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ABSTRACT

Many of t oday 0 s s haveddimitedhseteof panadd ibehaviers that are of
varying utility. This is due, in part, to very low underwater communication rates and difficulties
observing the vehiclebds underwater bblicavi or
dollar enterprise constantly investing in high quality, high performance frameworks for controlling
intelligent agents. One such framework is called Behavior Tides.project proposes a novel
autonomy frameworknablingeasily reconfigurablbehaviors foboth land based anahderwater
vehicles to discoveand map acoustic nodesising amodular open systems approach based on

behavia trees and action repositories.
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CHAPTER 1

INTRODUCTION

1.1 Underwater Acoustic SensolNetworks

Difficulties encountered witlthe underwater transmission medium have subdued widespread
under water research for many years. I n fact,
unexploredl1]. Advancements in digital signal processing (DSP) technology that enableategh

reliable communications have enabled scientists and engineers to set up underwater acoustic
networks for monitoring and widarea communication applicatiofy. Scientific journals have

produced a wealth of information regarding acoustic layer protocols designed at optimizing point

to-point communications among nodes. One notable example of Beaveel{see sectiod.1.2).

1.1.1 Underwater Communication

Underwater communications pose problems to researchers less evident in terrestrial networks.
Lower bandwidth, extended muftath (Figurel1), and large Doppler shifts all contribute to the
already complex issy]. Also, MAC layer conflictsin the air are usually resolved faster than a
humancan comprehend. Underwatggnal conflictsare very time consumirng rectifyand waste

precious battery life in the recovedye to the much slower propagation of carrier waves.

Underwater networks cannot use radio frequency communication methods tteevery high

absorption rate of these frequencies in water. Even high powered lasers are completely absorbed

1 MAC layer conflicts arise when multiple transmitters attempt to transmit simultaneously.

1



within 1 km[4] and are thus unsuitable for sparse underwater networks. Currently, only acoustic
signals provide theange and bandwidth necessary for their communic§fpnThese signals,
traveling roughly 1500 meters per second (varying according to pressure, temperature, and
salinity), provide lower bandwidth, higher latency, and stenergy constraints. Traafs

between data rate and communication distance have guided many commercial underwater products
into the range of 7 kHz and 30 kHz providing data rates between 80 and 38400 bits per second up
to 6 km([6] [7] [8] [9]. Higher data rates are generally achieved through focusing of the beam
direction. This would be unsuitable for searching nodes in unknown locatiowsyer. Omni

directional beams query in all directions but suffer more from signal attenuation.

Underwater multpath occurs when doosely focused transmissias received after taking
different pathgo the receiverThese paths amue mainly to refletions at the surface and the
bottom, as well as refraction in the water, mainly at greater dgdhsThese divergent, faded
signals arrive at the receiver out of phase with the original signal and may cause reinforcement or

cancellation.

Water surface

Rleﬁ‘e"clted signal

@ Intended signal : @ @

e Refracted signals
Reflected signal

Ocean bottom

Figure 1 - Multi -path and refraction causing distorted signals at the receiver in a shallow and deep environment



1.1.2 Seaweb

Seaweb is an underwater wireless networking concept conceived in the late 90s by the Space and
Naval Warfare Systems Center, San Diego, comprising a scalable number of undeatatery

nodes, peripherals, and gateway bu¢¥%] that employ spread spectrum modulation for
asynchronous multiple access to the physicaliome. Its original intent was for naval command,
control, communications, computers, intelligence, surveillance, and reconnaissédigR).(C

Several experiments on commercial off the shelf (COTS) telesonar modems have proven

Figure 27 These are thedifferent types of nodes in an Underwater Acoustic Sensor Network: (a) attached to a gateway
buoy (b) attached to an autonomous underwater vehicle (c) resting on sea floor (d) suspended from water craft () moored
to sea floor and suspended in the columby a flotation device

2n this case, the physical medium is the water.
3



the capabilities of the program to selganize message routes and optimize modulation

parameters for each message in the dl@aend (CTS) response of a node.

Figure 2 showsseveralof the different types of underwater communication nodes. Stationary
nodes may be placed directly on the seafloor or moored. Moored nodes are anchored to the seafloor
and suspended in the water column by a buoysdo anaintain a certain altitude above sea floor
(ASF). They provide more reliable communication but are also more susceptible to damage by
passing ships, curious passersby, or vandals. Mobile nodes may be of the moored type, with
mechanisms to raise onmer depth, or an unmanned underwater vehicle (UUV) type, capable of
traversing the node field and returning to a retrieval point. Nodes may also be directly attached to
floating buoys or to small boats. A buoy mounted node, like moored nodes, introdueassko

into the desigi12].

1.1.3 Localization

The localization of nodes underwater is a difficult task due to the high sensitivity of acoustic
channels to muhkpath, Doppler shift, refraction, and, among other things, extrenualy |
bandwidth. Research efforts are ongoing and are applied at the acoustic modem level of a design.
Modern underwater modems, like the WHOI MicroModem and Benthos 900 modems, are very
effective at quickly determining théistancebetween two nodes. Howeydraving the simple

range between two underwater nodes is insufficient to provide accurate localization. Techniques
must be employed to handle the three dimensional nature of the underwater environment.
Multilateration is a rangéased localization schenvehere sensor nodes measure distances to
known nodes, or anchors, by signal tiofeflight (TOF) [13]. Since the underwater domain is

three dimensional, 4 sets of linearly independent readings are required to solve the gguation:
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X2+ (y1 yi)? + (z1 z)?= d? Since many nodes can determine their depth (z component) from
onboard pressure sensors, ranges between nodes can be projected onto a single two dimensional

plane and well established 2D localization schemes casdztinsteafil4].

1.1.4 Topologies

There are three basic types of underwater network topologies: Centralized, distributed, and multi
hop[2] (seeFigure3). Centr ali zed topologies rely on one
the other nodes. Both distributed and mhtip topologies rely on a petr-peer connection

through direct commnmication or through a network route, respectively. Centralized topologies
afford a great deal of control over the transmission medium by directing which nodes should speak
and when. However, they also introduce critical nodes which can shut down vergdatigns of

a network given only a single failure. They are also very limited in scale. The nominal range of an

acoustic transponder is 6 kilomet§Ls].

(a) (b) (c)

Figure 31 The three basic topologies of annderwater network. (a) centralized (b) distributed (c) mult-hop. Double
arrows indicate communication paths.
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1.1.5 Lost Nodes

When underwater sensor networks are deployed for extended lengths of time, possibly several
years, lost nodes become more and more likely. Underwater currents have a témdbiftthe
contents of the seafloor and thereby move the nodes with it. jorésence of a hurricane, it is
highly likely that previously placed nodes will be displaced by several meters and perhaps in a
condition unfavorable to receive or transmit acoustic signals. Regardless of the underwater routing
protocol chosen for this netsk topology, other underwater sensors will have to be utilized to

acquire and identify the lost node.

1.1.6 Mobile Nodes

While terrestrial networks may rely on densely packed, inexpensive nodes, a more economical
underwater approach must be pursued. Undervesiesor nodes are very expensive and the
desired coverage space is usually very 1§té¢ Since the midl950s, mobile nodes, specifically
autonomous underwater vehicles, have helped to overcome many of the traditional wnderwat

network problems such as battery life and a poor communication path.

POWER

Undersea modems usually rely on batteries for their power and recharging or replacing them is not
trivial. Since manyinderwater acoustic sensor netwold&ENS) are in place foyears at a time,
energy consumption must be closely monitored. Also, since transmit power is typically 100 times
greater than receive powds6], transmit time should be severely limited. On the other hand, AUV
power usage idominated by propulsion efforts. Their batteries, however, can be easily recharged

or replaced at an underwater docking station or at surface maintenance area.



COMPUTING

A typical underwater vehicle will contain several PC/104 stacks Kgpae 4) which is the
standard for compact embedded pc moditesh board performs a unique capability required for
the system to operate as a whole. For examplEjgare 4, one board is the main CPU, while
others may be SATA drive controllers, analog I/O boards, Ethernet control boards, or PCMCIA
adaptersThese stacks are desirable due to their rigid usentlstd measurements, connections,

and interoperabilityThe PC/104 specifications are maintained by the PC/104 Consbrtium

=i

3.775"

3.550"

Figure 4 - A basic PC/104 stack
http://www.rtd.com/PC104

MANEUVERABILITY

Poor communications paths miagr due to natural obstructions or poor placement of the transducer

relative to the desired transmission direction. AUVs freely overcome this obstacle simply by

8 Visit the PC/104 Consortium websitetdtp://www.pc104.org/



repositioning themselves in the most optimal location for communicating. Engineers all over the
world dedicate themselves to improving the art of underwater vehicle design. Worthy of note are
two vehicles used heavily by the United States Navy for myriad underwater missions. The Remote
Environmental Measuring UnitS (REMUS) vehicle was developed ey Woods Hole

Oceanographic Institution and is manufactured by Hydroid. The Bluefin vehicle class shares a

name with its developer, Bluefin Robotics.

1.1.6.1 REMUS

REMUS vehicles are designed at Woods Hol e Oce
Lab and cora in variants 100, 600, 3000, and 6000. Seheumbers indicate the max depth in
metersat whichthe vehicle is rated to operdtie’]. The REMUS 100 is a light vehicle, weighing

only about 100 pounds depending on sensor cordigur, and can be launched easily from a small

boat with just 2 people. This makes it suitable for quick, low cost mapping and characterization
surveys of up to 10 houf$8]. Available payload sensors include a dual 900/1880 $ide scan

sonar and a forward looking camera.

LEL Navigation
Chemical Light Bracket Transponders Acoustic Doppler Current Profiler
\ . [(ADCP/OVL)
AR NLR
Field Replaceable Antenna

Magretic On/OF Switch

Side Scan Sonar
Conductivity & Temperature

Power/Data Interface Box

Ranger
Ruggedized Laptop Computes 9

Figure 57 A REMUS 100 vehicle with associated equipment (fromww.km.kongsberg.con)



The REMUS vehicle comes with a control program called the Vehicle Interface Program (VIP). It
is aPC basedjraphical interfac@rogramthat issues user commands to the vehicle and displays
thevehi cl e6s backtethenugdit pexformst botk g and postmission analysis.
Missions are programmed through a scripting language and are limited to a few preprogrammed
behaviors. These small behaviors can be cobbled together to form more complex behaviors. The
built in behaviors favor reliability ancepeatability over finesse and as such dopmovide any
dynamic or reactive decision makingpability to the useSome variants of the REMUS include

an onboareémbedde¢t o mput er capable of overriding the m
networkel into the vehiclé onboard switch anglves behavior developers the ability to create far
more complex behaviors but with strict controls built in. There is both a time and a distance
constraint on each override instance. One obvious rationale for andeveould be for an
obstacle avoidance controller. Given forward looking sonar capabilities the vehicle would detect
upcoming objects and make adjustments to travel over or around them before coming back to the

preprogrammed track.

1.1.6.2 Bluefin

Figure 6 1 A Bluefin Robotics Bluefin-9 vehicle (fromwww.bluefinrobotics.com)



Bluefin Robotics develops and supports an array of vehicles known as Bluéfnand 21. The
number indicates the diameter of the vehicle. The Blu&fia a smd] highly maneuverable
vehicle weighing about 140 pounds. This makes it a viable candidate for quick, low cost mapping
and characterization just like the REMUS 100. With the added weight come slightly higher specs
than the REMUS 100. The Bluefth6 s  snaxaspeeddis 5 knots, it can reach depths of 200

meters, and its endurance is about 12 hours at 3 Kir§ijts

1.1.6.3 Search Based Sensors

Typical underwater vehicles are equipped with sidescan sonars. These devices use sound instead
of light to map surroundings. While hardly comparable to moderndedhition cameras, images

from these devices can be analyzed and determined to be of further interest, in which case a vehicle
can be redeployed and use a higher resolution underwatera#o capture a photo of the object

of interest. The REMUS 100 uses a dual 900/1800 kHz sidescan for low resolution, long range

imaging and high resolution, short range imaging, respectively.

Site 1, Zone 3
900 kHz

y

1800 kHz |

| ~28m' Long
~12m Wide

3 1
Figure 7 - Low resolution 900 kHz ®nar image compared to a high resolution 1800 kHz image. (Image from
oceanexplorer.noaa.gov)
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Figure 81 Left: A oar image of an interesting object. Right: A closer look at the object with an underwater camera.
(Images from NATO Undersea Research Centre)

1.2 Underwater Robotic Behaviorsi Automation vs. Autonomy

Underwater missions are inherently difficuit dbserveThis puts programmers of underwater
vehicle control algorithms under heightened pressure to incorporate vehicle safety into their
behaviors. In many cases this has led, understandably, to a very limited set of highly automated
yet severely resttive underwater vehicle behaviors. These behaviors are typically preplanned,
scripted movements with sections of code operating in sequential order until mission completion.
Very little, if any room for vehicle roe decision making, or autonomy, is adled. Some of the
tension involved with allowing vehicles to operate out of sight and autonomously can be relieved
by viable communication techniques to maintain vehicle location and mission status. One such
implementation is the Portable Acoustic RADIo Geterenced Monitoring system
(PARADIGM). It was developed by the Woods Hole Oceanographic Institution to satisfy these
vehicle navigation and tracking requiremeft6]. The implementation of this system requires
radio buoysacting as anchor nodes, to be deployed. Underwater vehicles acting within the radius
of the buoysé communication range (2 km to 6k

make navigational corrections. Similarly, the buoy may ping the vehicletéondine its location
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and report it back to a userodos tracking staf

operations require more discreet means of localization. Onboard GPS antennas allow surfaced
vehicles to gather their location quickly bef@ubmerging and operating via inertial measurement
units. These vehicles can then discreetly send their positions acoustically to a listening node

attached to the mission control station.

One reason for the slant towards automation instead of autonotingt isophisticatedobotic

systems can be very expensive. For example, even a lightly equipped REMUS 100 vehicle from
Hydroid is several hundretthousand dollars. It therefore becomes a major component of every
mission to protect the device from harm adoWith that in mind, the REMUS control software
devel opers have placed strict | imits on many
very limited behaviors to be performed. These behaviors are formed mostly by commanding the
vehicle to follav multiple straight line combinations to form a more complex pattern. For example,

a mowthelawn pattern is formed by giving the vehicle a rectangular area to search and a track
spacing parameter. The track spacing will usually be determined by thensdidtlof the sidescan
sonars. If the sidescan sonar can map the ground thirty feet in both directions then, depending on
the amount of overlap desired, a track spacing of sixty feet might be chosen as shigurei@.

These types of behaviors are usually employed to do a quick, economical search of a particular
area. If something of interest is found in the returned images the vehicle may be sent out to further
invedigate. These investigations are usually performed at a higher resolution and the vehicles will
typically make multiple passes at the intended target to ensure that a decipherable image is

returned.

12



etc...

Swath width: 30 ft

e

Complete coverage: 60
ft (ideal)

Figure 9TA t ypi cthdlawmd wt ype search pattern as performed ¢k

To accommodate under water network research, t
door entrydo into daleethe RECOhlpBDIThis overtide tuhclioeatity
allows a behavior deeloper a much finer degree of control over the M\elec6 s s peed, dep
heading thus allowinghe implementation ofiser definedautonomoushehavios onboard the

REMUS vehiclelt is also, however, bound by time and distance restrictions.

The typical peplanned missions focus mainly on area of coverage and vehicle safety.
Communications do take place but asiallysecondary objectives. Most information is stored

onboard and retrieved after mission completion.
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1.3 Common Graph Searching Algorithms

Utilizing computer algorithms to search a continuous space requires partitioning of that space into
discrete chunks that are operable by those algorithms. Typically, large areas are broken down into
grids of varying cell sizes. These cells represent the aggregaefithe land contained within

that cell (e.g. land type or elevatiorseeFigure10). In this way,an algorithm might break up a

10 meter by 10 meter sized landssanto 10,000 10 squarecentimeter cells. Then, in a logical
manner, proceed to search each one individually for relevant information about it. This information
might lead to the detection of an object being searched for or simply a path from anarnether.

In this section we will discuss three closely related methodsdarching these discrete cell

Breadth First, Dijkstra, and A*.

10 cm? Cells

7 Type: Snow

Elev: 4k meters
10m

. Type: Water
Elev: 500 meters

Figure 10- A 10m x 10m land mass broken down into 18quare-cm cells

10m

1.3.1 Breadth First Seach

The Breadth First Searas not strictly a path finding algorithm butathera very thorough
approach to searching through a graph of c@lish only a minoradditionto the process during

each iteratiorit is guaranteed to provide the shortest MaramabDistance between tvad ourcells.

To begin, 1 is provided with a starting cell whichannotatesThen, it gathers alldf hat cel |
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neighborgnto a queueAfter gathering the information needed from the starting cell it pops the

next cell off ofthe queue where the process stalttever again. When the traversal is complete,

the shortest path from any cell on the map to the starting cell is known. Sample code for this simple

algorithm is shown ifrigure 11.

private void BreadthFirstSearch( Cell start , Cell end)

_frontier.Enqueue(start);
while (_frontier.Count > 0)

Cell current = _frontier.Dequeue();
List <Cell > neighbors =  GetNeighbors(current);
for (int i=0;i<neighbors.Count;i++)

Cell neighbor = neighbors][i];
if (neighbor.Visited == false )

_frontier.Enqueue(neighbor);
neighbor.Visited = true ;
neighbor.CameFrom = current;
}
}
}
}

Figure 11 - A sample of a modified Breadth First Algorithm used to search an area.

1.3.2 Dijkstra

Dijkstrads algorithm was created by Edsger
Mathematik[21]. The algorithm itself rusvery similaty to the modified Breadth First Search
algorithm proposed in sectiadh3.1 Dijkstra, however, also tracks distances fromre arell to
another. In our simple terrain exampleFagure 10 this might mean that travelling uphill might
cost more than travelling downhill. Similarly, travelling@gs water might be much more costly

thantravelling across flaground orimpossible altogether. With a little bit of ingenuity, influences

Di

can be placed on cells that cause a travelling vehicle to avoid locations due to the necessity of

concealment or ber mission requirements. A sample code block is showfigare 12. The

frontier collection is now &st sorted by priority That means thdahe search will continualong

15



the currently shortest patiWith an extra line of code that causes the search to termvhatghe

goal is found, we can begin executing vehicle movement mucheguick

private  void DijkstraSearch( Cell start, Cell end)
{
_frontier.Add( 0, start);
while (_frontier.Count > 0)
{
Cell current = _frontier[0];
_frontier.RemoveAt(0);

if (current == end) break ;
List <ICell > neighbors = GetNeighbors(current);
for (int i=0;i<neighbors.Count; i++)

ICell  neighbor = neighborsi];
float newCost = CalculateDistance(current, neighbor);
if (neighbor.Visited == false || newCost < neighbor.DistanceSoFar)

_frontier.Add(newCost, neighbor);
neighbor.DistanceSoFar = newCost;
neighbor.Visited = true ;
neighbor.CameFrom = curr  ent;

Figure 12 - Sample code demonstrating an implementation of Dijkstra's Algorithm

1.3.3 A*
The A*dgorithmr uns much | i ke Dijkstrabés algorithm. T
prioritize which cell to tr av erostigedinthedrontier| n Di |j

according to the currently traversed distance. In A*, the cellglaced in the frontier by that same
value plus a heuristic. This heuristic may be determined by any group implementing the algorithm
but a commonly used one is the straight line distance between the current cell and the goal cell.
For exampleif the algoithm has travellethrough a number of cells equaling 3 meters so far and
the next neighbor in line is 3.5 meters away from the goal, then a value of 6.5 is used as the priority.
This cell will be searched before another neighbor, whose current distaodyg 5 but whose
straight line distance to the goal is 6 (i.e. priority 7). Sample code for the A* algorithm is shown

in Figurel3.
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private  void AStarSearch( Cell start, Cell end)

_frontier.Add(0, start);
while (_frontier.Count > 0)

ICell  current = _frontier.ElementAt(0).Value;
_frontier.RemoveAt(0);
if (current.Visited == false )

current.Visited = true ;

if (current == end) break ;

List <Cell > neighbors = GetNeighbors(current);
for (int i=0;i<neighbors.Count; i++)

Cell neighbor = neighbors]i];
if (neighbor.Visited == false )

float dist=  CalculateDistance (current, neighbor);
float newCost = dist + current.DistanceSoFar;
if (newCost < neighbor.DistanceSoFar)
{
float  priority = newCost + Heuristic(neighbor, end);
_frontier.Add(priority, neighbor);
neighbor.DistanceSoFar = newCost;
neighbor.CameFrom = current;

Figure 13- Sample code demonstrating an implementation of the A* algorithm

1.4 Behavior Trees

Software lehavior treegre a programming paradigm tltaime to the forefront of video game Al

in2005t hr ough a talk given by Damian 1 sl a

Damian was involved in the Al development for the extremely popular game Halo 2 for XBOX.

His talk began by addressing common issues when dealing with Al: podgmein par

scalability, a lack of direetbility, and random vs. intentional behaviors. It then progressed through

at

t

ways to address each probl em. |t concluded

hY

rendered trivial through judicious use of the right repgteseat i on, 0 whi ¢ h,

behavior tree. The concept worked so well that it was reused in the development of Halo 3, another

very popular title for the Xbox 360.
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Behavior trees are organized as directed acyclic graphs. During each updatbeypigph is

traversed from top to bottornd left to right(Figure 14). During this traversal each node will
assume one of a number of node states. These v
with any others that the designer feels neces@ryg . runni ng, uMmpossible i al i z
NodeStatus enumeration will be shown in secfigh8 Each successful traversal represents one

time slice and congtites a performance parameter of the system which can be adjusted up or
down.For example, a video game developer may shoot for one complete traversal every 16ms (60
frames / second) while a vehicle autonomy developeranaay notequiresuch a highraversal

rate.

RXIZTIS
AN AN

e N

Left to right

Figure 14 - Behavior tree traversal method

Inner nodes of the graph can be any of a collection of sequences or selectors, called composites,
and decorators. Leaf nodes are conditi(assertionspr actions. Composites contain multiple

child nodes and will generally assume the NodeStatus of their last running child node but are not
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required to do so. Decorators, too, will typi¢
any clever methd to set it differently. For example, a decorator may run a successful child node

and instead return failure due to the length of time that the node took to run.

The utility of behavior trees only manifests itself if strict interfaces are followed. Téassithat

as long as developers adhere to the standard usages, collections of behaviors can easily be
developed and used across a wide rangg@plications The easiest way to understand this will be
through the use of an example followed by a sample iogolementation. But first, weill define

basicbehavior tree terminology.

1.4.1 Nodes

The atomic unit of a behavior tree isxade It will contain ata minimum one public function,
Tick(), whichwill return a NodeStatu®s n o Noelgstatus will indicaterhether the update was
asuccess or failur@he necessity and utility of such a simple interface will become evident as we

proceedhrough our example

Parent

|

// Behavior Tree Node
public NodeStatus Tick() {/*...*/}

|

Children

Figure 15 - A Behavior Tree Node

The implementation of a node can take the form &feguenceselector decoratoy action or

assertionSequences and selectors are called composite nodes. This is because they will contain
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multiple child nodes. Decorators will always contamly one child mde. Actions and assertions
will be leaf nodes and contain zero childr&he unofficial but generally accepted depiction of
these blocks is shown Figurel6. When paced in a tree, each of these blockstik considered
a nodeSimple modifications tthe makeup of a behavior treen cause margifferent behaviors

to emerge.

action
sequence decorator i /
selector ‘ assertion

Timer ‘

?
Counter
Loop 1/?
‘\ Wrapper

Figure 161 The fundamental building blocks of a behavior treesequence, selector, decorator, action, & assertion.

1.4.2 Sequences

Sequences are like database transactions. They run their children one after the other and either pass
or fail as a group like a logical AND statement. If a sequence fails to complete duripdade,u

the last running node is called immediately on the next update. There are special variations of
sequences called sequence loops. These variants run in order but instead of reporting to their parent

they continue to restart execution at the firstcchode for a set number of iterations.

Tick(); l ] return Success; Tick(); I I return Failure; Tick(); l I return Failure;

. Not .
Success Success Success Success Failure called Success Success Failure

Figure 17 - An example of a sequence success and failure
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1.4.3 Selectors

Selectors are the complement of sequences and act like logical OR statements. Each child of a
selector is tested in order. Failures are ignored but the first success is reported back up the tree,
short circuiting subsequent nodes. Priority selectors apeaial case in which each node is
assigned a priority and run in descendanigrity order. During each traversal of the graph, higher
priority selectors may override the continuation of a lower priority node. Random selectors are
another special casewhich a child node is chosen at random. This equips the behaviaritinee

more variety of character.

Tick(); | \ return Success; Tick(); | ] return Success; Tick(); l ] return Failure;

? ? ?

Not Not . Not . .
Success Failure Success Failure Failure Failure
called called called

Figure 18 - An example of a selector success and failure

1.4.4 Decorator Nodes

Decorator nodes contain only one child and are useghforce certain constraints. They might
contain counter variables to maximize the number of times a behavior will run, a loop to ensure a
certain number of runs, a timer to enforce time lengthseiween runs, or code to handle
exceptions. If resourcese shared, a decorator node is a natural place togkst, mutexes, and
semaphoredn Figure 19, the image on the right shows how a timer can return failureoutith

running its child node since its last activation was too recent.
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Timer Timer

Tick(); l ‘[ return Success;  Tick(); l ] return Failure;

if(Time.Now> minDelta){ } if(Time.Now> minDelta){ }
// true // false

|

Not
Success

called

Figure 19- An example of a decorator being used as a timer to determine whether or not to call its child node

1.4.5 Actions

Actions, as opposed to composite sequences and selectors, cause the actor to effect a world change.
Outside of a few common use cases, most of these nodes will be unigue to a software project and
are what differentiate it from otherslany times these nodewill make calls into a proprietary

library like a vehicle control clask an underwater mission project, this mightdeommuniate

with a network sensor, plan a path to collect somages, or ged GPS fix.

Tick(); | l return Success;

Success Success Success «— Actions

- = == Proprietary Code

Figure 20 - An example of action nodes calling proprietary code
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