

FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

A REFLECTIVE, 3-DIMENSIONAL BEHAVIOR TREE APPROACH

TO VEHICLE AUTONOMY

By

JEREMY HATCHER

A Dissertation submitted to the

Department of Computer Science

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Degree Awarded:

Spring Semester, 2015

© 2015 Jeremy Hatcher

ii

Jeremy Hatcher defended this dissertation on April 14, 2015.

The members of the supervisory committee were:

 Daniel Schwartz

 Professor Directing Dissertation

 Emmanuel Collins

 University Representative

 Peixiang Zhao

 Committee Member

 Zhenghao Zhang

 Committee Member

The Graduate School has verified and approved the above-named committee members, and

certifies that the dissertation has been approved in accordance with university requirements.

iii

ACKNOWLEDG MENTS

My most sincere gratitude belongs to Dr. Daniel Schwartz for taking the time to analyze my work

and direct me toward its completion. When difficulties arose, his advice and recommendations

were concise and helped to overcome any obstacles. I would also like to thank my family, whether

immediate, extended, or my church family, who constantly encouraged me and repositioned my

sight toward the light at the end of the tunnel. To all of the professors on my committee: Drs.

Peixiang Zhao, Zhenghao Zhang, and Emmanuel Collins, I truly appreciate the time you set aside

to meet with me and to understand my objectives.

iv

TABLE OF CONTENTS

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

LIST OF ACRONYMS ... xiv

ABSTRACT ... xvi

1 INTRODUCTION .. 1

1.1 Underwater Acoustic Sensor Networks .. 1

1.2 Underwater Robotic Behaviors ï Automation vs. Autonomy 11
1.3 Common Graph Searching Algorithms .. 14

1.4 Behavior Trees .. 17
1.5 ECMA-335 and ISO/IEC 23271 - Common Language Infrastructure 31
1.6 ECMA-334 and ISO/IEC 23270:2006 ï C# ... 33
1.7 Modular Programming .. 34

1.8 Case Based Reasoning .. 39
1.9 XML .. 44

1.10 Reflection .. 51

2 RELATED WORK ... 54

2.1 Behavior Architectures ... 54

2.2 Underwater Autonomy.. 60
2.3 Modular Open Systems ... 62

3 DEVELOPING A TEST PLATFORM .. 73

3.1 Behavior Tree World (BTWorld) ... 74

4 DEVELOPING WORLD ACTORS ... 81

4.1 Vehicle Simulator (Traveler) .. 81
4.2 Acoustic Node Simulator (Communicator) .. 83

5 BEHAVIOR TREE FRAMEWORK IMPLEMENTATION ... 85

5.1 Fundamental Interfaces ... 86

5.2 Asynchronous Operation .. 88
5.3 Composite Nodes .. 89
5.4 Decorator Nodes ... 90

5.5 Action / Assertion Nodes .. 91
5.6 Generic Counterparts .. 93
5.7 Action and Assertion Repositories.. 95

6 COMPOSING BEHAVIOR TREE ALGORITHMS ... 100

6.1 Breadth First Search .. 100
6.2 Dijkstra .. 104
6.3 A* .. 107

6.4 Reflective Behavior Tree Instantiation ... 109

v

7 BEHAVIOR TREE APPLICATION RESULTS ... 115

7.1 Path Planning .. 115
7.2 Acoustic Node Mapping ... 119
7.3 REMUS Simulator Integration ... 122

7.4 Performance Cost .. 130
7.5 Algorithm Representation Potential .. 132

8 CONCLUSION AND FUTURE RESEARCH POTENTIAL .. 134

8.1 Conclusion .. 134
8.2 Future Research Potential ... 134

REFERENCES ... 136

BIOGRAPHICAL SKETCH .. 140

vi

LIST OF TABLES

Table 1 - A simple model of an actor in a game of life example .. 40

Table 2 - A simple model of the world in a game of life example ... 41

Table 3 - A collection of cases in the case-base ... 41

Table 4 - A CBR query based on current world variables .. 41

Table 5 ï A world actorôs rationale for choosing a case from the case base 42

Table 6 - A modified CBR query taking into account a recent hardy meal.................................. 43

Table 7 - The resulting case base coefficients after taking the previous query into account 43

Table 8 ïXML escape characters .. 46

Table 9 ï TDM Usability Questionnaire .. 59

Table 10 ï Alignment of TaskStatus enum to NodeStatus enum ... 89

Table 11 ï Alignment of Boolean values to NodeStatus enum .. 98

Table 12 - A line by line analysis of the Breadth First Search pseudo code revealing necessary

behavior tree nodes ... 101

Table 13 - A line by line analysis of Dijkstra's algorithm pseudo code revealing necessary behavior

tree nodes .. 105

Table 14 - A line by line analysis of the A* algorithm pseudo code revealing necessary behavior

tree nodes .. 108

Table 15 - Additional nodes needed to enable custom functionality on BTWorld 115

Table 16 ïThe descriptions of equations needed to solve for the intersection of two circles. ... 121

Table 17 - The underwater vehicle behaviors available for use in the following example 124

Table 18 - The results of an operational time comparison between a sequential A* algorithm, a

hardcoded behavior tree representation, and a reflective instantiation of a behavior tree 130

vii

LIST OF FIGURES

Figure 1 - Multi -path and refraction causing distorted signals at the receiver in a shallow and deep

environment .. 2

Figure 2 ï These are the different types of nodes in an Underwater Acoustic Sensor Network: (a)

attached to a gateway buoy (b) attached to an autonomous underwater vehicle (c) resting on sea

floor (d) suspended from water craft (e) moored to sea floor and suspended in the column by a

flotation device.. 3

Figure 3 ï The three basic topologies of an underwater network. (a) centralized (b) distributed (c)

multi-hop. Double arrows indicate communication paths. ... 5

Figure 4 - A basic PC/104 stack http://www.rtd.com/PC104 ... 7

Figure 5 ïA REMUS 100 vehicle with associated equipment (from www.km.kongsberg.com) ... 8

Figure 6 ïA Bluefin Robotics Bluefin-9 vehicle (from www.bluefinrobotics.com) 9

Figure 7 - Low resolution 900 kHz sonar image compared to a high resolution 1800 kHz image.

(Image from oceanexplorer.noaa.gov) .. 10

Figure 8 ï Left: A sonar image of an interesting object. Right: A closer look at the object with an

underwater camera. (Images from NATO Undersea Research Centre) 11

Figure 9 ïA typical ómow-the-lawnô type search pattern as performed by an AUV. 13

Figure 10 - A 10m x 10m land mass broken down into 10 square-cm cells 14

Figure 11 - A sample of a modified Breadth First Algorithm used to search an area. 15

Figure 12 - Sample code demonstrating an implementation of Dijkstra's Algorithm 16

Figure 13 - Sample code demonstrating an implementation of the A* algorithm 17

Figure 14 - Behavior tree traversal method .. 18

Figure 15 - A Behavior Tree Node ... 19

Figure 16 ïThe fundamental building blocks of a behavior tree: sequence, selector, decorator,

action, & assertion. ... 20

Figure 17 - An example of a sequence success and failure .. 20

Figure 18 - An example of a selector success and failure ... 21

Figure 19 - An example of a decorator being used as a timer to determine whether or not to call its

child node .. 22

viii

Figure 20 - An example of action nodes calling proprietary code .. 22

Figure 21 - An example of an assertion checking if depth is 0 before getting a GPS fix 23

Figure 22 - The dining philosophers ... 24

Figure 23 ïA simplified behavior tree solution to the ódining philosophersô problem. Statements

with questions marks at the end are assertions and those with exclamation points are actions. .. 24

Figure 24 ï The dining philosopherôs behavior trees after one complete traversal 25

Figure 25 - Sequence diagram for a positive and negative timer decorator 26

Figure 26 - Complete 'dining philosophers' behavior tree representation 27

Figure 27 - The INode implementation for the examples in this discussion 27

Figure 28 - The possible values of a NodeStatus enumeration ... 27

Figure 29 - An example of a Behavior Tree Sequence ... 28

Figure 30 - An example of a Behavior Tree Selector Update method .. 29

Figure 31 - An example of a Behavior Tree Decorator Update method 29

Figure 32 - A behavior sub-tree representing the actions to get a GPS fix 30

Figure 33 - Sample code that checks for a vehicle's depth ... 30

Figure 34 - Sample code that commands a vehicle to get a GPS fix .. 31

Figure 35 - Sample code that commands a vehicle to go to the surface 31

Figure 36 - Hello World in C# .. 33

Figure 37 - An example of a C# interface describing an underwater vehicle 34

Figure 38 - An example of an interface describing a vehicle behavior .. 35

Figure 39- A class titled óSearchBehaviorô that takes advantage of the previously defined IVehicle

interface to achieve a goal without having a priori knowledge of the interface implementationôs

underlying instructions.. 35

Figure 40 - Example of a delegate calling a method to modify a string 36

Figure 41 - A class method example alongside its Lambda expression equivalent...................... 37

Figure 42 - A Lambda function capturing an outer variable .. 37

ix

Figure 43 - Using Lambda expressions instead of methods to modify a string 38

Figure 44 - Taking advantage of the Action and Func delegates ... 39

Figure 45 - The four fundamental stages of a case-based reasoning exercise (The four REs) 40

Figure 46 - An example XML file showing elements, attributes, and comments 45

Figure 47 ïA sample XML schema as displayed by Microsoft Visual Studio 11 48

Figure 48 - The XML schema describing the relationship of the tables in Figure 26 48

Figure 49 - XML snippet for XPath example (filename xml.xml) ... 50

Figure 50 - Utilizing XPath with C# XMLNodes ... 50

Figure 51 - An IVehicle interface implemented by a SampleVehicle class. 51

Figure 52 - An example of a program opening a DLL and inspecting its types and interfaces ... 52

Figure 53 - Instantiating a type / interface from a DLL and utilizing its methods. 52

Figure 54 - The Emotionally GrOunded (EGO) Architecture .. 54

Figure 55 - Behavior modules organized into conceptual levels .. 56

Figure 56 - Results of Target-Drives-Means Framework Usability Benchmarks (from [35]) 59

Figure 57 - AUV AVALON Control Architecture ... 60

Figure 58 ïThe structure of a JAUS system. The highest level is system and the lowest level is

instance. In between are subsystem, node, and component. ... 64

Figure 59 - Joint Architecture for Unmanned Systems (JAUS) Header that accompanies all JAUS

messages ... 66

Figure 60 ïA simple JAUS configuration comprising only a system commander and primitive

driver. .. 67

Figure 61 - A simple JAUS configuration comprising a system commander, reflexive driver, and

primitive driver, capable of obstacle avoidance. .. 68

Figure 62 ïA block diagram of the major CARACaS system. ... 68

Figure 63 - The R4SA Architecture comprising an Application Layer, a Device Layer, and a

Device Driver Layer. The System Layer coordinates the activities of the other layers. 69

Figure 64 ïSome of the key components of the device driver layer of R4SA 70

x

Figure 65 - Some of the key components of the device layer of R4SA.. 70

Figure 66 - Some of the key components of the application layer of R4SA 71

Figure 67 - Some of the key components of the system layer of R4SA 71

Figure 68 - Graphical representation of proposed software framework 73

Figure 69 - A sample terrain (right) generated by a bitmap image (height map, left) 74

Figure 70 - A close-up look across the horizon of the behavior tree world, showing its 3-

dimensional nature. ... 75

Figure 71 - The terrain.xml file used to configure the BTWorld terrain. 77

Figure 72 - The wireframe mesh representing traversable paths in the Behavior Tree World 79

Figure 73 - The contents of the ICell interface ... 79

Figure 74 - A representation of the Fog-of-War capability of BTWorld. The terrain in the left

image is completely unexplored. The terrain on the right has a wide swath cut through it that shows

where the vehicle has been. .. 80

Figure 75 - The Travelers.xml file used to dynamically create 'travelers' at runtime in our Behavior

Tree World .. 82

Figure 76 - The contents of Communicator0.xml ... 84

Figure 77 ïThe fundamental building blocks of a behavior tree: sequence, selector, decorator,

action, & assertion. Also known as ónodesô .. 85

Figure 78 - The contents of the interface INode ... 86

Figure 79 - The contents of the interface IComposite .. 86

Figure 80 - The contents of the interface IDecorate ... 86

Figure 81 - A graphical representation of the fundamental interfaces and base classes of the

behavior tree framework ... 87

Figure 82 - A sequence diagram showing a behavior tree's operation whenever RunAsync is set to

true .. 88

Figure 83 - The contents of the Sequence Update method ... 89

Figure 84 - The contents of the Selector Update method ... 89

Figure 85 - The Update method of a while-true decorator ... 90

xi

Figure 86 - The contents of the ExceptionDecorator's Update method .. 91

Figure 87 - The code behind an ActionNode .. 92

Figure 88 - The code behind an AssertionNode ... 92

Figure 89 - The instantiation of an ActionNode using a regular class method............................. 93

Figure 90 - Suggested interfaces for a generic behavior tree framework 94

Figure 91 - A Generic Behavior Tree Framework .. 94

Figure 92 - The requirements of the IStateNodeArgs interface .. 95

Figure 93 - The Update method implementation of state selector composites. 95

Figure 94 - A potential implementation of the necessary ActionRepository 97

Figure 95 - A potential implementation of the static BTRepositories class. 97

Figure 96 - The additional methods necessary to accommodate assertions in our repository 98

Figure 97 - Pseudo code for a breadth first search algorithm ... 100

Figure 98 - The contents of BTLoopArgs which contains the necessary values for our breadth first

search .. 101

Figure 99 - The GStateComposerôs argument that provides the generic section of the behavior tree

its operable state .. 102

Figure 100 - A behavior tree representation of a for loop .. 103

Figure 101 - A behavior tree representation of the Breadth First Search 104

Figure 102 - Pseudo code for Dijkstraôs algorithm ... 105

Figure 103 - A behavior tree representation of Dijkstra's algorithm .. 106

Figure 104 - Pseudo code for our implementation of the A* algorithm 107

Figure 105 - The contents of BTLoopArgs which contains the necessary values for implementation

of the A* algorithm ... 108

Figure 106 - The GStateComposer argument that provides the generic section of the behavior tree

its operable state .. 108

Figure 107 - A behavior tree representation of the A* algorithm ... 109

Figure 108 - A list of assemblies necessary to load all of the types in our behavior tree 110

xii

Figure 109 - A list of Types necessary craft our behavior tree ... 111

Figure 110 - The XML representation of a Breadth First Search behavior Tree. This XML code is

used by the reflective loader to instantiate the tree. .. 112

Figure 111 - The XML representation of Dijkstraôs algorithm behavior Tree. This XML code is

used by the reflective loader to instantiate the tree. .. 113

Figure 112 - The XML representation of the A* behavior Tree. This XML code is used by the

reflective loader to instantiate the tree. ... 114

Figure 113 - The CanCross functionality needed for the Breadth First Search to check nodes for

non-traversable conditions .. 116

Figure 114 - A modified GStateComposer argument that sets the Breadth First Search current node

to yellow.. 117

Figure 115 - The MarkNeighbor functionality needed for the Breadth First Search to give color

coded feedback to users .. 117

Figure 116 - The modified sequence necessary to add the CanCross and MarkNeighbor

functionality to Dijkstra's algorithm ... 117

Figure 117 - The modified sequence necessary to add the CanCross and MarkNeighbor

functionality to the A* algorithm .. 118

Figure 118 - The A* algorithm performing a search with fog of war enabled (left) and disabled

(right) .. 118

Figure 119 - The A* path planning algorithm providing a path through unexplored water (left).

Once explored it plans around it properly (right) ... 119

Figure 120 - The makeup of the BTLocator component used to localize nodes 120

Figure 121 ï A graphical depiction of solving for the intersection of two circles. 121

Figure 122 ï When observed from top left to bottom right (1) The vehicle begins a mow the lawn

pattern around the map (2) The vehicle gets a message from the static node and builds a circle

using the center point of the received communication and the distance received. The vehicle begins

randomly traveling inside of this circle (3) The vehicle receives a second communication from the

static node. It will now calculate intersections and check for the static node at those locations. It

initially searches the wrong intersection (4) The vehicle checks the second intersection location

where it will find the static node and move into the ócompleteô state. 122

Figure 123 - Entering the actions and assertions into the demo repository 125

Figure 124 ï Behavior tree sketch for the REMUS waypoint following test 126

Figure 125 - The Behavior Tree Factory returning a waypoint following behavior tree 127

xiii

Figure 126 - WaypointFollowing.txt: The waypoint following demo behavior tree file output 128

Figure 127 ï The vehicle simulator output screen after a successful experiment with the proposed

waypoint following behavior tree ... 129

Figure 128 ï A chart representing the data shown in Table 18 .. 131

Figure 129 - A graphical representation of an if-else-if structure using behavior tree nodes 133

Figure 130 - A behavior tree representation of a for loop .. 133

xiv

LIST OF ACRONYMS

AI Artificial Intelligence

ASF Altitude Above Sea Floor

ASL Altitude Above Sea Level

AUV Autonomous Underwater Vehicle

CARACaS Control Architecture for Robotic Agent Command and Sensing

CASPER Continuous Activity Scheduling Planning Execution and Re-planning

CBR Case-based Reasoning

CIL Common Intermediate Language

C4ISR Command, Control, Communications, Computers,

 Intelligence, Surveillance, and Reconnaissance

CLI Common Language Infrastructure

CLR Common Language Runtime

COTS Commercial off the Shelf

CTS Common Type System

DAG Directed Acyclic Graph

DoD Department of Defense

ECMA European Computer Manufacturers Association

HTML Hyper Text Markup Language

ISA Industry Standard Architecture

ISO International Organization for Standardization

JAUS Joint Architecture for Unmanned Systems

JSF Joint Strike Fighter

MAC Medium Access Control

MOSA Modular Open Systems Approach

xv

OSA Open Systems Architecture

OSJTF Open Systems Joint Task Force

PCI Peripheral Component Interconnect

PCMCIA Personal Computer Memory Card International Association

PID Proportional-Integral-Derivative

R4SA Robust Real-Time Reconfigurable Robotics Software Architecture

REMUS Remote Environmental Measuring UnitS

SAE Society of Automotive Engineers

TCP Transmission Control Protocol

TDOA Time Difference Of Arrival

TOF Time Of Flight

UASN Underwater Acoustic Sensor Network

UDP User Datagram Protocol

UUV Unmanned Underwater Vehicle

UW-ASN Underwater Acoustic Sensor Network

W3C World Wide Web Consortium

XML eXtensible Markup Language

xvi

ABSTRACT

Many of todayôs underwater vehicles have a limited set of pre-planned behaviors that are of

varying utility. This is due, in part, to very low underwater communication rates and difficulties

observing the vehicleôs underwater behavior pattern. The video game industry is a multi-billion

dollar enterprise constantly investing in high quality, high performance frameworks for controlling

intelligent agents. One such framework is called Behavior Trees. This project proposes a novel

autonomy framework enabling easily reconfigurable behaviors for both land based and underwater

vehicles to discover and map acoustic nodes using a modular open systems approach based on

behavior trees and action repositories.

1

CHAPTER 1

INTRODUCTION

1.1 Underwater Acoustic Sensor Networks

Difficulties encountered with the underwater transmission medium have subdued widespread

underwater research for many years. In fact, 95% of the worldôs underwater realm remains

unexplored [1]. Advancements in digital signal processing (DSP) technology that enable high-rate,

reliable communications have enabled scientists and engineers to set up underwater acoustic

networks for monitoring and wide-area communication applications [2]. Scientific journals have

produced a wealth of information regarding acoustic layer protocols designed at optimizing point-

to-point communications among nodes. One notable example of this is Seaweb (see section 1.1.2).

1.1.1 Underwater Communication

Underwater communications pose problems to researchers less evident in terrestrial networks.

Lower bandwidth, extended multi-path (Figure 1), and large Doppler shifts all contribute to the

already complex issue [3]. Also, MAC layer conflicts1 in the air are usually resolved faster than a

human can comprehend. Underwater signal conflicts are very time consuming to rectify and waste

precious battery life in the recovery due to the much slower propagation of carrier waves.

Underwater networks cannot use radio frequency communication methods due to the very high

absorption rate of these frequencies in water. Even high powered lasers are completely absorbed

1 MAC layer conflicts arise when multiple transmitters attempt to transmit simultaneously.

2

within 1 km [4] and are thus unsuitable for sparse underwater networks. Currently, only acoustic

signals provide the range and bandwidth necessary for their communication [5]. These signals,

traveling roughly 1500 meters per second (varying according to pressure, temperature, and

salinity), provide lower bandwidth, higher latency, and strict energy constraints. Trade-offs

between data rate and communication distance have guided many commercial underwater products

into the range of 7 kHz and 30 kHz providing data rates between 80 and 38400 bits per second up

to 6 km [6] [7] [8] [9]. Higher data rates are generally achieved through focusing of the beam

direction. This would be unsuitable for searching nodes in unknown locations, however. Omni

directional beams query in all directions but suffer more from signal attenuation.

Underwater multi-path occurs when a loosely focused transmission is received after taking

different paths to the receiver. These paths are due mainly to reflections at the surface and the

bottom, as well as refraction in the water, mainly at greater depths [10]. These divergent, faded

signals arrive at the receiver out of phase with the original signal and may cause reinforcement or

cancellation.

Figure 1 - Multi -path and refraction causing distorted signals at the receiver in a shallow and deep environment

3

1.1.2 Seaweb

Seaweb is an underwater wireless networking concept conceived in the late 90s by the Space and

Naval Warfare Systems Center, San Diego, comprising a scalable number of underwater stationary

nodes, peripherals, and gateway buoys [11] that employ spread spectrum modulation for

asynchronous multiple access to the physical medium2. Its original intent was for naval command,

control, communications, computers, intelligence, surveillance, and reconnaissance (C4ISR).

Several experiments on commercial off the shelf (COTS) telesonar modems have proven

Figure 2 ï These are the different types of nodes in an Underwater Acoustic Sensor Network: (a) attached to a gateway

buoy (b) attached to an autonomous underwater vehicle (c) resting on sea floor (d) suspended from water craft (e) moored

to sea floor and suspended in the column by a flotation device

2 In this case, the physical medium is the water.

4

the capabilities of the program to self-organize message routes and optimize modulation

parameters for each message in the clear-to-send (CTS) response of a node.

Figure 2 shows several of the different types of underwater communication nodes. Stationary

nodes may be placed directly on the seafloor or moored. Moored nodes are anchored to the seafloor

and suspended in the water column by a buoy so as to maintain a certain altitude above sea floor

(ASF). They provide more reliable communication but are also more susceptible to damage by

passing ships, curious passersby, or vandals. Mobile nodes may be of the moored type, with

mechanisms to raise or lower depth, or an unmanned underwater vehicle (UUV) type, capable of

traversing the node field and returning to a retrieval point. Nodes may also be directly attached to

floating buoys or to small boats. A buoy mounted node, like moored nodes, introduces more risk

into the design [12].

1.1.3 Localization

The localization of nodes underwater is a difficult task due to the high sensitivity of acoustic

channels to multi-path, Doppler shift, refraction, and, among other things, extremely low

bandwidth. Research efforts are ongoing and are applied at the acoustic modem level of a design.

Modern underwater modems, like the WHOI MicroModem and Benthos 900 modems, are very

effective at quickly determining the distance between two nodes. However, having the simple

range between two underwater nodes is insufficient to provide accurate localization. Techniques

must be employed to handle the three dimensional nature of the underwater environment.

Multilateration is a range-based localization scheme where sensor nodes measure distances to

known nodes, or anchors, by signal time-of-flight (TOF) [13]. Since the underwater domain is

three dimensional, 4 sets of linearly independent readings are required to solve the equation: (x ï

5

xi)
2 + (y ï yi)

2 + (z ï zi)
2 = di

2. Since many nodes can determine their depth (z component) from

onboard pressure sensors, ranges between nodes can be projected onto a single two dimensional

plane and well established 2D localization schemes can be used instead [14].

1.1.4 Topologies

There are three basic types of underwater network topologies: Centralized, distributed, and multi-

hop [2] (see Figure 3). Centralized topologies rely on one or more ómasterô nodes that direct all of

the other nodes. Both distributed and multi-hop topologies rely on a peer-to-peer connection

through direct communication or through a network route, respectively. Centralized topologies

afford a great deal of control over the transmission medium by directing which nodes should speak

and when. However, they also introduce critical nodes which can shut down very large portions of

a network given only a single failure. They are also very limited in scale. The nominal range of an

acoustic transponder is 6 kilometers [15].

Figure 3 ï The three basic topologies of an underwater network. (a) centralized (b) distributed (c) multi-hop. Double

arrows indicate communication paths.

6

1.1.5 Lost Nodes

When underwater sensor networks are deployed for extended lengths of time, possibly several

years, lost nodes become more and more likely. Underwater currents have a tendency to shift the

contents of the seafloor and thereby move the nodes with it. In the presence of a hurricane, it is

highly likely that previously placed nodes will be displaced by several meters and perhaps in a

condition unfavorable to receive or transmit acoustic signals. Regardless of the underwater routing

protocol chosen for this network topology, other underwater sensors will have to be utilized to

acquire and identify the lost node.

1.1.6 Mobile Nodes

While terrestrial networks may rely on densely packed, inexpensive nodes, a more economical

underwater approach must be pursued. Underwater sensor nodes are very expensive and the

desired coverage space is usually very large [16]. Since the mid-1950s, mobile nodes, specifically

autonomous underwater vehicles, have helped to overcome many of the traditional underwater

network problems such as battery life and a poor communication path.

POWER

Undersea modems usually rely on batteries for their power and recharging or replacing them is not

trivial. Since many underwater acoustic sensor networks (UASNs) are in place for years at a time,

energy consumption must be closely monitored. Also, since transmit power is typically 100 times

greater than receive power [16], transmit time should be severely limited. On the other hand, AUV

power usage is dominated by propulsion efforts. Their batteries, however, can be easily recharged

or replaced at an underwater docking station or at surface maintenance area.

7

COMPUTING

A typical underwater vehicle will contain several PC/104 stacks (see Figure 4) which is the

standard for compact embedded pc modules. Each board performs a unique capability required for

the system to operate as a whole. For example, in Figure 4, one board is the main CPU, while

others may be SATA drive controllers, analog I/O boards, Ethernet control boards, or PCMCIA

adapters. These stacks are desirable due to their rigid use of standard measurements, connections,

and interoperability. The PC/104 specifications are maintained by the PC/104 Consortium3.

Figure 4 - A basic PC/104 stack

http://www.rtd.com/PC104

MANEUVERABILITY

Poor communications paths may be due to natural obstructions or poor placement of the transducer

relative to the desired transmission direction. AUVs freely overcome this obstacle simply by

3 Visit the PC/104 Consortium website at http://www.pc104.org/

8

repositioning themselves in the most optimal location for communicating. Engineers all over the

world dedicate themselves to improving the art of underwater vehicle design. Worthy of note are

two vehicles used heavily by the United States Navy for myriad underwater missions. The Remote

Environmental Measuring UnitS (REMUS) vehicle was developed by the Woods Hole

Oceanographic Institution and is manufactured by Hydroid. The Bluefin vehicle class shares a

name with its developer, Bluefin Robotics.

1.1.6.1 REMUS

REMUS vehicles are designed at Woods Hole Oceanographic Instituteôs Oceanographic Systems

Lab and come in variants 100, 600, 3000, and 6000. These numbers indicate the max depth in

meters at which the vehicle is rated to operate [17]. The REMUS 100 is a light vehicle, weighing

only about 100 pounds depending on sensor configuration, and can be launched easily from a small

boat with just 2 people. This makes it suitable for quick, low cost mapping and characterization

surveys of up to 10 hours [18]. Available payload sensors include a dual 900/1800 kHz side scan

sonar and a forward looking camera.

Figure 5 ïA REMUS 100 vehicle with associated equipment (from www.km.kongsberg.com)

9

The REMUS vehicle comes with a control program called the Vehicle Interface Program (VIP). It

is a PC based graphical interface program that issues user commands to the vehicle and displays

the vehicleôs internal status back to the user. It performs both pre- and post-mission analysis.

Missions are programmed through a scripting language and are limited to a few preprogrammed

behaviors. These small behaviors can be cobbled together to form more complex behaviors. The

built in behaviors favor reliability and repeatability over finesse and as such do not provide any

dynamic or reactive decision making capability to the user. Some variants of the REMUS include

an onboard embedded computer capable of overriding the main computerôs control. This board is

networked into the vehicleôs onboard switch and gives behavior developers the ability to create far

more complex behaviors but with strict controls built in. There is both a time and a distance

constraint on each override instance. One obvious rationale for an override would be for an

obstacle avoidance controller. Given forward looking sonar capabilities the vehicle would detect

upcoming objects and make adjustments to travel over or around them before coming back to the

preprogrammed track.

1.1.6.2 Bluefin

Figure 6 ïA Bluefin Robotics Bluefin-9 vehicle (from www.bluefinrobotics.com)

10

Bluefin Robotics develops and supports an array of vehicles known as Bluefin-9, 12, and 21. The

number indicates the diameter of the vehicle. The Bluefin-9 is a small, highly maneuverable

vehicle weighing about 140 pounds. This makes it a viable candidate for quick, low cost mapping

and characterization just like the REMUS 100. With the added weight come slightly higher specs

than the REMUS 100. The Bluefin-9ôs stated max speed is 5 knots, it can reach depths of 200

meters, and its endurance is about 12 hours at 3 knots [19].

1.1.6.3 Search Based Sensors

Typical underwater vehicles are equipped with sidescan sonars. These devices use sound instead

of light to map surroundings. While hardly comparable to modern high-definition cameras, images

from these devices can be analyzed and determined to be of further interest, in which case a vehicle

can be redeployed and use a higher resolution underwater camera to capture a photo of the object

of interest. The REMUS 100 uses a dual 900/1800 kHz sidescan for low resolution, long range

imaging and high resolution, short range imaging, respectively.

Figure 7 - Low resolution 900 kHz sonar image compared to a high resolution 1800 kHz image. (Image from

oceanexplorer.noaa.gov)

11

Figure 8 ï Left: A sonar image of an interesting object. Right: A closer look at the object with an underwater camera.

(Images from NATO Undersea Research Centre)

1.2 Underwater Robotic Behaviors ï Automation vs. Autonomy

Underwater missions are inherently difficult to observe. This puts programmers of underwater

vehicle control algorithms under heightened pressure to incorporate vehicle safety into their

behaviors. In many cases this has led, understandably, to a very limited set of highly automated

yet severely restrictive underwater vehicle behaviors. These behaviors are typically preplanned,

scripted movements with sections of code operating in sequential order until mission completion.

Very little, if any room for vehicle borne decision making, or autonomy, is allowed. Some of the

tension involved with allowing vehicles to operate out of sight and autonomously can be relieved

by viable communication techniques to maintain vehicle location and mission status. One such

implementation is the Portable Acoustic RADIo Geo-referenced Monitoring system

(PARADIGM). It was developed by the Woods Hole Oceanographic Institution to satisfy these

vehicle navigation and tracking requirements [20]. The implementation of this system requires

radio buoys, acting as anchor nodes, to be deployed. Underwater vehicles acting within the radius

of the buoysô communication range (2 km to 6km) can ópingô them and determine its location and

make navigational corrections. Similarly, the buoy may ping the vehicle to determine its location

12

and report it back to a userôs tracking station. While effective in controlled areas, discreet

operations require more discreet means of localization. Onboard GPS antennas allow surfaced

vehicles to gather their location quickly before submerging and operating via inertial measurement

units. These vehicles can then discreetly send their positions acoustically to a listening node

attached to the mission control station.

One reason for the slant towards automation instead of autonomy is that sophisticated robotic

systems can be very expensive. For example, even a lightly equipped REMUS 100 vehicle from

Hydroid is several hundred-thousand dollars. It therefore becomes a major component of every

mission to protect the device from harm or loss. With that in mind, the REMUS control software

developers have placed strict limits on many of the vehicleôs capabilities by only allowing a few

very limited behaviors to be performed. These behaviors are formed mostly by commanding the

vehicle to follow multiple straight line combinations to form a more complex pattern. For example,

a mow-the-lawn pattern is formed by giving the vehicle a rectangular area to search and a track

spacing parameter. The track spacing will usually be determined by the swath width of the sidescan

sonars. If the sidescan sonar can map the ground thirty feet in both directions then, depending on

the amount of overlap desired, a track spacing of sixty feet might be chosen as shown in Figure 9.

These types of behaviors are usually employed to do a quick, economical search of a particular

area. If something of interest is found in the returned images the vehicle may be sent out to further

investigate. These investigations are usually performed at a higher resolution and the vehicles will

typically make multiple passes at the intended target to ensure that a decipherable image is

returned.

13

Figure 9 ïA typical ómow-the-lawnô type search pattern as performed by an AUV.

To accommodate underwater network research, the engineers at Hydroid have provided a óback

door entryô into the REMUSôs controller called the Recon protocol. This override functionality

allows a behavior developer a much finer degree of control over the vehicleôs speed, depth, and

heading thus allowing the implementation of user defined autonomous behaviors onboard the

REMUS vehicle. It is also, however, bound by time and distance restrictions.

The typical preplanned missions focus mainly on area of coverage and vehicle safety.

Communications do take place but are usually secondary objectives. Most information is stored

onboard and retrieved after mission completion.

14

1.3 Common Graph Searching Algorithms

Utilizing computer algorithms to search a continuous space requires partitioning of that space into

discrete chunks that are operable by those algorithms. Typically, large areas are broken down into

grids of varying cell sizes. These cells represent the aggregate data of the land contained within

that cell (e.g. land type or elevation ï see Figure 10). In this way, an algorithm might break up a

10 meter by 10 meter sized land mass into 10,000 ï 10 square-centimeter cells. Then, in a logical

manner, proceed to search each one individually for relevant information about it. This information

might lead to the detection of an object being searched for or simply a path from one cell to another.

In this section we will discuss three closely related methods for searching these discrete cells:

Breadth First, Dijkstra, and A*.

Figure 10 - A 10m x 10m land mass broken down into 10 square-cm cells

1.3.1 Breadth First Search

The Breadth First Search is not strictly a path finding algorithm but rather a very thorough

approach to searching through a graph of cells. With only a minor addition to the process during

each iteration it is guaranteed to provide the shortest Manhattan Distance between two of our cells.

To begin, it is provided with a starting cell which it annotates. Then, it gathers all of that cellôs

15

neighbors into a queue. After gathering the information needed from the starting cell it pops the

next cell off of the queue where the process starts all over again. When the traversal is complete,

the shortest path from any cell on the map to the starting cell is known. Sample code for this simple

algorithm is shown in Figure 11.

private void BreadthFirstSearch(Cell start , Cell end)
{
 _frontier.Enqueue(start);
 while (_frontier.Count > 0)
 {
 Cell current = _frontier.Dequeue();
 List <Cell > neighbors = GetNeighbors(current);
 for (int i = 0; i < neighbors.Count; i++)
 {
 Cell neighbor = neighbors[i];
 if (neighbor.Visited == false)
 {
 _frontier.Enqueue(neighbor);
 neighbor.Visited = true ;
 neighbor.CameFrom = current;
 }
 }
 }
}

Figure 11 - A sample of a modified Breadth First Algorithm used to search an area.

1.3.2 Dijkstra

Dijkstraôs algorithm was created by Edsger Dijkstra in 1956 and published in 1959 in Numerische

Mathematik [21]. The algorithm itself runs very similarly to the modified Breadth First Search

algorithm proposed in section 1.3.1. Dijkstra, however, also tracks distances from one cell to

another. In our simple terrain example of Figure 10 this might mean that travelling uphill might

cost more than travelling downhill. Similarly, travelling across water might be much more costly

than travelling across flat ground or impossible altogether. With a little bit of ingenuity, influences

can be placed on cells that cause a travelling vehicle to avoid locations due to the necessity of

concealment or other mission requirements. A sample code block is shown in Figure 12. The

frontier collection is now a list sorted by priority. That means that the search will continue along

16

the currently shortest path. With an extra line of code that causes the search to terminate when the

goal is found, we can begin executing vehicle movement much quicker.

private void DijkstraSearch(Cell start, Cell end)
{
 _frontier.Add(0, start);
 while (_frontier.Count > 0)
 {
 Cell current = _frontier[0];
 _frontier.RemoveAt(0);
 if (current == end) break ;
 List <ICell > neighbors = GetNeighbors(current);
 for (int i = 0; i < neighbors.Count; i++)
 {
 ICell neighbor = neighbors[i];
 float newCost = CalculateDistance(current, neighbor);
 if (neighbor.Visited == false || newCost < neighbor.DistanceSoFar)
 {
 _frontier.Add(newCost, neighbor);
 neighbor.DistanceSoFar = newCost;
 neighbor.Visited = true ;
 neighbor.CameFrom = curr ent;
 }
 }
 }
}

Figure 12 - Sample code demonstrating an implementation of Dijkstra's Algorithm

1.3.3 A*

The A* algorithm runs much like Dijkstraôs algorithm. The difference is in the way the algorithms

prioritize which cell to traverse next. In Dijkstraôs algorithm, the cells are prioritized in the frontier

according to the currently traversed distance. In A*, the cells are placed in the frontier by that same

value plus a heuristic. This heuristic may be determined by any group implementing the algorithm

but a commonly used one is the straight line distance between the current cell and the goal cell.

For example, if the algorithm has travelled through a number of cells equaling 3 meters so far and

the next neighbor in line is 3.5 meters away from the goal, then a value of 6.5 is used as the priority.

This cell will be searched before another neighbor, whose current distance is only 1, but whose

straight line distance to the goal is 6 (i.e. priority 7). Sample code for the A* algorithm is shown

in Figure 13.

17

private void AStarSearch(Cell start, Cell end)
{
 _frontier.Add(0, start);
 while (_frontier.Count > 0)
 {
 ICell current = _frontier.ElementAt(0).Value;
 _frontier.RemoveAt(0);
 if (current.Visited == false)
 {
 current.Visited = true ;
 if (current == end) break ;
 List <Cell > neighbors = GetNeighbors(current);
 for (int i = 0; i < neighbors.Count; i++)
 {
 Cell neighbor = neighbors[i];
 if (neighbor.Visited == false)
 {
 float dist = CalculateDistance (current, neighbor);
 float newCost = dist + current.DistanceSoFar;
 if (newCost < neighbor.DistanceSoFar)
 {
 float priority = newCost + Heuristic(neighbor, end);
 _frontier.Add(priority, neighbor);
 neighbor.DistanceSoFar = newCost;
 neighbor.CameFrom = current;
 }
 }
 }
 }
 }
}

Figure 13 - Sample code demonstrating an implementation of the A* algorithm

1.4 Behavior Trees

Software behavior trees are a programming paradigm that came to the forefront of video game AI

in 2005 through a talk given by Damian Isla at the Game Developerôs Conference (GDC) 2005.

Damian was involved in the AI development for the extremely popular game Halo 2 for XBOX.

His talk began by addressing common issues when dealing with AI: poor run-time, poor

scalability, a lack of direct-ability, and random vs. intentional behaviors. It then progressed through

ways to address each problem. It concluded with the statement that, ñhard problems can be

rendered trivial through judicious use of the right representation,ò which, in this case, was a

behavior tree. The concept worked so well that it was reused in the development of Halo 3, another

very popular title for the Xbox 360.

18

Behavior trees are organized as directed acyclic graphs. During each update cycle the graph is

traversed from top to bottom and left to right (Figure 14). During this traversal each node will

assume one of a number of node states. These will typically comprise ósuccessô and ófailure,ô along

with any others that the designer feels necessary (e.g. running, uninitialized, etcé). A possible

NodeStatus enumeration will be shown in section 1.4.8. Each successful traversal represents one

time slice and constitutes a performance parameter of the system which can be adjusted up or

down. For example, a video game developer may shoot for one complete traversal every 16ms (60

frames / second) while a vehicle autonomy developer may or may not require such a high traversal

rate.

Figure 14 - Behavior tree traversal method

Inner nodes of the graph can be any of a collection of sequences or selectors, called composites,

and decorators. Leaf nodes are conditions (assertions) or actions. Composites contain multiple

child nodes and will generally assume the NodeStatus of their last running child node but are not

19

required to do so. Decorators, too, will typically assume their childôs status but a designer may use

any clever method to set it differently. For example, a decorator may run a successful child node

and instead return failure due to the length of time that the node took to run.

The utility of behavior trees only manifests itself if strict interfaces are followed. This means that

as long as developers adhere to the standard usages, collections of behaviors can easily be

developed and used across a wide range of applications. The easiest way to understand this will be

through the use of an example followed by a sample code implementation. But first, we will define

basic behavior tree terminology.

1.4.1 Nodes

The atomic unit of a behavior tree is a node. It will contain at a minimum one public function,

Tick(), which will return a NodeStatus. A nodeôs NodeStatus will indicate whether the update was

a success or failure. The necessity and utility of such a simple interface will become evident as we

proceed through our example.

Figure 15 - A Behavior Tree Node

The implementation of a node can take the form of a sequence, selector, decorator, action, or

assertion. Sequences and selectors are called composite nodes. This is because they will contain

20

multiple child nodes. Decorators will always contain only one child node. Actions and assertions

will be leaf nodes and contain zero children. The unofficial but generally accepted depiction of

these blocks is shown in Figure 16. When placed in a tree, each of these blocks is still considered

a node. Simple modifications to the makeup of a behavior tree can cause many different behaviors

to emerge.

Figure 16 ïThe fundamental building blocks of a behavior tree: sequence, selector, decorator, action, & assertion.

1.4.2 Sequences

Sequences are like database transactions. They run their children one after the other and either pass

or fail as a group like a logical AND statement. If a sequence fails to complete during an update,

the last running node is called immediately on the next update. There are special variations of

sequences called sequence loops. These variants run in order but instead of reporting to their parent

they continue to restart execution at the first child node for a set number of iterations.

Figure 17 - An example of a sequence success and failure

21

1.4.3 Selectors

Selectors are the complement of sequences and act like logical OR statements. Each child of a

selector is tested in order. Failures are ignored but the first success is reported back up the tree,

short circuiting subsequent nodes. Priority selectors are a special case in which each node is

assigned a priority and run in descending priority order. During each traversal of the graph, higher

priority selectors may override the continuation of a lower priority node. Random selectors are

another special case in which a child node is chosen at random. This equips the behavior tree with

more variety of character.

Figure 18 - An example of a selector success and failure

1.4.4 Decorator Nodes

Decorator nodes contain only one child and are used to enforce certain constraints. They might

contain counter variables to maximize the number of times a behavior will run, a loop to ensure a

certain number of runs, a timer to enforce time lengths in-between runs, or code to handle

exceptions. If resources are shared, a decorator node is a natural place to put locks, mutexes, and

semaphores. In Figure 19, the image on the right shows how a timer can return failure without

running its child node since its last activation was too recent.

22

Figure 19 - An example of a decorator being used as a timer to determine whether or not to call its child node

1.4.5 Actions

Actions, as opposed to composite sequences and selectors, cause the actor to effect a world change.

Outside of a few common use cases, most of these nodes will be unique to a software project and

are what differentiate it from others. Many times these nodes will make calls into a proprietary

library like a vehicle control class. In an underwater mission project, this might be to communicate

with a network sensor, plan a path to collect sonar images, or get a GPS fix.

Figure 20 - An example of action nodes calling proprietary code

