not as well-defined knowledge as classical rules, they at least

are examples of correlated alerts in previously experienced attacks. The basic idea behind

implicit approaches is correlating alerts from examples, namely, cases. For this reason, it

is called case-oriented alert correlation. In some sense, this approach is an extension of

the classical concept of case-based reasoning. A typical CBR system formulates problems

from environment data without using any case. Cases are used when they are compared

with formulated problems. The case-based alert correlation, however, takes both cases and

environment data in consideration at the same time. Cases are involved early in problem

formulation rather than during reasoning. We believe that this is somewhat general and

deserves exploration in other application domains of case-based reasoning.

65

5.3.1 Problems with Explicit Alert Correlation

Explicit alert correlation is a straightforward solution. It does have drawbacks though. The

important prerequisite to make this approach work is that the alerts themselves contain the

session information. Unfortunately, this cannot be satisfied in the following circumstances.

• Data sources do not contain session information. If they are used for intrusion

detection, sensors are not able to be associated attacks with sessions. For example,

antivirus software can act as a host-based sensor. It works on the binary executables

and may fire alerts when virus patterns are found. But executables cannot be associated

with sessions. Viruses embedded in executables can be evoked in an unpredictable

manner. Other typical data sources without session information include application

logs and system logs that only record high-level data such as user commands.

• Sensors do not provide session information. The sensor capabilities are different.

Depending on the environment, one may install a lightweight sensor that provides little

information in its alerts, or a more complex sensor that will have a greater impact on

the running system but provide more detailed alert information. Thus, even with the

data source having session information, the sensor may not use it.

• Session information is implicit in data sources. Even in network traffic, session

information sometimes is not apparent. IP packets must include both IP address and

ports. However, packets in protocols lower than the TCP/IP protocol may not have

complete session in formation. For example, ICMP packets only have IP addresses.

An attacker may first perform an “IP sweep” (sending a series of ICMP packets) to

find live machines in a particular network and then follow with attack sessions to break

into those hosts by exploiting some vulnerabilities. In such cases, the ICMP packets

can only be associated with sessions from the attack context.

• Not every intrusion occurs over a network. The system can be compromised by insiders,

such as attacks involving an abuse of privileges or previously installed backdoor

software.

The drawbacks of explicit alert correlation drove us to look for a more general approach.

This lead to the idea of the case-based alert correlation.

66

Figure 5.1: Reduction of alert correlation to matching problems

5.3.2 The Method

This approach is called case-oriented alert correlation because it makes use of the case library.

Here we assume that there is a case library that contains descriptions of known attacks,

where, as before, cases are identified by their patterns of alerts represented in XML. The

underlying idea is, given some collection of alerts raised by the various sensors during some

given time frame, to find those cases in the case library whose alert patterns are sufficiently

similar to some subset of the given set to suggest that the attack described by that case has

taken place.

To be more specific, the problem of alert correlation has been reduced to matching

problems as follows. The pattern of alerts in a given case and the collection of runtime alerts

form two sets of alerts like the example shown in Figure 5.1. An alert in one set can be

matched with up to one alert in the other set. The distance between these two alerts is

associated with that match. Suppose all the pair-wise distances between alerts in these two

sets are available. A matching problem can be defined as one of looking for matches with

the overall minimal sum of their distances. The resulting matching determines a pattern of

alerts that can be found from the runtime alerts and is most similar to one in the given case.

Given a set of runtime alerts, a matching problem is formulated for each case in the case

library.

The manner in which these subsets are identified and applied is exemplarily illustrated in

67

Figure 5.2. A fragment of some given set of alerts is shown in the middle column, where the

alerts are organized according to the sensors that produced them. Here there are 6 alerts,

with 3 coming from sensor S1, denoted B11, B12, and B13, and 3 from sensor S2, denoted

B21, B22, and B23.

On the left is shown the alert pattern from some case in the case library. For the purpose

of the illustration, this pattern also involves the same sensors, S1 and S2, although in general

this need not be true. Some cases might involve other sensors, and might not involve either

S1 or S2. The pattern of alerts in the given case consists of 4 alerts, A11 and A12 from S1,

A21 and A22 from S2.

We use the pattern in the case to extract a subset of the alerts in the given set and build

a new (derived) pattern as shown on the right. This is done as follows. First, for each sensor,

we compute the pair-wise distance between the alerts in the case and those in the given set,

using the distance measure described in Chapter 4. These are then recorded in a distance

matrix as shown at the bottom of Figure 5.2.

To these matrices we next apply the Hungarian algorithm described in the previous

chapter, to find the optimal matching, i.e., the set of alert pairs with the minimum sum of

the distances. These are shown in the boxes in the matrices. The matched alerts from the

given set are then extracted to form the derived set. Last we apply the distance measure

again to find the distance between the derived pattern and the pattern of the case. If this

distance is below some specified threshold, we take this is as meaning what was explained

above, i.e., that alerts extracted from the given set are correlated in the same manner as

their corresponding alerts in the case and that the attack represented by the case is likely

to have occurred.

Again, this is done for every case in the case library. Thus it is possible that more than

one case will be matched in this manner, indicating that possibly more than one attack has

taken place.

5.4 Enhanced Case-Oriented Alert Correlation

The alerts in a given case are sorted in a chronological order within sensors as we have

described before. The runtime alerts can also be sorted by time. The enhanced alert

correlation takes the ordering into consideration and looks for what we call the “ordered

maximal weighted matching” rather than the maximal weighted matching. The ordered

68

Figure 5.2: An example of case-oriented alert correlation

maximal weight matching puts a sequence constraint on conventional assignment problems.

It has not been studied before. We found it can be solved with dynamic programming.

5.4.1 Problem with Original Case-Oriented Alert Correlation

The basic idea behind the original case-oriented alert correlation is it models alert correlation

as a series of plain assignment problems. The alerts in a given case are sorted in chronological

order. Runtime alerts also occur in some sequence. However, the pattern of alerts derived

from the given case by finding the maximal weighted matching may break the sequence of

runtime alerts. For example, in Figure 5.3, if elements in sets are ordered, (a) and (b) show

two matchings where the ordering has been broken, while (c) and (d) are two matchings

where the ordering is preserved.

5.4.2 Formal Definition of Ordered Matching of Minimal Cost

Let X = {x1, x2, ..., xn} and Y = {y1, y2, ..., ym} be two sets of objects that we wish to

compare. (In our matching problem, the objects will be alerts.) Let be G = {V, E} an

undirected graph where V = X ∪ Y is the set of nodes and E ⊆ X × Y is a set of edges.

69

Figure 5.3: arbitrary matching (a) and (b) and Ordered matching (c) and (d).

Because each edge connects a node in X to a node in Y , G is bipartite. A matching in G

is a subset M of the edges E such that, among the edges (xi, yi) in M , each xi is connected

to a unique yj and, conversely, each yj is connected to a unique xi. Let c : E → R+, where

R+ is the nonnegative reals, be an assignment of a numeric cost to each edge in E. (In our

application, this cost will be the distance between alerts.) Then we define the cost of M to

be the sum of the costs of the edges in M . A maximum matching in a graph G is a matching

having the maximum possible cardinality (number of edges). The assignment problem is to

find a maximum matching having minimal cost.

In particular, G is complete bipartite graph, i.e., every node in X has a link to every

node in Y ; the edge set E can be more specifically denoted as {(x, y)|x ∈ X, y ∈ Y }; the cost

function can be given as c : X×Y → R+; and the values of c can be put into a n×m matrix

C , where element at the ith row and jth column is the cost for edge (xi, yj). Since all the

assignment problems we meet in our application domain will be totally connected bipartite

graphs, our discussion assumes that such a cost matrix C is given for every assignment

problem. Moreover, in a complete bipartite graph, the cardinality of a maximum matching

will always be just min{|X|, |Y |}.

70

Given a complete bipartite graph G with associated cost matrix C , a maximal matching

having minimal cost can be obtained by applying the classical Hungarian algorithm (

Appendix A) to C. However, we wish to impose an additional constraint when looking

for the matchings. Suppose that the members of the node sets X and Y , associated with

G, are ordered, i.e., so that X = {x1, x2, ..., xn} and Y = {y1, y2, ..., ym} may be regarded

as sequences. For the sake of this discussion, let us assume that |X| < |Y |. In this case a

matching M for G determines a function f : X → Y . We shall say that the matching is

ordered if, for any two elements xi and xj from |X| with i < j, their matches f(xi) = yk and

f(xj) = yl in Y are such that k < l.

If the solution for the assignment problem is restricted to ordered matchings, the goal of

the assignment problem may be described as that of finding an ordered maximum matching

with minimal cost.

5.4.3 Dynamic Programming

A certain class of optimization problems can be solved through a process of recursive

decomposition. The given problem is decomposed into a collection of sub-problems, which

in turn are further decomposed into sub-problems, and so on until no further decomposition

is possible. Sometimes the compositions form a tree, and sometimes they comprise more

complex networks or grids. Given such a decomposition, the solutions to the sub-problems

are then determined in reverse order. One first solves the problems at the lowest level, uses

these to contribute to solutions for the problems at the next higher level, and so on, until

reaching back to the original problem. At each such step, the solution at any given node can

be made optimal based on the solutions to its subproblems. Thus when one finally in this

manner arrives back to the original problem, the optimal solution has been found.

During such a decomposition, it typically happens that the same subproblems may re-

occur in many different paths. Thus a brute force computational approach would entail

considerable redundancy in re-computing each such subproblem each time it occurs.

Dynamic programming is a problem solving technique that applies the above method-

ology, but eliminates these redundant computations by caching sub-problem solutions. It

refers to a large class of algorithms. Examples of dynamic programming include finding

the longest common subsequence on strings [80], the knapsack problem, and shortest path

algorithms on graphs [81].

71

We will show that the problem of finding an ordered matching of minimal cost, discussed

in the preceding section, can be solved using this technique. Two approaches will be

described: one where the matching problem is decomposed along a tree, and where the

optimization problem amounts to finding a path through the tree having minimal cost; and

one where the tree is mapped onto a graph, and the optimization problem amounts to

finding a path through the graph having minimal cost. These two approaches are described

for the sake of illustrating the possibilities provided by the theory of dynamic programming.

Of these, the first one will be used in the following section as the basis for the algorithm

employed in the present application. Note that this section only lays out how the optimal

solution can be obtained through recursive problem decomposition. The next following

section presents the actual dynamic programming algorithm, which implements the caching

of subproblem solutions.

To illustrate the method, suppose we are given two sets X = {x1, x2, x3} and Y =

{y1, y2, y3, y4, y5}, with cost matrix C, 2 1 5 4 3
6 7 8 9 10
3 6 4 5 2


where the element ci,j is the cost c(xi, yj) as described in the previous section. We wish

to find a minimal cost matching of the members of X with those in Y that preserves their

orderings. The possible matchings for each member of X, given this ordering constraint, are

shown in Figure 5.4. The left diagram shows that x1 can be matched with any of y1, y2, or

y3. The reason that x1 cannot be matched with either y4 or y5 is that then there would be no

order-preserving matchings for x2 and x3. Similar considerations apply to give the possible

matchings indicated in the center and right diagrams for x2 and x3.

Based on this analysis, one can decompose the optimal matching problem along a tree

as shown in 5.5. We consider the possible matchings with the xi in reverse order. From

a root node, first generate nodes that represent the possible matchings with x3. These

are represented in Figure 5.5 as the pairs (x3, y3), (x3, y4), (x3, y5). Then, for each of

these, generate nodes that represent the possible matchings with x2. For example, if x3

is matched with y3 as represented by the node (x3, y3), there is only one possible order-

preserving matching for x2, namely (x2, y2). After delineating the possible order-preserving

matchings for x2, for each of the above possible matchings for x3, then proceed similarly,

72

Figure 5.4: Possible matchings for the xi.

Figure 5.5: Decomposition of optimization problem into subproblems.

for each node at this level, to generate the possible matchings for x1. This completes the

recursive decomposition as shown in the figure.

Now assume that the link in Figure 5.5 connecting (xi, yj) to its parent node is labeled

with the cost ci,h taken from the cost matrix C. The objective is to select from this tree a

path with minimal sum of these costs. In this example there are two such minimal paths,

{(x1, y1), (x2, y2), (x3, y5)} and {(x1, y2), (x2, y3), (x3, y5)}, both having total cost 11. Either

of these can be taken as the optimal ordered matching.

How one determines this minimal cost is the crux of dynamic programming. The method

will first be explained in terms of the foregoing example, and then the general formulation

will be presented. We consider the process of determining a set of matchings for the xi

as progressing through a series of stages, where in the present example, one first chooses a

matching for x1, then one for x2, and finally one for x3. Figure 5.5 delineates all such possible

73

order-preserving matchings, so the paths upward through the tree represent all the possible

such series of stages. The computation of the cost of the minimal-cost order-preserving

matching proceeds by computing the minimum cost of getting to each stage along any such

path as the cost of the matching performed at that stage plus the minimum of the costs of

all paths leading up to that stage. In the language of dynamic programming, if the action

at stage s is to match xs with yk, then that stage is said to be in state ks. Given these

notations, then the minimum cost of getting to this stage and state is denoted fs(ks). These

costs for the stages and states in the foregoing example are determined as follows.

f1(1) = 2, f1(2) = 1, f1(3) = 5

f2(2) = min{7 + f1(1)} = min{7 + 2} = 9

f2(3) = min{8 + f1(1), 8 + f1(2)} = min{8 + 2, 8 + 1} = 9

f2(4) = min{9 + f1(1), 9 + f1(2), 9 + f1(3)} = min{9 + 2, 9 + 1, 9 + 5} = 10

f3(3) = min{4 + f2(2)} = min{4 + 9} = 13

f3(4) = min{5 + f2(2), 5 + f2(3)} = min{5 + 9, 5 + 9} = 14

f3(5) = min{2 + f2(2), 2 + f2(3), 2 + f2(4)} = min{2 + 9, 2 + 9, 2 + 10} = 11

Thus the minimal possible overall cost is determined to be the minimum of the values

for f3, namely, 11.

The matchings that provide this solution are not explicitly evident from the compu-

tational process, but can be determined as part of the implementation of the dynamic

programming algorithm. This will be discussed the section below.

The general case illustrated by this example can now be described as follows. Suppose

we are given two sets X = {x1, x2, ..., xn} and Y = {y1, y2, ..., ym}. For purposes of this

discussion, assume that X is the smaller of the two, i.e., that n ≤ m. Then an element in X

can only match with m − n + 1 elements in Y ; the candidate matches for the ith element

in X are the ith to (i + m− n)th elements in Y .

As in the example, we can envision this problem as being decomposed along a tree, where

here the tree has n levels. Moreover, again each path upwards through the tree represents

a series of stages in constructing a complete matching for the xi. As above, where s is the

stage and yk is the element matched with xs at this stage, the stage is said to be in state ks,

and the minimum cost of getting to this stage and state is denoted fs(ks) . The recursion

formulas for dynamic programming, which compute these costs are:

74

f1(k1) = c1,k1 (5.1)

for all possible values of k1,and

fi(ki) = min
i−1≤j<ki

{fi−1(j) + ci,ki
}, (5.2)

for 1 < i ≤ n

for all possible values of each ki. The constraint i− 1 ≤ j < ki on states over which we

minimize in (b) ensures the requirement for ordered matching. The computation produces

different costs on different states at the final stage n, namely, fn(n), fn(n+1),.., and fn(m).

The solution for the overall problem is the minimal cost, namely, min
n≤kn≤m

{fn(kn)} .

Alternatively, we can reduce the ordered matching problem to a shortest path problem on

a graph which is well-known as a dynamic programming problem. The graph is constructed

as follows. Given two sets X = {x1, x2, ..., xn} and Y = {y1, y2, ..., ym}. The cost of xi

matching yj is given as ci,j. Suppose n < m. First we construct n layers with m − n + 1

nodes on each. The m − n + 1 nodes in the ith layer represent the candidate matches for

xi and are denoted as i, i + 1,..., and i + m − n. Two additional layers, 0 and i + 1, are

added before the first layer and after the last layer respectively. Layer 0 has only one node

S (source), layer i + 1 has only one node D (destination). The node S has a directed link

to node k in the first layer with distance equal to the value c1,k. Each node in the last layer

has a directed link to the end node with distance of zero. There is a directed link from the

node p on the ith layer to the q node in (i + 1)th layer with distance ci+1,q, if xi matching

with yp and xi+1 matching with yq will not compromise the ordering constraint. Rename the

duplicate nodes somehow to make sure a node takes place at most once on the graph, for a

graph does not allow duplicate nodes. Then the shortest path from source to destination on

the constructed graph is the minimal cost for ordered matching. If we let k denote a node

at state i and let fi(k) be the shortest path from node k to destination D, the recursive

formula is

fi(k) = min
nodezinstagei+1

{dkz + fi+1(Z)} where dkz denotes the distance from node k to z.

An example, if the weight matrix is 2 1 5 4 3
6 7 8 9 10
3 6 4 5 2


75

Figure 5.6: An example of reduction of order matching to shortest path on a graph

The graph, shown in Figure 5.6, is constructed according to the procedure described above.

The computation starts by setting f4(D) = 0. The shortest distance from S to D is denoted

as f0(S), which is 11. The path is indicated with thick arrows in the graph.

5.4.4 The Algorithm

Although dynamic programming can deal with our problem in two different ways, our

algorithm is actually based on the analysis described by formulas 5.1 and 5.2 to avoid

constructing graphs. However, Dijkstra’s algorithm [81] is the dynamic algorithm that solves

the problem of shortest path on a graph. It seems natural there should be a recursive solution

for our algorithm. However, the implementation of our dynamic algorithm is by iteration

instead of recursion, even though the analysis of a problem naturally suggests a recursive

solution. This is because a recursive solution may cause many common sub-problems to

be computed repeatedly. For example, in order to compute f3(4) and f3(5), some sub-

problems, such as f2(2) and f2(3) have to be computed more than once. As an optimization,

we can compute such sub-problems once and then store the results to read back later. The

iteration solution thus is introduced to reduce call overhead. Such iterative implementations

of dynamic programming algorithms are quite common in dynamic programming research

[82].

Descriptions of dynamic programming algorithms are often harder to understand than

76

Figure 5.7: Algorithm of ordered maximal matching

the recursive versions. The essential difference is that dynamic programming keeps its

intermediate results whereas recursion does not. This makes a significant difference for

performance when a recursive function is called repeatedly with the same arguments. In

fact, dynamic programming is nothing more than recursion with the addition of a caching

strategy.

The algorithm is presented in Figure 5.7. It consists of two major parts. One part is

the initialization of a cache table C ′ that stores the results to read back later. The latter

procedure is presented in Figure 5.8. The initial values of C ′ are costs of elements in X

matching with their candidate matches. Thus, C ′ has n rows and (m − n + 1) columns.

C ′(i, j) is the cost of xi matching yj. Given the example before, the initialized cache table

is shown in (a) of Figure 5.9.

The other part is updating and labeling the cache table, for element C ′(i, j) from the 2nd

row to the last row in the table C ′ is updated as and labeled as the value of k. Figure 5.9

(b) and (c), shows the changes of the cache table for the example. Once all elements have

been updated, the minimal value of the last row is the cost of the ordered maximal weight

matching. The exact matches can be tracked down through the labels in the returned cache

77

Figure 5.8: Initialize the cache table

Figure 5.9: An example of changes in a cache table

78

table C ′. The grey boxes in Figure 5.9(d), shows how to identify matching. In this particular

example, x1 matches its first candidate match; x2 matches its first candidate match; and x3

matches its second candidate match.

79

CHAPTER 6

Experimental Evaluation

Training data is important for a knowledge-based IDS in that the detection performance

highly depends on the quality of the training data. Lee [39] pointed out that an IDS can

not be better than the training data on which it was constructed. However, the creation of

training data is a time-consuming and difficult task, because it must be thorough and every

piece of data has to be manually labeled as either normal or abnormal. Training data for

meta intrusion detection is even more difficult to produce since it should contain multiple

data sources plus their correlated information. Hence, we choose to use available datasets

for our experiments rather than creating our own data. Besides training, these datasets

were used for testing too. In this chapter, we describe our experiments for the evaluation

of our case-based meta intrusion detection approach with three different datasets created

and distributed by IDS-related projects of the Defense Advanced Research Project Agency

(DARPA)[83][84]. As there are few common datasets available for the intrusion detection

research, DARPA datasets are relatively popular and broadly considered in this community

as the standard corpora for the evaluation of intrusion detection systems. Some institutions,

such as SRI, are creating new standard data that contains up-to-date attacks and will become

available in near future.

6.1 The Experiment with DARPA 1998 data sets

There are two sensors involved in the experiment with DARPA 1998 datasets, a host-based

sensor, STIDE, and a network-based sensor , Snort. As the original STIDE does not generate

alerts, it has been modified to act like a real sensor. The cases and problems were constructed

on a session basis. In other words, a case or a problem is the pattern of alerts generated

during a session. The case library was constructed from DARPA 1998 training data and

80

Figure 6.1: the fragment of a list file

refined using our supervised clustering approach. The experimental results have shown that

compared with each individual sensor, the meta IDS has improved the overall detection

performance.

6.1.1 Description Of the Datasets

The DARPA 1998 datasets provide nine weeks of data, seven weeks for training and two

weeks for testing. Training data and testing data are basically the same except they are

used for different purposes. Both have two data sources. One is Solaris BSM Audit Data

which records system calls taking place on a particular computer. It is a typical data source

for a host-based sensor. The other is tcpdump data for a network-based sensor. It contains

the network traffic (packets) that have passed a certain location in a network.

The labeled information of training data is given in list files. There are two types of list

files, namely, BSM list files and tcpdump list files. Both types employ the same format and

include the session information and attack information, as shown in Figure 6.1. Intuitively,

BSM list files list all the host sessions in the BSM audit data; the tcpdump list files list all

the network sessions in tcpdump data. If a host session and a network session share the

same source IP and port and destination IP and port, they are correlated with an unique

number as indicated in the first column in Figure 6.1.

81

6.1.2 Modification of STIDE

STIDE is a host-based anomaly detection program developed by the University of New

Mexico to demonstrate that sequences of system calls can be used for anomaly detection

[5][6]. The format for STIDE input is a simple table with two columns, namely, process

ID and system call ID. Its output is mainly mismatch rates. As the original STIDE does

not take the BSM audit data as input or generate IDMEF alerts, a few Perl scripts were

written to prepare the STIDE input and the basic alerts information. Figure 6.2 shows the

data flows among these Perl programs. In BSM audit data, each system call is described

by a set of tokens that contain the details of the system call. The program bsm filter.pl

summarizes the necessary information of each system call in a single line. Its output is

called filtered data and goes to two other Perl programs. Firstly, the bsmlist.pl program

looks for patterns identifying sessions of interest in the filtered data and saves the session

information (IP address, ports, and ID of starting processes) in list files. Secondly, the

process list.pl program sorts the system calls in filtered data by processes and saves the

results in process files. Finally, for each listed session in the list files, the session.pl program

extracts its relevant system calls (including those in the starting process and its children

processes) from process files and puts them in the format of STIDE input.

STIDE also produces auxiliary information, such as number of anomalies, hamming

distance (HD), and local frame count (LFC). In order to provide the CBR system with

the complete analysis detail from STIDE, all possible STIDE outputs together with the

session information found using those Perl scripts are represented as IDMEF messages that

serve as the alerts from STIDE. IDMEF is a well-designed alert language. According to the

specification of IDMEF, it is clear that session information (Source IP and Port and Target

IP and Port) should be put into XML elements Source or Target. It is also flexible enough to

accommodate domain specific information using XML elements AdditionalData. We extend

the IDMEF to include STIDE specific outputs. An example is shown in Figure 6.3.

6.1.3 Experiment Setup

We used the adaptive CBR system [34] as the reasoning engine and selected STIDE and

Snort as the sensors to process the BSM Audit data and the tcpdump data respectively.

The original STIDE was modified to generate alerts as described in the previous section. As

82

Figure 6.2: The data flow in Preprocess

Figure 6.3: The IDMEF representation of STIDE outputs

83

STIDE applies anomaly detection. It was trained with the normal sessions of some common

services, such as ftp, telnet, and smtp. Most attacks in the DARPA 1998 datasets were

launched against these types of services. Snort was configured as using the standard default

rules and was set up with an IDMEF output plug-in (http://sourceforge.net/projects/snort-

idmef) that can automatically transform default Snort alerts into IDMEF messages. All

IDMEF messages are saved in a relational database (we used MySQL) through a middleware

called XML2DBMS (http://www.rpbourret.com/xmldbms/) so that we can perform SQL

searches to collect alerts of interest.

In training, the attack sessions indicated in the intersection of BSM list and tcpdump

list files were used to build the case library. Because tcpdump list files may contain

network sessions irrelevant to the host where the BSM audit data was collected, only the

intersection of host sessions and network sessions were applied. For each attack session, its

session information defines an SQL statement that returns all alerts generated during that

attack session. A middleware called DBMS2XML (http://www.rpbourret.com/xmldbms/)

transforms these alerts into a pattern of alerts. The pattern of alerts, together with the type

of the attack, forms a case. Figure 6.4 represents the overview of the training process.

The testing process is almost the same as the training process except that list files were not

used to create SQL statements. In testing, alerts in the database were correlated via session

information. Alerts with the same session information were put together and represented in

a pattern of alerts using DBMS2XML. Such patterns serve as problems for the CBR system

and will be compared with cases in order to find the most similar ones. If a problem and its

most similar case are similar enough, the CBR system indicates that an attack whose type

is the same as the case may have taken place. The BSM list and tcpdump list files in testing

data are used to verify the decisions of the CBR system. The overview of the testing process

is presented in Figure 6.5.

6.1.4 Construction of Case Library from Training Data

The library of past cases comprises the knowledge of a CBR system. A good case library

should be representative of all possible problems and contain as little redundancy as possible.

A three-step procedure has been developed for the construction of the case library from

DARPA 1998 training data. These are creating initial cases, clustering initial cases, and

selecting final cases. These steps are illustrated in Figure 6.6.

84

Figure 6.4: the Overview of Training

In the first step, the training data is fed into the sensors. Sensors generate streams of

IDMEF alerts. From the labeled information in training data, alerts corresponding to the

same attack instance are aggregated into an XML object. Each instance of an attack is

associated with an XML object of this kind if there is any alert generated for that instance.

Such XML objects collected in the first step are called initial cases. The number of initial

cases can be very large. It is possible that many initial cases correspond to the same type of

attack and that most of them are very similar to each other. For example, our experiments

with the DARPA 1998 datasets produced hundreds of similar cases associated with the type

‘warezclient’. If the CBR system had to go through all these cases for every problem, the

performance would be very poor.

Obviously, the use of large numbers of similar cases is redundant. In order to remove

this redundancy, a clustering approach is applied in the second step. We used the supervised

hierarchical clustering algorithm described in Chapter 4. The output of clustering algorithm

is a set of clusters.

According to whether or not all objects in a cluster belong to the same type, a cluster

85

Figure 6.5: the Overview of Testing

Figure 6.6: The three steps of case library construction.

86

Figure 6.7: An example of selecting the representative

can be marked as either pure or impure. For example, in Figure 6.6, clusters 1 and 3 are

pure and cluster 2 is impure. A pure cluster indicates that its objects can be successfully

distinguished from objects in other clusters. In contrast, an impure cluster indicates that its

objects, although of different types, share some common patterns and cannot be effectively

distinguished from each other. Since objects in a pure cluster are similar to each other, there

is no need to compare all of them with a problem during reasoning.

Thus, in the third step, a representative of every pure cluster will be selected for entry

into the case library. The method we applied to find the representatives is straightforward;

we pick the one with minimal sum of distances to all other objects in the cluster. For

example, a distance matrix of 4 objects in a pure cluster is given as in Figure 6.7. Because

object 4 has the minimal sum of distances to the other objects, it is selected. For impure

clusters, we do not make any change; each case in the cluster becomes its own case in the

CBR library.

The case library for DARPA 1998 training data was constructed through the three steps

described above. First, the initial cases were collected. There are 440 initial cases generated

for 13 types or variants of attacks. In the second step, the supervised clustering algorithm

produced 20 clusters for the initial cases when the minimal distance between clusters are

0.3. There is 1 impure cluster and 19 pure clusters, including 14 singletons (clusters having

only one member). The distribution of initial cases over the clusters is shown in Table 6.1.

Note that instances of the ‘warezclient’ attack have been grouped into two pure clusters,

3 and 4. According to the method described in the 4, one representative from each of these

two clusters was selected and entered into the case library. Two other types of attacks, ‘ffb’

and ‘ftp write’, are processed in a similar way because all the instances of these two types

87

Table 6.1: Clustering results of the initial cases generated for the DARPA 1998 training
data.The last column is singletons.

Type amount C1 C2 C3 C4 C5 C6 S
eject 5 5
ffb 4 3 1

ffb clear 1 1
format 1 1

format fail 1 1
format clear 1 1

ftp write 4 2 2
loadmodule 3 2 1

satan 8 1 7
spy 2 1 1

warez 1 1
warezclient 408 175 233
warezmaster 1 1
Final Case 30 1 1 1 1 1 11 14

have also fallen into pure clusters. Finding representatives of pure clusters greatly decreases

the number of cases necessary for reasoning. For example, to find out how close a pattern of

alerts is to the ‘warezclient’ attack, only 2, instead of 408, need to be compared. All objects

in singletons and impure clusters go directly into the case library. This produced a case

library having a total of 30 final cases.

6.1.5 Comparison of Detection Performance

The DARPA 1998 testing data was used to generate problems for the CBR system. The

overall results are presented in Table 6.2. The detection rate is the percentage of detected

attacks in all attacks. An attack is detected if there is at least one alert generated for it.

The false positive rate is the percentage of false alerts in all alerts. Snort may generate more

than one alert for a session. We count all Snort alerts generated during normal sessions as

false positives and all Snort alerts generated during attack sessions as true alerts. STIDE

generates at most one alert for a session. Since it applies anomaly detection, a threshold is

normally required to specify the condition of firing an alert. To be conservative, an alert

is launched for any amount of detected anomalies. In other words, the threshold is zero

88

for STIDE in the experiment. False negatives are undetected attacks. The number of false

negatives can be computed as #attacks - #detected attacks. There are 6550 attack sessions

(in a total of 8866 sessions) in the testing data. The CBR system fires 6537 alerts in which

there are 6478 true alerts. Thus, the detection rate is 6478/6550 = 98.9%; the false positive

rate is (6537− 6478)/6537 = 0.90%; the number of false negatives is 6550− 6478 = 72.

In our experiment, the detection threshold is set as 0.3 because this can best distinguish

different clusters in training data. Problems that fall outside of the accepting zone are

regarded as being normal because they do not match any known case. However, the system

may miss a problem caused by a new attack or some variant of a known attack. For example,

the first ‘ps’ attack on Monday of the first week was missed by the system. It happens that

there are many types of attacks in the testing data, such as ‘processtable’ and ‘mailbomb’,

that do not have any instance at all in the training data. Thus the system makes the wrong

decision the first time it meets them.

We used this phenomenon to simulate updating the case library over time. A new case was

entered into the case library whenever a wrong decision was made. Our experiment assumes

that the update is done soon enough that the system will not make the same mistake again

for identical problems. Although in practice a sequence of attacks of the same type can

occur several times during a short period of time, and no update can be made on such short

notice, our experiment was conducted for the purpose of demonstrating the potential of this

approach.

Table 6.2: Overall results of the first experiment on DARPA 1998 data

#alerts Detection Rate False Positives rate #False Negatives
STIDE 7084 99.6% 7.9% 27
Snort 6120 21.8% 76.6% 5118
CBR 6428 98.9% 0.9% 72

From the results in Table 6.2, the system has a much better detection rate than Snort

and almost the same detection rate as STIDE. It has a much lower false positives rate than

either sensor. Only STIDE has a smaller number of false negatives than the CBR system.

The fact that there are a large number of new attacks in the testing data contributes to

most of the false negatives of the CBR system. The CBR system first missed a few new

89

types of attacks, but after the case library was updated with these, it caught all subsequent

occurrences of these attacks.

The dataset has 4999 ‘mailbomb’ attacks, and snort failed to detect any of them at all,

while STIDE only missed a few of them. Thus snort has poor detection rate, while STIDE

has very high detection rate.

Moreover, the CBR can indicate the exact types of most detected attacks. This is

important in order to take appropriate actions in response to attacks. STIDE applies

anomaly detection and thus is inherently unable to provide the detail of attacks. However,

the alert correlation used in the CBR process allows the attack information to be obtained

from the retrieved case. This is an important augmentation of STIDE.

Snort processes one network packet at a time and misses the context of attacks. Although

it applies misuse detection, it tends to generate a large number of false alerts, overwhelming

its human observers. Our results show that the CBR system can almost exactly identify the

attacks, thus greatly alleviating this problem.

6.2 Experiment with DARPA 2000 datasets

The experiment with DARPA 2000 datasets was done to evaluate the approach of case-

oriented alert correlation using session information. Like the experiment with DARPA 1998

datasets, it assumes that the case-based meta IDS is set up to protect a particular host. The

results have demonstrated that the alert correlation approach helps detect the given variant

of a distributed denial of service (DDoS) attack.

6.2.1 Datasets Description

The 2000 DARPA intrusion detection scenario specific datasets include two sets entitled

LLDoS 1.0 and LLDoS 2.0.2. LLDoS 1.0 contains a series of attacks in which an attacker

probes, breaks in, installs the components necessary to launch a DDoS attack, and actually

launches a DDoS attack against an off-site server. LLDoS 2.0.2 includes a similar sequence

of attacks run by an attacker stealthier than the first one. The datasets come with both

low-level raw data and mid-level labeled data. The low-level data consists of DMZ tcpdump

data, inside tcpdump data, and BSM audit data from two Solaris machines, Pascal and Mill.

The mid-level data consists of XML files containing IDMEF alerts generated by sensors. As

90

the experiment is concerned with meta intrusion detection, it was done only with mid-level

data, namely IDMEF alerts.

6.2.2 Experiment Setup

In this experiment, LLDoS 1.0 was used to construct the case library. Then the CBR system

was tested using the data in LLDoS 2.0.2. This is appropriate since LLDoS 2.0.2 is a variant

of LLDoS 1.0.

The LLDoS 1.0 attack scenario is carried out over multiple network and audit ses-

sions. These sessions have been grouped into 5 attack phases, namely IP sweeping,

probing, breaking in, installing DDoS software, and launching attacks, as shown in Figure

6.8(http:www.ll.mit.eduISTidevaldata20002000 data index.html). A case corresponding to

each attack phase is created for each of Pascal and Mill. All alerts that took place during

an attack phase and were associated with a particular host form a case for the host. The

datasets provide each host with IDMEF alerts from three sources: DMZ, inside network, and

the host itself. Accordingly, a case may have alerts from at most three sensors. Two case

libraries were constructed for Pascal and Mill, respectively. Each has five cases corresponding

to the five different attack phases.

6.2.3 Experiment Results

Since there is no redundancy in this experiment, clustering was not performed. The

experiment applied case-oriented alert correlation. The correlated alerts for a particular case

form a description of a problem representing a potential attack. The results are presented

in Table 6.3.

The results have demonstrated that our system is able to effectively detect the attack

described by LLDoS 2.0.2, especially on Mill. However, the first phase of the attack may

not be easily recognized. The constructed problems for case-phase-1 on both machines have

relatively large distances. This is because the attackers in LLDoS 1.0 and LLDoS 2.0.2

used different ways to find victim hosts. The attacker in LLDoS 1.0 performed a scripted

IPsweep to find ‘live’ IP addresses first and then sent ‘sadmind’ requests to find out possible

victim hosts. The attacker in LLDoS 2.0.2 only performed an HINFO query of a public DNS

server that directly returned possible victim hosts. Once the victims have been found, the

91

Figure 6.8: Service Plot for DDoS1.0

rest of both attacks is almost the same. This is why the constructed problems show better

similarities to their corresponding cases.

There is another important difference between LLDoS 1.0 and LLDoS 2.0.2. In LLDoS

1.0, Pascal and Mill were attacked from outside of the network. As a result, alerts were

generated from both the DMZ and inside the network. In contrast, in LLDoS 2.0.2, the

attacker broke into Mill and fanned out from there. Mill is inside the network. The attacks

from Mill to other hosts inside are invisible to the sensor at the DMZ. So, Pascal didn’t

accept any alert from the DMZ sensor in LLDoS 2.0.2. This difference made problems on

Pascal have less similarity to their cases than problems on Mill. But if the appropriate

threshold is set, say 0.4, most of the attack phases can be detected. More specifically, on

Mill, all attack phases except phase 1 will be identified, and on Pascal, all attack phases

except 1 and 4 will be identified.

6.3 Experiments with DARPA Cyber Panel Program

The Cyber Panel Grand Challenge Problem (GCP)[85] program is an attack simulator.

The experiment with it was conducted to evaluate the approach of enhanced case-oriented

92

Table 6.3: Overall results of the first experiment on DARPA 2000 data

Pascal Mill
Cases in the
case library

Distance between
case and constructed
problem

Cases in the
case library

Distance between
case and constructed
problem

phase1 0.67 phase1 0.5
phase2 0.389 phase3 0.139
phase3 0.389 phase3 0.218
phase4 0.425 phase4 0.233
phase5 0.389 phase5 0.141

alert correlation. Unlike the experiments with the DARPA 1998 and 2000 datasets, this

experiment assumes the meta IDS is set up to protect a corporation on the large scale. All

the cases and problems for the experiment came from the attack scenarios simulated by the

program. The experimental results have shown the enhanced case-oriented alert correlation

(the dynamic programming solution for order-preserving matching) is a promising approach.

6.3.1 Description of Ground Challenge Problem

The GCP is a notional, cyber-defense scenario that describes a commercial corporation under

strategic coordinated attack. The scenario exhibits the primary characteristics of many large,

network centric organizations. The role of GCP is to:

• Exercise and validate cyber-defense such as (a) correlation, (b) situation assessment,

and (c) response (human-directed and automatic).

• Provide a common tool-suite that can be used to demonstrate opportunities for

collaboration and integration, and to achieve repeatable demonstrations. The suite can

be expanded and varied over time to explore different adversaries, network topologies,

sensor type, sensor replacement, and defensive strategies.

• Provide common data sets and simulation tools that support core capability demon-

strations and technology validation.

93

The GCP scenario describes three strategic, coordinated cyber attacks that are conducted

against Global. These attacks exemplify typical attack classes: life-cycle, insider, or

distributed denial of service of attacks.

The global corporate structure has 5 different types of network sites, namely Headquarters

(HQ), Air Planning Center (APC), corporate transport Ships, Air Transport Hubs (ATH),

and Partner Air Transport Hub (PATH). Each site is defended by typical sensors, as well

as postulated high-level sensors. There are in total 10 types of sensors in the networks. All

the sensors generate the alerts in IDMEF messages. Simulation tools allow researchers to

configure a network of arbitrary size and observe the alert streams that would be generated

by sensors when attacks are perpetrated.

6.3.2 Experiment Setup

Running an attack scenario with the GCP simulator requires providing the following inputs:

• Specification of the number of sites of type SHIP, ATH, and PATH. This sets the size

of the corporation being attacked.

• Three arbitrarily chosen integer, evidently used as seeds for random number generators

applied during the attack simulation.

• Specification of the type(s) of attack. There are three choices, A1, A2, and A3. One

can select any combination of these, e.g., one can simulate having simultaneous attacks

of types A1 and A3.

• Specification of whether the attacks should, or should not, be accompanied with

randomly generated background attacks (noise).

We experimented with a number of different site configurations, represented here as

triples. To illustrate, (1, 1, 1) indicates one site of each type, SHIP, ATH, and PATH, (1, 5, 10)

indicates one of type SHIP, 5 of type ATH, and 10 of type PATH. For each such configuration,

we built a simple case library as follows. For each attack type, A1, A2, A3, we ran one attack

of this type without background noise. The alerts generated for each attack then became

the problem part of a case, and the identity of at the attack type formed the solution part

of the case. Here is should be noted further that the simulator allows attacks of type A3

94

(distributed denial of service) to be generated only for configurations having one site of each

type. Thus for configuration (1, 1, 1), the case library has 3 cases, one for each of A1, A2,

A3. For all other configurations, the case library has only two cases, one for each of A1 and

A2. Different random number seeds were chosen for each run.

Attacks were then run for each configuration, with background noise, and the alert

streams were collected. These attacks are referred to as “problems”. The alert streams

were then input to our case-based reasoner, once using the Hungarian algorithm, and once

using dynamic programming, as the underlying matching technique.

6.3.3 Experimental Results

Table 6.4: Experimental results with (1,1,1)

C1(A1) C2(A2) C3(A3)
H D H D H D

P1(A1) 0 0 0.5386 0.5484 0.3078 0.3078
P2(A2) 0.7828 0.7847 0.0185 0.0185 0.3078 0.3078
P3(A3) 0.8126 0.8137 0.5697 0.5697 0 0

P4(A1,A2) 0 0 0.0185 0.0185 0.3078 0.3078
P5(A1,A3) 0 0 0.5002 0.51070 0 0
P6(A2,A3) 0.7798 0.7818 0.0185 0.0185 0 0

P7(A1,A2,A3) 0 0 0.0185 0.0185 0 0

Table 6.5: Experimental results with (5,5,5)

C1(A1) C2(A2)
H D H D

P1(A1) 0.0577 0.0595 0.5030 0.5047
P2(A2) 0.8943 0.8951 0.3327 0.3327

P3(A1,A2) 0.0588 0.0576 0.3001 0.3018

The results of these experiments are shown in Tables 6.4 through 6.8. In Table 6.4, the

configuration (1, 1, 1) was used. The column heading C1(A1) indicates library case 1, created

using an attack of type 1. Similarly for the other columns. The secondary column headings

95

Table 6.6: Experimental results with (10,10,10)

C1(A1) C2(A2)
H D H D

P1(A1) 0.0298 0.0298 0.5002 0.5107
P2(A2) 0.9449 0.9454 0.3282 0.3293

P3(A1,A2) 0.0298 0.0302 0.2973 0.3079

Table 6.7: Experimental results with (1,5,10)

C1(A1) C2(A2)
H D H D

P1(A1) 0 0 0.5002 0.5107
P2(A2) 0.8596 0.8607 0.3282 0.3293

P3(A1,A2) 0 0 0.2973 0.3079

Table 6.8: Experimental results with (10,5,1)

C1(A1) C2(A2)
H D H D

P1(A1) 0.0563 0.0576 0.5030 0.5047
P2(A2) 0.9304 0.9311 0.0185 0.0185

P3(A1,A2) 0.0822 0.0949 0.2973 0.3079

“H” and “D” indicate results using the Hungarian algorithm and dynamic programming,

respectively. The row labels indicate the problems. To illustrate, problem P1 involved an

attack of type A1, and problem P4 involved simultaneous attacks of types A1 and A2.

The numbers in the cells are the computed distances between the given problem and case

as determined by the indicated matching technique. Thus, the 0’s for both H and D under

case 1, for problem 1, represent an exact match, i.e., the problem represented by the case is

reported to have occurred. The other cells in this table, as well as those in the other tables,

are interpreted similarly.

From these tables, we can draw a few general conclusions. The closeness of the results for

96

the Hungarian algorithm based case-oriented alert correlation and the dynamic programming

based cased-oriented alert correlation approaches demonstrate that they are equally good in

correlating alerts. However, the dynamic programming approach has much less complexity.

The complexity of the Hungarian algorithm is given as O((m + n)3) for a m by n cost

matrix. In contrast, with the same m by n cost matrix (suppose n < m), the complexity

of the dynamic programming approach is O(n × (m − n + 1)) because it only has to fill a

cache table with n × (m − n + 1) cells in order to find the solution. Thus, the dynamic

programming method is a more efficient solution for case-based alert correlation.

Given a problem and a case, one of two situations is possible, either the problem is

represented by the case, or it is not. Whether the problem is represented by the case can be

determined by means of a threshold on the distance between that problem and case. If the

distance exceeds the threshold, the problem can be determined as not matching the case,

and if the the distance is smaller than the threshold, is does match the case, i.e., the attack

represented by the case can be assumed to have occurred.

One can determine such a threshold for each case as follows. We illustrate this for case

C1 where the matching used the Hungarian algorithm. We scan through all the tables for

the smallest distance between a problem and C1, where the problem does not match C1.

Given the above tables, this is 0.7798, the distance between problem P6 and C1 in Table

1. We next scan through all the tables for the largest distance between a problem and C1,

where the problem does match C1. This is 0.0588, the distance between problem P3 and C1

in Table 6.5.

Thus any value in the range [0.0588, 0.7798] could be an acceptable threshold. It is

desirable, however to have this be as unsusceptible as possible to noisy data or variants

of known attacks. A straightforward and practical approach is to use the median of the

interval as the threshold. Thus, for cases representing attack A1, the threshold is given as

(0.7798 + 0.0588)/2 = 0.4193.

Using this same technique one can compute a threshold for cases representing attack

A2 as (0.5002 + 0.3283)/2 = 0.4142, and a threshold for cases representing attack A3 as

(0.3078+0.0)/2 = 0.1539. Since the table values corresponding to the dynamic programming

matching method are essentially identical to those based on the Hungarian algorithm, we

will restrict our discussion to just those involving the latter.

As can be seen from the tables, these threshold values effectively identify the attacks

97

contained in all the given problems. Thus these results suggest that the overall technique

can be effective. One could, if one wished, add further tables, based on further network

configurations, to the mix, but the present choice of configurations is sufficiently varied that

such further additions will not significantly change the threshold values from those computed

here.

To further validate our method for computing thresholds, one can apply the well-known

leave-one-out analysis technique. To illustrate, let us first leave out problem P1 in Table

1. This means that we recompute the thresholds using all the values in the tables except

those in the row P1 of Table 6.4. We then see if these values can be used to effectively

identify the attack present in P1 of Table 6.4. It will be seen that it does. (Coincidentally,

in this case the new computation gives the same three threshold values as computed above.)

This is then repeated for every problem (row) in every table. We found that in all cases the

method succeeds; the newly computed thresholds effectively identify the attacks present in

each problem.

Note that a large threshold tends to make false positives and a small threshold tends to

make false negatives. Thus, if in some application it is determined that false positives are

less desirable that false negatives, one can lower the threshold values by some appropriate

amount. Conversely, if false negatives are less desirable that false positives, one can raise

the thresholds.

98

CHAPTER 7

CONCLUSION

In this chapter, we summarize the thesis, review the thesis contribution, and discuss

drawbacks as well as future work.

7.1 Summary

This thesis has described a case-based reasoning framework for meta intrusion detection. The

framework defines the cases and problems for this particular domain and makes intrusion

detection part of the case-based reasoning process. A distinguishing feature that makes our

approach different from other case-based reasoning applications is that cases and problems

are described in XML. In addition, this framework includes a distance-based XML similarity

measure, data mining approaches, and alert correlation approaches. Using the framework, a

case library can be constructed manually or automatically from training data, then refined by

data mining approaches, and finally compared with problems formulated via alert correlation

approaches for intrusion detection.

We first motivated our thesis by stating the importance of intrusion detection in the

overall computer security mechanisms. We provided background on intrusion detection

systems, and briefly described representative intrusion detection systems. We pointed

out that traditional intrusion detection systems suffer from a large number of mistakes

mainly because they apply a single data source and a single detection model. They also

lack effectiveness, adaptability, and extensibility. The concept of meta intrusion detection

suggests combing the results from other intrusion detection systems or security devices in

order to reduce the number of overall mistakes. We observed that meta intrusion detection is

very similar to diagnostic problems, which are considered as the most successful application

domains of case-based reasoning. The goal of this thesis research is therefore to explore the

99

feasibility if it is also applied to meta intrusion detection.

We studied the common characteristics of case-based reasoning applications. We dis-

cussed that for a case-based reasoning application, the most important issue is to find a

set of features to describe cases and problems. In the domain of meta intrusion detection,

the information for the construction of cases and problems is alerts that are described by

IDMEF, an XML language. The inherent flexibility of IDMEF makes it almost impossible

to predefine a set of features that can cover all important information in alerts. Therefore,

instead of using features, cases and problems are described straightforwardly in XML in order

to avoid information loss. Although this design deviates from traditional approaches, it does

provide a convenient way to build cases and problems for our domain and thus simplifies

knowledge acquisition and representation.

We then studied the problem of similarity measures for case-based reasoning systems.

Nearly all traditional similarity measures work with data described by a set of predefined

features. As we apply XML representations for cases and problems, traditional similarity

measures are not suitable for our needs. Thus, we developed a novel XML distance measure

as the similarity measure for our case-based reasoning system. It is able to take any two

arbitrary XML trees as input and recursively compute their overall distance from roots to

leaves. Our experiments showed that this distance measure could reasonably measure the

similarity between XML objects. In fact, our whole case-based approach for meta intrusion

detection relies heavily on the effectiveness of this XML distance measure. Besides the

similarity measure of the case-based reasoning system, data mining approaches and alert

correlation approaches in our framework are all based on the XML distance measure.

We next studied the problem of constructing a case library. A case library embodies

the expertise of a case-based reasoning system. It should be representative and precise.

As the size of the case library grows over time, it makes the case-based reasoning system

slower to respond to problems. We proposed a general three-step approach to construct

a case library from training data. In particular, a supervised clustering algorithm was

designed to find similar cases. The case library can be refined by replacing similar cases

with their representatives. Our experiment on the DARPA 1998 datasets has demonstrated

the effectiveness of this approach. The size of the case library was significantly reduced

without affecting the detection performance. A useful item of information implicit in the

results of the clustering algorithm is the distance that can best distinguish different types of

100

cases in the case library. This can be used as the threshold for case-based reasoning systems

for making decisions.

We next studied how to formulate problems for our case-based reasoning system.

Problems stand for unknown situations. In our application domain, they are potential

attacks and implicit in the alerts from different sensors. The issue is how to find them.

This is a common difficulty in meta intrusion detection research and is generally referred to

as alert correlation. It is concerned with determining the logical connection between alerts.

The adoption of case-based reasoning makes the problem of alert correlation more difficult

because knowledge used by experts to solve problems is implicit in cases rather than being

encoded as rules. We developed two categories of alert correlation approaches, explicit alert

correlation and implicit alert correlation. The former takes advantage of some essential

features in alerts, such as IP addresses and ports, which can reveal the connections between

alerts. The latter is called case-oriented alert correlation, a more general approach, especially

useful when alerts do not contain those essential features for correlation. It correlates runtime

alerts according to the patterns of alerts in cases. If the most similar pattern of alerts found

from runtime alerts is similar enough to the pattern of alerts in a given case, it is reasonable to

believe an attack represented by the case has likely taken place. Our experiments have shown

both approaches can effectively formulate problems for case-based reasoning systems. We

also devised a variant of the original case-oriented alert correlation approach. The new one is

more useful in practice because it is as good as the old one and has much less computational

complexity.

We are currently studying the problem of how to implement a real-time meta intrusion

detection system on a cluster of processors using our case-based approach. The main idea is

using the cluster as the storage and processing center. The cluster is allowed to receive alerts

from various sensors simultaneously through parallel channels. By taking advantage of its

computation power, some tasks, such as sorting alerts and correlating alerts, are broken into

subtasks that can be assigned to different processors running in parallel within the cluster.

7.2 Dissertation Contributions

We recap the dissertation contributions:

101

• Case-Based Meta Intrusion Detection We studied the problem of meta intrusion

detection. We modeled it as a diagnosis process on computer system and developed a

case-based framework for it.

• Techniques for Alert Correlation We studied the common issue, alert correlation

in meta intrusion detection and devised a new category of approaches, namely case-

oriented alert correlation. Basically, we reduce alert correlation to assignment problems

and apply matching algorithms to find best solutions.

• Utilization of XML Representation for Data in Analysis We studied the

drawbacks of traditional attribute-value representations. We proposed preserving the

XML forms of data for analysis in order to avoid information loss. Objects in our

case-based reasoning system all take the form of XML. Data analysis algorithms over

data in terms of XML representation were developed accordingly.

• The XML Distance Measure We studied the problem defining similarity measure

between two arbitrary XML documents for the purpose of our case-based reasoning

system. A novel distance-based similarity was devised. It plays a significant role in

our whole approach. With this distance measure, other tasks of data analysis can be

relatively easily carried out.

• Ordered Minimal Matching As part of the design of case-oriented alert correlation,

we put an ordering constraint to the traditional assignment problems. We developed

a new matching algorithm to find ordered minimal matching based on the theory of

dynamic programming.

7.3 Drawbacks

As a coin has two sides, there are drawbacks inherent in the adoption of case-based reasoning

for intrusion detection.

First, it can not be applied to build attack scenarios. Approaches for building attack

scenarios help people better understand attacks so that more sophisticated countermeasures

can be taken accordingly. Although case-based reasoning simplifies the knowledge acquisition

and representation, the expertise, namely the library of past cases, is not well-defined

102

knowledge anyway. Even thought we can make use of the information about past cases

for intrusion detection, those cases can not tell how exactly the attacks took place.

An other drawback is that this approach is subject to changes in the working environ-

ments. The case library contains specific information regarding the system and sensors,

such as the IP address of the sensors. If the configuration or the topology of the system is

changed, the new responses of sensors to attacks may be different from their old ones. The

case library then needs to be updated according to sensors’ new behaviors, which may make

the intrusion detection system unfriendly to use.

7.4 Future Work

There are several interesting and important future directions:

• Reducing Noise in Cases A pattern of alerts is the major part of a case. Patterns of

alerts in cases are the most important information for intrusion detection. The quality

of patterns of alerts is critical for intrusion detection. It is possible that some alerts in

the pattern may be false alerts. Finding and removing those false alerts can certainly

enhance the quality of the case library.

• Using Attack Simulator for the Construction of Case Library We mentioned

one drawback in the previous section, that changes in the working environments

requires that the case library be updated according to the new responses of sensors to

attacks. A good way to construct the case library is to use attack simulator programs

that can simulate different network topologies and configurations. If the real network

has changed, the simulator programs can simulate reactions of sensors to attacks in

the new environment. New cases can be collected for the construction of the new case

library.

• The Design of Case Library for Fast Case Retrieval Our present approach

of retrieving case is like the 1-nearest neighbor algorithm, which needs to compute

distances of a given problem to all the cases in order to find the most similar one. If

the size of the case library becomes very large, it would be very time-consuming to go

through all of them. Even if we can apply the data mining approach to refine the case

library, it would be better to organize the cases somehow to speed up the retrieval of

103

cases. A good way to organize cases is by a tree model in which each node represents

a certain important feature of cases and where leafs are cases. All cases having the

same feature would be collected in the sub-tree of the node representing the feature.

Typical features that can be used for this purpose include the number of alerts, the

number of sensors, and time frame.

7.5 Closing Remarks

This dissertation documented our research in developing and applying case-based reasoning

techniques to the important and challenging problem of meta intrusion detection. A set

of algorithms and approaches have been designed, implemented, and evaluated for this

dissertation research. While it has shown good promises, there are open problems for future

research.

104

APPENDIX A

Hungarian Algorithm

The Hungarian algorithm is also referred as Munkres’ algorithm [59]. The original version

is only applied to find solutions in square matrices. Two definitions are given here to help

understand the Munkres’ algorithm.

• Definition 1: Two matrices are equivalent if they have the same optimal assignment

solution. It means the algorithm gives the same result.

• Definition 2: A set of elements of a matrix are independent if none of them occupies

the same row or column.

Munkres’ algorithm can be briefly stated as finding a new matrix equivalent to the initial

one with n independent zero elements. In the beginning of the algorithm, the initial matrix

is transformed into an equivalent matrix by (a) for each row subtracting the value of the

smallest element from each element in the row and (b) for each column of the resulting

matrix subtracting the value of smallest element from each element. The following steps are:

• Step 1: Find a zero, Z, of the matrix. If there is no starred zero in its row or its

column, star Z. Repeat for each zero of the matrix. Go to step 2.

• Step 2: Cover every column containing a 0*. If all columns are covered, the starred

zeros form the desired independent set; Exit. Otherwise, go to step 3.

• Step 3: Choose a noncovered zero and prime it; then consider the row containing it.

If there is no starred zero Z in this row, go to step 4. If there is a starred zero Z in this

row, cover this row and uncover the column of Z. Repeat until all zeros are covered.

Go to step 5.

105

• Step 4: There is a sequence of alternating starred and primed zeros constructed as

follows: let Z0 denote the uncovered 0′. Let Z1 denote the 0∗ in Z0’s column (if any).

Let Z2 denote the 0′ in Zl’s row. Continue in a similar way until the sequence stops

at a 0′, Z2k, which has no 0∗ in its column. Unstar each starred zero of the sequence,

and star each primed zero of the sequence. Erase all primes and uncover every line.

Return to step 2.

• Step 5: Let h denote the smallest noncovered element of the matrix; it will be positive.

Add h to each covered row; then subtract h from each uncovered column. Return to

step 3 without altering any asterisks, primes, or covered lines.

F. Bourgeois and J. Lassalle developed an extension of this algorithm which permits a

solution for rectangular matrices [86]. Specifically, given an arbitrary n × m matrix, let

k = min(n,m). If n > m, go to step 0. For each row, subtract the smallest element from

each element in the row. If n < m, go to step 1.

• Step 0. For each column of the resulting matrix, subtract from each entry the smallest

entry in the column.

• Step 1. Remains the same.

• Step 2. Cover every column containing a 0∗. If k columns are covered, the starred

zeros form the desired independent set. Otherwise, go to step 3.

• Steps 3 to 5. Remain the same.

106

REFERENCES

[1] A. Maccabe R. Heady, G. Luger and M. Servilla. The architeture of a network level
intrusion detection system. Technical report, University of New Mexico, Computer
Science Department, Auguest 1990. 1

[2] J. P. Anderson. Computer security threat monitoring and surveillance. Technical report,
James P. Anderson Co., Fort Washington, PA, 1980. 1

[3] G. Vigna and R. A. Kemmerer. NetSTAT: A network-based intrusion detection system.
Journal of Computer Security, 7(1):37–71, 1999. 1

[4] H. Javits and A. Valdes. The NIDES statistical component: Description and j
ustification. Technical Report SRI Anual Report A010, SRI International, Computer
Science Laboratory, March 1993. 1

[5] A. Somayaji S. Forrest, S. A. Hofmeyr and T. A. Longstaff. A sense of self for unix
processes. In IEEE Symposium on Security and Privacy, pages 120–128, Los Alamitos,
California, May 1996. IEEE Computer Society Press. 1, 6.1.2

[6] S. Forrest S. A. Hofmeyr and A. Somayaji. Intrusion detection using sequences of system
calls. Journal of Computer Security, 6(3):151–180, 1998. 1, 6.1.2

[7] F. Cuppens. Managing alerts in a multi-intrusion detection environment. In Proceedings
of the 17th Annual Computer Security Application Conference, page 22. IEEE Computer
Society, 2001. 1, 2, 2.4, 4.5.1, 5.1

[8] M. W. Fong P. A. Porras and A. Valdes. A mission-impact-based approach to INFOSEC
alarm correlation. In Lecture Notes in Computer Science, Proceedings Recent Advances
in Intrusion Detection, pages 95–114, Zurich, Switzerland, October 2002. 1, 2.4, 5.1

[9] S. Templeton and K. Levitt. A requires/provides model for computer attacks. In
New Security Paradigms Workshop, Proceedings of the 2000 workshop on New security
paradigms, Ballycotton, County Cork, Ireland, October 2001. ACM Press. 1, 2.4, 5.1

[10] A. Valdes and K. Skinner. Probabilistic alert correlation. In Lecture Notes In
Computer Science, Proceedings of the 4th International Symposium on Recent Advances
in Intrusion Detection, number 2212, pages 54–68. Springer-Verlag, 2001. 1, 2.4, 4.5.1,
5.1

[11] S. Y. Ho. Intrusion detection - systems for today and tomorrow. Technical report,
September 2001. 2

107

[12] P. Loshin. New direction in intrusion detection. Technical report, 2001. 2

[13] F. Cuppens and A. Miege. Alert correlation in a cooperative intrusion detection
framework. In Proceedings of the 2002 IEEE Symposium on Security and Privacy,
page 202, Oakland, CA, 2002. IEEE Computer Society. 2, 2.4, 2.5, 4.5.1, 5.1

[14] D. E. Denning. An intrusion-detection model. IEEE Transaction on Software Engi-
neering, SE-13(2):222–232, 1987. 2.1

[15] H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy of intrusion-detection systems.
Computer Networks, 31(8):805–822, 1999. 2.1

[16] R. G. Bace. Intrusion Detection. Macmillan Computer Publishing, Indianapolis, IN,
2000. 2.1

[17] S. Staniford-Chen, B. Tung, and D. Schnackenberg. The common intrusion detection
framework. Technical report, Orlando, FL, October 1998. 2.1

[18] C. Kahn, P. Porras, S. Staniford-Chen, and B. Tung. A common intrusion detection
framework. Journal of Computer Security, July 1998. 2.1

[19] T. Lunt. IDES: An intelligent system for detecting intruders. In Proceedings of the
Symposium: Computer Security, Threat and Countermeasures, Rome, Italy, November
1990. 2.4

[20] P. Porras and P. Neumann. EMERALD: Event monitoring enabling responses to
anomalous live disturbances. In Proceedings of 20th NIST-NCSC National Information
Systems Security Conference, pages 353–357, 1997. 2.4, 4.2

[21] P. Chan and S. Stolfo. Toward parallel and distributed learning by meta-learning. In
AAAI Workshop in Knowledge Discovery in Database, pages 227–240, 1993. 2.4

[22] S. Stolfo, A. Prodromidis, S. Tselepis, W. Lee, D. Fan, and P. Chan. JAM: Java
agents for meta-learning over distributed databases. In Proceedings of 3rd International
Conference on Knowledge Discovery and Data Mining, pages 74–81, 1997. 2.4

[23] K. Julisch. Mining alarm clusters to improve alarm handling efficiency. In Proceedings
of the 15th Annual Computer Security Applications Conference, pages 12–21. IEEE
Computer Society, 2001. 2.4, 4.5.1, 4.5.3, 5.1

[24] H. Debar and A. Wespi. Aggregation and correlation of intrusion-detection alerts. In
Lecture Notes In Computer Science, Proceedings of the 4th International Symposium on
Recent Advance in Intrusion Detection, pages 85–103. Springer-Verlag, 2001. 2.4, 3.5,
5.1

[25] B. Morin and D. Debar. Correlation of intrusion symptoms: an application of chronicles.
In Lecture Notes In Computer Science, Proceedings of the 6th International Symposium
on Recent Advance in Intrusion Detection, pages 94–112. Springer-Verlag, 2003. 2.4,
2.5, 5.1

108

[26] P. Ning, Y. Cui, and D. S. Reeves. Constructing attack scenarios through correlation
of intrusion alerts. In Proceedings of the 9th ACM Conference on Computer and
Communications Security, pages 245–254, Washington, D.C., November 2002. 2.4, 2.5,
3.5, 4.5.1, 5.1

[27] B. Morin, L. Me, H. Debar, and M. Ducasse. Correlation of intrusion symptoms: an
application of chronicles. In Lecture Notes In Computer Science, Proceedings of the 5th
International Symposium on Recent Advance in Intrusion Detection, pages 115–137.
Springer-Verlag, 2002. 2.4, 3.5, 5.1

[28] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt,
C. Wee, R. Yip, and D. Zerkle. GrIDS - a graph based intrusion detection system
for large networks. In Proceedings of the 19th National Information Systems Security
Conference, pages 361–370, Baltimore, MD, March 1996. 2.4

[29] J. Long, S. Stoecklin, D. G. Schwartz, and M. Patel. Adaptive similarity metrics in
case-based reasoning. In Proceedings of The 6th IASTED International Conference on
Intelligent Systems and Control, pages 260–265, 2004. 3

[30] C. Riesbeck and R. Schank. Inside Case-Based Reasoning. Lawrence Erlbaum, Hillsdale,
NJ, 1989. 3.1

[31] K. Althof, E. Auriol, R. Barlette, and M. Manago. A review of industrial case-based
reasoning tools. AI Intelligence, 1995. 3.1

[32] A. Bundy. Artificial Intelligence Techniques: A Comprehensive Catalogue. Springer-
Verlag New York, Inc, 4th edition, 1995. 3.1

[33] M. Halasz, F. Dude, R. Orchard, and R. Ferland. The integrated diagnostic system
: Remote monitoring and decision support for commercial aircraft - putting theory
into practice. In Proceedings of AAAI ’99 Spring Symposium on AI in Equipment
Maintenance, Palo Alto, CA, 1999. NRC. 3.3

[34] D. G. Schwartz, S. Stoecklin, and E. Yilmaz. A case-based approach to network intrusion
detection. In Proceedings of 5th International Conference on Information Infusion,
pages 1084–1089, Annapolis, MD, 2002. 3.4, 4.5.1, 6.1.3

[35] J. W. Yoder, F. Balagular, and R. Johnson. Architecture and design of adaptive object
models. In ACM SIGPLAN Notices, volume 36, pages 50–60. ACM Press, 2001. 3.4.1

[36] M. Esmaili, B. Balachandran, R. Safavi-Naini, and J. Pieprzyk. Case-based reasoning for
intrusion detection. In Proceedings of the 12th Annual Computer Security Applications
Conference, page 214, Washington, DC, 1996. IEEE Computer Society. 3.5, 4.2

[37] M. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in
Knowledge Discovery and Data Mining. AAAI/MIT Press 1996, 1996. 4

109

[38] W. Lee. Ph. D. Thesis: A Data Mining Framework for Constructing Features and
Models for Intrusion Detection Systems. Computer Science Department, Columbia
University, New York, NY, June 1999. 4.2, 5.2

[39] W. Lee and D. Xiang. Information-theoretic measures for anomaly detection. In
Proceedings of The 2001 IEEE Symposium on Security and Privacy, page 130, Oakland,
CA, 2001. IEEE Computer Society. 4.2, 6

[40] A. Valdes and K. Skinner. Adaptive, model-based monitoring for cyber attack detection.
In H. Debar, L. Me, and F. Wu, editors, Lecture Notes In Computer Science, Proceedings
of the 3th International Symposium on Recent Advance in Intrusion Detection. 4.2

[41] K. Fox, R. Henning, J. Reed, and R. Simonian. A neural network approach towardsintru-
sion. In Proceedings 13th NIST-NCSC National Computer Security Conference, pages
124–134, Baltimore MD, 1990. 4.2

[42] A. K. Ghosh, J. Wanken, and F. Charron. Detecting anomalous and unknown intrusions
against program. In Proceedings of the 14th Annual Computer Security Applications
Conference, page 259, Baltimore MD, 1998. IEEE Computer Society. 4.2

[43] W. Lee, S. Stolfo, and P. Chan. Learning patterns from unix process execution traces
for intrusion detection. In AAAI Workshop: AI Approaches to Fraud Detection and
Risk Management, July 1997. 4.2

[44] W. W. Cohen. Fast effective rule induction. In Proceedings of the 12th International
Conference on Machine Learning, pages 115–123, Lake Taho, CA, 1995. Morgan
Kaufmann. 4.2

[45] S. M. Bridges and B. B. Vanghn. Fuzzy data mining and genetic algorithms applied to
intrusion detection. In Proceedings of the 23th National Information System Security
Conference, 2000. 4.2

[46] N. Ye and X. Li. A scalable clustering technique for intrusion signature recognition. In
Proceedings of the 2nd IEEE SMC Information Assurance Workshop, pages 1–4, West
Point, NY, June 2001. 4.2

[47] D. Barbara, Y. Li, J. Couto, J. Lin, and S. Jajodia. Bootstrapping a data mining
intrusion detection system. In Proceedings of the 2003 ACM symposium on Applied
computing, pages 421–425, Melbourne, Florida, 2003. ACM Press. 4.2

[48] N. Lavrac and S. Dzeroski. Inductive Logic Programming Techniques and Applications.
Ellis Horwood, New York, NY, 1994. 4.2

[49] C. Ko. Logic induction of valid behavior specifications for intrusion detection. In
Proceedings of the 2000 IEEE Symposium on Security and Privacy, pages 142–155.
IEEE Computer Society, 2000. 4.2

[50] J. Long, D. G. Schwartz, and S. Stoecklin. An XML distance measure. In Proceedings
of the 2005 International Conference on Data Mining, pages 119–125, 2005. 4.3

110

[51] S. Dzeroski and N. Lavrac. Relational Data Mining. Springer, Berlin, 2001. 4.3

[52] D. Wettschereck and D. Aha. Weighting features. In Proceedings of 1st International
Conference on Case-Based Reasoning, pages 347–358, Springer, Berlin, 1995. 4.3, 4.5.3

[53] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. New York: John Wiley and Sons, 1990. 4.3

[54] U. Bohnebeck, T. Horvath, and S. Wrobel. Term comparisons in first-order similarity
measures. In Proceedings of the 8th International Conference on Inductive Logic
Programming, pages 65–79, London, UK, 1998. Springer-Verlag. 4.3

[55] M. Kirsten and S. Wrobel. Relational distance-based clustering. In Proceedings of the
8th International Conference on Inductive Logic Programming, pages 261–270. Springer-
Verlag, 1998. 4.3

[56] M. Kirsten and S. Wrobel. Extending k-means clustering to first-order representations.
In Proceedings of the 10th International Conference on Inductive Logic Programming,
pages 112–129. Springer-Verlag, 2000. 4.3

[57] M. Sebag. Distance induction in first order logic. In Lecture Notes in Artificial Intel-
ligence, Proceedings of the 7th International workshop on inductive logic programming,
pages 264–272. Springer-Verlag, 1997. 4.3

[58] A. Hutchinson. Metrics on terms and clauses. In Lecture Notes In Computer Sci-
ence,Proceedings of the 9th European Conference on Machine Learning, pages 138–145.
Springer-Verlag, 1997. 4.3

[59] J. Munkres. Algorithms for the assignment and transportation problems. Journal Of
SIAM, 5(1):32–38, March 1957. 4.3, 4.3.4, A

[60] A. Nierman and H. V. Jagadish. Evaluation structural similarity in XML documents.
In Proceedings of the 5th International Workshop on the web and databases, Madison,
WI, 2002. 4.3.1

[61] J. Munkres. Binary codes capable of correcting deletions, insertions, and reversals.
Cybernetics and Control Theory, 10(8):707–710, 1966. 4.3.1

[62] S .Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change detection in
hierarchically structured information. In Proceedings of ACM SIGMOD, pages 493–504.
ACM Press, 1996. 4.3.1

[63] K. Zhang, R. Stgatman, and D. Shasha. Simple fast algorithm for the editing distance
between trees and related problems. SIAM Journal on Computing, 18(6):1245–1262,
1989. 4.3.1

[64] Z. Zhang, R. Li, S. Cao, and Y. Zhu. Similarity metric for XML documents. In
Proceedings of the 2003 Workshop on Knowledge and Experience, 2002. 4.3.1

111

[65] S. Flesca, G. Manco, E. Masciari, L. Pontieri, and A. Pugliese. Detecting structural
similarities between XML documents. In Proceedings of 5th International Workshop on
the Web and Databases, 2002. 4.3.1

[66] E. Bertino, G. Guerrini, and M. Mesiti. A matching algorithm for measuring the struc-
tural similarity between an xml document and a dtd and its applications. Information
Systems, 29(1):23–46, 2004. 4.3.1

[67] G. Canfora, L. Cerulo, and R. Scognamiglio. Measuring XML document similarity:
a case study for evaluating information extraction systems. In Proceedings 10th
International Symposium on Software Metrics, pages 36–45, 2004. 4.3.1

[68] J. R. Ullman. An algorithm for sub-graph isomorphism. Journal of the ACM, 23(1):31–
42, 1976. 4.3.1

[69] P. Dopichaj. Exploiting background knowledge for better similarity calculation in
XML retrieval. In 21st Annual British National Conference on Databases, Doctoral
Consortium, July 2004. 4.3.1

[70] H. G. Kayacik and A. N. Zincir-Heywood. A case study of three open source security
management tools. In Proceedings of 8th IFIP/IEEE International Symposium on
Integrated Network Management, pages 101–104, 2003. 4.5

[71] L. Wu and S. Chen. Wbuilding intrusion pattern miner for snort network intrusion
detection system. In In Proceedings IEEE 37th Annual 2003 International Carnahan
Conference on Security Technology, pages 477–484, IEEE Computer Society, 2003. 4.5.1

[72] C. J. Coit, S. Staniford, J., and McAlerney. Towards faster string matching for intrusion
detection or exceeding the speed of snort. In Proceedings of DARPA Information
Survivability Conference and Exposition II, pages 367–373, Anaheim, CA, 2001. 4.5.1

[73] I. Sourdis and D. Pnevmatikatos. Pre-decoded CAMs for efficient and high-speed
NIDS pattern matching. In Proceedings of 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 258–267. IEEE Computer Society,
2004. 4.5.1

[74] R. Liu, N. Huang, C. Kao, C. Chen, and C. Chou. A fast pattern-match engine for
network processor-based network intrusion detection system. In Proceedings of 2004
International Conference on Information Technology: Coding and Computing, pages
97–101. IEEE Computer Society, 2004. 4.5.1

[75] F. Yu and R. H. Katz. Efficient multi-match packet classification with TCAM. In
Proceedings of the 12th Annual IEEE Symposium on High Performance Interconnects,
pages 28–34. IEEE Computer Society, 2004. 4.5.1

[76] S. Chavan, K. Shah, N. Dave, S. Mukherjee, A. Abraham, and S. Sanyal. Adaptive
neuro-fuzzy intrusion detection systems. In Proceedings of Information Technology:
Coding and Computing, pages 70–74, Las Vegas, NE, 2004. IEEE Computer Society.
4.5.1

112

[77] K. Julisch. Clustering intrusion detection alarms to support root cause analysis. ACM
Transactions on Information and System Security, (4):443–471, 2003. 4.5.1, 4.5.3

[78] P. Ning, Y. Cui, D. Reeves, and D. D. Xu. Techniques and tools for analyzing intrusion
alerts. ACM Transactions on Information and system security, 7(2):274–318, 2004. 4.5.1

[79] J. McQueen. Some methods for classification and analysis of multivariate observations.
In 5th Berkeley Symposium on mathematics, Statistics and Probability, pages 281–298,
1967. 4.5.3

[80] A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algorithms. Addison-Wesley,
Reading MA, 1983. 5.4.3

[81] E. W. Dijkstra. A note on two problems in connection with graphs. Numerische Math,
1:269–271, 1959. 5.4.3, 5.4.4

[82] R. Luus. Iterative Dynamic Programming. CRC Press, 2000. 5.4.4

[83] J. Long, D. G. Schwartz, and S. Stoecklin. Application of case-based reasoning to multi-
sensor network intrusion detection. In Proceedings of WSEAS/IASMEInternational
Conference on Computational Intelligence, Man-Machine Systems, and Cybernetics,
pages 260–269, 2005. 6

[84] J. Long, D. G. Schwartz, and S. Stoecklin. Multi-sensor network intrusion detection: a
case-based approach. WSEAS Transactions on Computers, 4(12):1768–1776, 2005. 6

[85] Cyber panel grand challenge problem specification version 4.1. Technical report, June
2004. 6.3

[86] F. Bourgeois and J. Lassalle. An extension of the munkres algorithm for the assignment
problem to rectangular matrices. Communications of the ACM, 14(12), 1971. A

113

BIOGRAPHICAL SKETCH

Jidong Long

Jidong Long was born on September 19th, 1976, in Tongnan, Chongqing, P.R. China. From

August 1995 to April 2002, he completed both his Bachelors degree and his Masters degree

in Computer Science at the University Of Electronic Science and Technology of China. He

enrolled in the Ph.D program in Computer Science at Florida State University in the fall

of 2002. Jidong’s research interests include data mining, machine learning, and intrusion

detection.

114

	List of Tables
	List of Figures
	Abstract
	INTRODUCTION
	Problem Statement and Our Approach
	Dissertation Contributions
	Dissertation Outline

	Meta Intrusion Detection
	Rationale for Meta Intrusion Detection
	Elements of Meta Intrusion Detection
	Intrusion Detection Message Exchange Format
	The Flexibility of IDMEF
	The XML Implementation of IDMEF

	Related Work in Meta Intrusion Detection
	Problems with Current Meta IDS and Our Approach

	Case-Based Reasoning
	Basics
	The Reasoning Process
	Case-Based Reasoning Applications
	The Adaptive Similarity Measure for CBR
	Adaptive (Reflective) Architectures
	A Common Similarity Measure Interface

	Our Case-Based Framework for Meta Intrusion Detection
	Problems and Cases for Meta Intrusion Detection
	The Framework Overview
	Main Issues of the Design

	Data Mining
	Approaches
	Related Work on Data Mining in Intrusion Detection
	A Novel XML Distance Measure
	Related Work on Similarity of XML documents
	Representation of XML Documents
	Distance Between Two Attribute Sets
	Distance between Two Elements and Two Element Sets
	Distance between Two XML Objects

	A Supervised Clustering Algorithm
	Evaluation of Our Data Mining Techniques with Snort
	Related Work
	Experimental Results
	Discussion

	Alert Correlation
	Related Work
	Explicit Alert Correlation
	Case-Oriented Alert Correlation
	Problems with Explicit Alert Correlation
	The Method

	Enhanced Case-Oriented Alert Correlation
	Problem with Original Case-Oriented Alert Correlation
	Formal Definition of Ordered Matching of Minimal Cost
	Dynamic Programming
	The Algorithm

	Experimental Evaluation
	The Experiment with DARPA 1998 data sets
	Description Of the Datasets
	Modification of STIDE
	Experiment Setup
	Construction of Case Library from Training Data
	Comparison of Detection Performance

	Experiment with DARPA 2000 datasets
	Datasets Description
	Experiment Setup
	Experiment Results

	Experiments with DARPA Cyber Panel Program
	Description of Ground Challenge Problem
	Experiment Setup
	Experimental Results

	CONCLUSION
	Summary
	Dissertation Contributions
	Drawbacks
	Future Work
	Closing Remarks

	APPENDIX
	Hungarian Algorithm
	REFERENCES
	BIOGRAPHICAL SKETCH

