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ABSTRACT 

Many of today’s underwater vehicles have a limited set of pre-planned behaviors that are of 

varying utility. This is due, in part, to very low underwater communication rates and difficulties 

observing the vehicle’s underwater behavior pattern. The video game industry is a multi-billion 

dollar enterprise constantly investing in high quality, high performance frameworks for controlling 

intelligent agents. One such framework is called Behavior Trees. This project proposes a novel 

autonomy framework enabling easily reconfigurable behaviors for both land based and underwater 

vehicles to discover and map acoustic nodes using a modular open systems approach based on 

behavior trees and action repositories. 
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CHAPTER 1  

INTRODUCTION 

1.1 Underwater Acoustic Sensor Networks 

Difficulties encountered with the underwater transmission medium have subdued widespread 

underwater research for many years. In fact, 95% of the world’s underwater realm remains 

unexplored [1]. Advancements in digital signal processing (DSP) technology that enable high-rate, 

reliable communications have enabled scientists and engineers to set up underwater acoustic 

networks for monitoring and wide-area communication applications [2]. Scientific journals have 

produced a wealth of information regarding acoustic layer protocols designed at optimizing point-

to-point communications among nodes. One notable example of this is Seaweb (see section 1.1.2). 

1.1.1 Underwater Communication 

Underwater communications pose problems to researchers less evident in terrestrial networks. 

Lower bandwidth, extended multi-path (Figure 1), and large Doppler shifts all contribute to the 

already complex issue [3]. Also, MAC layer conflicts1 in the air are usually resolved faster than a 

human can comprehend. Underwater signal conflicts are very time consuming to rectify and waste 

precious battery life in the recovery due to the much slower propagation of carrier waves. 

Underwater networks cannot use radio frequency communication methods due to the very high 

absorption rate of these frequencies in water. Even high powered lasers are completely absorbed 

                                                 
1 MAC layer conflicts arise when multiple transmitters attempt to transmit simultaneously. 
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within 1 km [4] and are thus unsuitable for sparse underwater networks. Currently, only acoustic 

signals provide the range and bandwidth necessary for their communication [5]. These signals, 

traveling roughly 1500 meters per second (varying according to pressure, temperature, and 

salinity), provide lower bandwidth, higher latency, and strict energy constraints. Trade-offs 

between data rate and communication distance have guided many commercial underwater products 

into the range of 7 kHz and 30 kHz providing data rates between 80 and 38400 bits per second up 

to 6 km [6] [7] [8] [9]. Higher data rates are generally achieved through focusing of the beam 

direction. This would be unsuitable for searching nodes in unknown locations, however. Omni 

directional beams query in all directions but suffer more from signal attenuation. 

Underwater multi-path occurs when a loosely focused transmission is received after taking 

different paths to the receiver. These paths are due mainly to reflections at the surface and the 

bottom, as well as refraction in the water, mainly at greater depths [10]. These divergent, faded 

signals arrive at the receiver out of phase with the original signal and may cause reinforcement or 

cancellation. 

 
Figure 1 - Multi-path and refraction causing distorted signals at the receiver in a shallow and deep environment 
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1.1.2 Seaweb 

Seaweb is an underwater wireless networking concept conceived in the late 90s by the Space and 

Naval Warfare Systems Center, San Diego, comprising a scalable number of underwater stationary 

nodes, peripherals, and gateway buoys [11] that employ spread spectrum modulation for 

asynchronous multiple access to the physical medium2. Its original intent was for naval command, 

control, communications, computers, intelligence, surveillance, and reconnaissance (C4ISR). 

Several experiments on commercial off the shelf (COTS) telesonar modems have proven 

 
Figure 2 – These are the different types of nodes in an Underwater Acoustic Sensor Network: (a) attached to a gateway 

buoy (b) attached to an autonomous underwater vehicle (c) resting on sea floor (d) suspended from water craft (e) moored 

to sea floor and suspended in the column by a flotation device 

                                                 
2 In this case, the physical medium is the water. 
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the capabilities of the program to self-organize message routes and optimize modulation 

parameters for each message in the clear-to-send (CTS) response of a node. 

Figure 2 shows several of the different types of underwater communication nodes. Stationary 

nodes may be placed directly on the seafloor or moored. Moored nodes are anchored to the seafloor 

and suspended in the water column by a buoy so as to maintain a certain altitude above sea floor 

(ASF). They provide more reliable communication but are also more susceptible to damage by 

passing ships, curious passersby, or vandals. Mobile nodes may be of the moored type, with 

mechanisms to raise or lower depth, or an unmanned underwater vehicle (UUV) type, capable of 

traversing the node field and returning to a retrieval point. Nodes may also be directly attached to 

floating buoys or to small boats. A buoy mounted node, like moored nodes, introduces more risk 

into the design [12]. 

1.1.3 Localization 

The localization of nodes underwater is a difficult task due to the high sensitivity of acoustic 

channels to multi-path, Doppler shift, refraction, and, among other things, extremely low 

bandwidth. Research efforts are ongoing and are applied at the acoustic modem level of a design. 

Modern underwater modems, like the WHOI MicroModem and Benthos 900 modems, are very 

effective at quickly determining the distance between two nodes. However, having the simple 

range between two underwater nodes is insufficient to provide accurate localization. Techniques 

must be employed to handle the three dimensional nature of the underwater environment. 

Multilateration is a range-based localization scheme where sensor nodes measure distances to 

known nodes, or anchors, by signal time-of-flight (TOF) [13]. Since the underwater domain is 

three dimensional, 4 sets of linearly independent readings are required to solve the equation: (x – 
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xi)
2 + (y – yi)

2 + (z – zi)
2 = di

2. Since many nodes can determine their depth (z component) from 

onboard pressure sensors, ranges between nodes can be projected onto a single two dimensional 

plane and well established 2D localization schemes can be used instead [14]. 

1.1.4 Topologies 

There are three basic types of underwater network topologies: Centralized, distributed, and multi-

hop [2] (see Figure 3). Centralized topologies rely on one or more ‘master’ nodes that direct all of 

the other nodes. Both distributed and multi-hop topologies rely on a peer-to-peer connection 

through direct communication or through a network route, respectively. Centralized topologies 

afford a great deal of control over the transmission medium by directing which nodes should speak 

and when. However, they also introduce critical nodes which can shut down very large portions of 

a network given only a single failure. They are also very limited in scale. The nominal range of an 

acoustic transponder is 6 kilometers [15]. 

 
Figure 3 – The three basic topologies of an underwater network. (a) centralized (b) distributed (c) multi-hop. Double 

arrows indicate communication paths. 
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1.1.5 Lost Nodes 

When underwater sensor networks are deployed for extended lengths of time, possibly several 

years, lost nodes become more and more likely. Underwater currents have a tendency to shift the 

contents of the seafloor and thereby move the nodes with it. In the presence of a hurricane, it is 

highly likely that previously placed nodes will be displaced by several meters and perhaps in a 

condition unfavorable to receive or transmit acoustic signals. Regardless of the underwater routing 

protocol chosen for this network topology, other underwater sensors will have to be utilized to 

acquire and identify the lost node. 

1.1.6 Mobile Nodes 

While terrestrial networks may rely on densely packed, inexpensive nodes, a more economical 

underwater approach must be pursued. Underwater sensor nodes are very expensive and the 

desired coverage space is usually very large [16]. Since the mid-1950s, mobile nodes, specifically 

autonomous underwater vehicles, have helped to overcome many of the traditional underwater 

network problems such as battery life and a poor communication path. 

POWER 

Undersea modems usually rely on batteries for their power and recharging or replacing them is not 

trivial. Since many underwater acoustic sensor networks (UASNs) are in place for years at a time, 

energy consumption must be closely monitored. Also, since transmit power is typically 100 times 

greater than receive power [16], transmit time should be severely limited. On the other hand, AUV 

power usage is dominated by propulsion efforts. Their batteries, however, can be easily recharged 

or replaced at an underwater docking station or at surface maintenance area. 
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COMPUTING 

A typical underwater vehicle will contain several PC/104 stacks (see Figure 4) which is the 

standard for compact embedded pc modules. Each board performs a unique capability required for 

the system to operate as a whole. For example, in Figure 4, one board is the main CPU, while 

others may be SATA drive controllers, analog I/O boards, Ethernet control boards, or PCMCIA 

adapters. These stacks are desirable due to their rigid use of standard measurements, connections, 

and interoperability. The PC/104 specifications are maintained by the PC/104 Consortium3. 

 
Figure 4 - A basic PC/104 stack 

http://www.rtd.com/PC104 

MANEUVERABILITY 

Poor communications paths may be due to natural obstructions or poor placement of the transducer 

relative to the desired transmission direction. AUVs freely overcome this obstacle simply by 

                                                 
3 Visit the PC/104 Consortium website at http://www.pc104.org/ 
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repositioning themselves in the most optimal location for communicating. Engineers all over the 

world dedicate themselves to improving the art of underwater vehicle design. Worthy of note are 

two vehicles used heavily by the United States Navy for myriad underwater missions. The Remote 

Environmental Measuring UnitS (REMUS) vehicle was developed by the Woods Hole 

Oceanographic Institution and is manufactured by Hydroid. The Bluefin vehicle class shares a 

name with its developer, Bluefin Robotics. 

1.1.6.1 REMUS 

REMUS vehicles are designed at Woods Hole Oceanographic Institute’s Oceanographic Systems 

Lab and come in variants 100, 600, 3000, and 6000. These numbers indicate the max depth in 

meters at which the vehicle is rated to operate [17]. The REMUS 100 is a light vehicle, weighing 

only about 100 pounds depending on sensor configuration, and can be launched easily from a small 

boat with just 2 people. This makes it suitable for quick, low cost mapping and characterization 

surveys of up to 10 hours [18]. Available payload sensors include a dual 900/1800 kHz side scan 

sonar and a forward looking camera. 

 
Figure 5 –A REMUS 100 vehicle with associated equipment (from www.km.kongsberg.com) 
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The REMUS vehicle comes with a control program called the Vehicle Interface Program (VIP). It 

is a PC based graphical interface program that issues user commands to the vehicle and displays 

the vehicle’s internal status back to the user. It performs both pre- and post-mission analysis. 

Missions are programmed through a scripting language and are limited to a few preprogrammed 

behaviors. These small behaviors can be cobbled together to form more complex behaviors. The 

built in behaviors favor reliability and repeatability over finesse and as such do not provide any 

dynamic or reactive decision making capability to the user. Some variants of the REMUS include 

an onboard embedded computer capable of overriding the main computer’s control. This board is 

networked into the vehicle’s onboard switch and gives behavior developers the ability to create far 

more complex behaviors but with strict controls built in. There is both a time and a distance 

constraint on each override instance. One obvious rationale for an override would be for an 

obstacle avoidance controller. Given forward looking sonar capabilities the vehicle would detect 

upcoming objects and make adjustments to travel over or around them before coming back to the 

preprogrammed track. 

1.1.6.2 Bluefin 

 
Figure 6 –A Bluefin Robotics Bluefin-9 vehicle (from www.bluefinrobotics.com) 
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Bluefin Robotics develops and supports an array of vehicles known as Bluefin-9, 12, and 21. The 

number indicates the diameter of the vehicle. The Bluefin-9 is a small, highly maneuverable 

vehicle weighing about 140 pounds. This makes it a viable candidate for quick, low cost mapping 

and characterization just like the REMUS 100. With the added weight come slightly higher specs 

than the REMUS 100. The Bluefin-9’s stated max speed is 5 knots, it can reach depths of 200 

meters, and its endurance is about 12 hours at 3 knots [19]. 

1.1.6.3 Search Based Sensors 

Typical underwater vehicles are equipped with sidescan sonars. These devices use sound instead 

of light to map surroundings. While hardly comparable to modern high-definition cameras, images 

from these devices can be analyzed and determined to be of further interest, in which case a vehicle 

can be redeployed and use a higher resolution underwater camera to capture a photo of the object 

of interest. The REMUS 100 uses a dual 900/1800 kHz sidescan for low resolution, long range 

imaging and high resolution, short range imaging, respectively. 

 
Figure 7 - Low resolution 900 kHz sonar image compared to a high resolution 1800 kHz image. (Image from 

oceanexplorer.noaa.gov) 
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Figure 8 – Left: A sonar image of an interesting object. Right: A closer look at the object with an underwater camera. 

(Images from NATO Undersea Research Centre) 

1.2 Underwater Robotic Behaviors – Automation vs. Autonomy 

Underwater missions are inherently difficult to observe. This puts programmers of underwater 

vehicle control algorithms under heightened pressure to incorporate vehicle safety into their 

behaviors. In many cases this has led, understandably, to a very limited set of highly automated 

yet severely restrictive underwater vehicle behaviors. These behaviors are typically preplanned, 

scripted movements with sections of code operating in sequential order until mission completion. 

Very little, if any room for vehicle borne decision making, or autonomy, is allowed. Some of the 

tension involved with allowing vehicles to operate out of sight and autonomously can be relieved 

by viable communication techniques to maintain vehicle location and mission status. One such 

implementation is the Portable Acoustic RADIo Geo-referenced Monitoring system 

(PARADIGM). It was developed by the Woods Hole Oceanographic Institution to satisfy these 

vehicle navigation and tracking requirements [20]. The implementation of this system requires 

radio buoys, acting as anchor nodes, to be deployed. Underwater vehicles acting within the radius 

of the buoys’ communication range (2 km to 6km) can ‘ping’ them and determine its location and 

make navigational corrections. Similarly, the buoy may ping the vehicle to determine its location 
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and report it back to a user’s tracking station. While effective in controlled areas, discreet 

operations require more discreet means of localization. Onboard GPS antennas allow surfaced 

vehicles to gather their location quickly before submerging and operating via inertial measurement 

units. These vehicles can then discreetly send their positions acoustically to a listening node 

attached to the mission control station. 

One reason for the slant towards automation instead of autonomy is that sophisticated robotic 

systems can be very expensive. For example, even a lightly equipped REMUS 100 vehicle from 

Hydroid is several hundred-thousand dollars. It therefore becomes a major component of every 

mission to protect the device from harm or loss. With that in mind, the REMUS control software 

developers have placed strict limits on many of the vehicle’s capabilities by only allowing a few 

very limited behaviors to be performed. These behaviors are formed mostly by commanding the 

vehicle to follow multiple straight line combinations to form a more complex pattern. For example, 

a mow-the-lawn pattern is formed by giving the vehicle a rectangular area to search and a track 

spacing parameter. The track spacing will usually be determined by the swath width of the sidescan 

sonars. If the sidescan sonar can map the ground thirty feet in both directions then, depending on 

the amount of overlap desired, a track spacing of sixty feet might be chosen as shown in Figure 9. 

These types of behaviors are usually employed to do a quick, economical search of a particular 

area. If something of interest is found in the returned images the vehicle may be sent out to further 

investigate. These investigations are usually performed at a higher resolution and the vehicles will 

typically make multiple passes at the intended target to ensure that a decipherable image is 

returned. 
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Figure 9 –A typical ‘mow-the-lawn’ type search pattern as performed by an AUV. 

To accommodate underwater network research, the engineers at Hydroid have provided a ‘back 

door entry’ into the REMUS’s controller called the Recon protocol. This override functionality 

allows a behavior developer a much finer degree of control over the vehicle’s speed, depth, and 

heading thus allowing the implementation of user defined autonomous behaviors onboard the 

REMUS vehicle. It is also, however, bound by time and distance restrictions. 

The typical preplanned missions focus mainly on area of coverage and vehicle safety. 

Communications do take place but are usually secondary objectives. Most information is stored 

onboard and retrieved after mission completion. 
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1.3 Common Graph Searching Algorithms 

Utilizing computer algorithms to search a continuous space requires partitioning of that space into 

discrete chunks that are operable by those algorithms. Typically, large areas are broken down into 

grids of varying cell sizes. These cells represent the aggregate data of the land contained within 

that cell (e.g. land type or elevation – see Figure 10). In this way, an algorithm might break up a 

10 meter by 10 meter sized land mass into 10,000 – 10 square-centimeter cells. Then, in a logical 

manner, proceed to search each one individually for relevant information about it. This information 

might lead to the detection of an object being searched for or simply a path from one cell to another. 

In this section we will discuss three closely related methods for searching these discrete cells: 

Breadth First, Dijkstra, and A*. 

 
Figure 10 - A 10m x 10m land mass broken down into 10 square-cm cells 

1.3.1 Breadth First Search 

The Breadth First Search is not strictly a path finding algorithm but rather a very thorough 

approach to searching through a graph of cells. With only a minor addition to the process during 

each iteration it is guaranteed to provide the shortest Manhattan Distance between two of our cells. 

To begin, it is provided with a starting cell which it annotates. Then, it gathers all of that cell’s 
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neighbors into a queue. After gathering the information needed from the starting cell it pops the 

next cell off of the queue where the process starts all over again. When the traversal is complete, 

the shortest path from any cell on the map to the starting cell is known. Sample code for this simple 

algorithm is shown in Figure 11. 

private void BreadthFirstSearch(Cell start, Cell end) 
{ 
 _frontier.Enqueue(start); 
 while (_frontier.Count > 0) 
 { 
  Cell current = _frontier.Dequeue(); 
  List<Cell> neighbors = GetNeighbors(current); 
  for (int i = 0; i < neighbors.Count; i++) 
  { 
   Cell neighbor = neighbors[i]; 
   if (neighbor.Visited == false) 
   { 
    _frontier.Enqueue(neighbor); 
    neighbor.Visited = true; 
    neighbor.CameFrom = current; 
   } 
  } 
 } 
} 

Figure 11 - A sample of a modified Breadth First Algorithm used to search an area. 

1.3.2 Dijkstra 

Dijkstra’s algorithm was created by Edsger Dijkstra in 1956 and published in 1959 in Numerische 

Mathematik [21]. The algorithm itself runs very similarly to the modified Breadth First Search 

algorithm proposed in section 1.3.1. Dijkstra, however, also tracks distances from one cell to 

another. In our simple terrain example of Figure 10 this might mean that travelling uphill might 

cost more than travelling downhill. Similarly, travelling across water might be much more costly 

than travelling across flat ground or impossible altogether. With a little bit of ingenuity, influences 

can be placed on cells that cause a travelling vehicle to avoid locations due to the necessity of 

concealment or other mission requirements. A sample code block is shown in Figure 12. The 

frontier collection is now a list sorted by priority. That means that the search will continue along 
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the currently shortest path. With an extra line of code that causes the search to terminate when the 

goal is found, we can begin executing vehicle movement much quicker. 

private void DijkstraSearch(Cell start, Cell end) 
{ 
 _frontier.Add(0, start); 
 while (_frontier.Count > 0) 
 { 
  Cell current = _frontier[0]; 
  _frontier.RemoveAt(0); 
  if (current == end) break; 
  List<ICell> neighbors = GetNeighbors(current); 
  for (int i = 0; i < neighbors.Count; i++) 
  { 
   ICell neighbor = neighbors[i]; 
   float newCost = CalculateDistance(current, neighbor); 
   if (neighbor.Visited == false || newCost < neighbor.DistanceSoFar) 
   { 
    _frontier.Add(newCost, neighbor); 
    neighbor.DistanceSoFar = newCost; 
    neighbor.Visited = true; 
    neighbor.CameFrom = current; 
   } 
  } 
 } 
} 

Figure 12 - Sample code demonstrating an implementation of Dijkstra's Algorithm 

1.3.3 A* 

The A* algorithm runs much like Dijkstra’s algorithm. The difference is in the way the algorithms 

prioritize which cell to traverse next. In Dijkstra’s algorithm, the cells are prioritized in the frontier 

according to the currently traversed distance. In A*, the cells are placed in the frontier by that same 

value plus a heuristic. This heuristic may be determined by any group implementing the algorithm 

but a commonly used one is the straight line distance between the current cell and the goal cell. 

For example, if the algorithm has travelled through a number of cells equaling 3 meters so far and 

the next neighbor in line is 3.5 meters away from the goal, then a value of 6.5 is used as the priority. 

This cell will be searched before another neighbor, whose current distance is only 1, but whose 

straight line distance to the goal is 6 (i.e. priority 7). Sample code for the A* algorithm is shown 

in Figure 13. 
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private void AStarSearch(Cell start, Cell end) 
{ 
 _frontier.Add(0, start); 
 while (_frontier.Count > 0) 
 { 
  ICell current = _frontier.ElementAt(0).Value; 
  _frontier.RemoveAt(0); 
  if (current.Visited == false) 
  { 
   current.Visited = true; 
   if (current == end) break; 
   List<Cell> neighbors = GetNeighbors(current); 
   for (int i = 0; i < neighbors.Count; i++) 
   { 
    Cell neighbor = neighbors[i]; 
    if (neighbor.Visited == false) 
    { 
     float dist = CalculateDistance(current, neighbor); 
     float newCost = dist + current.DistanceSoFar; 
     if (newCost < neighbor.DistanceSoFar) 
     { 
      float priority = newCost + Heuristic(neighbor, end); 
      _frontier.Add(priority, neighbor); 
      neighbor.DistanceSoFar = newCost; 
      neighbor.CameFrom = current; 
     } 
    } 
   } 
  } 
 } 
} 

Figure 13 - Sample code demonstrating an implementation of the A* algorithm 

1.4 Behavior Trees 

Software behavior trees are a programming paradigm that came to the forefront of video game AI 

in 2005 through a talk given by Damian Isla at the Game Developer’s Conference (GDC) 2005. 

Damian was involved in the AI development for the extremely popular game Halo 2 for XBOX. 

His talk began by addressing common issues when dealing with AI: poor run-time, poor 

scalability, a lack of direct-ability, and random vs. intentional behaviors. It then progressed through 

ways to address each problem. It concluded with the statement that, “hard problems can be 

rendered trivial through judicious use of the right representation,” which, in this case, was a 

behavior tree. The concept worked so well that it was reused in the development of Halo 3, another 

very popular title for the Xbox 360. 
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Behavior trees are organized as directed acyclic graphs. During each update cycle the graph is 

traversed from top to bottom and left to right (Figure 14). During this traversal each node will 

assume one of a number of node states. These will typically comprise ‘success’ and ‘failure,’ along 

with any others that the designer feels necessary (e.g. running, uninitialized, etc…). A possible 

NodeStatus enumeration will be shown in section 1.4.8. Each successful traversal represents one 

time slice and constitutes a performance parameter of the system which can be adjusted up or 

down. For example, a video game developer may shoot for one complete traversal every 16ms (60 

frames / second) while a vehicle autonomy developer may or may not require such a high traversal 

rate. 

 
Figure 14 - Behavior tree traversal method 

Inner nodes of the graph can be any of a collection of sequences or selectors, called composites, 

and decorators. Leaf nodes are conditions (assertions) or actions. Composites contain multiple 

child nodes and will generally assume the NodeStatus of their last running child node but are not 
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required to do so. Decorators, too, will typically assume their child’s status but a designer may use 

any clever method to set it differently. For example, a decorator may run a successful child node 

and instead return failure due to the length of time that the node took to run. 

The utility of behavior trees only manifests itself if strict interfaces are followed. This means that 

as long as developers adhere to the standard usages, collections of behaviors can easily be 

developed and used across a wide range of applications. The easiest way to understand this will be 

through the use of an example followed by a sample code implementation. But first, we will define 

basic behavior tree terminology. 

1.4.1 Nodes 

The atomic unit of a behavior tree is a node. It will contain at a minimum one public function, 

Tick(), which will return a NodeStatus. A node’s NodeStatus will indicate whether the update was 

a success or failure. The necessity and utility of such a simple interface will become evident as we 

proceed through our example. 

 
Figure 15 - A Behavior Tree Node 

The implementation of a node can take the form of a sequence, selector, decorator, action, or 

assertion. Sequences and selectors are called composite nodes. This is because they will contain 
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multiple child nodes. Decorators will always contain only one child node. Actions and assertions 

will be leaf nodes and contain zero children. The unofficial but generally accepted depiction of 

these blocks is shown in Figure 16. When placed in a tree, each of these blocks is still considered 

a node. Simple modifications to the makeup of a behavior tree can cause many different behaviors 

to emerge. 

 
Figure 16 –The fundamental building blocks of a behavior tree: sequence, selector, decorator, action, & assertion. 

1.4.2 Sequences 

Sequences are like database transactions. They run their children one after the other and either pass 

or fail as a group like a logical AND statement. If a sequence fails to complete during an update, 

the last running node is called immediately on the next update. There are special variations of 

sequences called sequence loops. These variants run in order but instead of reporting to their parent 

they continue to restart execution at the first child node for a set number of iterations.  

 
Figure 17 - An example of a sequence success and failure 
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1.4.3 Selectors 

Selectors are the complement of sequences and act like logical OR statements. Each child of a 

selector is tested in order. Failures are ignored but the first success is reported back up the tree, 

short circuiting subsequent nodes. Priority selectors are a special case in which each node is 

assigned a priority and run in descending priority order. During each traversal of the graph, higher 

priority selectors may override the continuation of a lower priority node. Random selectors are 

another special case in which a child node is chosen at random. This equips the behavior tree with 

more variety of character. 

 
Figure 18 - An example of a selector success and failure 

1.4.4 Decorator Nodes 

Decorator nodes contain only one child and are used to enforce certain constraints. They might 

contain counter variables to maximize the number of times a behavior will run, a loop to ensure a 

certain number of runs, a timer to enforce time lengths in-between runs, or code to handle 

exceptions. If resources are shared, a decorator node is a natural place to put locks, mutexes, and 

semaphores. In Figure 19, the image on the right shows how a timer can return failure without 

running its child node since its last activation was too recent. 
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Figure 19 - An example of a decorator being used as a timer to determine whether or not to call its child node 

1.4.5 Actions 

Actions, as opposed to composite sequences and selectors, cause the actor to effect a world change. 

Outside of a few common use cases, most of these nodes will be unique to a software project and 

are what differentiate it from others. Many times these nodes will make calls into a proprietary 

library like a vehicle control class. In an underwater mission project, this might be to communicate 

with a network sensor, plan a path to collect sonar images, or get a GPS fix. 

 
Figure 20 - An example of action nodes calling proprietary code 
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1.4.6 Assertions 

Assertions ensure that particular world states hold true before allowing its subsequent peer nodes 

to run. These would be placed in the hierarchy just prior to an action or another assertion, thus 

allowing or preventing the action to be executed. Like actions, these nodes will be uniquely coded 

for a particular project and will probably make method calls into proprietary libraries. 

 
Figure 21 - An example of an assertion checking if depth is 0 before getting a GPS fix 

1.4.7 Behavior Tree Example 

The ‘dining philosophers’ problem is a classic example of how actors in a software solution can 

politely contend for resources. Let’s pretend, for simplicity, that we have only two philosophers 

sitting at a table. There are two forks and a bowl of pasta in the middle of the table. Each 

philosopher needs to hold both forks to be able to eat. If each philosopher picks up one fork and 

simply waits for the other one to become available we will have a deadlock. The philosophers will 
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wait an infinite amount of time for the other fork. There are many different solutions to avoid this 

outcome. The Resource Hierarchy solution [22] states that each fork should be ranked. Therefore, 

we have fork 0 and fork 1 as shown in Figure 22. It states that each philosopher must pick up the 

lower ranked fork first and the next highest ranked fork next before eating. If the philosopher 

cannot eat he just leans back and thinks instead. 

 
Figure 22 - The dining philosophers 

The root of our example behavior tree will be a selector with two children. The first child will be 

a sequence to determine the availability and appropriateness of eating. The second child will be a 

sequence that just ‘leans back and thinks.’ We will assume for simplicity that the ‘eat’ action 

handles replacing the forks on the table after eating is complete. 

 
Figure 23 –A simplified behavior tree solution to the ‘dining philosophers’ problem. Statements with questions marks at 

the end are assertions and those with exclamation points are actions. 
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If we assume that philosopher 0 has just a slight head start over philosopher 1, the behavior trees 

after one complete traversal will look like Figure 24. 

 
Figure 24 – The dining philosopher’s behavior trees after one complete traversal 

Without any length of study, obvious areas of improvement in the behavior trees present 

themselves. As the following optimizations will show, this is where the utility of behavior trees 

lies. We will completely refactor them with very little effort and yet obtain much more 

functionality. 

Current behavior tree observations and shortcomings: 

 When philosopher 0 puts his forks down they will immediately be available and, unless 

philosopher 1 is quick enough to pick them up, he will pick them up and begin eating again. 

 The philosophers will eventually become full and tired of thinking. There is no fallback 

action to accommodate this. 

The necessary improvements to the behavior trees are these: (1) Add a ‘sleep’ behavior, (2) add a 

negative timer decorator to the ‘eat’ and ‘sleep’ behaviors to prevent them from activating too 

often, and (3) add a positive timer decorator to the ‘eat’ and ‘sleep’ behaviors to ensure they take 
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an appropriate amount of time to run. The difference between a positive and a negative timer is 

this: A positive timer causes an action to continue for a set period of time by reporting 

NodeStatus.Running while receiving a NodeStatus.Success from its child. A negative timer 

prevents an action from occurring for a set period of time after it receives its first 

NodeStatus.Success. A sequence diagram of this effect is shown in Figure 25. Our new behavior 

tree is shown in Figure 26. 

 
Figure 25 - Sequence diagram for a positive and negative timer decorator 

You’ll notice in Figure 26 that our ‘think’ action has been replaced by a ‘think’ triangle. This is to 

imply that each abstract action like eat, sleep, or think can be replaced by a fully functional 

behavior sub-tree of its own. For example, the ‘think’ action might contain a random selector that 

decides what to think about along with a positive timer to ensure it thinks about it for a certain 

period of time. Also, since every component in a behavior tree is equally considered a node, they 

can be shuffled in any fashion to achieve different behaviors. In Figure 26, the eat and sleep 

behaviors could easily be swapped to give more priority to the sleepy philosopher. 
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Figure 26 - Complete 'dining philosophers' behavior tree representation 

1.4.8 Sample Software Implementation 

public interface INode 
{ 
 NodeStatus Tick(); 
} 

Figure 27 - The INode implementation for the examples in this discussion 

public enum NodeStatus 
{ 
 Failure, 
 Invalid, 
 Ready, 
 Running, 
 Success, 
} 

Figure 28 - The possible values of a NodeStatus enumeration 

The diagrams and abstract functionality of behavior trees should now be clear. Here I will discuss 

a very simple implementation of the basic building blocks. In this sample implementation every 

node must implement the INode interface as shown in Figure 27, above. This implementation is 

not an accepted standard. Each individual or company is at liberty to devise their own 
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implementation. The only requirement is that each node contain a Tick method that returns a 

NodeStatus enumeration. The NodeStatus possible values are shown in Figure 28. 

1.4.8.1 Sequences & Selectors 

public class ExampleSequence : INode 
{ 
 protected ExampleSequence() 
 { 
  Status = NodeStatus.Invalid; 
 } 
 public NodeStatus Status; 
 private List<INode> _children = new List<INode>(); 
 public List<INode> Children 
 { 
  get { return _children; } 
 } 
 public void AddChild(params INode[] nodes) 
 { 
  foreach (INode node in nodes) 
  { 
   _children.Add(node); 
  } 
 } 
 public void Initialize() 
 { 
  _status = NodeStatus.Ready; 
 } 
 protected void Update() 
 { 
  foreach (INode n in Children) 
  { 
   Status = n.Tick(); 
   if (Status != NodeStatus.Success) 
   { 
    break; 
   } 
  } 
 } 
 public NodeStatus Tick() 
 { 
  if (Status == NodeStatus.Invalid) 
  { 
   Initialize(); 
  } 
  Update(); 
  return Status; 
 }} 

Figure 29 - An example of a Behavior Tree Sequence 

Sequences and selectors are composites. They must contain an enumerable list of children and 

some method of populating that list. In this implementation an AddChild(params INode[] nodes) 

method is available. This method will accept an array of any size as long as it contains a type 
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derivable from INode. A potential implementation of a sequence is shown in Figure 29, above. 

Notice the simplicity in the Update method. It simply iterates through its children and calls their 

Tick method, halting if it reaches one that returns other than success. 

The only difference in the coding of a selector is in the Update method (Figure 30). Now the 

Update method iterates through its children and halts if it reaches one that does report success. 

protected void Update() 

{ 
 foreach (INode n in Children) 
 { 
  Status = n.Tick(); 
 
  if (Status == NodeStatus.Success) 
  { 
   break; 
  } 
 } 
} 

Figure 30 - An example of a Behavior Tree Selector Update method 

1.4.8.2 Decorators 

Once again, the only difference between decorators and other INodes is in the Update method. 

One implementation is shown in Figure 31. This implementation simply wraps the _child.Tick call 

inside of a try/catch block and handles appropriate exceptions. 

protected void Update() 
{ 
 lock (this) // lock shared resources 
 { 
  try 
  { 
   Status = _child.Tick(); 
  } 
  catch (Exception /* unique exceptions */) 
  { 
   //Handle the exception 
  } 
 } 
} 

Figure 31 - An example of a Behavior Tree Decorator Update method 
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1.4.8.3 Actions & Assertions 

Actions and assertions will typically be implemented as needed for a specific project. For example, 

if the behavior of an underwater vehicle is being developed, an assertion may call 

MyVehicle.Depth to determine the depth of the vehicle. Based on the success / failure of this 

assertion, a subsequent action in the tree may call MyVehicle.GetGPS() or 

MyVehicle.GoToSurface() respectively. 

 
Figure 32 - A behavior sub-tree representing the actions to get a GPS fix 

public class MyCheckDepthAssertion : INode 
{ 
 private REMUS _remus; 
 public MyCheckDepthAssertion() 
 { 
  _remus = REMUS.GetInstance(); 
 } 
 public NodeStatus Tick() 
 { 
  if (_remus.Depth <= 0) 
  { 
   return NodeStatus.Success; 
  } 
  else 
  { 
   return NodeStatus.Failure; 
  } 
 } 
} 

Figure 33 - Sample code that checks for a vehicle's depth 
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public class MyGetGPSAction : INode 
{ 
 private REMUS _remus; 
 public MyGetGPSAction() 
 { 
  _remus = REMUS.GetInstance(); 
 } 
 public NodeStatus Tick() 
 { 
  GPSFix fix = _remus.GetGPS(); 
  return NodeStatus.Success; 
 } 
} 

Figure 34 - Sample code that commands a vehicle to get a GPS fix 

public class MyGoToSurfaceAction : INode 
{ 
 private REMUS _remus; 
 public MyGoToSurfaceAction() 
 { 
  _remus = REMUS.GetInstance(); 
 } 
 public NodeStatus Tick() 
 { 
  if (_remus.Depth > 0) 
  { 
   _remus.GoToSurface(); 
   return NodeStatus.Running; 
  } 
  else 
  { 
   return NodeStatus.Success; 
  } 
 } 
} 

Figure 35 - Sample code that commands a vehicle to go to the surface 

1.5 ECMA-335 and ISO/IEC 23271 - Common Language Infrastructure 

The Common Language Infrastructure (CLI) was designed to allow programmers the ability to 

write software in different languages and on different platforms while still targeting the same 

underlying infrastructure. It is an open specification that anyone may adhere to. Two notable 

examples of this are Microsoft’s Common Language Runtime and Xamarin’s MONO 

implementation. The standard describes all of the necessary functionality a language must provide 
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to be considered CLI compliant, namely the Common Type System, Metadata, the Common 

Language Specification, and the Virtual Execution System (VES) [23] [24]. 

The Common Type System (CTS) specifies each of the possible data types and constructs 

supported by the standard and how they interact [25]. Adherence to these rules is what allows 

software written in different languages to access the same data. For example, a dynamically linked 

library may be written in C# may be linked at runtime to a program executing C#, Visual Basic, 

or C++ without any modifications to the code. The two categories of specified types are value (int, 

float, etc...) and reference (class1, class2, etc...) types. While the objective of the CLI is a high 

level of interoperability and high performance execution, the CTS is what makes it possible. 

The metadata used by the CLI describes the types defined in the CTS. It is a higher level definition 

of the type and the CLI uses it to locate and load classes, lay out their instances in memory, resolve 

method invocations, translate common intermediate language (CIL) to native code, enforce 

security, and setup runtime context boundaries [23]. 

The Common Language Specification is a set of rules that are a subset of the Common Type 

System. It further enhances the interoperability of languages by precisely specifying the set of 

features that must exist for a type. 

The Virtual Execution System is responsible for loading and running programs that have been 

programmed against the CLI specification. Its input is a CLI assembly. The CLI assembly, 

comprising CIL instructions, is passed through a just-in-time (JIT) compiler that translates them 

into native code. This common intermediate language is what enables code written on one machine 

to be transported to another machine and execute the same behavior. 
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1.6 ECMA-334 and ISO/IEC 23270:2006 – C# 

The ECMA-334 and ISO/IEC 23270 standards both describe the programming language known 

as C#. Its main proponent was Microsoft but standardization was proposed along with Hewlett-

Packard and Intel [26]. C# includes a garbage collector and implicit memory management. 

Therefore it is considered a managed language. The syntax is very similar to C/C++ and 

experienced developers should be able to begin coding in only a short time. The ECMA standard 

contains a Getting Started section that introduces the reader to the ubiquitous hello world notation 

in C#: 

class Program 
{ 
 static void Main(string[] args) 
 { 
  Console.WriteLine("Hello world"); 
 } 
} 

Figure 36 - Hello World in C# 

1.6.1 Mono 

The Mono Project, sponsored by Xamarin, is an open source implementation of Microsoft’s .NET 

Framework [27]. While used mainly for C# development on Linux computers, it allows Windows, 

MAC, and Linux users to develop software in a familiar environment and deploy their software to 

any of the other operating systems. 

1.6.1.1 MonoGame 

By leveraging the efforts of the Mono team, a new 2 and 3-dimensional cross platform 

programming framework was developed. This framework allows C# developers to harness both 
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OpenGL and DirectX backend graphic, input, and audio support. In 2013, even Microsoft Studios 

published titles for Windows 8 and Windows Phone 8 using this framework [28]. 

1.7 Modular Programming 

Following the concepts of modular programming means isolating functionality into small, reusable 

blocks of code that can be duplicated where needed or shuffled to achieve desired functionality. 

Several programming constructs lend themselves to this end. 

1.7.1 Interface Based Programming 

The concept of programming to an interface promotes loosely coupled interacting modules as well 

as ease of extension. The main benefit of interface based programming is that interaction with an 

object doesn’t imply knowledge of the underlying code, only the method of using it. For example, 

sports car engines are fabricated differently than luxury sedans but any experienced driver could 

intuitively grab the steering wheel and press the gas pedal. The output is the same but the 

mechanisms to achieve it may be much different. An interface describing common functions of an 

underwater could be implemented using C# as shown in Figure 37. 

 

public interface IVehicle 
{ 
 void TurnLeft(); 
 void TurnRight(); 
 void Surface(); 
 void Dive(); 
 // etc... 
} 

Figure 37 - An example of a C# interface describing an underwater vehicle 

If this interface were published and freely available then programmers at any underwater vehicle 

manufacturer could implement it and submit their designs to the framework and it would integrate 
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seamlessly. Another useful type of interface would be a vehicle behavior. A behavior would 

naturally need a begin and end method: 

 

public interface IBehavior 
{ 
 void Begin(); 
 void End(); 
} 

Figure 38 - An example of an interface describing a vehicle behavior 

A hypothetical, greatly simplified class belonging to the core framework and utilizing the vehicle 

and behavior interfaces, described above, might be declared like the one in Figure 39. The ease of 

extensibility should be apparent. Programmers wishing to extend the list of behaviors available to 

the system need only indicate their intent to implement the interface (similar to inheriting a base 

class) and then do so. 

 

public class SearchBehavior : IBehavior 
{ 
 private IVehicle _vehicle; 
  // constructor 
 public SearchBehavior(IVehicle vehicle) 
 { 
  _vehicle = vehicle; 
 } 
 
 public void Begin() 
 { 
  _vehicle.Dive(); 
  // code to evaluate for appropriate depth 
  _vehicle.TurnLeft(); 
  // code to decide appropriate distance to travel 
  _vehicle.TurnRight(); 
  // etc... 
 } 
 
 public void End() 
 { 
  _vehicle.Surface(); 
 } 
} 

Figure 39- A class titled ‘SearchBehavior’ that takes advantage of the previously defined IVehicle interface to achieve a 

goal without having a priori knowledge of the interface implementation’s underlying instructions. 
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1.7.2 Delegates 

Delegates are objects that can be used to call functions [29]. A good C++ analog would be that of 

a function pointer. When defining a delegate, you must state the return type and the parameter list 

of the function that this delegate will be compatible with. Once this is done, the delegate type can 

be initialized with the function it should call in the same way that an ‘int’ can be initialized with 

an integer value. In subsequent lines of code, the delegate type can be called in exactly the same 

way that the original method would be called. What this allows for is a general process to be 

developed with the specifics left up to users of that process. In Figure 40, the example involves a 

string modification method. The process involves making modifications to each character in that 

string. In this example there are two options: MakeUppercase or MakeLowercase. The constructor 

of the Program demonstrates the use of each of these methods using the delegate as the method 

caller. 

public delegate char CharModifier(char c); 
public Program() 
{ 
 string theString = "This Is A String"; 
 CharModifier mod = MakeUppercase; 
 string newString = StringModifier(theString, MakeLowercase); 
 Console.WriteLine(newString); // Prints: this is a string 
 newString = StringModifier(theString, MakeUppercase); 
 Console.WriteLine(newString); // Prints: THIS IS A STRING 
 Console.ReadLine(); 
} 
public string StringModifier(string s, CharModifier mod) 
{ 
 // StringBuilders are arrays used to construct strings efficiently 
 StringBuilder sb = new StringBuilder(); 
 foreach (char c in s) 
 { 
  sb.Append(mod(c)); 
 } 
 return sb.ToString(); 
} 
public char MakeUppercase(char c) 
{ 
 return char.ToUpper(c); 
} 
 
public char MakeLowercase(char c) 
{ 
 return char.ToLower(c); 
} 

Figure 40 - Example of a delegate calling a method to modify a string 
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1.7.2.1 Lambda Expressions 

Lambda expressions are unnamed, or anonymous, functions. In C#, they operate exactly like 

regular class methods when called. The only difference is in how they are declared. A normal class 

method comprises five parts: access modifier, return type, name, argument list, and method body. 

A Lambda expression comprises just two parts: argument list and method body (See Figure 41, 

below). 

Regular class method Lambda expression equivalent 
//[access modifier] [return type] 
//[name][(parameter list)] 
private int Sum(int a, int b) 
{ 
 return a + b; // [method body] 
} 

//[(parameter list)] 
(int a, int b) => 
{ 
 return a + b; // [method body] 
}; 

Figure 41 - A class method example alongside its Lambda expression equivalent 

Lambda expressions, having the same nature as methods, are also compatible with delegates. In 

fact, the C# compiler converts lambda expressions into either (a) a delegate, or (b) an expression 

tree that can be examined and executed at runtime. Thus, when declaring an anonymous function 

it makes sense to assign it to a delegate instance that can be referenced and called later (the Func 

delegate is discussed in Section 1.7.2.2 below). 

int b = 5; 
// Func delegate 
// parameters <input type, output type> 
Func<int, int> lambda = 
(int a) => 
{ 
 return a + b; // b is captured 
}; 
int result = lambda(1); // result is 6 

Figure 42 - A Lambda function capturing an outer variable 

As you can see in Figure 42, Lambdas also have the ability to capture outside variables (variables 

not defined within their scope). Captured variables do not need to be explicitly declared in C# as 

in some programming languages, but rather they are inferred from the logic itself. The power of 
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Lambda expressions is in their ability to be passed around like data as if they were variables. For 

instance, we could modify our previous example of string modifications to use Lambda 

expressions instead. See Figure 43. 

public delegate char CharModifier(char c); 
  
public Program() 
{ 
 string theString = "This Is A String"; 
 // c => char.ToLower() is our Lambda expression 
 string newString = StringModifier(theString, c => char.ToLower(c)); 
 Console.WriteLine(newString); // Prints: this is a string 
 // c => char.ToUpper() is our Lambda expression 
 newString = StringModifier(theString, c => char.ToUpper(c)); 
 Console.WriteLine(newString); // Prints: THIS IS A STRING 
} 
public string StringModifier(string s, CharModifier mod) 
{ 
 // StringBuilders are arrays used to construct strings efficiently 
 StringBuilder sb = new StringBuilder(); 
 foreach (char c in s) 
 { 
  sb.Append(mod(c)); 
 } 
 return sb.ToString(); 
} 

Figure 43 - Using Lambda expressions instead of methods to modify a string 

1.7.2.2 Actions and Funcs 

Actions and Funcs are predefined, generic, general use delegates. Since they are built in types they 

allow developers to more easily build general purpose code able to cross application domains. The 

main difference between the two is just that Actions return no value. They both accept an arbitrary 

number of arguments defined at compile time. For example, our previous string modification 

program could be changed to use Action and Func delegates as shown in Figure 44. This example 

does not adequately make the case for using Actions and Funcs. That purpose requires more 

sophisticated scenarios which will be explored in my  

Behavior Tree section. It does, however, demonstrate the most valuable ability to pass methods as 

data. This concept will become a vital part of the modular behavior tree structure described later. 
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public Program() 
{ 
 Func<string, Func<char, char>, string> stringMod = 
  new Func<string, Func<char, char>, string>((theString, mod) => 
  { 
   // StringBuilders are arrays used to construct strings efficiently 
   StringBuilder sb = new StringBuilder(); 
   foreach (char c in theString) 
   { 
    sb.Append(mod(c)); 
   } 
   return sb.ToString(); 
  }); 
 
 Action<string> printAction = 
 new Action<string>(stringToPrint =>  
  { 
   Console.WriteLine(stringToPrint); 
  }); 
 
 string s = "This Is A String"; 
 // c => char.ToLower() is our func 
 string newString = stringMod(s, c => char.ToLower(c)); 
 printAction(newString); 
 // c => char.ToUpper() is our func 
 newString = stringMod(s, c => char.ToUpper(c)); 
 printAction(newString);  // prints: this is a string 
} 

Figure 44 - Taking advantage of the Action and Func delegates 

1.8 Case Based Reasoning 

Case-Based Reasoning (CBR) is a system based on using results of previous experiences to decide 

on approaches to new problems. It could be said that this approach mimics the way humans decide 

how to overcome unfamiliar tasks, by using memories of similar tasks undertaken and the 

methodology that eventually lead to success. There is not a single definition of the process to 

achieve CBR but a general, popularly accepted design was proposed by Aamodt and Plaza in [30]. 

Their design comprises four stages, known as the “four REs.” 

1. Retrieve the most similar case or cases 

2. Reuse the information and knowledge in that case 

3. Revise the proposed solution 

4. Retain the parts of this experience likely to be useful in the future 
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Figure 45 - The four fundamental stages of a case-based reasoning exercise (The four REs) 

A case-based reasoning exercise begins with a query, proceeds to an action, and ends with 

newfound knowledge of the domain (see Figure 45). Queries are not prescribed but tend to take 

the form of mathematical formulas modeling the similarity of the cases in the base to the current 

situation. 

The following sections describe the four stages of a case-based reasoning cycle using a simple 

‘Game of Life’ example. The example will include an actor and a world model. 

Table 1 - A simple model of an actor in a game of life example 

Actor Description 
Health The general well-being of the actor. A high value indicates good 

health. A low value would indicate some sort of sickness. A 0 
would indicate death. 

Hunger An indicator of how hungry the actor is. A 0 would mean not 
hungry at all and a 10 would mean extremely hungry. 

Energy The level of stored energy the actor contains. A 0 would mean 
the actor needed rest badly. A 10 would mean that the actor was 
ready to participate in some kind of activity. 

Mood The level of contentment that the actor feels with its current 
situation. A 0 would indicate very sad and a 10 would indicate 
very happy. A sad actor is more likely to change the current 
activity it is participating in. 
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Table 2 - A simple model of the world in a game of life example 

World Description 
Time The current 24-hour time of day. 0 would mean midnight (am) and 

2359 would mean midnight (pm). 
Weather An enumerated value of the current weather condition. {raining, 

sunny, snowing, sleeting, sprinkling, windy, … } 
Season {spring, summer, fall, winter} 

Table 3 - A collection of cases in the case-base 

Eat Sleep Exercise Heal Relax 
Health 5 Health 5 Health 6 Health 2 Health 5 
Hunger 7 Hunger 3 Hunger 4 Hunger  Hunger 3 
Energy 5 Energy 3 Energy 8 Energy  Energy 4 
Mood 5 Mood 5 Mood 5 Mood  Mood 5 
Time 5<t<22 Time 22<t<5 Time 6<t<18 Time  Time 5<t<22 
Weather  Weather  Weather  Weather  Weather  
Season  Season  Season  Season  Season  

1.8.1 Retrieval 

In the retrieval stage, mathematical similarity functions are typically used to compare cases in the 

base to the current situation. Any number of features may be analyzed. In a game, health and 

difficulty may play a role. In navigation, traffic and orientation may be accounted for. Once 

analysis is complete, the top-k results are chosen and passed to the next phase for further evaluation 

or possible refinement. For our example, we start out with a query, Q, based on current world and 

actor variables, and a set of cases, Ck, from the case base. 

 

Table 4 - A CBR query based on current world variables 

Query (Q) 
Health 7 
Hunger 5 
Energy 5 
Mood 5 
Time 12 
Weather Sunny 
Season Summer 
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Then, a mathematical formula is applied to determine the most appropriate action to take. Each 

case in the case base is evaluated. 

𝑠𝑖𝑚(𝑄, 𝐶) =  ∑ 𝑤𝑑 ∗ 𝑠𝑖𝑚𝑙𝑜𝑐(𝑄𝑑, 𝐶𝑑)

𝑑∈𝐷(𝑄,𝐶)

 

𝐷(𝑄, 𝐶) = 𝑄. 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 ∩ 𝐶. 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 

𝑠𝑖𝑚𝑙𝑜𝑐(𝑄𝑑, 𝐶𝑑) = 1 − 
|𝑄𝑑. 𝑣𝑎𝑙𝑢𝑒 − 𝐶𝑑 . 𝑣𝑎𝑙𝑢𝑒|

𝑠𝑖𝑧𝑒𝑑
 

Where wd is a weight factor allowing priority of certain attributes under certain circumstances. In 

our example, it is 1 in all cases. Also, to clarify, the time attribute becomes either a 1 or a 0 for 

‘true’ and ‘false’ respectively. Application of the formula yields: 

Table 5 – A world actor’s rationale for choosing a case from the case base 

 Eat Sleep Exercise Heal Relax 

Health 0.8 0.8 0.9 0.5 0.8 

Hunger 0.8 0.8 0.9  0.8 

Energy 1 0.8 0.7  0.9 

Mood 1 1 1  1 

Time 1 0 1  1 

sim(Q,C) 0.92 0.68 0.9 0.5 0.9 

In this instance, the actor would choose the ‘Eat’ activity. If we presume the actor eats a healthy 

meal that energizes him, the next instance of the world query might yield a lower hunger attribute 

and a higher energy attribute: 



43 

 

Table 6 - A modified CBR query taking into account a recent hardy meal 

Query 
Health 7 
Hunger 3 
Energy 8 
Mood 5 
Time 13 
Weather Sunny 
Season Summer 

This, in turn, would result in a case-base result of: 

Table 7 - The resulting case base coefficients after taking the previous query into account 

 Eat Sleep Exercise Heal Relax 

Health 0.8 0.8 0.9 0.4 0.8 

Hunger 0.6 1 0.9  1 

Energy 0.7 0.5 1  0.6 

Mood 1 1 1  1 

Time 1 0 1  1 

sim(Q,C) 0.82 0.66 0.96 0.4 0.88 

 

Now our actor would choose to exercise. A further refinement of the result might be to account for 

season and weather conditions. Since it is summertime and sunny, our actor might choose to go 

for a run. If it were winter and rainy, our actor might head to the gym. Following this activity it is 

easy to foresee the actor with a very low energy rating and pursuing the relax activity. 

1.8.2 Reuse 

During reuse, the selected cases are either applied directly (transformational reuse) or adapted 

(derivational reuse) to conform to user supplied guidelines. The transformational approach was 

already demonstrated in our example of a retrieval as the actor chose to execute the ‘eat’ and 
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‘exercise’ activities. Opportunities for the derivational approach would have emerged in a more 

sophisticated approach to determining which food to eat or which exercise to undertake. 

1.8.3 Revision 

During the revision phase, the result of applying the case is evaluated as to whether or not success 

was achieved. If the case was successful it may be retained (section 1.8.4 below). If the case was 

not successful, it may be discarded or ‘repaired’ through a fault identification and remediation 

process determined by the developer. 

1.8.4 Retention 

If a particular case successfully delivers the desired result, the underlying knowledge base (case 

base) may be updated with a new case for future retrieval. On the other hand, if a chosen case was 

unsuccessful in supplying the desired result, it may be modified to portray a less desirable solution 

to the query during the next retrieval process. 

1.9 XML 

The eXtensible Markup Language was developed by the World Wide Web Consortium (W3C). It 

was derived from an older standard format called SGML (ISO 8879) to be more web friendly [31]. 

Since its inception, it has emerged as the de facto standard for information exchange across 

working boundaries. It relates data in a self-describing manner so that users and machines can 

interpret the data [32]. Numerous tools have been developed for almost any language to parse 

XML documents. Unlike HTML, XML follows a strict schema. That is, the syntax does not grant 

conformity to files that contain errors. It is very verbose, carrying a lot of metadata about the 
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information which is represented. More efficient data transfer formats are easily discovered but 

the bridges of interoperability begin to fall down. 

An XML document usually begins with a header declaring its version and encoding. It is followed 

by any number of elements, attributes, and comments. 

<?xml version="1.0" encoding="utf-8" ?> 
<University> 
 <!--This is a comment--> 
 <!—Below is an element called ‘name’ that has an attribute called ‘type’--> 
 <Name type="string">Florida State University</Name> 
 <City type="string">Tallahassee</City> 
 <State type="string">Florida</State> 
 <ZipCode type="uint" maxLength="5">32306</ZipCode> 
 <Mascot type="string">Seminole</Mascot> 
</University> 

Figure 46 - An example XML file showing elements, attributes, and comments 

1.9.1 Tags & Elements 

<Tag></Tag> 

An XML tag is an identifier surrounded by an opening ‘<’ and a closing ‘>’ (e.g. <University>). 

Tags may define the opening of an element, the closing of an element, or they may be empty 

element tags (e.g. <EmptyElementTag/>). Closing tags must match the opening tag except for a 

‘/’ just prior to the tag name (e.g. </ClosingTag>). Elements are composed of an opening tag, the 

element content, and a closing tag. The content of an XML element may contain any combination 

of text and whitespace. Certain characters, however, are used by the XML parsers to delineate tags 

and are thus unavailable for use in standard text. These elements must be ‘escaped’ by the entities 

shown in Table 8. An element may also contain attributes further describing the markup. 
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Table 8 –XML escape characters 

Character Entity 

< &lt; 

> &gt; 

“ &quote 

‘ &apos; 

& &amp; 

1.9.2 Attributes 

<ZipCode type="uint" maxLength="5">32306</ZipCode> 

XML attributes are key/value pairs contained with the opening tag of an element. They can be 

used to add additional information about the element they are contained in. For example, in Figure 

46, the ZipCode element has attributes type and maxLength to give the XML consuming code an 

ability to recognize improper values. 

1.9.3 Comments 

<!--This is a comment--> 

XML comments are placed in a document by denoting them with an opening <!-- and closing them 

with a -->. These characters, like in many software coding languages, are ignored by the parser 

and are used by developers to give insight to the meaning of the markup. 

1.9.4 Schema 

XML schemas define valid XML documents using the same rules that govern those XML 

documents. That means that all of the usual XML parsers can also parse an XML schema as a 

regular XML document. Suppose we wanted an intuitive way to store information about a 

particular underwater mission. A database representation would certainly work. XML files have 
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the capability to describe tables, primary keys, foreign keys, data types, and other relationships 

inherent to a database structure. In this example we have 5 tables. 

Mission Types (MissionTypes): This table has one column (Name) that describes what type of 

missions we typically execute. For example, economic search, communication characterization, 

etc... 

Missions: This table assigns a unique identifier to each mission that we send our vehicle on. It also 

records the start time, end time, and mission type. Mission type has a foreign key relationship to 

the MissionTypes.Name column. 

Target Queries (TargetQueries): This table maintains a record of each range measurement we take 

with an underwater node. It records the current time, the vehicle’s location (lat, long), the node’s 

id, the node distance, and the mission number we are currently executing. This table has a foreign 

key relationship to the Mission.MissionNumber column. 

Probable Locations (ProbableLocations): At the end of each mission, we use multi-lateration 

techniques to determine each node’s most likely location. The table records the mission number, 

target number, and target location (lat, long). This table has a foreign key relationship to the 

Mission.MissionNumber column. 

Communication Checks (CommunicationChecks): When characterizing a node’s communication 

capabilities, we need to determine the bit errors that occur during each transmission. This will help 

optimize future communications with the node since we’ll have a record of its highest success 

path. This table has a foreign key relationship to the Mission.MissionNumber column. 
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The table representation of our simple database is shown in Figure 47, below. The text based XML 

schema is shown in Figure 48. All of the necessary constructs to describe primary keys, foreign 

keys, and the other constraints are valid XML elements and attributes. 

 
Figure 47 –A sample XML schema as displayed by Microsoft Visual Studio 11 

<?xml version="1.0" standalone="yes"?> 

<xs:schema id="Sample_x0020_Data_x0020_Set" xmlns="" 

xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:msdata="urn:schemas-microsoft-com:xml-

msdata"> 

  <xs:element name="Sample_x0020_Data_x0020_Set" msdata:IsDataSet="true" 

msdata:UseCurrentLocale="true"> 

  <xs:complexType> 

    <xs:choice minOccurs="0" maxOccurs="unbounded"> 

      <xs:element name="MissionTypes"> 

        <xs:complexType> 

          <xs:sequence> 

            <xs:element name="Name" type="xs:string" /> 

          </xs:sequence> 

        </xs:complexType> 

      </xs:element> 

      <xs:element name="Missions"> 

        <xs:complexType> 

          <xs:sequence> 

            <xs:element name="StartTime" type="xs:string" minOccurs="0" /> 

            <xs:element name="EndTime" type="xs:string" minOccurs="0" /> 

            <xs:element name="MissionNumber" msdata:AutoIncrement="true" type="xs:int" /> 

            <xs:element name="Type" type="xs:string" minOccurs="0" /> 

          </xs:sequence> 

        </xs:complexType> 

      </xs:element> 

      <xs:element name="CommunicationChecks"> 

        <xs:complexType> 

          <xs:sequence> 

            <xs:element name="TimeStamp" type="xs:string" /> 

            <xs:element name="MissionNumber" type="xs:int" /> 

 

Figure 48 - The XML schema describing the relationship of the tables in Figure 26 
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            <xs:element name="VehicleLat" type="xs:double" /> 

            <xs:element name="VehicleLong" type="xs:double" /> 

            <xs:element name="Orientation" type="xs:double" /> 

            <xs:element name="TargetNumber" type="xs:int" /> 

            <xs:element name="ERR" type="xs:int" minOccurs="0" /> 

            <xs:element name="SNR" type="xs:double" minOccurs="0" /> 

          </xs:sequence> 

        </xs:complexType> 

      </xs:element> 

      <xs:element name="TargetQueries"> 

        <xs:complexType> 

          <xs:sequence> 

            <xs:element name="TimeStamp" type="xs:string" /> 

            <xs:element name="MissionNumber" type="xs:int" /> 

            <xs:element name="VehicleLat" type="xs:double" /> 

            <xs:element name="VehicleLong" type="xs:double" /> 

            <xs:element name="TargetNumber" type="xs:int" /> 

            <xs:element name="TargetDistance" type="xs:double" minOccurs="0" /> 

          </xs:sequence> 

        </xs:complexType> 

      </xs:element> 

      <xs:element name="ProbableLocations"> 

        <xs:complexType> 

          <xs:sequence> 

            <xs:element name="MissionNumber" type="xs:int" /> 

            <xs:element name="TargetNumber" type="xs:int" /> 

            <xs:element name="TargetLat" type="xs:double" /> 

            <xs:element name="TargetLong" type="xs:double" /> 

          </xs:sequence> 

        </xs:complexType> 

      </xs:element> 

    </xs:choice> 

  </xs:complexType> 

  <xs:unique name="Constraint1" msdata:PrimaryKey="true"> 

    <xs:selector xpath=".//MissionTypes" /> 

    <xs:field xpath="Name" /> 

  </xs:unique> 

  <xs:unique name="Missions_Constraint1" msdata:ConstraintName="Constraint1" 

msdata:PrimaryKey="true"> 

    <xs:selector xpath=".//Missions" /> 

    <xs:field xpath="MissionNumber" /> 

  </xs:unique> 

  <xs:unique name="CommunicationChecks_Constraint1" msdata:ConstraintName="Constraint1" 

msdata:PrimaryKey="true"> 

    <xs:selector xpath=".//CommunicationChecks" /> 

    <xs:field xpath="TimeStamp" /> 

  </xs:unique> 

  <xs:unique name="ProbableLocations_Constraint1" msdata:ConstraintName="Constraint1" 

msdata:PrimaryKey="true"> 

    <xs:selector xpath=".//ProbableLocations" /> 

    <xs:field xpath="MissionNumber" /> 

    <xs:field xpath="TargetNumber" /> 

  </xs:unique> 

  <xs:keyref name="FKProbableLocationMissionNumberMatch" refer="Missions_Constraint1" 

msdata:ConstraintOnly="true"> 

    <xs:selector xpath=".//ProbableLocations" /> 

    <xs:field xpath="MissionNumber" /> 

  </xs:keyref> 

  <xs:keyref name="FKTargetQueriesMissionNumberMatch" refer="Missions_Constraint1" 

msdata:ConstraintOnly="true"> 

    <xs:selector xpath=".//TargetQueries" /> 

    <xs:field xpath="MissionNumber" /> 

  </xs:keyref> 

  <xs:keyref name="FKMissionNumberMatch" refer="Missions_Constraint1" 

msdata:ConstraintOnly="true"> 

 

Figure 48 – continued 
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    <xs:selector xpath=".//CommunicationChecks" /> 

    <xs:field xpath="MissionNumber" /> 

  </xs:keyref> 

  <xs:keyref name="FKMissionTypeMatch" refer="Constraint1" msdata:ConstraintOnly="true"> 

    <xs:selector xpath=".//Missions" /> 

    <xs:field xpath="Type" /> 

  </xs:keyref> 

 </xs:element> 

</xs:schema> 

Figure 48 - continued 

1.9.5 XPath 

<?xml version="1.0" encoding="utf-8" ?> 
<documentElement name="docElement"> 
 <child0 name="child0"> 
  <child0-1 name="child0-1"/> 
  <child0-2> 
   <name>child0-2</name> 
  </child0-2> 
 </child0> 
</documentElement> 

Figure 49 - XML snippet for XPath example (filename xml.xml) 

XPath is the standard defined by W3C that provides a common syntax for querying XML 

documents [29]. The specification itself can be found at http://www.w3.org/TR/xpath/. C# fully 

supports XPath queries through its System.XML namespace classes. Given the XML snippet in 

Figure 49, we can query its elements and attributes like so: 

using System.Xml; 
// etc 
private static void XPathExample() 
{ 
 XmlDocument xdoc = new XmlDocument(); 
 xdoc.Load("xml.xml"); 
 XmlNode docElm = xdoc.DocumentElement; 
 XmlNode docElmNameAttribute = docElm.SelectSingleNode("@name"); 
 Console.WriteLine("docElm name=" + docElmNameAttribute.Value); // docElement 
 XmlNode child0 = docElm.SelectSingleNode("child0"); 
 Console.WriteLine("child0 name=" + child0.SelectSingleNode("@name").Value); // child0 
 XmlNode child0_1 = child0.SelectSingleNode("child0-1"); 
 Console.WriteLine("child0-1 name=" + child0_1.SelectSingleNode("@name").Value); // child0-1 
 XmlNode child0_2 = child0.SelectSingleNode("child0-2"); 
 Console.WriteLine("child0-2 name=" + child0_2.SelectSingleNode("name").InnerText); // child0-2 
} 

Figure 50 - Utilizing XPath with C# XMLNodes 
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1.10  Reflection 

VehicleInterface.cs SampleVehicle.cs 
namespace LibraryExamples 
{ 
 public interface IVehicle 
 { 
  Distance GetDepth(); 
  void SetDepth(Distance dist); 
  Speed GetSpeed(); 
  void SetSpeed(Speed speed); 
 } 
} 

namespace SampleVehicle 
{ 
 public class UserVehicle : IVehicle 
 { 
  private Distance _depth; 
  private Speed _speed; 
  public Distance GetDepth()  
  { 
   return _depth; 
  } 
 
  public void SetDepth(Distance depth) 
  { 
   _depth = depth; 
  } 
 
  public Speed GetSpeed() 
  { 
   return _speed; 
  } 
 
  public void SetSpeed(Speed speed) 
  { 
   _speed = speed; 
  } 
 } 
} 

Figure 51 - An IVehicle interface implemented by a SampleVehicle class. 

Reflection, simply put, is the capability of software to inspect code metadata and operate on it. For 

example, reflection can be used to open a dynamically linked library at runtime, inspect the classes 

therein, and instantiate them. The experimental behavior tree framework used in this research will 

make use of XML files and reflection to allow users the ability to define which files contain the 

necessary components to make the framework activate properly. As an example, Figure 51 shows 

the code contained in two files: VehicleInterface.cs defines the necessary methods of a vehicle and 

SampleVehicle.cs defines a class that implements them. The usefulness of interfaces and their 

implementations was described in section 1.7.1 above. 

Each of the files in Figure 51 will eventually be compiled into their own DLL (VehicleInterface.dll 

and SampleVehicle.dll, respectively). Now at runtime, if a component of the behavior tree 
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framework has need of an IVehicle interface and the XML configuration file that was setup by the 

user specifies that SampleVehicle.dll is the proper file to retrieve it from, it can do so as shown in 

Figure 52. 

ConsoleProgram.cs 
private Program() 
{ 
 Console.WriteLine("Opening SampleVehicle.dll"); 
 FileInfo fi = new FileInfo("SampleVehicle.dll"); 
 Assembly a = Assembly.LoadFile(fi.FullName); 
 Type[] types = a.GetTypes(); 
 Console.WriteLine("These are the types in the file:"); 
 for (int i = 0; i < types.Length; i++) 
 { 
  Console.WriteLine((i + 1) + ") " + types[i].Name); 
  Type[] interfaces = types[i].GetInterfaces(); 
  for (int j = 0; j < interfaces.Length; j++) 
  { 
   Console.WriteLine("  " + types[i].Name + " implements " + interfaces[j].Name); 
  } 
 } 
 Console.WriteLine("Done"); 
} 
Output of ConsoleProgram when executed 

 
Figure 52 - An example of a program opening a DLL and inspecting its types and interfaces 

Furthermore, if the examination of the file sufficiently establishes its usefulness as an IVehicle, an 

instance of an IVehicle can be created and utilized as seen fit by the programmer. In Figure 53, an 

IVehicle is instantiated, the depth and speed are set, and the values are verified by writing them to 

the console window. 

ConsoleProgram.cs 
private Program() 
{ 
 Console.WriteLine("Opening SampleVehicle.dll"); 
 FileInfo fi = new FileInfo("SampleVehicle.dll"); 
 Assembly a = Assembly.LoadFile(fi.FullName); 
 Type[] types = a.GetTypes(); 
 IVehicle vehicle = Activator.CreateInstance(types[0]) as IVehicle; 

Figure 53 - Instantiating a type / interface from a DLL and utilizing its methods. 
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 if (vehicle != null) 
 { 
  vehicle.SetDepth(Distance.FromFeet(10)); 
  vehicle.SetSpeed(Speed.FromMetersPerSecond(5)); 
  Console.WriteLine("Depth: " + vehicle.GetDepth().Feet); 
  Console.WriteLine("Speed: " + vehicle.GetSpeed().MetersPerSecond); 
 } 
 else 
 { 
  Console.WriteLine(types[0].Name + " does not implement IVehicle"); 
 } 
} 
Output of ConsoleProgram when executed 

 
Figure 53 - continued 
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CHAPTER 2  

RELATED WORK 

2.1 Behavior Architectures 

The following architectures are modern designs being used as research platforms to develop 

sophisticated behaviors. The EGO architecture uses behavior modules in a tree structure similar to 

the behavior trees proposed in this framework. Another design, Query-Enabled Behavior Trees, 

uses the same proposed behavior tree foundation as the basis for a case-based-reasoning (CBR) 

extension. The usability benchmarks paper, described below, simply makes the case for developing 

behavior frameworks that are targeted at the end user. 

2.1.1 EGO – Emotionally GrOunded Architecture 

 
Figure 54 - The Emotionally GrOunded (EGO) Architecture 

The Emotionally GrOunded module based selection architecture shown in Figure 54 was designed 

to be used in personal interaction robots [33]. These robots would potentially have auditory and 
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visual perception sensors lending external stimuli, along with an emotional engine, to the behavior 

selection component. This component is then responsible for choosing the appropriate behavior, 

protecting the integrity of hardware resources, and maintaining an acceptable state. 

One of the motivations for this new approach to behaviors was “to provide a simple description, 

employ a simple strategy for behavior design, and make it easy to reuse behaviors.” They 

accomplished this by developing ‘behavior modules’ and integrating them into a tree structure. 

This tree structure is broken down into conceptual levels which can be independently evaluated 

for suitability of execution. Each of the modules on this tree is capable of being an executable 

behavior or the parent of other child modules which can be executed. Figure 55 shows an example 

of a grouping of behavior modules into these conceptual levels. The parent module of both ‘Play’ 

and ‘Interaction’ determines which child should be executed based on a behavior value determined 

by the equation 

Bv = βMv + (1 – β)Rv 
Equation 1 - EGO Architecture - Behavior value 

where Bv is the behavior value, Mv is the motivation value, and Rv is the releasing value, 

representing an expected merit value. Rv is calculated by 

Rv = αΔS + (1 – α)(S + ΔS) 
Equation 2 - EGO Architecture - Releasing value 

where S is the satisfaction value derived from the current internal status and ΔS is the expected 

change of S. ΔS is calculated by 

ΔS = f(ΔI) 
Equation 3 - EGO Architecture – Expected change of satisfaction value 
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where ΔI is the expected change of internal value based on external stimuli. 

Then, once ‘Play-Soccer’ is chosen, the search, approach, and kick behaviors are evaluated for 

appropriate execution. 

 
Figure 55 - Behavior modules organized into conceptual levels 

Monitoring hardware resource availability during parallel execution is done with a set of keys. 

These keys are distributed by parent modules to their children based on a selected distribution 

strategy. When the execution phase begins, behavior modules are activated in parallel until a 

conflict of execution key is detected. When this scenario arises, lower priority modules are stopped 

first and then the higher priority modules are activated. 
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By utilizing the described architecture, researchers were able to successfully implement soccer, 

charging, and chatting behaviors. The suitability of the architecture was confirmed and future 

research plans in the area of conceptual layer decomposition were discussed. 

2.1.2 Query Enabled Behavior Trees 

In [34], the authors inject some planning capabilities based on case-based reasoning. Their 

reasoning behind the utilization of behavior trees was simple. Instead of developing a new AI 

framework from scratch, they would use “industry-trusted techniques” and simply extend them 

with academic research results. Similar justification is used for the reflective extension proposed 

in this paper. 

Basic behavior trees were discussed in section 1.3 above. This extension proposes a new node 

called a query node. This new node, unlike the static sequences and selectors previously described, 

uses the current state of the game to match an appropriate ‘case’ from a case base. Not all cases 

are appropriate at each tick. Therefore cases are chosen based on a similarity function. Given a 

query ‘Q’ and a case ‘C’ from the case base: 

𝑠𝑖𝑚(𝑄, 𝐶) = {

𝑄. 𝑑𝑜𝑚𝑎𝑖𝑛 ⋣ 𝐶. 𝑐𝑙𝑎𝑠𝑠 ⟹ 0
𝑇ℎ𝑒 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 𝑄 𝑑𝑜 𝑛𝑜𝑡 ℎ𝑜𝑙𝑑 𝑖𝑛 𝐶 ⟹ 0

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ⟹ 𝑠𝑖𝑚𝑎𝑡𝑟(𝑄, 𝐶)
 

𝑠𝑖𝑚𝑎𝑡𝑟(𝑄, 𝐶) =  ∑ 𝑤𝑑 ∗ 𝑠𝑖𝑚𝑙𝑜𝑐(𝑄𝑑, 𝐶𝑑)

𝑑∈𝐷(𝑄,𝐶)

 

𝐷(𝑄, 𝐶) = 𝑄. 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 ∩ 𝐶. 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 

𝑠𝑖𝑚𝑙𝑜𝑐(𝑄𝑑, 𝐶𝑑) = 1 − 
|𝑄𝑑. 𝑣𝑎𝑙𝑢𝑒 − 𝐶𝑑 . 𝑣𝑎𝑙𝑢𝑒|

𝑠𝑖𝑧𝑒𝑑
 



58 

 

The weight, wd, is an importance value for a descriptor set by the designer. The value sized is the 

size of the interval of valid values for a descriptor. 

The attraction to this method is that behaviors developed late in a development cycle have as much 

utility in earlier developed behavior trees as late ones. That is, as opposed to statically formed 

trees, where transitions to behavior nodes are explicitly typed and must be updated as new 

behaviors are developed, now only the case base needs to be updated. If the new case is properly 

added to the query domain it will be evaluated appropriately during the next run. Based on the 

authors’ calculations, this framework would have had the effect of automatically revising 6700 

nodes during the Halo 2 development cycle. 

2.1.3 Usability Benchmarks of Targets-Drives-Means Robotic Architecture 

In [35], the authors present an approach to behavioral programming targeted toward end 

developers. The architecture is called Target-Drives-Means (TDM) and is meant to promote rapid 

understanding and development of behaviors. The development studio for TDM enables 

programming of reusable components (small, discrete behavioral parts) and complete behaviors 

units which comprise several of the reusable components. The behavior itself is observed by 

activation of these components in the arrangement given by the developer using a graphical IDE. 

Experiments included watching a robot perform a behavior and then subsequently studying the 

behavior unit. Next, a behavioral unit was studied first and then observed on a mobile robot. The 

performance metric was how long it took for a new developer to understand the operation of the 

behavior. Later experiments included comparison of the time it took to develop a desired behavior 

using TDM and the older method of flowcharts. No individual components were developed, only 

complete behavioral units by means of arranging the smaller, preprogrammed components. Results 
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of this study show that while the initial learning curve is higher, intuitive measures can increase 

the behavioral programming capacity of informed developers (see Figure 56). 

Table 9 – TDM Usability Questionnaire 

Question Number Question Text 
1 I think this product would be easy to use 
2 I think I would need the support of a technical person to be able 

to use this product. 
3 I would need to learn a lot of things before I could get going 

with this product. 

 
Figure 56 - Results of Target-Drives-Means Framework Usability Benchmarks (from [35]) 



60 

 

2.2 Underwater Autonomy 

2.2.1 AUV AVALON 

The changing climate and the encroachment of human development into ocean environments 

increases the need to monitor these areas. Autonomous Underwater Vehicles are the obvious tools 

needed to accomplish this task. However, since underwater vehicles lack a reliable, high-speed 

communication channel their missions are pre-planned and very restrictive. The authors of [36] 

recognize this need for more reactive behaviors and propose a plan management approach that 

they hope will replace planning-based approaches to underwater autonomy. They document that 

almost all architectures are developed to solve a very specific mission. One exception was a T-

REX architecture build on top of the NASA EUROPA (Extensible Universal Remote Operations 

Planning Architecture) planner. However, this architecture can only represent what EUROPA can 

represent. This means it is unable to branch or re-plan. Even these developers, though, admit that 

their design relies heavily on the software framework that they used to develop their architecture. 

 
Figure 57 - AUV AVALON Control Architecture 

The AUV AVALON (Autonomous Vehicle for Aquatic Learning, Operation, and Navigation) was 

used during experimentation to detect leaks on underwater pipes and report to a control point. The 
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team was successful in completing several test missions which proves the viability of their 

behavior pool. Their composition, however, follows a less modular approach than this project 

hopes to define. 

2.2.2 Nested Autonomy Architecture 

Since low bandwidths, latencies, and other uncertainties prevent underwater networks from relying 

heavily on acoustic communications, the researchers behind [37] developed the Nested Autonomy 

Architecture. Its goal is to overcome these limitations by making nodes intelligent enough to “take 

action to the changing environmental conditions without depending much on the communication 

infra-structure.” The behavior engine of their design is the interval programming based IvP-Helm, 

a mathematical model for multi-objective optimization. Each objective, or behavior, is a distinct 

software module dedicated to reaching a certain goal. These objectives, when operating 

concurrently, compete for control of the vehicle and the winner is chosen by the IvP Solver. Each 

behavior must provide a utility function which the solver uses, after evaluating heading, speed, 

and other commands, to determine the most appropriate behavior. 

2.2.3 AUV Aided Node Localization 

When UASNs are placed without ties to fixed objects they are subject to movement due to high 

currents and rolling. These changes can be reconciled by periodic surveys performed by AUVs to 

determine the node’s new location and report it back to the field operators. In [38], two preplanned 

vehicle trajectories were proposed to facilitate node interrogation and localization with no a priori 

infrastructure or synchronization. When performing a lattice like trajectory covering the entire 

known field typical localization was around 90%. The study then evaluated an Archimedean spiral 
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trajectory where typically only about 60% of the nodes were localized. Obviously the lattice 

localization method achieved better results but at a cost of more distance travelled. This method 

may be improved by the injection of reactive behaviors into the subsystem’s control framework. 

The authors in [39] discuss network layouts deployed in hostile environments via ship or artillery. 

Naturally, the positions of these nodes are known only to a very coarse bounding box. The authors 

go on to present methods for determining node location based on trilateration and multilateration 

techniques. While briefly mentioning the existence of mobile nodes, the paper avoids direct 

discussion of the level of autonomy involved with the ideal positioning of the mobile asset. The 

techniques discussed were based on static nodes but should easily be extrapolated for use onboard 

a mobile node. Furthermore, the experiments were confined to a simulation environment and thus 

require further field testing. 

2.3 Modular Open Systems 

Since 1994, the DoDs Open Systems Joint Task Force has been overseeing the implementation of 

open system specifications and standards on weapon system acquisitions. Previously defined as a 

Modular Open Systems Approach (MOSA), the Open Systems Architecture (OSA) strategy seeks 

to ensure that scientists and engineers design for affordable change, employ evolutionary 

acquisition and spiral development, and develop an integrated roadmap for system design and 

development [40]. Five major principles underlie its successful realization: Establishing a MOSA 

enabling environment, employment of modular design, designation of key interfaces, use of open 

standards for key interfaces, and certifying conformance [41]. 
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2.3.1 Joint Architecture for Unmanned Systems / SAE AS4 

The Joint Architecture for Unmanned Systems (JAUS) was conceived by the United States 

Department of Defense. Since that time it has been accepted as a Society of Automotive Engineers 

(SAE) International standard known as AS-4. It was an effort to reduce logistical requirements and 

maximize the interoperability of unmanned assets. It is a service-based communications 

architecture that abstracts inter-process communications to a structure very similar to current 

TCP/IP networks and defines an extensible message set used by 'components'. This allows any 

JAUS compliant systems to communicate and exchange information in a compact format with 

little knowledge of the other component’s structure. For example, a COTS controller capable of 

sending JAUS command and control messages would be able to drive any JAUS compliant robot 

to which it was attached, eliminating the need for operator training on multiple operator interface 

systems. Many of today’s proprietary unmanned vehicles require that you also use their 

customized controller. The result is higher costs logistically, longer lead times, and longer learning 

curves for individual users. A good analog to promote the open architecture standard is the 

Universal Serial Bus (USB) standard. Like clockwork, when plugging one into your computer 

running the Mac, Linux, or Windows operating system, it automatically registers and works 

properly. JAUS has similar goals. When a new JAUS based vehicle comes online it should register 

and begin working immediately. This goal has not been fully realized by the DoD and is not trivial 

to implement. Tools to ease the transition though are well into development. OpenJAUS 4.0, for 

example, is freely available in C/C++ at http://www.openjaus.com/4. 

                                                 
4 Those wishing to become familiar with the protocol without paying for the most recent documents can find the last 

standard freely published (2007) on the openJAUS website (Reference Architecture 3.3). 
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2.3.1.1 JAUS Hierarchy 

JAUS breaks down the hierarchy of a system into subsystems, nodes, components, and instances 

as shown in Figure 58. Keep in mind that, although the JAUS documentation suggests certain 

configurations of nodes and component it does not require them. The identification and subsequent 

grouping of software capabilities into nodes is fully in the system engineer’s hands. 

 

Figure 58 –The structure of a JAUS system. The highest level is system and the lowest level is instance. In between are 

subsystem, node, and component. 

System Level 

The system level is the highest layer in the hierarchy and comprises all of the vehicles, controllers, 

and support payloads chosen for a mission. For example, in a nominal underwater search mission, 

your system may consist of an Operator Control Unit (OCU), a gateway buoy, and three 

autonomous underwater vehicles. 

Subsystem Level 

Subsystems are individual units within the system. They cannot comprise small groupings of 

vehicles. This would be a separate system. Subsystems are required to execute mobility commands 

as a single unit and retain a defined center of gravity with respect to any articulated arm 
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movements. Following the nominal underwater search mission scenario, the subsystem would be 

an individual unit in the system, such as the AUV or the OCU. Subsystems may provide any 

number of computing nodes, however, that represent the subsystems functional abilities. 

Node Level 

A JAUS node represents a distinct processing capability within a subsystem. It must always have 

a node manager component to route messages to the correct component contained within the node. 

For example, a mobility controller onboard our AUV would be a node. The components contained 

therein might be a forward thruster and fin controller.  

Component/Instance Level  

Components are the lowest level in the hierarchy and provide a unique functionality to the 

subsystem. For example, a forward looking camera or sidescan sonar might be a component. If 

multiple cameras or other hardware devices are available the redundant functionality can be 

duplicated through ‘instances.’ 

2.3.1.2 JAUS Header 

While the software configuration of JAUS components is very flexible, JAUS maintains one 

absolute requirement: To achieve the desired level of interoperability between intelligent 

computing entities, all messages that pass between JAUS defined components shall be JAUS 

compatible messages [42]. Figure 59 depicts the JAUS header. This collection of 16 bytes precedes 

every JAUS messages and provides the system with enough information on how to handle the 
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message and decode the information. Contained within the various sections are placeholders for 

origination, destination, message size, and message content. 

 

Figure 59 - Joint Architecture for Unmanned Systems (JAUS) Header that accompanies all JAUS messages 

2.3.1.3 Sample JAUS Configurations 

A simple vehicle with no autonomy might consist of a system commander and a primitive driver. 

System Commander 

A system commander coordinates all activity within a given system. It issues commands to the 

subsystem vehicles and queries them for status updates. These duties may be performed by a 

human or by a computer. 

Primitive Driver 

The primitive driver performs all basic driving functions of a vehicle including common operations 

of engines and lights. It is not transport mode specific but rather it describes movement in six 
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degrees of freedom and the onboard functionality of the device must translate that into appropriate 

movement commands. 

 
Figure 60 –A simple JAUS configuration comprising only a system commander and primitive driver. 

A vehicle in this configuration would offer only simple teleoperational control. With the right 

sensors and proper autonomy algorithms in place, a reflexive driver could be added to enhance the 

vehicle’s performance. 

Reflexive Driver 

Normally, the reflexive driver simply passes through a commanded wrench effort. However, if 

that motion would result in harm to the vehicle or an otherwise unsafe condition, it will modify 

this wrench effort to maintain safety. For example, if our AUV is fitted with a forward looking 

sonar meant to report the range to the nearest approaching obstacle the reflexive driver would 

maintain course unless to avoid an upcoming hazard. 
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Figure 61 - A simple JAUS configuration comprising a system commander, reflexive driver, and primitive driver, capable 

of obstacle avoidance. 

2.3.2 CARACaS 

 
Figure 62 –A block diagram of the major CARACaS system. 

The Control Architecture for Robotic Agent Command and Sensing (CARACaS) was developed 

by NASA’s Jet Propulsion Laboratory (JPL). It utilizes the Robust Real-time Reconfigurable 
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Robotic Software Architecture (R4SA) as its underlying real-time engine. It comprises a dynamic 

planning engine, known as CASPER, a behavior engine, known as CAMPOUT, a perception 

engine, and a world model (shown in Figure 62). 

2.3.2.1 R4SA 

The Robust Real-Time Reconfigurable Robotics Software Architecture (R4SA) was developed by 

JPL in ANSI C as an adaptable architecture for Mars rovers, terrestrial robots, or even robotic toys 

[43]. It boasts a modular design able to meet hard real-time aerospace requirements. It comprises 

3 layers between the hardware and the system software: The device driver layer, device layer, and 

application layer (shown in Figure 63). 

 
Figure 63 - The R4SA Architecture comprising an Application Layer, a Device Layer, and a Device Driver Layer. The 

System Layer coordinates the activities of the other layers. 

Device Driver Layer 

The Device Driver Layer of the R4SA architecture abstracts the functionality of many common 

robotic associated hardware devices in much the same way that an Operating System abstracts the 
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functionality of common computer equipment (keyboard, mouse, speakers, etc...). Examples of 

such are analog-to-digital and digital-to-analog converters. Access to the hardware is provided 

through ISA or PCI buses. Components are either added or removed by compile time switches in 

the configuration file. 

 
Figure 64 –Some of the key components of the device driver layer of R4SA 

Device Layer 

The Device Layer abstracts common interactions between the higher level software and the lower 

level devices. For example, steering commands from high level software are transformed at this 

level to the necessary motion compensated commands for proportional-integral-derivative (PID) 

controllers. Transformations are also available for devices such as wheels and arms, odometry and 

inertial navigation, vision processing, communications, and kinematics for multi-wheel or multi-

leg robots. Once again, components may be added or removed by specific compile time switches 

in the configuration file. 

 
Figure 65 - Some of the key components of the device layer of R4SA 

Application Layer 

The application layer provides the user with means to execute prescribed behaviors such as 

obstacle avoidance and path following. The selected behaviors are translated into commands that 
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are transformed by the aforementioned layers to correctly demonstrate the desired behavior. For 

example, an obstacle avoidance algorithm housed in the application layer will generate rudder 

controller commands to be sent to the device layer. As in the previous layers, many of these 

algorithms are platform specific and will be included based on compile time switches in the 

configuration file. 

 
Figure 66 - Some of the key components of the application layer of R4SA 

System 

The system layer coordinates activities that take place in the other layers to provide a synchronized 

control environment. It provides a command processor, telemetry display and data logging, a 

continuous sequence scheduler, a configuration processor, and a system processor. 

 
Figure 67 - Some of the key components of the system layer of R4SA 

2.3.2.2 CASPER 

The Continuous Activity Scheduling Planning Execution and Re-planning (CASPER) portion of 

CARACaS is the dynamic planner. It continuously monitors objectives and vehicle state to give 

the most beneficial return of a mission given hard resource constraints. Re-planning may take 

effect in the event of hardware failures such as an individual battery unit failure. 
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2.3.2.3 CAMPOUT 

The behavior engine of CARACaS is called the Control Architecture for Multi-robot Planetary 

Outposts (CAMPOUT). It uses Finite State Machines (FSM) to describe desired behaviors. The 

coordination of these behaviors utilizes a consensus building method based on Multi-Objective 

Decision Theory (MODT) to form an optimal set of control actions. 
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CHAPTER 3  

DEVELOPING A TEST PLATFORM 

The research goal of this project was to determine the validity of using behavior trees as vehicle 

behavior controllers and, if valid, to describe 3-dimensional, reflective patterns and practices for 

doing so. The deliverable is a proof of concept using a collection of behavior tree algorithms 

capable of coordinating the navigation and sensor controls of a simulated machine through a non-

trivial, 3-dimensional environment. The environment hosts simulated acoustic nodes that the 

vehicle attempts to localize. A framework of classes and patterns was also developed. This 

framework comprises a simulated world-like environment and simulated acoustic nodes, both 

stationary and mobile. The development of these simulated components follows the DoDs open 

system guidelines as discussed in section 2.3. All component configuration files are crafted using 

XML and follow current industry standards if applicable. A graphical representation of the 

framework is shown in Figure 68, below. 

 
Figure 68 - Graphical representation of proposed software framework 

Each of the following sections describe a component of this framework. The title of each section 

has, in parentheses, the name of the component used in the framework implementation. 



74 

 

3.1 Behavior Tree World (BTWorld) 

Providing evidence for the validity of using behavior trees as vehicle behavior controllers requires 

an ample demonstration in an environment similar to what they would experience in the real world. 

Thus, a 3-dimensional software model of the world’s terrain was developed. The implementation 

was realized through the use of MonoGame (see section 1.6.1.1), which can further target either 

Microsoft’s DirectX or other platform’s OpenGL capability. The terrain itself is generated in code 

by analyzing a height map in the form of a 32-bit bitmap image. Each pixel of these bitmap images 

are 4-bytes, representing 8-bits each for the red, green, blue, and alpha (transparency) values. The 

‘red’ value of each RGBA (Red-Green-Blue-Alpha) pixel is used to set the height of the land at 

that location. For example, the height map of Figure 69 (below, left) generates the terrain shown 

and colors it in based on how high the red-byte of each pixel is. Lower elevations are colored blue 

to indicate water while higher elevations are colored white to indicate snow. The heights and colors 

of individual cells is made available to vehicles and algorithms so that decisions can be made about 

the validity of certain actions, like traveling through water or up a very steep cliff. 

 
Figure 69 - A sample terrain (right) generated by a bitmap image (height map, left) 
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The use of height maps is advantageous in open systems because it allows unhindered access to 

terrain editors using off the shelf image manipulators such as Microsoft Paint, GIMP, or Adobe 

Photoshop. 

 
Figure 70 - A close-up look across the horizon of the behavior tree world, showing its 3-dimensional nature. 

3.1.1 Helpful Game Semantics 

Professionals and hobbyists in the game development field have developed semantics that quickly 

and concisely convey important information. This section will introduce the reader to some of 

these semantics for use in understanding the sections that follow. 

Camera – In a video game, the camera would be considered the location at which all of the light 

from images is focused for viewing by the user. A simple analogy would be that of the viewfinder 

on a digital camera. Think of the game window (window in the operating system sense) as the 

viewfinder on a camera. As you move the camera, its perspective on world objects changes and 

you see different sides of things. In BTWorld, as you navigate the terrain, you are in a sense 

moving a camera around and seeing the world through the camera’s viewfinder. 
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Fog of War – Many games, especially Real-Time Strategy (RTS) games, present a map of 

unexplored territory with abundant resources that the player has to look for and find. These 

resources are sometimes hidden on the map until the player sends one of their actors (people or 

vehicles) to find them. As the actor searches the landscape the blanket of fog is removed. This 

‘fog’ is frequently referred to as a Fog-of-War. Updates to the landscape, such as enemy movement 

or building, are usually hidden also unless the player has an actor with a line of sight to where the 

activity is taking place. 

Ticks – One of the useful properties of game development that has evolved over the years is the 

use of two main operational cycles: The (1) update cycle & (2) draw cycle. The update cycle 

iterates through each of the game components causing it to update its state based on current 

environment variables. The draw cycle draws all of the necessary components onscreen according 

to their world property and the current camera location. Each completion of the update and draw 

cycle is called a tick. Most games try to achieve 60 ticks per second which fools the human eye 

into seeing a continuous movement on screen. 

World – This particular term invites confusion since it already has a well-defined meaning. 

Whenever the ‘world’ property of a component is mentioned, the author is describing that 

particular component’s translation and / or rotation with respect to the X, Y, and Z axis origin. The 

confusing aspect of this term is that each model within the game has its own world value that 

differs from all of the other models. So, in effect, there are many different worlds all coexisting 

within close proximity to each other. 
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3.1.2 Configuration 

When instantiated, the terrain component loads the file terrain.xml (Figure 71). The <Settings> 

section of the configuration file is a collection of key=value pairs. Any number of these may be 

inserted but the HeightMapFile and MapScaleFactor are the only two that are necessary for the 

TerrainBase class, which is what all proprietary terrain files should inherit from. The 

TerrainBase class stores these pairs into a protected dictionary that any child class can access for 

necessary functionality. Alternately, the child classes may read in their own xml configuration 

files. After reading and storing the values in this file, the TerrainBase class will retrieve the given 

heightmap file. It then scans it and creates a 3D landscape. The MapScaleFactor value is used to 

tamp down every given pixel’s R value. For more mountainous terrain use a high factor. For flatter 

terrain, use a low factor. 

<?xml version="1.0" encoding="utf-8" ?> 
<Configuration> 
 <Settings> 
  <!--This is where key=value pairs will go--> 
  <Setting key="HeightMapFile" value="Maps/heightmap08"/> 
  <Setting key="MapScaleFactor" value="0.1"/> 
 </Settings> 
 <Layers> 
  <!--Layers define how the terrain should appear on the screen--> 
  <Layer Name="Water" Percentage="0.25" Color="Blue" Vary="false"/> 
  <Layer Name="Grass" Percentage="0.50" Color="Green" Vary="true" VaryLo="#006700" VaryHi="#329932"/> 
  <Layer Name="Dirt" Percentage="0.75" Color="Brown" Vary="true" VaryLo="#9B2A27" VaryHi="#AF3E2D"/> 
  <Layer Name="Snow" Percentage="1.00" Color="White" Vary="true" VaryLo="#EBEBEB" VaryHi="#FFFFFF"/> 
 </Layers> 
</Configuration> 

Figure 71 - The terrain.xml file used to configure the BTWorld terrain. 

The <Layers> section of the configuration file determines what the landscape will look like 

rendered onscreen. Each layer requires a Name, Percentage, and Color. The name is simply for 

reference in code. The percentage attribute determines which pixels belong to which layer. For 

example, since the water layer is assigned a percentage of 25, any pixels in the lowest 25% of all 

of the ‘R’ height values will fall into this layer and be assigned the color blue. If a user wants more 
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water, they can increase the percentage of pixels that fall into this category (e.g. set 

Percentage="0.40"). Since the grass layer is assigned a percentage of 50, any pixels in the lowest 

50% of all ‘R’ height values that aren’t already accounted for will fall into this layer and be 

assigned the color green. Finally, the color attribute assigns a color to the pixel. The Vary attribute 

is optional and defaults to false. It determines whether or not to ‘smudge’ each color to give the 

landscape a more realistic look. Since each pixel is determined by an RGBA value, the allowed 

variance of each byte is given in the respective VaryHi and VaryLo attributes. These two attributes 

are given as hexadecimal html-color representations. If a user wanted the water to look like lava 

instead, all they would have to do is change the name of the first layer to lava and its color to red. 

3.1.3 Input 

MonoGame was originally developed as a video game creation API so human interfacing is 

heavily integrated. In BTWorld, the user assumes control of a camera component with 6-axes of 

freedom. Navigation is handled mostly through mouse input although keyboard input is in place 

as a secondary controller. When BTWorld is first executed, the camera view into the world is 

located at a position above the landscape looking straight down. To move forward, the user can 

either roll the mouse wheel up or press the ‘W’ button. To look up, down, or side to side, the user 

can click the left mouse button and then slide it up, down, and side to side. For keyboard control, 

the user can use A and D to look side to side, R and F to look up and down, and Q and E to strafe 

side to side. The keys Z and C allow the user to ‘roll’ the camera clockwise and counter-clockwise. 

3.1.4 Navigation 

When rendered in wireframe mode, the BTWorld terrain takes the appearance of an undirected 

graph like the one shown in Figure 72. Each vertex is a discrete point at which a model can rest 
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and the connecting edges are paths that a model can take to travel between them. The vertices are 

made available to other actors through a class called CellLandscape. This class contains a 2-

dimensional array of Cells. These cells contain all of the pertinent information regarding each 

location. Cells must implement the ICell interface shown in Figure 73. 

 
Figure 72 - The wireframe mesh representing traversable paths in the Behavior Tree World 

public interface ICell 
{ 
 int X { get; set; } 
 int Y { get; set; } 
 int Index { get; set; } 
 bool Visited { get; set; } 
 float DistanceSoFar { get; set; } 
 ICell CameFrom { get; set; } 
 List<ICell> Neighbors { get; } 
 Color Color { get; set; } 
 void Reset(); 
 void UndoColor(); 
 bool IsHidden { get; set; } 
 bool IsPassable { get; } 
 bool IsPassableFrom(ICell cell); 
 VertexPositionColor VertexInfo { get; } 
 Vector3 Vertex { get; } 
 CellLandscape Landscape { get; set; } 
 float DistanceTo(ICell cell); 
} 

Figure 73 - The contents of the ICell interface 
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3.1.5 Fog of War 

The BTWorld is optionally covered by a blanket of fog indicating unexplored territory. 

Accounting for this fog in calculations and uncovering it is up to the developer. In this research 

paper we uncover the map through the use of the Traveler by way of its sight radius. These points 

will be discussed in Chapter 4, Developing World Actors. The unexplored map areas will be 

presumed traversable and flat when used in our algorithms calculations. As the map is uncovered, 

non-traversable land and steep inclines will be accounted for so that more accurate paths will be 

determined. 

 
Figure 74 - A representation of the Fog-of-War capability of BTWorld. The terrain in the left image is completely 

unexplored. The terrain on the right has a wide swath cut through it that shows where the vehicle has been. 
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CHAPTER 4  

DEVELOPING WORLD ACTORS 

The Behavior Tree World exists as the foundation of the experiments and represents the real world 

obstacles that help or hinder progress. The actors representing proxies to achieve our objectives 

will be a vehicle simulator and one or more static acoustic node simulators with attached modules. 

The vehicle simulator and acoustic node simulators will be discussed in this chapter. The optional 

modules are mainly just hooks for future developers to add custom functionality to the design. 

4.1 Vehicle Simulator (Traveler) 

A simple vehicle simulator has been developed to navigate the BTWorld mesh. It has two basic 

functionalities. When commanded to move, it simply moves in that direction. When queried about 

its current location, it returns whatever information is available to it. Vehicle dynamics are not the 

theme of this discussion and have thus been ignored. Decision making was not built into the 

simulator either. It was deferred until creation of the behavior tree framework itself. Control can 

be assumed either manually using the keypad or by a collection of behavior tree classes/algorithms 

that were designed to intelligently navigate through the BTWorld mesh. The default 

implementation of the vehicle has a dictionary of objects (modules) making it capable of housing 

any future developed capability that conforms to the interface. The three main modules used in 

this research were a communication module, a driver module, and a locator module. Each of these 

will be discussed later within the context of their usefulness to the design. Behavior-Tree 

algorithms designed to account for terrain aspects and make intelligent decisions about navigating 

it have also been developed. The details of these classes will be discussed in Chapter 7, Behavior 

Tree Application Results. 
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4.1.1 Configuration 

Configuring the vehicle involves setting several key variables in the Travelers.xml file (Figure 75). 

Notice that each traveler has a collection of modules. These modules are all optional and contribute 

additional functionality to the traveler. 

<?xml version="1.0" encoding="utf-8" ?> 
<Configuration> 
 <Travelers> 
  <Traveler> 
   <Setting key="name" value="Vehicle"/> 
   <Setting key="pathHeight" value="1"/> 
   <Setting key="color" value="red"/> 
   <Setting key="sightRadius" value="25"/> 
   <Setting key="enabled" value="true"/> 
   <Modules> 
    <Module type="Communicator"> 
     <Setting key="range" value="50"/> 
     <Setting key="ID" value="0"/> 
    </Module> 
    <Module type="BTDriverState"/> 
    <Module type="BTLocator"> 
     <Setting key="delay" value="5000"/> 
    </Module> 
   </Modules> 
  </Traveler> 
  <Traveler> 
   <Setting key="name" value="TargetComm"/> 
   <Setting key="pathHeight" value="1"/> 
   <Setting key="color" value="purple"/> 
   <Setting key="sightRadius" value="0"/> 
   <Setting key="enabled" value="false"/> 
   <Modules> 
    <Module type="Communicator"> 
     <Setting key="range" value="50"/> 
     <Setting key="ID" value="1"/> 
    </Module> 
   </Modules> 
  </Traveler> 
 </Travelers> 
</Configuration> 

Figure 75 - The Travelers.xml file used to dynamically create 'travelers' at runtime in our Behavior Tree World 

Just like in previous framework components, the name is used just to differentiate modules of the 

same type. The pathHeight variable is used to determine how high above the terrain to draw the 

vehicle marker. The color is used to differentiate between travelers on the terrain while the 

simulator is running. The sightRadius value is used to determine how much of the map has been 



83 

 

‘seen’ by the vehicle. The enabled variable is used to determine if this game component’s world 

property should be updated during each game tick. The enabled property is set to true when the 

vehicle is selected and false when the vehicle is deselected. 

An alternative to indicating all of the required modules in the Travelers.xml file, the modules can 

be declared in a separate file and noted as a <File name="filename.xml"/> element. The loader 

will then locate the file, gather all of the modules, and add them to the traveler. 

4.2 Acoustic Node Simulator (Communicator) 

A static sensor simulator has been developed to emulate the functionality of an acoustic 

communication node. In this framework they will be passive, meaning that they only ‘speak’ when 

prompted. The term ‘speaking’ is used since the typical frequency employed by acoustic nodes is 

audible to the human ear, much like a voice, and is used to carry information, like any human 

language. The node is implemented by a class called Communicator. 

The communicator’s function is very basic. When provided a message in the SendMessage 

method, it checks the distance to all fellow nodes in the field. If they are within the node’s 

maximum communication range it calls RegisterMessage on that node. It then becomes the 

responsibility of the receiving node to formulate a response. In this framework, the 

Communicator sends out a delayed response based on the distance between itself and the sender. 

The delay calculations are currently based on the speed of sound underwater (approximately 1500 

meters per second). 
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4.2.1 Configuration 

Configuring the Communicator requires only two setting, range and ID. The range value 

indicates how far the communicator’s transmissions will travel and the ID is an indicator of who 

messages are coming from and being sent to. For example, the communicator with id 0 might 

address messages to the communicator with id 1. 

<?xml version="1.0" encoding="utf-8" ?> 
<Configuration> 
 <Modules> 
  <Module type="Communicator"> 
   <Setting key="range" value="50"/> 
   <Setting key="ID" value="0"/> 
  </Module> 
 </Modules> 
</Configuration> 

Figure 76 - The contents of Communicator0.xml 
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CHAPTER 5  

BEHAVIOR TREE FRAMEWORK IMPLEMENTATION 

The discussion in this section will build on the information first introduced in section 1.4, Behavior 

Trees. If a particular point about behavior tree operation is unclear, please reference that section 

for a more thorough explanation. 

When behavior tree algorithm development begins the question necessarily arises: What does it 

mean to use a Behavior Tree Algorithm? The answer, simply, is that you confine the components 

of any algorithm you develop to the constructs described in section 1.3 (page 14). These constructs 

again are sequences, selectors, decorators, actions, and assertions (Figure 77). The reason for such 

simplicity is the concept of reuse across behavioral spectrums, which was a major goal of this 

project. Also, by utilizing these atomic blocks, entire behavior trees can be deconstructed and 

rebuilt without modifying the underlying code using reflective class construction techniques 

(discussed below in section 6.4) 

 
Figure 77 –The fundamental building blocks of a behavior tree: sequence, selector, decorator, action, & assertion. Also 

known as ‘nodes’ 
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5.1 Fundamental Interfaces 

In order for these ‘nodes’ to be completely interchangeable, a series of interfaces were developed 

(see section 1.7.1 Interface Based Programming). For basic functionality, only three interfaces 

were deemed necessary. As development matured, generic counterparts were also developed. 

These will be discussed in a later section. The initial interfaces were IComposite, IDecorate, and 

INode. Since IComposite and IDecorate also implement INode, they can be used interchangeably 

anywhere an INode is required. 

public interface INode 
{ 
 string Name { get; } 
 INode Parent { get; set; } 
 NodeStatus Tick(); 
 NodeStatus Status { get; set; } 
 void Initialize(); 
 int Count(); 
 void FindNode(int number, List<INode> nodes); 
 bool RunAsync { get; set; } 
 bool HasEntrant { get; } 
} 

Figure 78 - The contents of the interface INode 

public interface IComposite : INode 
{ 
 List<INode> Children { get; } 
 int NumChildren { get; } 
 void AddChild(params INode[] node); 
 void RemoveChild(INode node); 
 INode GetChildAt(int index); 
} 

Figure 79 - The contents of the interface IComposite 

public interface IDecorate : INode 
{ 
 INode Child { get; set; } 
} 

Figure 80 - The contents of the interface IDecorate 

The IComposite interface supplements INode by adding the ability to contain and manage several 

child nodes. The IDecorate interface supplements INode by adding the ability to contain just one 
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child. As you will recall from the introduction on behavior trees, composite nodes are defined by 

how they activate their children. 

To make the development of extensions easy, abstract base classes have been created to satisfy the 

requirements of each of these interfaces. Developers wishing to supplement the current 

functionality need only subclass one of these abstract classes and implement an Update method. 

A graphical hierarchy is shown in Figure 81. 

 
Figure 81 - A graphical representation of the fundamental interfaces and base classes of the behavior tree framework 

The NodeBase class alone implements all of the necessary functionality of an INode except for 

one abstract method called Update. Any time a class defines an abstract method, the compiler 

requires that any subclasses implement it. This Update method, along with the cardinality of 

children, is what sets each type of behavior tree node apart from the others. 

protected abstract void Update(); /* subclasses MUST implement this or else a compile time error occurs */ 

The NodeBase’s definition of the required Tick method (required by INode) simply calls this 

Update method which consequently runs the code located inside the sequence, selector, decorator, 

or action node implementing the NodeBase class. The reason behind implementing the Tick 
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method inside of the NodeBase class instead of requiring subclasses to do it is that it allows the 

NodeBase to seamlessly handle the necessary asynchronous capability as well. 

5.2 Asynchronous Operation 

Whenever a node is set to run asynchronously, the NodeBase will instead call UpdateAsync. This 

method then calls Update but on a separate operating system thread. The node will return a 

NodeStatus of ‘running’ as long as this separate thread is active (see Figure 82). 

 
Figure 82 - A sequence diagram showing a behavior tree's operation whenever RunAsync is set to true 

The C# language has built in support for parallelization of code through the use of Tasks. All nodes 

will contain a Task that is ‘run’ whenever the Boolean value RunAsync is set to true. The return 

status of the node when running asynchronously will be a reflection of the Task status (see Figure 

82). If a task has been created and given the name _task, the task’s status can be checked by calling 

_task.Status. 
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Table 10 – Alignment of TaskStatus enum to NodeStatus enum 

Task Status Node Return Status 
TaskStatus.Created NodeStatus.Running 
TaskStatus.Running NodeStatus.Running 
TaskStatus.WaitingForActivation NodeStatus.Running 
TaskStatus.WaitingForChildrenToComplete NodeStatus.Running 
TaskStatus.WaitingToRun NodeStatus.Running 
TaskStatus.Canceled NodeStatus.Failure 
TaskStatus.Faulted NodeStatus.Failure 
TaskStatus.RanToCompletion // [Success|Failure] set by Update method 

5.3 Composite Nodes 

Sequences and selectors are known as composite nodes because they can contain a collection (List, 

Queue, Stack, etc) of other nodes as children. They subclass CompositeBase which means they 

also implement the IComposite and INode interfaces. All of the additional required functionality 

of IComposite nodes, aside from the required Update method, is contained here. This greatly 

simplifies extension since any subclasses will only be required to implement that one method. 

protected override void Update() 
{ 
 foreach (INode n in Children) 
 { 
  Status = n.Tick(); 
  if (Status != NodeStatus.Success) {break;} 
 } 
 base.Update(); 
} 

Figure 83 - The contents of the Sequence Update method 

protected override void Update() 
{ 
 foreach (INode n in Children) 
 { 
  Status = n.Tick(); 
  if (Status != NodeStatus.Failure) {break;} 
 } 
 base.Update();} 

Figure 84 - The contents of the Selector Update method 

In their basic form, sequences activate their children one by one, in order, until all of them complete 

successfully. It then returns a NodeStatus of success. If one of its children fails, it halts the 
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activation of children and returns a NodeStatus of failure (see section 1.4.2). Selectors, on the other 

hand, activate their children in order until one of them returns success and then it halts. This is 

similar to the way an if-else statement operates (see section 1.4.3). 

5.4 Decorator Nodes 

Decorator nodes are simply links in a chain between calling nodes and the nodes below them in 

the graph. Most of the special functionality required by any extensions to this behavior tree 

framework will reside here. For example, user defined exception handlers could be placed in a 

custom decorator. This would simply require a try / catch block to be inserted around the call to 

its child’s Tick method with appropriate actions to take for each exception type. As with the other 

predefined types, an abstract base class called DecoratorBase has been developed to satisfy the 

requirements of IDecorate. Any subclass of DecoratorBase will only be required to implement 

the Update method. For a more thorough discussion of decorator nodes see section 1.4.4. 

5.4.1 While-True Decorators 

The need for a special ‘while-true’ decorator has presented itself in many of the algorithms. This 

specialty node will tick its child node continually until it receives a NodeStatus of failure (see 

Figure 85). 

protected override void Update() 
{ 
 do 
 { 
  Status = Child.Tick(); 
 } while (Status == NodeStatus.Success); 
} 

Figure 85 - The Update method of a while-true decorator 
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5.4.2 Exception Decorators 

Exception handling is a necessary component of any serious software development enterprise. 

Therefore, a special decorator designed to handle this aspect of development has been created. The 

decorator is supplied with one additional method: AddExceptionHandler(Exception e, 

Func<NodeStatus> handler); This method accepts an exception of any type along with a 

Func to handle that exception. This Func must return a NodeStatus to indicate whether the handler 

was successfully able to rectify the situation. If not, a NodeStatus of failure should be returned. 

The modification to the Update method of this decorator involves surrounding the call to its child’s 

Tick method with a try / catch block. The catch block will search its dictionary of handlers to see 

if there is one specified for whatever exception was thrown. If there is, it will call that handler and 

set its own status to the result of the handling Func. 

private Dictionary<string, Func<NodeStatus>> _handlers; 
protected override void Update() 
{ 
 try 
 { 
  Status = Child.Tick(); 
 } 
 catch (Exception ex) 
 { 
  string typeName = ex.GetType().FullName; 
  if (_handlers.ContainsKey(typeName) == true) 
  { 
   Status = _handlers[typeName](); 
  } 
  else 
  { 
   Status = NodeStatus.Failure; 
  } 
 } 
} 

Figure 86 - The contents of the ExceptionDecorator's Update method 

5.5 Action / Assertion Nodes 

Action and Assertion nodes are helper nodes that relieve the developer from reinventing similar 

functionality for each software product. They are wrappers for Func delegates that return a 

NodeStatus or a Boolean, respectively. When functions or class methods match the signature of 
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the required Func (Func<NodeStatus> or Func<bool>) they can be handed to the class 

constructor without modification (see Figure 88 - The code behind an AssertionNode). The 

compiler handles the cast for the developer. This eases the custom code development required for 

crafting behavior trees. However, when utilizing reflection to assemble them, a more creative 

approach will be required. 

public class ActionNode : NodeBase 
{ 
 private Func<NodeStatus> _action; 
 
 public ActionNode(Func<NodeStatus> action) 
  : base() 
 { 
  _action = action; 
 } 
 
 public ActionNode(string name, Func<NodeStatus> action) 
  : base(name) 
 { 
  _action = action; 
 } 
 
 // Other constructors and methods 
 // Update method simply returns the value received from _action 
} 

Figure 87 - The code behind an ActionNode 

public class AssertionNode : NodeBase 
{ 
 private Func<bool> _assertion; 
 public AssertionNode(string name, Func<bool> assertion) 
  : base(name) 
 { 
  _assertion = assertion; 
 } 
 // other constructors and methods 
 protected override void Update() 
 { 
  if (_assertion() == true) 
  { 
   Status = NodeStatus.Success; 
  } 
  else 
  { 
   Status = NodeStatus.Failure; 
  } 
 } 
} 

Figure 88 - The code behind an AssertionNode 
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public NodeStatus MyMethod() 
{ 
 return NodeStatus.Success; 
} 
 
public void CreateActionNode() 
{ 
 ActionNode actionNode = new ActionNode(MyMethod); 
} 

Figure 89 - The instantiation of an ActionNode using a regular class method 

5.6 Generic Counterparts 

In order for a behavior tree to share and operate on vehicle state, each node must accept operable 

values such as native types, classes, or structs. In order to accommodate this, I have developed 

single parameter, generic counterparts to each of the main components previously described. C# 

generics, like C++ templates, allow the body of a class or struct to be developed without knowing 

the exact argument types that it will operate on. The difference is that in C# the classes are not 

constructed at compile time. The arguments remain unknown until runtime and are compiled then, 

just-in-time (JIT), which allows for runtime optimizations. The need for comprehensive input 

arguments is negated by the appropriate use of class composition. For example, the TArgs type 

argument can be a Tuple<int, string, double, float, Exception []> which effectively allows 

operation on four parameters and the collection of any exceptions that may be thrown. If a ‘class’ 

type is substituted for TArgs this will allow peer nodes (nodes with the same ancestor) to 

communicate with each other. Since class types are by default passed by reference, this ensures 

that changes made to the class will propagate down the call chain and then bubble up to the parents 

afterward. Since structs are by default passed by value, the changes made in a particular behavior 

tree node would be passed down the call chain but would become void as the call stack was 

unwinding. 
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public interface INode<TArgs> : INode where TArgs : class 
{ 
 TArgs MyArg { get; } 
 NodeStatus Tick(BTNodeArgs t); 
} 
 
public interface IComposite<TArgs> : IComposite, INode<TArgs> { } 
 
public interface IDecorate<TArgs> : IDecorate, INode<TArgs> { } 

Figure 90 - Suggested interfaces for a generic behavior tree framework 

Notice that the interface in Figure 90 also inherits INode. This means that even if a portion of a 

behavior tree is made generic, its parent nodes do not need to be. They can still ‘adopt’ these nodes 

as children and call their Tick method. A special decorator node called a GStateComposer has 

been developed to bridge the gap between non-generic and generic sections of code. In this 

decorator’s constructor, a special Func must be supplied that instantiates the proper argument type 

for that generic section of the behavior tree (see Figure 91). If no state composing Func is supplied, 

the default constructor (i.e. parameterless constructor) will be called to create the necessary TArgs 

object. All generic components of this framework are preceded by a ‘G’ in their name. 

public GStateComposer(Func<TArgs> stateComposer) 

 
Figure 91 - A Generic Behavior Tree Framework 
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5.6.1 State Selector Nodes 

State Selector nodes will look similar in structure to other composites (i.e. Sequences and 

selectors). The difference will be that, instead of operating on every child in sequence, it will use 

the current ‘STATE’ to determine which child to activate. ‘State Machines’ are a very popular 

approach for allowing an object to act differently when presented with the same data over and over 

again based on the object’s current state. The one stipulation to the TArgs argument of this type is 

that they implement IStateNodeArgs (see Figure 92). 

public interface IStateNodeArgs 
 { 
  string State { get; } 
 } 

Figure 92 - The requirements of the IStateNodeArgs interface 

The children of GStateSelector composites are stored in a dictionary keyed by a string. When the 

Update method is called, the child node matching the state is retrieved and its tick method called 

(see Figure 93). 

Dictionary<string, INode<TArgs>> KeyedChildren; 
void Update(TArgs t) 
{ 
 Status = KeyedChildren[t.State].Tick(t); 
} 

Figure 93 - The Update method implementation of state selector composites. 

5.7 Action and Assertion Repositories 

Having a common framework and methodology prescribed will increase the ease of reuse across 

platforms. Up to this point, though, the burden of code writing doesn’t seem to be any less than 

most typical frameworks would require. The following discussion on action and assertion 

repositories will show that once adopted, this framework will indeed present wide reuse capability 

and at the same time reduce the authoring requirements of programmers. 
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5.7.1 Action Repository 

As previously stated, action nodes cause the actor to effect a change. These might be commands 

affecting the vehicle’s vector or commands to an acoustic node requesting a query be made. In this 

framework, action nodes will be represented by the ActionNode class (see section 5.5) that accepts 

an argument of type Func<NodeStatus>. The generic variant of ActionNodes will accept Funcs 

that take one argument and return a NodeStatus (e.g. Func<int, NodeStatus). For a more thorough 

discussion on Actions and Funcs, see section 1.7.2.2 above. 

The action repository will be a helper class that facilitates adding Funcs to, and retrieving Funcs 

from, a complex collection (a collection within a collection). The outer collection will be a 

dictionary of sorted dictionaries. It will be keyed by a string representation of the type of arguments 

that its underlying collection of Funcs require as an argument. That is, if a particular Func takes 

an int and returns a NodeStatus (Func<int, NodeStatus>) the key will be “System.Int32.” The inner 

collection will be a sorted dictionary keyed by a string and containing an object as its value. A 

sample declaration is shown below: 

Dictionary<string, SortedDictionary<string, object>> _actionRepos; 

In C#, every class type derives from the ‘object’ class. By using the underlying object class as the 

value type in the dictionary we can store any type of Func object regardless of what argument type 

it accepts. When retrieving these objects from the repository there will be a negligible amount of 

overhead needed to convert them back to their original types. This conversion should only take 

place once in the algorithm initialization phase, thus negating its impact on performance. See a 

potential ActionRepository implementation in Figure 94. 
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public class ActionRepository 
{ 
 private static Dictionary<string, SortedDictionary<string, object>> _actionRepos = 
      new Dictionary<string, SortedDictionary<string, object>>(); 
 public Func<NodeStatus> GetAction(string name) 
 { 
  Func<NodeStatus> f = _actionRepos["NodeStatus"][name] as Func<NodeStatus>; 
  return f; 
 } 
 public void RegisterAction(string name, Func<NodeStatus> t) 
 { 
  if (_actionRepos.ContainsKey("NodeStatus") == false) 
  { 
   _actionRepos.Add("NodeStatus", new SortedDictionary<string, object>()); 
  } 
  _actionRepos["NodeStatus"][name] = t; 
 } 
 public void RegisterAction<T>(string name, Func<T, NodeStatus> t) 
 { 
  string typeName = typeof(T).Name; 
  if (_actionRepos.ContainsKey(typeName) == false) 
  { 
   _actionRepos.Add(typeName, new SortedDictionary<string, object>()); 
  } 
  _actionRepos[typeName][name] = t; 
 } 
 public Func<T, NodeStatus> GetAction<T>(string name) 
 { 
  string typeName = typeof(T).Name; 
  Func<T, NodeStatus> f = _actionRepos[typeName][name] as Func<T, NodeStatus>; 
  return f; 
 } 
} 

Figure 94 - A potential implementation of the necessary ActionRepository 

To provide access to available repositories and to allow further categorization by users, a static 

BTRepositories class has been developed. The class will simply maintain all added repositories 

by owner specified category. Its implementation is shown in Figure 95. Since it is implemented as 

static, it will be available to all users of the framework who reference the behavior tree framework 

dll in their code. 

public static class BTRepositories 
{ 
 private static Dictionary<string, ActionRepository> _repos 
         = new Dictionary<string, ActionRepository>(); 
 
 public static void AddRepository(string category) 
 { 
  _repos.Add(category, new ActionRepository()); 
 } 
 
 

Figure 95 - A potential implementation of the static BTRepositories class. 
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 public static ActionRepository GetRepository(string category) 
 { 
  if (_repos.ContainsKey(category) == false) 
  { 
   AddRepository(category); 
  } 
  return _repos[category]; 
 } 
} 

Figure 95 - continued 

5.7.2 Assertion Repository 

Assertion nodes are similar to action nodes except that they are meant to imply simple Boolean 

answers to vehicle state or world state queries. These might be queries such as “Is the vehicle 

capable of traveling in a particular direction” or “Did the modem get a response from another 

node?” The Boolean response true and false would align with a behavior tree NodeStatus responses 

of success and failure, respectively (see Table 11). 

In the same way as action nodes, assertions may be held in a dictionary keyed by a name. However, 

since assertions return Boolean values they will necessarily be within a separate domain of 

dictionaries. Four additional methods have been added to our ActionRepository to accommodate 

this functionality. 

Table 11 – Alignment of Boolean values to NodeStatus enum 

Boolean Result Node Return Status 
True NodeStatus.Success 
False NodeStatus.Failure 

 

public void RegisterAssertion(string name, Func<bool> t) 
{ 
 if (_assertionRepos.ContainsKey("Bool") == false) 
 { 
  _assertionRepos.Add("Bool", new SortedDictionary<string, object>()); 
 } 
 _assertionRepos ["Bool"][name] = t; 
} 
 

Figure 96 - The additional methods necessary to accommodate assertions in our repository 
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public Func<bool> GetAssertion(string name) 
{ 
 Func<bool> f = _assertionRepos ["Bool"][name] as Func<bool>; 
 return f; 
} 
 
public void RegisterAssertion<T>(string name, Func<T, bool> t) 
{ 
 string typeName = typeof(T).Name; 
 if (_assertionRepos.ContainsKey(typeName) == false) 
 { 
  _assertionRepos.Add(typeName, new SortedDictionary<string, object>()); 
 } 
 _assertionRepos [typeName][name] = t; 
} 
 
public Func<T, bool> GetAssertion<T>(string name) 
{ 
 string typeName = typeof(T).Name; 
 Func<T, bool> f = _assertionRepos [typeName][name] as Func<T, bool>; 
 return f; 

} 

Figure 96 - continued 
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CHAPTER 6  

COMPOSING BEHAVIOR TREE ALGORITHMS 

The first step in developing an extensive framework for wide use among robotic systems is 

demonstrating the capability to perform the basic, fundamental needs of common algorithms such 

as searching and waypoint navigation. Therefore, development began by implementing a breadth 

first search on the Behavior Tree World mesh. For more information on the algorithms described 

below, see section 1.3. Once correct pseudo code for an algorithm has been developed, a behavior 

tree solution will naturally present itself. Therefore, for each algorithm we will begin with the 

proper pseudo code and then provide an acceptable behavior tree that implements it. 

6.1 Breadth First Search 

The breadth first search is an exhaustive approach that, given a starting vertex and goal vertex on 

a graph, searches simultaneously in every direction for a path to that goal vertex. The benefit to 

this approach is that it is guaranteed to find the shortest path. The downside is that many cells with 

very little possibility of being in the final path are searched. The pseudo code for a breadth first 

search is found in Figure 97. Cell references refer to implementations of ICell mentioned earlier. 

The ‘frontier’ is a queue of cells (frontier = new Queue<ICell>()). 

// Given a starting cell ‘start’ 
// and a goal cell ‘goal’ 
 1: Enqueue start in frontier 
 2: Mark start as visited 
 3: If goal has been reached, return 
 4: While frontier is not empty 
 5:   Get next cell (current) 
 6:   Get current cell’s neighbors (neighbors) 
 7:   For each cell in neighbors 
 8:      If neighbor is not visited 
 9:         Put neighbor in frontier 
10:         Mark neighbor came-from to current 
11:         Mark neighbor as visited 

Figure 97 - Pseudo code for a breadth first search algorithm 
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6.1.1 Decomposing the Pseudo Code 

A simple analysis of the pseudo code above will reveal the functionality necessary in a complete 

behavior tree. 

Table 12 - A line by line analysis of the Breadth First Search pseudo code revealing necessary behavior tree nodes 
Line Statement Node Required 
1 Enqueue start in frontier Action 
2 Mark start as visited Action 
3 If goal has been reached, return Assertion 
4 While frontier is not empty Decorator, Assertion 
5 Get next cell (current) Action 
6 Get current cell’s neighbors (neighbors) Action 
7 For each cell in neighbors Composite 
8 If neighbor is not visited Assertion 
9 Put neighbor in frontier Action 
10 Mark neighbor came-from to current Action 
11 Mark neighbor as visited Action 

 

What may not be obvious is that on line 5, the algorithm begins operating on discrete segments of 

the graph which should be parsed into a state object. This means that we will need a 

GStateComposer and all of its children must also be generic nodes. For this example, I have 

developed a class called BTLoopArgs containing all of the necessary state information for each 

segment of the search (see Figure 98). 

public class BTLoopArgs 
{ 
 public ICell Current { get; set; } 
 public List<ICell> Neighbors { get; set; } 
 public int Counter { get; set; } 
 public ICell CurrentNeighbor { get; set; } 
} 

Figure 98 - The contents of BTLoopArgs which contains the necessary values for our breadth first search 

The state composing Func required of the GStateComposer’s constructor will be authored like 

the one in Figure 99. 
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Func<BTLoopArgs> composer = new Func<BTLoopArgs>(() => 
{ 
 BTLoopArgs la = new BTLoopArgs(); 
 la.Current = _frontier.ElementAt(0).Value; 
 la.Neighbors = GetNeighbors(la.Current); 
 la.Counter = 0; 
 return la; 
}); 
//etc 
GStateComposer <BTLoopArgs> gsc = new GStateComposer <BTLoopArgs>(composer); 

Figure 99 - The GStateComposer’s argument that provides the generic section of the behavior tree its operable state 

The WhileTrueDecorator needed to achieve the functionality of line 4 of Table 12 will contain a 

sequence that activates the assertions on lines 3 and 4. If these assertions fail, the while loop fails 

and the WhileTrueDecorator will return. This indicates that the Breadth First Search has either 

(a) succeeded or (b) failed due to running out of nodes to search before the goal was found. 

The for-loop required to achieve the function of line 7 will require the cooperation of several nodes. 

To determine what they are, let’s examine the operation of a typical for loop: 

for (int i = 0; i < someValue; i++) { /* loop body */ } 

Composing a for-loop requires 3 things (some may be omitted), an initialization (int i = 0), a 

pre-operation check (i < someValue), and a post-operation (i++). The initialization can be handled 

in the GStateComposer’s state composer function as shown above by setting la.Counter=0. The 

pre-operation check can be handled by an assertion that makes sure that the current counter is less 

than the total number of neighbors. The post-operation may be handled by an action that 

increments la.Counter. Therefore we have identified 5 nodes required to simulate our for loop: 

1) WhileTrueDecorator (WT) 

2) Initialization (handled by state composer) 

3) Sequence (ForSeq) 

4) Assertion: Pre-operation 
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5) Action: Post-operation 

 
Figure 100 - A behavior tree representation of a for loop 

The triangle labeled ‘Loop Body’ is a placeholder for the remaining behavior tree nodes that 

perform the necessary function of a loop body. 

6.1.2 Composing the Breadth First Search Behavior Tree 

In section 6.1.1 we decomposed the breadth first search into the necessary behavior tree nodes. 

Now we carefully put them together in a flow chart layout for easy conversion into code. 

Notice in Figure 101 that there are two previously unmentioned nodes on the chart: Succ1 and 

Succ2. These nodes simply return NodeStatus.Success no matter what. This tricks the parent node 

into continuing when a non-fatal failure has occurred. For example, a NodeStatus of failure is 

expected to occur in the PreCheck node when the loop counter exceeds the number of neighbors. 

This is necessary to short circuit the remaining nodes and relinquish control to the parent. When 

this happens, Selector1 (Sel1) will return the NodeStatus.Success from Succ1 instead, allowing 

the previous WhileTrueDecorator (WT1) to continue searching the frontier. This behavior tree 

presumes that before ticking the root node, the starting cell has been put into the frontier queue 
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and that it has already been marked as visited. Similarly, in Sequence2, a NodeStatus of failure is 

expected when the node has already been visited. When this happens, Selector2 will return the 

success value from Succ2 so that searching may proceed.  

 
Figure 101 - A behavior tree representation of the Breadth First Search 

6.2 Dijkstra 

Dijkstra’s Algorithm performs very similar to the Breadth First Search except that it acknowledges 

potential travel costs along the way. While the Breadth First Search will find the shortest 

Manhattan distance to a goal, it may very well take a traveler directly over the peak of a mountain. 
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Dijkstra, on the other hand, will lead the traveler along the easiest path which may be around the 

base of said mountain. One other slight change is that now the frontier is a prioritized list of cells 

(SortedList<float, ICell>). This enables the algorithm to search along a more optimal path than 

the breadth first search by prioritizing which cells to check next. 

// Given a starting cell ‘start’ 
// and a goal cell ‘goal’ 
 1: Enqueue start in frontier with cost 0 
 2: Mark start as visited 
 3: If goal has been reached, return 
 4: While frontier is not empty 
 5:   Get next cell (current) 
 6:   Get current cell’s neighbors (neighbors) 
 7:   For each cell in neighbors 
 8:      Calculate travel cost 
 9:      If neighbor is not visited or cost < currentCost 
10:         Apply cost 
11:         Put neighbor in frontier sorted by cost 
12:         Mark neighbor came-from to current 
13:         Mark neighbor as visited 

Figure 102 - Pseudo code for Dijkstra’s algorithm 

6.2.1 Decomposing the Pseudo Code 

Once again, a line-by-line analysis of the pseudo code above will reveal the functionality necessary 

in a complete behavior tree. 

Table 13 - A line by line analysis of Dijkstra's algorithm pseudo code revealing necessary behavior tree nodes 

Line Statement Node Required 
1 Enqueue start in frontier Action 
2 Mark start as visited Action 
3 If goal has been reached, return Assertion 
4 While frontier is not empty Decorator, Assertion 
5 Get next cell (current) Action 
6 Get current cell’s neighbors 

(neighbors) 
Action 

7 For each cell in neighbors Composite 
8 Calculate travel cost Action 
9 If neighbor is not visited or cost < 

currentCost 
Selector 

 9a Check visited Assertion 
 9b Check cost Assertion 
10 Apply cost Action 
11 Put neighbor in frontier Action 
12 Mark neighbor came-from to current Action 
13 Mark neighbor as visited Action 
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These requirements vary only slightly from our previously formed breadth first search behavior 

tree. We need only one extra composite, two action nodes, and an assertion node. The composite 

will be Selector3, which will return success if either (a) the node has not been visited or (b) the 

prioritized list does not already contain a node with the currently calculated cost of travel. 

To accommodate the additional functionality of Dijkstra’s algorithm, we need to modify our 

BTloopArgs just slightly. There is now a variable to contain the currently calculated cost of 

travelling to this node (public double NewCost). The state composing Func required of the 

GStateComposer’s constructor will also be modified to set the current cost to 0. 

6.2.2 Composing Dijkstra’s Behavior Tree 

 
Figure 103 - A behavior tree representation of Dijkstra's algorithm 
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The composition of Dijkstra’s graphical tree follows the same logic used when composing the 

breadth first search diagram. This feature stands out as important. Once the nodes are identified, a 

simple intuitive analysis leads to the obvious solution. 

6.3 A* 

The A* (A-star) algorithm is a popular path finding algorithm that works like Dijkstra’s algorithm 

but with an added heuristic to calculate which cells should have priority in the search. There are 

any number of heuristics that may be used but a very popular approach is to use the currently active 

node’s distance to the end goal. In this way, the search spreads out unevenly in favor of nodes 

closest to the goal. Ideally, this will lead the algorithm on a straight line path toward the goal. If 

obstacles or otherwise blocked nodes come into the path, it will begin searching for ways around 

that obstacle. In the end it may not provide the absolute shortest path but the number of searched 

nodes will be much smaller. 

// Given a starting cell ‘start’ 
// and a goal cell ‘goal’ 
 1: Enqueue start in frontier with cost 0 
 2: Mark start as visited 
 3: If goal has been reached, return 
 4: While frontier is not empty 
 5:   Get next cell (current) 
 6:   Get current cell’s neighbors (neighbors) 
 7:   For each cell in neighbors 
 8:      Calculate travel cost 
 9:      If neighbor is not visited or cost < currentCost 
10:         Apply cost 
11:         Calculate priority 
11:         Put neighbor in frontier sorted by priority 
12:         Mark neighbor came-from to current 
13:         Mark neighbor as visited 

Figure 104 - Pseudo code for our implementation of the A* algorithm 

6.3.1 Decomposing the Pseudo Code 

Our final pseudo code analysis will reveal the necessary nodes required for the A* algorithm’s 

operation. As you can see, we only need to make slight modifications to enable the A* algorithm’s 

functionality. There is one new ActionNode required to calculate the node’s priority and the 
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enqueue neighbor node will now use that priority value instead of the calculated cost value 

previously used in Dijkstra’s algorithm. 

The BTLoopArgs class must now be fitted with a new variable to contain the search priority of 

this node. The state composing Func required of the GStateComposer’s constructor will be 

modified to set the first node’s priority to 0 as shown in Figure 105. 

Table 14 - A line by line analysis of the A* algorithm pseudo code revealing necessary behavior tree nodes 
Line Statement Node Required 
1 Enqueue start in frontier Action 
2 Mark start as visited Action 
3 If goal has been reached, return Assertion 
4 While frontier is not empty Decorator, Assertion 
5 Get next cell (current) Action 
6 Get current cell’s neighbors (neighbors) Action 
7 For each cell in neighbors Composite 
8 Calculate travel cost Action 
9 If neighbor is not visited or cost < currentCost Selector 
 9a Check visited Assertion 
 9b Check cost Assertion 
10 Apply cost Action 
11 Calculate priority Action 
12 Put neighbor in frontier sorted by priority Action 
13 Mark neighbor came-from to current Action 
13 Mark neighbor as visited Action 

 

public class BTLoopArgs 
{ 
 public ICell Current { get; set; } 
 public List<ICell> Neighbors { get; set; } 
 public int Counter { get; set; } 
 public ICell CurrentNeighbor { get; set; } 
 public double NewCost { get; set; } 
 public double Priority { get; set; } 
} 

Figure 105 - The contents of BTLoopArgs which contains the necessary values for implementation of the A* algorithm 

Func<BTLoopArgs> composer = new Func<BTLoopArgs>(() => 
{ 
 BTLoopArgs la = new BTLoopArgs(); 
 la.Current = _frontier.ElementAt(0).Value; 
 la.Neighbors = GetNeighbors(la.Current); 
 la.Counter = 0; 
 la.NewCost = 0; 
 la.Priority = 0; 
 return la; 
}); 
//etc 
GStateComposer <BTLoopArgs> gsc = new GStateComposer <BTLoopArgs>(composer); 

Figure 106 - The GStateComposer argument that provides the generic section of the behavior tree its operable state 
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6.3.2 Composing the A* Behavior Tree 

 
Figure 107 - A behavior tree representation of the A* algorithm 

6.4 Reflective Behavior Tree Instantiation 

Through the use of reflection (section 1.10), we can create, modify, and load these same behavior 

trees without making any modifications to the underlying code. An XML based behavior tree 

loader has been developed that will scan any well-formed XML document that contain behavior 

tree nodes, instantiate them, and craft the proper parent / child hierarchy. 
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6.4.1 Reflective Loader 

The reflective loader scans a well-formed XML document and instantiates a behavior tree based 

on its contents. There are three parts to this file: (1) Necessary assemblies, (2) necessary types, and 

(3) the behavior tree itself. The way it operates is very simple. It first loads all of the specified 

Assemblies into a collection that is made available to later stages. It then loads all of the specified 

types by retrieving them from the preloaded assemblies. Finally, it instantiates each of these types 

in the order specified by the xml file and assigns child and parent status. 

An assembly is a reusable, versionable, and self-describing block of a common language runtime 

application [44]. These will usually be in the form of dynamically linked libraries (dlls). The first 

section of our well-formed document should be a list of Assembly elements with a Name and File 

attribute for all of the dll files containing types used in the behavior tree. The XmlBTLoader will 

load these files as C# Assembly classes and store them in a dictionary sorted by name for later use 

(Dictionary<string, Assembly> _assemblies). Whenever an assembly element does not contain a 

File attribute, the program will load the ‘entered’ assembly which is the executable file that was 

run to get the behavior tree program started in the first place. 

<Assemblies> 
 <!--No File attribute loads entry assembly--> 
 <Assembly Name="Entered"/> 
 <Assembly Name="BTLib" File="JBTFramework.dll"/> 
</Assemblies> 

Figure 108 - A list of assemblies necessary to load all of the types in our behavior tree 

The second section of our XML document should be all of the types used in the behavior tree. 

These types might include Sequence, Selector, Action, GSequence, GSelector, and others. These 

should match the actual class names used in the authored code. Each Type element should contain 

at least an Assembly, Name, and NameSpace attribute. The assembly attribute represents the key 
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value we used to store the assemblies that were loaded in phase one into the dictionary. The name 

attribute should match the name of the class used the code. The namespace attribute should match 

the entire surrounding namespace of the type. This will allow the loader to search through the 

loaded assemblies and gather the metadata for that type. Optional attributes include IsGeneric and 

ArgType. When loaded types are generic, they must have an argument type to send to the object 

creator so that it can dynamically create the proper intermediate language for that type. For 

example, in C++, when you load a template class like a vector, you must tell the compiler what 

type of objects the vector will operate on (e.g. vector<int>). Similarly, C# generic types require a 

type declaration so that the compiler knows what type of information it will be working with (e.g. 

GActionNode<int>). When a node is generic and requires an ArgType, the ArgType itself must be 

individually declared prior to using it as a generic node’s argument type. As you can see in Figure 

109, The BTLoopArgs type is loaded before being used in several of the generic types below it 

(GStateComposer, GSequence, etc). 

<Types> 
 <Type Assembly="Entered" Name="BTLoopArgs" NameSpace="Jeremy.BTWorld.Tools"/> 
 <!--Default IsGeneric is false--> 
 <Type Assembly="BTLib" Name="WhileTrue" NameSpace="Jeremy.BTLib.Nodes.Decorators" /> 
 <Type Assembly="BTLib" Name="Sequence" NameSpace="Jeremy.BTLib.Nodes" /> 
 <Type Assembly="BTLib" Name="ActionNode" NameSpace="Jeremy.BTLib.Nodes" /> 
 <Type Assembly="BTLib" Name="Selector" NameSpace="Jeremy.BTLib.Nodes" /> 
 <Type Assembly="BTLib" Name="GStateComposer" NameSpace="Jeremy.BTLib.Nodes.Generic.Decorators" 
     IsGeneric="true" ArgType="BTLoopArgs"/> 
 <Type Assembly="BTLib" Name="GSequence" NameSpace="Jeremy.BTLib.Nodes.Generic" 
     IsGeneric="true" ArgType="BTLoopArgs"/> 
 <Type Assembly="BTLib" Name="GActionNode" NameSpace="Jeremy.BTLib.Nodes.Generic" 
     IsGeneric="true" ArgType="BTLoopArgs"/> 
 <Type Assembly="BTLib" Name="GLoopDecorator" NameSpace="Jeremy.BTLib.Nodes.Generic.Decorators" 
     IsGeneric="true" ArgType="BTLoopArgs"/> 
 <Type Assembly="BTLib" Name="GSelector" NameSpace="Jeremy.BTLib.Nodes.Generic" 
     IsGeneric="true" ArgType="BTLoopArgs"/> 
</Types> 

Figure 109 - A list of Types necessary craft our behavior tree 

The final section of our XML document will be the behavior tree nodes themselves, nested the 

same way as they are in the previously designed figures (Figure 101, Figure 103, and Figure 107). 
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Having these figures on hand when crafting the XML makes it a very simple task. The XML 

element names should match one of the previously loaded types. Every node has an optional Name 

attribute. Certain types will have required attributes. ActionNodes and GActionNodes have a 

required Action attribute that defines the name of the Func that they should retrieve from the action 

repository. 

6.4.2 Breadth First Search 

The following XML snippet represents the same behavior tree shown in Figure 101. Once 

instantiated by the reflective loader, it will perform identical to the breadth first search 

implemented strictly in code. Ironically, the behavior tree operation uses a depth first approach. 

<Tree> 
 <WhileTrue Name="WT1"> 
  <Sequence Name="Seq1"> 
   <ActionNode Action="CheckGoalReachedBFSX"/> 
   <ActionNode Name="CheckFrontier" Action="Frontier&gt;0BFSX" /> 
   <Selector Name="Sel1"> 
    <GStateComposer Name="GetState" Getter="BTLoopArgsBFSX"> 
     <GWhileTrue Name="WT2"> 
      <GSequence Name="ForSeq"> 
       <GActionNode Action="PreCheck"/> 
       <GActionNode Action="UpdateCurrentNeighbor"/> 
       <GSelector Name="Sel2"> 
        <GSequence Name="Seq2"> 
         <GActionNode Action="NeighborVisitCheck"/> 
         <GActionNode Action="CanCross"/> 
         <GActionNode Action="EnqueueCurrentNeighborBFSX"/> 
         <GActionNode Action="MarkNeighborVisited"/> 
         <GActionNode Action="MarkCameFrom"/> 
        </GSequence> 
        <GActionNode Name="Succ2" Action="NodeStatus.Success"/> 
       </GSelector> 
       <GActionNode Name="PostCheck" Action="IncrementLoopCounter"/> 
      </GSequence> 
     </GWhileTrue> 
    </GStateComposer> 
    <ActionNode Name="Succ1" Action="NodeStatus.Success"/> 
   </Selector> 
  </Sequence> 
 </WhileTrue> 
</Tree> 

Figure 110 - The XML representation of a Breadth First Search behavior Tree. This XML code is used by the reflective 

loader to instantiate the tree. 
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6.4.3 Dijkstra 

The XML snippet in Figure 111 represents the same behavior tree shown in Figure 103. Again, 

once the reflective loader parses the file and instantiates each of the behavior tree nodes, it will 

perform identically to its hardcoded counterpart. 

<Tree> 
 <WhileTrue Name="WT1"> 
  <Sequence Name="Seq1"> 
   <ActionNode Name="IsGoalReached" Action="CheckGoalReached"/> 
   <ActionNode Name="CheckFrontier" Action="Frontier&gt;0" /> 
   <Selector Name="Sel1"> 
    <GStateComposer Name="GetState" Getter="BTLoopArgs"> 
     <GLoopDecorator Name="LoopDecorator" Init="Init" PreCheck="PreCheck" 
              PostOperations="IncrementLoopCounter"> 
      <GSelector Name="Sel2"> 
       <GSequence Name="Seq2"> 
        <GActionNode Action="UpdateCurrentNeighbor"/> 
        <GActionNode Action="CanCross"/> 
        <GActionNode Action="CalculateCost"/> 
        <GSelector Name="Sel3"> 
         <GActionNode Action="NeighborVisitCheck"/> 
         <GActionNode Action="CheckCost"/> 
        </GSelector> 
        <GActionNode Action="MarkNeighborVisited"/> 
        <GActionNode Action="MarkCameFrom"/> 
        <GActionNode Action="ApplyCost"/> 
        <GActionNode Action="EnqueueCurrentNeighborByCost"/> 
       </GSequence> 
       <GActionNode Action="NodeStatus.Success"/> 
      </GSelector> 
     </GLoopDecorator> 
    </GStateComposer> 
    <ActionNode Name="Succ1" Action="NodeStatus.Success"/> 
   </Selector> 
  </Sequence> 
 </WhileTrue> 
</Tree> 

Figure 111 - The XML representation of Dijkstra’s algorithm behavior Tree. This XML code is used by the reflective 

loader to instantiate the tree. 

6.4.4 A* 

The following XML snippet represents the same behavior tree shown in Figure 107. Once again, 

and finally, when the reflective loader instantiates each of the behavior tree nodes, its behavior 

will be identical to its hardcoded counterpart. 
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<Tree> 
 <WhileTrue Name="WT1"> 
  <Sequence Name="Seq1"> 
   <ActionNode Name="IsGoalReached" Action="CheckGoalReached"/> 
   <ActionNode Name="CheckFrontier" Action="Frontier&gt;0" /> 
   <Selector Name="Sel1"> 
    <GStateComposer Name="GetState" Getter="BTLoopArgs"> 
     <GSequence Name="ForSeq"> 
      <GActionNode Action="CurrentVisitCheck"/> 
      <GActionNode Action="MarkCurrentVisited"/> 
      <GLoopDecorator Name="LoopDecorator" Init="Init" PreCheck="PreCheck" 
                PostOperations="IncrementLoopCounter"> 
       <GSelector Name="Sel2"> 
        <GSequence Name="Seq2"> 
         <GActionNode Action="UpdateCurrentNeighbor"/> 
         <GActionNode Action="NeighborVisitCheck"/> 
         <GActionNode Action="CanCross"/> 
         <GActionNode Action="CalculateCost"/> 
         <GActionNode Action="ApplyZDifference"/> 
         <GActionNode Action="CheckCost"/> 
         <GActionNode Action="CalculatePriority"/> 
         <GActionNode Action="EnqueueCurrentNeighborByPriority"/> 
         <GActionNode Action="ApplyCost"/> 
         <GActionNode Action="MarkCameFrom"/> 
         <GActionNode Action="MarkNeighborVertex"/> 
        </GSequence> 
        <GActionNode Action="NodeStatus.Success"/> 
       </GSelector> 
      </GLoopDecorator> 
     </GSequence> 
    </GStateComposer> 
    <ActionNode Name="Succ1" Action="NodeStatus.Success"/> 
   </Selector> 
  </Sequence> 
 </WhileTrue> 
</Tree> 
 

Figure 112 - The XML representation of the A* behavior Tree. This XML code is used by the reflective loader to 

instantiate the tree. 
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CHAPTER 7  

BEHAVIOR TREE APPLICATION RESULTS 

The following observable behavior patterns are seen as necessary components to fulfill the 

objectives of this research project. Each behavioral pattern’s usefulness will be examined through 

a simple scenario. 

7.1 Path Planning 

Autonomous vehicles are frequently used to explore places where humans would either be in 

danger or would otherwise be impractical to send. Examples of danger might be radioactive sites 

or potential bomb locations. An impractical scenario for a human would be to map several square 

kilometers of underwater terrain. Therefore, most situations dictate some sort of autonomous path 

planning and following capability. 

The current version of the Breadth First Search, Dijkstra, and A* algorithms perform their intended 

functions on simple connected graphs as they are currently implemented. What they lack though 

are specialty functions mean to account for BTWorld map conditions (water or fog of war) and 

feedback to human observers. This gives us the opportunity to demonstrate the ease of extension 

that behavior trees offer. Here we will add the functionality to the Breadth First Search behavior 

tree to check the map for water and also to mark nodes as we search them. 

Table 15 - Additional nodes needed to enable custom functionality on BTWorld 

Node Function Name 

Assertion Check whether travel to neighbor node is possible CanCross 

Action Mark current cell that is being considered for shortest path MarkCurrent 

Action Mark neighbor nodes as they are added to frontier MarkNeighbor 
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The first additional step we are going to take in our Behavior Tree is to check if travel to a particular 

node is possible. When the fog-of-war option is turned on, any nodes underneath the fog will be 

presumed traversable. Also, the cost to travel from node to node will be calculated as if it was flat 

land. These calculations will be adjusted once the land is uncovered. We will place this 

functionality just after the visitCheck node. Notice in Figure 113 that if the node is hidden, we 

automatically return success. Otherwise, an IsPassable check is made inside the cell which should 

account for conditions such as water or steep inclines. 

Func<BTLoopArgs, NodeStatus> a = 
new Func<BTLoopArgs, NodeStatus>(la => 
{ 
 if (la.CurrentNeighbor.IsHidden || 
la.CurrentNeighbor.IsPassable) 
 { 
  return NodeStatus.Success; 
 } 
 else 
 { 
  return NodeStatus.Failure; 
 } 
}); 
AddAction("CanCross", a); 

 

Figure 113 - The CanCross functionality needed for the Breadth First Search to check nodes for non-traversable 

conditions 

The MarkCurrent node is simply going to add a color to the map for each node that we are currently 

considering for shortest path membership. There are at least two ways to go about handling this 

functionality. We could either (a) add a sequence underneath the GetState node with the 

MarkCurrent action as the first child and the already created WhileTrue (WT2) node as the second 

or (b) we can just add this node coloring function to the state composer that is sent to the GetState 

node. I have opted for the simpler approach and added this function to the GetState composer 

(shown in Figure 114) 
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Func<BTLoopArgs> composer = new Func<BTLoopArgs>(() => 
{ 
 BTLoopArgs la = new BTLoopArgs(); 
 la.Current = _frontier.Dequeue(); 
 la.Current.Color = Color.Yellow; 
 la.Neighbors = GetNeighbors(la.Current); 
 return la; 
}); 
GStateComposer <BTLoopArgs> gsc = new GStateComposer <BTLoopArgs>(composer); 

Figure 114 - A modified GStateComposer argument that sets the Breadth First Search current node to yellow 

The MarkNeighbor node is going to change the color of any nodes that we add to the frontier. 

Ideally this will be different color than the one used for the currently considered node. This node 

can be added to Sequence2 just after the QNeighbor node. The code for the node’s action and the 

resulting sequence is shown in Figure 115. 

Func<BTLoopArgs, NodeStatus> a = 
new Func<BTLoopArgs, NodeStatus>(la => 
{ 
 la.CurrentNeighbor.Color = Color.Purple; 
 return NodeStatus.Success; 
}); 
GActionNode<BTLoopArgs> an = 
new GActionNode<BTLoopArgs>(a); 

 

Figure 115 - The MarkNeighbor functionality needed for the Breadth First Search to give color coded feedback to users 

With similar intuition, the Dijkstra and A* algorithms can be modified to accommodate this 

additional functionality. In Figure 117 the nodes were staggered just to conserve horizontal space. 

 
Figure 116 - The modified sequence necessary to add the CanCross and MarkNeighbor functionality to Dijkstra's 

algorithm 
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Figure 117 - The modified sequence necessary to add the CanCross and MarkNeighbor functionality to the A* algorithm 

With our newly modified behavior trees we are able to demonstrate the path planning behavior 

trees in our BTWorld. In Figure 118 you’ll see two different paths resulting from the same A* 

algorithm implementation. The one on the left represents the shortest path without accounting for 

water or terrain difficulties. You’ll notice that it returns a path directly over the top of a steep 

mountain. The one on the right accounts for the steep terrain as well as water obstacles and takes 

the vehicle on a more optimal path around the mountain. Similarly, in Figure 119, the A* algorithm 

provides a path directly across a lake that is unknown to the vehicle. Once explored, though, it 

plans around it properly. 

 
Figure 118 - The A* algorithm performing a search with fog of war enabled (left) and disabled (right) 
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Figure 119 - The A* path planning algorithm providing a path through unexplored water (left). Once explored it plans 

around it properly (right) 

7.2 Acoustic Node Mapping 

Underwater vehicles are frequently used to communicate with underwater acoustic nodes. To 

simulate the mission of searching and finding nodes, communication components have been 

developed to interact with each other inside of our BTWorld (see section 4.2, Acoustic Node 

Simulator (Communicator)). These communicators simulate underwater acoustic communications 

by (a) only registering messages with other communicators when they are in range and (b) 

responding to messages after a timed delay based on underwater acoustic communication speeds. 

The determination of locations based on received messages is built into a component called 

BTLocator. The BTLocator was constructed as a state machine with each state being a single 

action (see Figure 120). When an instance of a BTLocator is created it must be provided with a 

Traveler (section 4.1) from which it gains access to the communicator. The BTLocator 

furthermore controls the current navigational goal of the traveler as well as when the communicator 

should ping another acoustic node. 
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Figure 120 - The makeup of the BTLocator component used to localize nodes 

When the user first initiates the locator object, it creates a mow the lawn pattern around the map. 

As the vehicle travels these predetermined locations it is simultaneously pinging the other acoustic 

node nearby. Whenever it receives a reply it stores the location from which it pinged as well as the 

distance measurement received by the other node. In this way, it can build up a series of circles 

from which to triangulate the position of the other node (see Figure 121 and Table 16). Once 

communication to another node has been established, the locator breaks out of the mow the lawn 

pattern and begins travelling randomly inside the bounds of this newly created circle. As time 

passes, these restrictive bounds are removed to allow greater flexibility for travel. This is to 

overcome the possibility of an errant message or a subsequent failure to reestablish 

communications. Otherwise, the vehicle might be forever trapped in a tight travel pattern with no 

hope of getting another message. When a second communication is received, the vehicle calculates 

the new circle and finds any intersections between the two. If they are found, it goes into the travel 

intersections state to determine which one is correct. When a ping is received within a 

predetermined radius the vehicle registers the node as found and moves into the complete state. 
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An example of this behavior in BTWorld is shown in Figure 122. The red circles are constructed 

using the center point and radius at which the communication was received from the other node. 

The equations necessary to solve for the components of Figure 121 are shown below, in Table 16. 

 

 
Figure 121 – A graphical depiction of solving for the intersection of two circles. 

Table 16 –The descriptions of equations needed to solve for the intersection of two circles. 

Equation Description 

12 xxx   The difference between the x components of the vehicle’s first and 

second range request. 

12 yyy   The difference between the y components of the vehicle’s first and 

second range request. 

22 yxd   The straight line distance between the two vehicle locations 

d

drr
a

2

22

2

2

1 
  

The distance between the first ranging point and the halfway point of 

the two ranging points. 

22

1 arh   
The perpendicular offset of the straight line between the two ranging 

points and the two possible locations of the ranged node. 

 yx
d

a
P  ,3

 The point directly halfway between the two ranging locations 

 1234 yy
d

h
xx   The two possible x coordinates of the ranged node. 

 1234 xx
d

h
yy    The two possible y coordinates of the ranged node. 
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Figure 122 – When observed from top left to bottom right (1) The vehicle begins a mow the lawn pattern around the map 

(2) The vehicle gets a message from the static node and builds a circle using the center point of the received 

communication and the distance received. The vehicle begins randomly traveling inside of this circle (3) The vehicle 

receives a second communication from the static node. It will now calculate intersections and check for the static node at 

those locations. It initially searches the wrong intersection (4) The vehicle checks the second intersection location where it 

will find the static node and move into the ‘complete’ state. 

7.3 REMUS Simulator Integration 

The previous behavior tree applications represent fundamental autonomous vehicle capabilities 

that must exist before more sophisticated algorithms can be developed. I have taken this one step 

further to demonstrate the feasibility on actual underwater vehicles. Below you will find a 
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walkthrough of the steps taken to implement a simple waypoint following behavior tree algorithm 

on the REMUS simulator. 

7.3.1 Step 1: Decompose the Vehicle Control Library 

As in the previous algorithms, the first step is to decompose the available methods inside the 

vehicle control library into the necessary actions and assertions that will achieve the desired output. 

A cursory examination of the behavior requirements revealed what these necessary actions (!) and 

assertions (?) were. 

The vehicle must travel submerged. A partially submerged propeller contending with constant 

wave energy is very inefficient. Therefore we need a set depth action. Since this action will be a 

one-time adjustment, it will be sent to the vehicle before the behavior tree begins its traversal. 

 Set depth! 

The vehicle’s current location must be established to determine bearings to waypoints. As 

discussed earlier these vehicle status updates will be submitted into a queue until after they have 

been examined. We need to check this status each time before issuing a navigation command to 

the REMUS. The algorithm will decide whether a left or right azimuthal adjustment is more 

optimal. 

 Is there a status message available? 

 Check location! 

 Determine optimal heading adjustment! 

 Modify heading to the left! 
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 Modify heading to the right! 

A determination of what to do next will need to be made once the current waypoint is reached. 

Currently the only actions are to set the next waypoint as the target or mark the mission as 

complete. 

 Has the current waypoint been reached? 

 Have all of the mission tasks been completed? 

 Is there another waypoint in the queue? 

 Set target to next waypoint! 

Table 17 lists the necessary actions and assertions. The ‘Index’ column is supplied so that the leaf 

nodes of a behavior tree can be labeled with an action index rather than full names. The ‘Behavior 

Output’ column gives a very simple description of what the action accomplishes. The details of 

how it is accomplished are hidden within the vehicle library itself. Two previously unmentioned 

nodes have been added: AutoSuccess and MissionComplete. The auto success node simply returns 

a NodeStatus.Success value indicating that a particular sequence reached the end without error. 

The mission complete node sends a signal to the root node that all of the mission tasks have been 

completed. 

Table 17 - The underwater vehicle behaviors available for use in the following example 
Index Behavior Name Behavior Output 
1 IsMessageAvailable Checks the vehicle communication queue for a new status message 
2 GetLocation Checks the location field of the status message 
3 ShouldBearLeft Determines whether a left turn is optimal 
4 ShouldBearRight Determines whether a right turn is optimal 
5 BearLeft Instructs the vehicle to position the rudder for a left turn 
6 BearRight Instructs the vehicle to position the rudder for a right turn 
7 IsGoalReached Checks whether the vehicle has reached its current waypoint target  
8 IsEndOfMission Determines whether all of the tasks have been accomplished 
9 PopWaypoint Sets the vehicle’s waypoint target to the next waypoint 
10 AutoSuccess Simply returns a NodeStatus.Success value to its parent node 
11 MissionComplete Signals the tree root that the mission is complete 
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7.3.2 Step 2: Construct the Action and Assertion Code 

Once each of the necessary actions and assertions are properly coded to perform the desired task, 

they must be inserted by name into the appropriate repository for consumption later by behavior 

tree nodes (see Figure 123). Behavior tree action and assertion nodes will be assigned the 

appropriate Func to execute at runtime by way of hardcoded tree construction, which is shown 

below in Figure 125, or through the reflective instantiation of an XML tree based on the reflective 

loader discussed in section 6.4.1. 

_actionRepo.RegisterAssertion("IsMessageAvailable", IsMessageAvailable); 
_actionRepo.RegisterAction("GetLocation", GetLocation); 
_actionRepo.RegisterAssertion("ShouldBearLeft", ShouldBearLeft); 
_actionRepo.RegisterAssertion("ShouldBearRight", ShouldBearRight); 
_actionRepo.RegisterAction("BearLeft", ModifyHeading); 
_actionRepo.RegisterAction("BearRight", ModifyHeading); 
_actionRepo.RegisterAssertion("IsGoalReached", IsGoalReached); 
_actionRepo.RegisterAssertion("IsEndOfMission", IsEndOfMission); 
_actionRepo.RegisterAction("PopWaypoint", PopWaypoint); 
_actionRepo.RegisterAction("MissionComplete", MissionComplete); 

Figure 123 - Entering the actions and assertions into the demo repository 

7.3.3 Step 3: Sketch the Behavior Tree 

With the actions and assertions intact, the structure of the behavior tree can be drawn. Doing so 

helps guide the developer’s decisions regarding sequences and selectors which are the heart of 

behavior trees. The root node (R) is just a basic decorator that ticks its only child. The decorator 

underneath, labeled ‘WT’ is a specialized ‘while-true’ node (see section 5.4.1) that executes from 

start to finish until a NodeStatus.Failure is received. Sequences and selectors have been labeled as 

seq# and sel# respectively so that they may be easily identified in the code. Each leaf node with a 

number is a reference to the indices in Table 17. For example, the node with a 3 in it calls 

“ShouldBearLeft.” Since this node falls under a sequence, if it returns NodeStatus.Success then 

the next node is called. This node (5) calls the “BearLeft” action and returns NodeStatus.Success. 

Following this action, the sequence (seq2) is satisfied and also returns NodeStatus.Success. This 
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satisfies the selector (sel1) which means that a check for bearing right is skipped. Control continues 

to bubble up to the parent sequence (seq1) which then passes control to its next child, another 

selector (sel2). This grouping of nodes determine overall mission status and target waypoint 

adjustments. 

 
Figure 124 – Behavior tree sketch for the REMUS waypoint following test 

7.3.4 Step 4: Building the Tree in Code 

Now that all of the necessary actions and assertions have been developed and a preliminary sketch 

has been drawn we can easily develop the background code to execute the tree. I have opted for a 

‘Factory’ approach that crafts the tree and returns the root node to the caller. This factory uses the 
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action and assertion Funcs that were previously inserted into the repository as arguments for the 

nodes. 

Action and Assertion class constructor signatures: 

 public ActionNode(string name, Func<NodeStatus> action) 

 public AssertionNode(string name, Func<bool> assertion) 

public static INode GetWaypointBT(ActionRepository repo, EventWaitHandle trigger) 
{ 
 // Step 1: create all of the individual nodes 
 IDecorate root = new TriggeredRoot("Root", trigger, 150); 
 INode isMessageAvailable =  new AssertionNode("1", repo.GetAction<Func<bool>>("IsMessageAvailable")); 
 INode getLoc = new ActionNode("2", repo.GetAction<Func<NodeStatus>>("GetLocation")); 
 INode shouldBearLeft = new AssertionNode("3", repo.GetAction<Func<bool>>("ShouldBearLeft")); 
 INode shouldBearRight = new AssertionNode("4", repo.GetAction<Func<bool>>("ShouldBearRight")); 
 INode bearLeft = new ActionNode("5", repo.GetAction<Func<NodeStatus>>("BearLeft")); 
 INode bearRight = new ActionNode("6", repo.GetAction<Func<NodeStatus>>("BearRight")); 
 INode isGoalReached = new AssertionNode("7", repo.GetAction<Func<bool>>("IsGoalReached")); 
 INode isEOM = new AssertionNode("8", repo.GetAction<Func<bool>>("IsEndOfMission")); 
 INode popWaypoint = new ActionNode("9", repo.GetAction<Func<NodeStatus>>("PopWaypoint")); 
 INode successNode = new SuccFailNode("10", NodeStatus.Success); 
 INode missionComplete = new ActionNode("11", repo.GetAction<Func<NodeStatus>>("MissionComplete")); 
 // Step 2: Create all of the selectors with representative names 
 IComposite whileMessage = new WhileTrueSequence("CheckMessageAvailable"); 
 IComposite seq1 = new Sequence("MainSequence"); 
 IComposite seq2 = new Sequence("TestTurnLeft"); 
 IComposite seq3 = new Sequence("TestTurnRight"); 
 IComposite seq4 = new Sequence("PopWaypointOrExit"); 
 IComposite sel1 = new Selector("TestTurning"); 
 IComposite sel2 = new Selector("CheckGoalStatus"); 
 IComposite sel3 = new Selector("PopOrExit"); 
 // Populate the root with the while-true node 
 root.Child = whileMessage; 
 // Populate the while-true node with the message check and sequence 1 
 whileMessage.AddChild(isMessageAvailable, seq1); 
 // Populate each sequence with the appropriate children 
 seq1.AddChild(getLoc, sel1, sel2); 
 seq2.AddChild(shouldBearLeft, bearLeft); 
 seq3.AddChild(shouldBearRight, bearRight); 
 seq4.AddChild(isGoalReached, sel3); 
 // Populate all of the selectors with their children 
 sel1.AddChild(seq2, seq3, new SuccFailNode("10", NodeStatus.Success)); 
 sel2.AddChild(seq4, new SuccFailNode("10", NodeStatus.Success)); 
 sel3.AddChild(popWaypoint, missionComplete); 
 // Return the root node - this effectively gives access to the entire tree 
 return root; 
} 

Figure 125 - The Behavior Tree Factory returning a waypoint following behavior tree 

Notice in the factory’s construction that each Action and Assertion node is given a name that aligns 

with the index in Table 17. As the tree writes its execution history to a file this makes debugging 
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analysis much easier. For example, in Figure 126 we see one traversal through the behavior tree 

that indicates a waypoint has been reached and that the target should be updated. 

WhileTrueSequence[CheckMessageAvailable] updating 
   AssertionNode[1] updating 
   AssertionNode[1] updated Success 
   Sequence[MainSequence] updating 
      ActionNode[2] updating 
      Heading: 82.5999999046326 
      ActionNode[2] updated Success 
      Selector[TestTurning] updating 
         Sequence[TestTurnLeft] updating 
            AssertionNode[3] updating 
            AssertionNode[3] updated Success 
            ActionNode[5] updating 
            Offset is 83.4182046757866 
            Delta is -0.818204771154015 
            Turning left at -0.73867919909028 
            ActionNode[5] updated Success 
         Sequence[TestTurnLeft] updated Success 
      Selector[TestTurning] updated Success 
      Selector[CheckGoalStatus] updating 
         Sequence[PopWaypointOrExit] updating 
            AssertionNode[7] updating 
            Distance to target: 4.84090294887801 
            AssertionNode[7] updated Success 
            Selector[PopOrExit] updating 
               ActionNode[9] updating 
               ActionNode[9] updated Success 
            Selector[PopOrExit] updated Success 
         Sequence[PopWaypointOrExit] updated Success 
      Selector[CheckGoalStatus] updated Success 
   Sequence[MainSequence] updated Success 

Figure 126 - WaypointFollowing.txt: The waypoint following demo behavior tree file output 

7.3.5 Step 5: Executing the Tree Using the REMUS Simulator 

Now that the tree has been constructed we can run a simulation using the REMUS simulator. The 

project is setup to run inside of a standard windows console. It creates a communication link with 

the REMUS simulator using a UDP socket. It then waits for the user to press the ‘ENTER’ key to 

begin traversing the behavior tree. Four (4) waypoints located in the Gulf of Mexico near Panama 

City, Florida have been entered as the vehicle target waypoints. When the user presses ENTER, 

root.Tick() is called and the vehicle will begin trying to reach each one in series. As shown in 

Figure 127, this small tree successfully commands the vehicle to navigate to each waypoint. The 

relative ease of implementing the waypoint following behavior suggests that more sophisticated 
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algorithms are equally achievable. Further development and experimentation will show great 

potential for adoption. 

 
Figure 127 – The vehicle simulator output screen after a successful experiment with the proposed waypoint following 

behavior tree 

7.3.6 Summary 

The proposed behavior tree framework was capable of integrating with an existing REMUS 

vehicle control library with very little effort. The constructed behavior tree successfully navigated 
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the four waypoints that it was given. A logical next step in this direction would be to integrate 

behavior trees with the Benthos acoustic modems available onboard. 

7.4 Performance Cost 

The increased flexibility brought about by utilizing behavior trees comes with some processing 

overhead. Performance tests were run utilizing three different versions of the A* algorithm 

presented earlier. The first version is coded inside of a single method making method calls directly 

to local references to the frontier and cells. The second version is the behavior tree representation 

shown in Figure 107. The third version is the same behavior tree version but instantiated using the 

reflective loader and the XML file shown in Figure 112. Each of these algorithms were then used 

to calculate the distance from cell (0, 0) to every other cell in a 128x128 bitmap terrain image. 

There were a total of 16,384 calculations for each algorithm. 

The following test was run on an Intel® Core™ i7 CPU @ 2.5 GHz with 8 GB of RAM. The 

operating system was Windows 8.1 x64. As expected, the sequential code version of the algorithm 

runs the fastest, with the behavior tree versions taking approximately 2.05 times as long. The 

results of the test are shown in Table 18. 

Table 18 - The results of an operational time comparison between a sequential A* algorithm, a hardcoded behavior tree 

representation, and a reflective instantiation of a behavior tree 
Algorithm Name Iterations Total Milliseconds Milliseconds per iteration Speed Ratio 

AStar 16384 17247.1528 1.0527 1.0000 

BTAStar 16384 35519.1439 2.1679 2.0594 

BTAStarXml 16384 35375.9262 2.1592 2.0511 
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Figure 128 – A chart representing the data shown in Table 18 

The slight edge that is shown by BTAStarXml representation in the performance results is 

interesting. The most probable explanation is pressure from other processes running simultaneous 

to the experiment. Subsequent tests show similar results with the BTAStar and BTAStarXml 

versions taking turns having the fastest completion time. The main takeaway from the similarity 

between these two versions is that the reflective instantiation does not impose any additional 

operational overhead. It has a single upfront cost taken care of at program start up. 

The question of whether an algorithm taking twice as long to run is acceptable arises. The answer 

to that question is up to the individual leader of a particular software product. However, some 

cases come to mind where it would and wouldn’t be acceptable. In the case of the mobile acoustic 

node locator, described in section 4.1, a path planning time of around 2 ms would be acceptable. 

The algorithm only needs to run one time for each waypoint in the set and then potentially twice 

when investigating the intersections of the constructed circles (used when localizing a node, see 
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section 7.2). The algorithm replans whenever impassable terrain is encountered as well. On multi-

core processors, this delay is mitigated by the fact that the other independent processes can 

continue to operate without delays from this approach. Situations where it might not be feasible to 

use a behavior tree would be when dealing with high performance control software that integrates 

sensory input with aileron motion or propellor thrust commands or high performance computing 

models that integrate several gigabytes of data as fast as possible. 

7.5 Algorithm Representation Potential 

In 1966, Bohm and Jacopini related the Church-Turing Thesis to programming languages stating 

that any programming language capable of representing sequential composition, selection 

structures, and repetition structures could represent any conceivable algorithm [45]. Since behavior 

trees contain methods for representing each of these structures, they too can represent any 

conceivable algorithm. 

Sequential Composition - The sequence node naturally represents the sequential ordering of 

programming statements, operating on each one in the order they are placed in the sequence. 

Selection Structure – The selector node portrays the necessary characteristics to satisfy this 

requirement by operating on nodes in an if-else if manner. Follow Figure 129 as an example. The 

first sequence will attempt to operate on each of its nodes in order until a failure is received. Since 

the first node returns failure, this sequence will also return failure to its parent, the selector. The 

selector will then tick Seq2 in hopes that it will return success. Since the first node returns success, 

the resulting NodeStatus is dependent on the result of activating Action2. 
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Figure 129 - A graphical representation of an if-else-if structure using behavior tree nodes 

Repetition Structure – To address the repetition structure, Figure 100 is reintroduced to the reader 

as Figure 130. As discussed in section 6.1.1, a standard ‘for-loop’ can be simulated using the 

generic behavior tree nodes introduced in this paper. The argument type of the nodes shown in the 

figure need only contain a field representing the iteration variable. The PreOp node will take care 

of checking for the appropriateness of acting on the loop body (e.g i < someNumber) and the 

PostOp node will handle to pose operation such as incrementing (i++) or decrementing (i--) the 

iteration variable. When the iteration variable exceeds the desired count, the PreOp node returns 

false, causing the while true decorator node to return false. 

 
Figure 130 - A behavior tree representation of a for loop 
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CHAPTER 8  

CONCLUSION AND FUTURE RESEARCH POTENTIAL 

8.1 Conclusion 

Developing a generic framework capable of enabling limitless behavior tree configurations was 

very challenging. The resulting capability, however, shows the potential for very quick 

development and instantiation of algorithms that are able to operate across autonomous vehicle 

platform boundaries. Initial development showed that common path planning and localization 

algorithms worked well and were very extensible in simulated environments. Later work showed 

that the transition to an actual REMUS simulator was virtually seamless and presented no new 

limitation to BT potential. This work demonstrates that the investment made in utilizing a behavior 

tree approach will reward the investors in the end. 

Furthermore, no new limitations in programming flexibility were discovered. Developers who 

prefer a particular programming styles are free to do so. Also, the behavior tree granularity is 

completely left up to the designer. For example, one behavior tree node could contain an entire 

algorithm spanning thousands of lines of code. On the other hand, the behavior tree could be 

broken down line by line into nodes which give much greater modification flexibility and potential 

for reuse but come with computational overhead tradeoffs. 

8.2 Future Research Potential 

8.2.1 Autonomous Vehicle Sensor Integration 

This research showed reasonable applications in land based and underwater vehicle autonomy. 

Future implementations might seek to take advantage of common sensor platforms and offer these 
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as components to other behavior tree developers. Open systems designers could host these 

components on open source sites and collaborate with others to refine and optimize the 

performance. Commercial developers could fork development efforts and invest in high quality, 

high performance behavior tree libraries for sale to other commercial developers. 

8.2.2 Graphic Based Platform Integration 

The XML based reflective instantiation of behavior trees discussed in this research enables 

excellent potential for integration with graphic based design platforms. The industry already offers 

products like LabVIEW (http://www.ni.com/labview), where users can drag and drop software 

operations onto the screen and connect them with buses to control the flow of data. Having a 

graphical designer capable of integrating behavior tree functionality would offer limitless 

applications to every area of industry. 

8.2.3 Genetic Algorithm Based Auto-Code Application 

The common infrastructure offered by this research offers unlimited reconfiguration capability. 

Genetic algorithms could be developed that automatically reconfigure code and test it using 

predefined performance metrics with the end goal of highly optimized code. As capabilities are 

introduced and inserted into the action and assertion repositories, the GAs would automatically 

attempt to insert the functionality into the tree, evolving over time to produce proper behavior tree 

algorithms suited to the application desired. 
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