FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS ANDSCIENCES

A REFLECTIVE, 3DIMENSIONAL BEHAVIOR TREE APPROACH

TO VEHICLE AUTONOMY

By

JEREMY HATCHER

A Dissertatiorsubmitted to the
Department of Computer Science
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Degree Awarded:
SpringSemester2015

© 2015Jeremy Hatcher

Jeremy Hatchedefended thislissertatioron April 14, 2015

The members of the supervisory committee were:

Daniel Schwartz

ProfessoDirecting Dissertation

Emmanuel Collins

University Representative

Peixiang Zhao

Committee Member

Zhenghao Zhang
Committee Member

The Graduate School has verified and approved the afmowed committee members, and

certifies that thelissertatiorhas been approved in accordance with university requirements.

ACKNOWLEDG MENTS

My most sincere gratitude belongs to Dr. Daniel Schwarttaking the time to analyze my work

and direct me toward its completion. When difficulties arose, his advice and recommendations
were concise and helped to overcome any obstacles. | would also like to thank my family, whether
immediate, extended, or mywtth family, who constantly encouraged me and repositioned my
sight toward the light at the end of the tunnel. To althef professors on my committee: Drs.
Peixang ZhapZhenghao Zhang, and Emmanuel Collinsuly appreciate the time you set aside

to meet with me and to understand my objectives.

TABLE OF CONTENTS

LIST OF TABLES ...ttt e bbb Vi
LIST OF ACRONYMS. ... ittt eee bbbttt et e e e s aeet e ettt e et e e e e e e e e e e e e e s ammmeaaeeeeeeas Xiv
Y = 1S 3 I ¥ AN O PP XVi
1 INTRODUGCTION ...cctiiiiiiiee et imeee e r e e bbb e e e e e s anarebe s e e e 1
1.1 Underwater ACOUStIC SENSOr NEtWOIKS.........cooviiiiiiiiiie et eeeieeees 1
1.2 Underwater Robotic BehaviofsAutomation vs. AUtONOmy............ccceevvvvvvvvvuennen. 11
1.3 Common Graph Searching Algorithms............ooooiiiiie e 14
O A =T P AV o g I £ T ST TTPTPP 17
1.5 ECMA-335 and ISO/IEC 23271Common Language Infrastructure................... 31
1.6 ECMA-334 and ISO/IEC 23270:2006CH...........ccoieiiienrrrrrrimnensnnniennreeieeeeeeeeeees 33
1.7 Modular Programiming...........eeceeieia oot meee s 34
1.8 Case Based REASONING.........uuuuuuuiiiei et ieeereteiiiiisseaseeeeeeeeesamaesasaaaaaaaaaseeseeennnnnnin 39
1.9 XML ettt anan— it rrtaaaaaaaas 44
IO O L= [Tox 1o o U PP PP PP PP PPRPUPPPPR 51
2 RELATED WORKciii it eeee st enens bbbt e e e e e e e e e e e semsseeeees 54
2.1 Behavior ACNITECIUIES.oeeeiiiiiiiiie e e e e ereess s e e e e e e e e e e e eeeeeeenes 54
2.2 Underwater AULONOIMY........uuuuuuiiiiieeeeeeeeeeesnsas e e e e e e eeeeeeessaeeesaaaaaaeaaaeeeeseeesnsnnnin 60
2.3 Modular OpEN SYSIEIMS.......ccuiiiiiiiiiiei i eeee e 62
3 DEVELOPING A TEST PLATFORM ...cooiiiiiiiiiie e ne e 73
3.1 Behavior Tree World (BTWOII).......cuviiiiiiiiiiiiiii e 74
4 DEVELOPING WORLD ACTORS.......uiiiiiiiiiiiiieeeeceeesrseenreeeeeeeeeeeeee e e e e s emmreeaaaaaeaens 81
41 Vehicle SIMUIAtOr (TraVeleD).......cccoiiiiiiiiiiieeieee et e e 81
4.2 Acoustic Node Simulator (COmMmMUNICALAL).............uuuueiiiies i e e e e e e e 83
5 BEHAVIOR TREE FRAMEWORK IMPLEMENTATIONcutiiiiiiiiiiiiieeeee e 85
5.1 Fundamental INtEIrfaCeS.........uuiiiiiiiiiiiii e 86
5.2 ASYNCNIONOUS OPEIALION......uuutiiiiiiiiiiiiiii ettt e e e e e e e e e e e e e s amr e e e e e e e e e e e e 88
53 COMPOSIEE NOUES......ccci ittt e e e e e emerannnas 89
o S B 1= ot = (o] gl A\ o o 1= 90
5.5 ACHON / ASSEITION NOUES......uuuuiiieie ettt rr e e e e e e e eeeeeeeeenanne 91
5.6 GENETIC COUNIEIPAITS. ...cuiiiiiiiiiiiiiee et eeee e e e 93
5.7 Action and Assertion REPOSITOMES.........ccovvuiiiiiieiiieeee e reeee e 95
6 COMPOSING BEHAVIOR REE ALGORITHMS..........ccciiiiiiiieeeeeceeerveveeeeeeee 100
6.1 Breadth FirSt SEArCh.........cooii i 100
8.2 DIJKSIIAL . ettt 104
8.3 AT i ettt aaa—— bttt et ettt aeeea e e e e e e e aaa— et eaeaaaaaeaaaeeaaaaaaann 107
6.4 Reflective Behavior Tree InstantiatiOn.............ccoovvvvviiieeen e 109

iv

7 BEHAVIOR TREE APPLIGATION RESULTS.....ccviiiiiiiiiieeeeeeeeeeeeee e 115
A R = - 1 o T F= U 1T o S 115
7.2 ACOUSHIC NOAE MAPPING......uuuuiiiiiiiiiiiiiiiiieeereeee et e et e e e e e e e e e e e s s e e e e e e e e e e e 119
7.3 REMUS Simulator INtegration..............covvvvuiiiiiimmre et 122
7.4 PerfOrmManCe COSt. ... oot ceeee ettt mnee e e e e e eeeetaaee s smmrene 130
7.5 Algorithm Representation Potential..................ouvviiceciiiiiiiiiiicee v 132

8 CONCLUSION AND FUTURE RESEARCH POTENTIALuvvviiiiiiiiiieeieee e 134
S 0 R @ o T 113 o] o WP PP PP PP PP UPPPPPPPPR 134
8.2 Future Research Potential..............uuuiiiiiieeeiiiici e 134

REFERENGCES..... .ot ee ettt ettt et ettt e e e e e e e e e e e e s smme e e e e e e eeaeeeeeaannnns 136

BIOGRAPHICAL SKETCH ..ottt ettt enee s s eannnnes 140

LIST OF TABLES

Table 1- A simple model of an actor in a game of life example.............ccoovvvveeeee e, 40
Table 2- A simple model of the world in a game of life example..........ccccvvvviicneeeeennn 41
Table 3- A collection of cases in the CabaSE..............cooiiiiiiiiieen e 41
Table 4- A CBR query based on current world variables.............cccooiivieeeiii 41

Table5iA worl d actords rational e .f.o.r...c.h.o0.042
Table 6- A modified CBR query taking into account a recent hardy meal.......................43

Table 7- The resulting case base coefficients after taking the previous query into acco4g

Table 8i XML eScape CharaClerS.........ccovvvveiiiiiiiimmmreeeieeeeeiiiiiiinnnnssssmmmesessnsnnnnnnnnsseeeeeeeeenn 40
Table 91 TDM Usability QUESHIONAINE........ccccoeeeeeeeeiiiiiiiieeee e 59
Table 10i Alignment of TaskStatus enum to NodeStatus enum.............coovvvvvieeeneeeeeeeenn. 89
Table 117 Alignment of Boolean values to NodeStatus enum.............ccoeeeeeeeeevceeeeennn. 98

Table 12- A line by line analysis of the Breadth First Search pseudo code revealing necessary

DENAVION TrEE NOTES e e e ettt eeeee e e e aeaea 101

Table 13 A line by line analysis of Dijkstra's algorithm pseudo code revealing necessary behavior

I NMOO S .. e e e e e e e 105

Table 14- A line by line analysis of the A* algorithm pseudo code revealing necessary behavior

=TS a10 1o (ST TR TP P ORRPRTRUPRN 108

Table 15 Additional nodes needed to enable custom functionality on BTWarld........... 115

Table 16/ The descriptions of equations needed to solve for the intersection of two cir@é2%.

Table 17- The underwater vehicle behaviors available for use in the following exampld 24

Table 18- The results of an operational time comparison between a sequential A* algorithm, a

hardcoded behavior tree representation, and a reflective instantiation of a behavior.tré80

Vi

ng

a

LIST OF FIGURES

Figure 1- Multi-path and refraction causing distorted signals at the receiver in a shallow and deep
LTV 7T (0] o1 0 1= o PP TRRRRRRN 2

Figure 2i These are the different types of nodes in an Underwater Acoustic Sensor Network: (a)
attached to a gateway buoy (tja@hed to an autonomous underwater vehicle (c) resting on sea
floor (d) suspended from water craft (e) moored to sea floor and suspended in the column by a
(0] = 1o 8 1o [V o = PSRRI 3

Figure 3i The three basic topologies of an underwater network. (a) centralized (b) distributed (c)
multi-hop. Double arrows indicate communication paths.............ccccouvvimmmrnniiiiiiiiiee, 5

Figure 4- A basic PC/104 stack http://www.rtd.com/PCL04.............oeeeevvivieeeiiiiiieeeeeeeeeen
Figure 51 A REMUS 100 vehicle with associated equipment (from www.km.kongsberg.c8m)
Figure 6i A Bluefin Robotics Bluefif vehicle (from www.bluefinrobotics.com).................. 9

Figure 7- Low resolution 900 kHz sonar image compared to a high resolution 1800 kHz image.
(Image from 0ceaneXplorer.NOAA.JON)........uuuiiiiee e e e e eeeeriiiee e e e e e e e e e e e e e eeeeeseresaeeaeaaeeeeeeennnnns 10

Figure 8i Left: A sonar image of an interesting object. Right: A closer look at the object with an
underwater camera. (Images from NATO Undersea Research Centre)................cccceee. 11

Figure 9iIA t ypi cthel advméwt ype search patit.er.n.l8s perf
Figure 10- A 10m x 10m land mass broken down into 10 squaanecells................ooevveenii 14

Figure 11- A sample of a modified Breadth First Algorithm used to search an.area........ 15

Figure 12- Sample code demonstrating an implementation of Dijkstra's Algorithm......... 16
Figure 13- Sample code demonstrating an implementation of the A* algorithm............. 17
Figure 14- Behavior tree traversal methQd.............ooooiiiiiiiice e 18
Figure 15 A BEhAVIOr Tre€ NOUE.......uuiiei i eeieeeeeee e 19
Figure 161 The fundamental building blocks of a behavior tree: sequence, selector, decorator,
ACHION, & ASSEITION. ... ettt et e e e e e e et e e et ettt traee e e e e e e eeeeeeeeaeseseba e e e eeeesnnnennnnns 20
Figure 17- An example of a sequence success and fallure..........ccccccvviiieeciiiiiiiiieneeeeen, 20
Figure 18 An example of a selector succ@sgl failure..............ccceeiiiiiiiiiccciiiiiii e 21

Figure 19- An example of a decorator being used as a timer to determine whether or not to call its
(o3 011 [0 1 g T To [P TPRRRRRR 22

Figure 20- An example of action nodes calling proprietary cade............cooovvvvvieenneeeeeeenn. 22
Figure 21- An example of an assertion checking if depth is 0 before getting a GRS. fix..23
Figure 22- The dining PhilOSOPNELS..........uuiiiiiiiiii e 24

Figure 23iA si mpl i fied behaviophiiesopbleusidboprbool e
with questions marks at the end are assertions and those with exclamation points are. adtions.

Figure24i The dining philosopherdés behawv.i.ar.285 rees

Figure 25 Sequence diagram for a positiared negative timer decorator...............ccccee... 26
Figure 26- Complete 'dining philosophers' behavior tree representation......................... 27
Figure 27- The INode implementation for the examples in this discussian...................... 27
Figure 28 The possible values of a NodeStatus enumeration.............ccccevvveeeevvvvvnnnnnnnnn. 27
Figure 29- An example of a Behavior Tree SEQUENCE.uuuviiiiiiiiieeeiiiiieieeeeee e ee e 28
Figure 30- An example of a Behavior Tree Selector Update method.................c.vveeee. 29
Figure 31- An example of a Behavior TeeDecorator Update method...............cccccvvveeeeee. 29
Figure 32- A behavior sukiree representing the actions to get a GPS.fix............cc.covnee 30
Figure 33- Sample code that checks for a vehicle's depth............ccccovvieniiiiiiiiiiiie 30
Figure 34- Sample code that commands a vehicle to get a GRS.fiX...............oorieeee 31
Figure 35 Sample code &t commands a vehicle to go to the surface.............ccccoveeeeeeee. 31
Figure 36- HEllo WOrld iN CH.......oveeeiieec e eeee e 33
Figure 37- An example of a C# interface describing an underwater vehicle.................... 34
Figure 38 An example of an interface describing a vehicle behaviar.....................cccc..... 35

Figure39A cl ass titled O0SearchBehaviord that take

interface to achieve a goal wi t hout having a
UNAENYING INSITUCTIOS ...ttt enees bbb e e e e 35
Figure 40- Example of a delegate calling a method to modify a string.........cccccceeeevvieeen.. 36
Figure 41- A class method example alongside its Lambda expression equivalent.......... 37
Figure 42- A Lambda function capturing an outer variable...............ccccooiiieeeiiiiiiiiiiieen, 37

viii

Figure 43- Using Lambda expressions instead of methods to modify a string................. 38
Figure 44- Taking adantage of the Action and Func delegates...............ccccceivcmevvevinnnnnns 39
Figure 45 The four fundamental stages of a chssed reasoning exercise (The fo&siR....40
Figure 46- An example XML file showing elements, attributes, and comments..............45
Figure 471 A sample XML schema as displayed by Microsoft Visual Studia.11..............48

Figure 48 The XML schema describing the relationship of the tables in Figure.26........ 48

Figure 49- XML snippet for XPath example (filename xml.xml)..............ooooiiiiiiin s 50
Figure 50- Utilizing XPath with C# XMLNOGES........cccoeiiiiiiiiiiiiiiieeeie e 50
Figure 51- An IVehicle interface implemented by a SampleVehicle class........................ 51

Figure 52- An example of a program opening a DLL and inspecting its types and interf&&es

Figure 53 Instantiating a type / interface from a DLL and utilizing its methods............... 52
Figure 54- The Emotionally GrOunded (EGO) ArchiteCture...........cccceeeiiiiiiecciiiiiieeennn 54
Figure 55 Behavior modules organizeato conceptual levels.............ccccvvviiiiieeeniciininnne, 56

Figure 56- Results of TargeDrivesMeans Framework Usability Benchmarks (from [35])59
Figure 57- AUV AVALON Control ArChiteCture...........cccuuuviiiiiiiiiieeeiiiiiiieee e 60

Figure 58i The structure of a JAUS system. The highest level is system and the lowest level is
instance. In between are subsystem, node, and COMPONENL..........ccceiveieeeeeerennnniineeeennns 64

Figure 59- Joint Architecture for Unmanned Systems (JAUS) Header that accompanies all JAUS
L 0TCTSTST= 10 [PP 66

0 Y PSP RRRSRRR 67
Figure 61- A simple JAUS configuration comprising a system commander, reflexive driver, and
primitive driver, capable of obstacle avoidancCe................uuuvuuiiiccceeieeeiiiiieee e eeeeeeanees 68
Figure 62 A block diagram of the major CARACAS SYSteMl..........ccuvviiiieiiiieemeiiiiiiineeenand 68

Figure 63- The R4SA Architecture comprising an Application Layer, a Device Layer, and a
Device Driver Layer. The System Layer coordinates the activities of the other layers...69

Figure 64i Some of the key components of the device driver layer of R4SA................... 70

Figure 65 Some of the key components of the device layer of R4SA..........ccooeiiiiieeennn. 70

Figure 66- Some of the key components of the application layer of RASA...................... 71
Figure 67- Someof the key components of the system layer of RASA.........cccooeiiiiiiiceenns 71
Figure 68- Graphical representation of proposed software framewark...................ccce..... 73

Figure 69- A sample terrain (right) generated by a bitmap image (height map..left)........ 74

Figure 70- A closeup look across the horizon of the behavior tree world, showing-its 3
(o [T a a1 Ty [o] g b= LI F= LU = PP PPPRPPRPP 75

Figure 71- The terrain.xml file used to configure the BTWorld terrain........................ee.. 77
Figure 72- The wireframe mesh representing traversable paths in the Behavior Tree.Wo8ld
Figure 73- Thecontents of the ICell interface..............cccooeviiiiieeee e, 79

Figure 74- A representation of the Fagf-War capability of BTWorld. The terrain in the left
image is completely unexplored. The terrain on the right has a wide swath cut through it that shows
where the vehicle has Deen............. i 80

Figure 75 The Travelers.xml file used to dynamically create 'travelers' at runtime in our Behavior
I C=TS A0 o o PSR 82

Figure 76- The contents of CommunicatorO.Xml.............ccoooiiiiiieemi e, 84

Figure 771 The fundamental building blocks of a behavior tree: sequence, sekdetorator,

action, & assertion...Al.s.o..k.n.aown..as..0.n0.85% s 0
Figure 78- The contents of the interface INQAE................uviiiiiimemiii e 86
Figure 79- The contents of the interface ICOMPOSItE.........ccccoeeiiiiiiiiceeii e 86
Figure 80- The contents of the interface IDECOrate.............coooiiiiiiieme e 86

Figure 81- A graphical representation dfie fundamental interfaces and base classes of the
behavior tree framMeWOLK............ooeiei e e e e e e enenr s 87

Figure 82- A sequence diagram showing a behatiee's operation whenever RunAsync is set to

L0 PP 88
Figure 83 The contents of the Sequence Update methad.............cooovviicciiiiii i, 89
Figure 84- The contents of the Selector Update method..............coooviiieccs 89
Figure 85 The Update method of a whiteue decorator............cccooeevviiiiiiccciiiin e, Q0

Figure 86- The contents of thExceptionDecorator's Update method..................coooveeeeenn. 91

Figure 87- The code behind an ACHIONNOGE...........iiiiiiii e e 92
Figure 88 The code behind an AsSSertioNNQAE...............uuuuiiiicceeeiiiiirr e 92
Figure 89 The instantiation of an ActionNode using a regular class method.................. Q3
Figure 90- Suggested interfaces for a generic bébraivee framework..................cccvvvvieenn, 94
Figure 91- A Generic Behavior Tree Frameworkuiiiiiiiiecciiiiiiiiieee e veeeenn 94
Figure 92- The requirements of the IStateNodeArgs interface............ccccvvvvieeene e, 95
Figure 93- The Update method implementation of state selector compasites................. a5
Figure 94- A potental implementation of the necessary ActionRepositary....................... 97
Figure 95 A potential implementation of the static BTRepositories class........................ 97

Figure 96- The additional methods necessary to accommodate assertions in our reposB8ry
Figure 97- Pseudo code for a breadth first search algorithm...............cccovieeeeiii 100

Figure 98 The contents of BTLoopArgs which contains the necessary values for our breadth first

=TT (o o PO PP PP PSP PPRPPPPI 101
Figure99The GStateComposerd6s argument that provid
ItS OPEraADIE STALE. ie e 102
Figure 100- A behavior tree representation of a for l00p...........cooovvviiiiiiccc s 103
Figure 101- A behavior tree representation of the Breadth FirstcBea............................. 104

Figure 102Pseudo code f or ..Di.j.ks.t.r.a.0.s...al.g.ar.il®@h m
Figure 103 A behavior tree representation of Dijkstra's algorithm.......................cc....... 106
Figure 104 Pseudo code for our implementation of the A* algorithm........................... 107

Figure 105 The contents of BTLoopArgs which contains tleeessary values for implementation

Of the A% AIGOITENM......uiiiiiii e 108
Figure 106- The GStateComposer argument that provides the gemetiors of the behavior tree
ItS OPEIADIE STALE.ottt e e 108
Figure 107- A behavior tree representation of the A* algorithm..................eennnnnn. 109

Figure 108 A list of assemblies necessary to load all of the types in our behavior.treel10

Xi

Figure 109 A list of Types necessary craft our behavior tree..............ovvvviiccciiieeiiniinns 111

Figure 110 The XML representation of a Breadth First Search behavior Tree. This XML code is
used by the reflective loader to instantiate the tree...........ccoooov oo, 112

Figure 111-The XML representation of Dijkstrads al ¢
used by the reflective loader to instatdithe tree.............coooviiii e, 113

Figure 112- The XML representation of the A* behavior Tree. This XML code is used by the
reflective loader tonistantiate the tree..........ooeeeeiiiiiiiie e 114

Figure 113 The CanCross functionality needed for the Breadth First Search to check nodes for
NOMHIaversable CONAITIONS.uuiiiiiiie e e creer e e e e e e e e e e e e eee e nnmreeeees 116

Figure 114 A modified GStateComposer argument that sets the Breadth First Search current node
100 1YL= 1 01 PSS RSR 117

Figure 115 The MarkNeighbor functionality needed for the Breadth First Search to give color
coded fEeedDACK 10 USEIS..... ..o eeeee et eeee e e s eennees 117

Figure 116- The modified sequence necessary to add the CanCross and MarkNeighbor

functionality to Dijkstra's algorithm............coooo e 117

Figure 117- The modified sequence necessary to add the CanCross and MarkNeighbor
functionality to the A* algorithm...........oooi e 118

Figure 118 The A* algorithm performing a search with fog of war enabled (left) and disabled
(0 L PP P PPPP PP 118

Figure 119- The A* path planning algorithm providing a path through unexplored water (left).
Once explored it plans around it properly (fght)..........cc.ueuumiiiiiieeeiieee e 119

Figure 120- The makeup of the BTLocator component used to localize nodes............. 120

Figure 121 A graphical depiction of solving for the intersection of two circles.............. 121

Figure 1220 When observed from top left to bottom right (1) The vehicle begins a mow the lawn
pattern around the map (2) The vehicle gets a message from the static node and builds a circle
using the center point of the receivaanmunication and the distance received. The vehicle begins
randomly traveling inside of this circle (3) The vehicle receives a second communication from the
static node. It will now calculate intersections and check for the static node at those lottations.
initially searches the wrong intersection (4) The vehicle checks the second intersection location

where it will find the stati.c..no.de..andl22nove I
Figure 123 Entering the actions and assertions into the demo repository..................... 125
Figure 1241 Behavior tree sketch for the REMUS waypoint following test..................... 126
Figure 125 The Behavior Tree Factory returning a waypdatlowing behavior tree.......... 127

Xii

Figure 126- WaypointFollowing.txt: The waypoint following demo behavior tree file outii28

Figure 1271 The vehicle simulator output screen after a successful experiment with the proposed
waypoint following DENAVION trEE. ... e e 129

Figure 128 A chart representing the data shown in Table.18..............cccovveeeeeieeneneee, 131
Figure 129 A graphical representation of ardfseif structure using behavior tree nodesl33

Figure 130 A behavior tree representation of a for 100p...............vviiiiicccrvvveiiiiiien, 133

Xiii

Al

ASF

ASL

AUV
CARACaS
CASPER
CBR

CIL

CYSR

CLI
CLR
COTS
CTS
DAG
DoD
ECMA
HTML
ISA
ISO
JAUS
JSF
MAC

MOSA

LIST OF ACRONYMS

Artificial Intelligence
Altitude AboveSea Floor

Altitude Above Sea Level

Autonomous Underwater Vehicle

Control Architecture for Robotic Agent Command and Sensing

Continuous Activity Scheduling Planning Execution andpning

Casebased Reasoning

Common Intermdiate Language

Command, Control, Communications, Computers,
Intelligence, Surveillance, and Reconnaissance

Common Language Infrastructure
Common Language Runtime
Commercial off the Shelf
Common Type System
Directed Acyclic Grap
Department of Defense
European Computer Manufacturers Association
Hyper Text Markup Language
Industry Standard Architecture
International Organization for Standardization
Joint Architecture for Unmanned Systems
Joint StrikeFighter
Medium Access Control

Modular Open Systems Approach

Xiv

OSA Open Systems Architecture

OSJTF Open Systems Joint Task Force
PCI Peripheral Component Interconnect
PCMCIA Personal Computer Memory Card International Association
PID ProportionalintegratDerivative
R4SA Robust Reallime Reconfigurable Robotics Software Architecture
REMUS Remote Environmental Measuring UnitS
SAE Society of Automotive Engineers
TCP Transmission Control Protocol
TDOA Time Difference Of Arrival
TOF Time O Flight
UASN Underwater Acoustic Sensor Network
UDP User Datagram Protocol
uuv Unmanned Underwater Vehicle
UW-ASN Underwater Acoustic Sensor Network
W3C World Wide Web Consortium
XML eXtensible Markup Language

XV

ABSTRACT

Many of t oday 0 s s haveddimitedhseteof panadd ibehaviers that are of
varying utility. This is due, in part, to very low underwater communication rates and difficulties
observing the vehiclebds underwater bblicavi or
dollar enterprise constantly investing in high quality, high performance frameworks for controlling
intelligent agents. One such framework is called Behavior Tides.project proposes a novel
autonomy frameworknablingeasily reconfigurablbehaviors foboth land based anahderwater
vehicles to discoveand map acoustic nodesising amodular open systems approach based on

behavia trees and action repositories.

XVi

CHAPTER 1

INTRODUCTION

1.1 Underwater Acoustic SensolNetworks

Difficulties encountered witlthe underwater transmission medium have subdued widespread
under water research for many years. I n fact,
unexploredl1]. Advancements in digital signal processing (DSP) technology that enableategh

reliable communications have enabled scientists and engineers to set up underwater acoustic
networks for monitoring and widarea communication applicatiofy. Scientific journals have

produced a wealth of information regarding acoustic layer protocols designed at optimizing point

to-point communications among nodes. One notable example of Beaveel{see sectiod.1.2).

1.1.1 Underwater Communication

Underwater communications pose problems to researchers less evident in terrestrial networks.
Lower bandwidth, extended muftath (Figurel1), and large Doppler shifts all contribute to the
already complex issy]. Also, MAC layer conflictsin the air are usually resolved faster than a
humancan comprehend. Underwatggnal conflictsare very time consumirng rectifyand waste

precious battery life in the recovedye to the much slower propagation of carrier waves.

Underwater networks cannot use radio frequency communication methods tteevery high

absorption rate of these frequencies in water. Even high powered lasers are completely absorbed

1 MAC layer conflicts arise when multiple transmitters attempt to transmit simultaneously.

1

within 1 km[4] and are thus unsuitable for sparse underwater networks. Currently, only acoustic
signals provide theange and bandwidth necessary for their communic§fpnThese signals,
traveling roughly 1500 meters per second (varying according to pressure, temperature, and
salinity), provide lower bandwidth, higher latency, and stenergy constraints. Traafs

between data rate and communication distance have guided many commercial underwater products
into the range of 7 kHz and 30 kHz providing data rates between 80 and 38400 bits per second up
to 6 km([6] [7] [8] [9]. Higher data rates are generally achieved through focusing of the beam
direction. This would be unsuitable for searching nodes in unknown locatiowsyer. Omni

directional beams query in all directions but suffer more from signal attenuation.

Underwater multpath occurs when doosely focused transmissias received after taking
different pathgo the receiverThese paths amue mainly to refletions at the surface and the
bottom, as well as refraction in the water, mainly at greater dgdhsThese divergent, faded
signals arrive at the receiver out of phase with the original signal and may cause reinforcement or

cancellation.

Water surface

Rleﬁ‘e"clted signal

@ Intended signal : @ @

e Refracted signals
Reflected signal

Ocean bottom

Figure 1 - Multi -path and refraction causing distorted signals at the receiver in a shallow and deep environment

1.1.2 Seaweb

Seaweb is an underwater wireless networking concept conceived in the late 90s by the Space and
Naval Warfare Systems Center, San Diego, comprising a scalable number of undeatatery

nodes, peripherals, and gateway bu¢¥%] that employ spread spectrum modulation for
asynchronous multiple access to the physicaliome. Its original intent was for naval command,
control, communications, computers, intelligence, surveillance, and reconnaissédigR).(C

Several experiments on commercial off the shelf (COTS) telesonar modems have proven

Figure 27 These are thedifferent types of nodes in an Underwater Acoustic Sensor Network: (a) attached to a gateway
buoy (b) attached to an autonomous underwater vehicle (c) resting on sea floor (d) suspended from water craft () moored
to sea floor and suspended in the columby a flotation device

2n this case, the physical medium is the water.
3

the capabilities of the program to selganize message routes and optimize modulation

parameters for each message in the dl@aend (CTS) response of a node.

Figure 2 showsseveralof the different types of underwater communication nodes. Stationary
nodes may be placed directly on the seafloor or moored. Moored nodes are anchored to the seafloor
and suspended in the water column by a buoysdo anaintain a certain altitude above sea floor
(ASF). They provide more reliable communication but are also more susceptible to damage by
passing ships, curious passersby, or vandals. Mobile nodes may be of the moored type, with
mechanisms to raise onmer depth, or an unmanned underwater vehicle (UUV) type, capable of
traversing the node field and returning to a retrieval point. Nodes may also be directly attached to
floating buoys or to small boats. A buoy mounted node, like moored nodes, introdueassko

into the desigi12].

1.1.3 Localization

The localization of nodes underwater is a difficult task due to the high sensitivity of acoustic
channels to muhkpath, Doppler shift, refraction, and, among other things, extrenualy |
bandwidth. Research efforts are ongoing and are applied at the acoustic modem level of a design.
Modern underwater modems, like the WHOI MicroModem and Benthos 900 modems, are very
effective at quickly determining théistancebetween two nodes. Howeydraving the simple

range between two underwater nodes is insufficient to provide accurate localization. Techniques
must be employed to handle the three dimensional nature of the underwater environment.
Multilateration is a rangéased localization schenvehere sensor nodes measure distances to
known nodes, or anchors, by signal tiofeflight (TOF) [13]. Since the underwater domain is

three dimensional, 4 sets of linearly independent readings are required to solve the gguation:

4

X2+ (y1 yi)? + (z1 z)?= d? Since many nodes can determine their depth (z component) from
onboard pressure sensors, ranges between nodes can be projected onto a single two dimensional

plane and well established 2D localization schemes casdztinsteafil4].

1.1.4 Topologies

There are three basic types of underwater network topologies: Centralized, distributed, and multi
hop[2] (seeFigure3). Centr ali zed topologies rely on one
the other nodes. Both distributed and mhtip topologies rely on a petr-peer connection

through direct commnmication or through a network route, respectively. Centralized topologies
afford a great deal of control over the transmission medium by directing which nodes should speak
and when. However, they also introduce critical nodes which can shut down vergdatigns of

a network given only a single failure. They are also very limited in scale. The nominal range of an

acoustic transponder is 6 kilomet§Ls].

(a) (b) (c)

Figure 31 The three basic topologies of annderwater network. (a) centralized (b) distributed (c) mult-hop. Double
arrows indicate communication paths.

5

1.1.5 Lost Nodes

When underwater sensor networks are deployed for extended lengths of time, possibly several
years, lost nodes become more and more likely. Underwater currents have a témdbiftthe
contents of the seafloor and thereby move the nodes with it. jorésence of a hurricane, it is
highly likely that previously placed nodes will be displaced by several meters and perhaps in a
condition unfavorable to receive or transmit acoustic signals. Regardless of the underwater routing
protocol chosen for this netsk topology, other underwater sensors will have to be utilized to

acquire and identify the lost node.

1.1.6 Mobile Nodes

While terrestrial networks may rely on densely packed, inexpensive nodes, a more economical
underwater approach must be pursued. Undervesiesor nodes are very expensive and the
desired coverage space is usually very 1§té¢ Since the midl950s, mobile nodes, specifically
autonomous underwater vehicles, have helped to overcome many of the traditional wnderwat

network problems such as battery life and a poor communication path.

POWER

Undersea modems usually rely on batteries for their power and recharging or replacing them is not
trivial. Since manyinderwater acoustic sensor netwold&ENS) are in place foyears at a time,
energy consumption must be closely monitored. Also, since transmit power is typically 100 times
greater than receive powds6], transmit time should be severely limited. On the other hand, AUV
power usage idominated by propulsion efforts. Their batteries, however, can be easily recharged

or replaced at an underwater docking station or at surface maintenance area.

COMPUTING

A typical underwater vehicle will contain several PC/104 stacks Kgpae 4) which is the
standard for compact embedded pc moditesh board performs a unique capability required for
the system to operate as a whole. For examplEjgare 4, one board is the main CPU, while
others may be SATA drive controllers, analog I/O boards, Ethernet control boards, or PCMCIA
adaptersThese stacks are desirable due to their rigid usentlstd measurements, connections,

and interoperabilityThe PC/104 specifications are maintained by the PC/104 Consbrtium

=i

3.775"

3.550"

Figure 4 - A basic PC/104 stack
http://www.rtd.com/PC104

MANEUVERABILITY

Poor communications paths miagr due to natural obstructions or poor placement of the transducer

relative to the desired transmission direction. AUVs freely overcome this obstacle simply by

8 Visit the PC/104 Consortium websitetdtp://www.pc104.org/

repositioning themselves in the most optimal location for communicating. Engineers all over the
world dedicate themselves to improving the art of underwater vehicle design. Worthy of note are
two vehicles used heavily by the United States Navy for myriad underwater missions. The Remote
Environmental Measuring UnitS (REMUS) vehicle was developed ey Woods Hole

Oceanographic Institution and is manufactured by Hydroid. The Bluefin vehicle class shares a

name with its developer, Bluefin Robotics.

1.1.6.1 REMUS

REMUS vehicles are designed at Woods Hol e Oce
Lab and cora in variants 100, 600, 3000, and 6000. Seheumbers indicate the max depth in
metersat whichthe vehicle is rated to operdtie’]. The REMUS 100 is a light vehicle, weighing

only about 100 pounds depending on sensor cordigur, and can be launched easily from a small

boat with just 2 people. This makes it suitable for quick, low cost mapping and characterization
surveys of up to 10 houf$8]. Available payload sensors include a dual 900/1880 $ide scan

sonar and a forward looking camera.

LEL Navigation
Chemical Light Bracket Transponders Acoustic Doppler Current Profiler
\ . [(ADCP/OVL)
AR NLR
Field Replaceable Antenna

Magretic On/OF Switch

Side Scan Sonar
Conductivity & Temperature

Power/Data Interface Box

Ranger
Ruggedized Laptop Computes 9

Figure 57 A REMUS 100 vehicle with associated equipment (fromww.km.kongsberg.con)

The REMUS vehicle comes with a control program called the Vehicle Interface Program (VIP). It
is aPC basedjraphical interfac@rogramthat issues user commands to the vehicle and displays
thevehi cl e6s backtethenugdit pexformst botk g and postmission analysis.
Missions are programmed through a scripting language and are limited to a few preprogrammed
behaviors. These small behaviors can be cobbled together to form more complex behaviors. The
built in behaviors favor reliability ancepeatability over finesse and as such dopmovide any
dynamic or reactive decision makingpability to the useSome variants of the REMUS include

an onboareémbedde¢t o mput er capable of overriding the m
networkel into the vehiclé onboard switch anglves behavior developers the ability to create far
more complex behaviors but with strict controls built in. There is both a time and a distance
constraint on each override instance. One obvious rationale for andeveould be for an
obstacle avoidance controller. Given forward looking sonar capabilities the vehicle would detect
upcoming objects and make adjustments to travel over or around them before coming back to the

preprogrammed track.

1.1.6.2 Bluefin

Figure 6 1 A Bluefin Robotics Bluefin-9 vehicle (fromwww.bluefinrobotics.com)

Bluefin Robotics develops and supports an array of vehicles known as Bluéfnand 21. The
number indicates the diameter of the vehicle. The Blu&fia a smd] highly maneuverable
vehicle weighing about 140 pounds. This makes it a viable candidate for quick, low cost mapping
and characterization just like the REMUS 100. With the added weight come slightly higher specs
than the REMUS 100. The Bluefth6 s snaxaspeeddis 5 knots, it can reach depths of 200

meters, and its endurance is about 12 hours at 3 Kir§ijts

1.1.6.3 Search Based Sensors

Typical underwater vehicles are equipped with sidescan sonars. These devices use sound instead
of light to map surroundings. While hardly comparable to moderndedhition cameras, images

from these devices can be analyzed and determined to be of further interest, in which case a vehicle
can be redeployed and use a higher resolution underwatera#o capture a photo of the object

of interest. The REMUS 100 uses a dual 900/1800 kHz sidescan for low resolution, long range

imaging and high resolution, short range imaging, respectively.

Site 1, Zone 3
900 kHz

y

1800 kHz |

| ~28m' Long
~12m Wide

3 1
Figure 7 - Low resolution 900 kHz ®nar image compared to a high resolution 1800 kHz image. (Image from
oceanexplorer.noaa.gov)

10

Figure 81 Left: A oar image of an interesting object. Right: A closer look at the object with an underwater camera.
(Images from NATO Undersea Research Centre)

1.2 Underwater Robotic Behaviorsi Automation vs. Autonomy

Underwater missions are inherently difficuit dbserveThis puts programmers of underwater
vehicle control algorithms under heightened pressure to incorporate vehicle safety into their
behaviors. In many cases this has led, understandably, to a very limited set of highly automated
yet severely resttive underwater vehicle behaviors. These behaviors are typically preplanned,
scripted movements with sections of code operating in sequential order until mission completion.
Very little, if any room for vehicle roe decision making, or autonomy, is adled. Some of the
tension involved with allowing vehicles to operate out of sight and autonomously can be relieved
by viable communication techniques to maintain vehicle location and mission status. One such
implementation is the Portable Acoustic RADIo Geterenced Monitoring system
(PARADIGM). It was developed by the Woods Hole Oceanographic Institution to satisfy these
vehicle navigation and tracking requiremeft6]. The implementation of this system requires
radio buoysacting as anchor nodes, to be deployed. Underwater vehicles acting within the radius
of the buoysé communication range (2 km to 6k

make navigational corrections. Similarly, the buoy may ping the vehicletéondine its location

11

and report it back to a userodos tracking staf

operations require more discreet means of localization. Onboard GPS antennas allow surfaced
vehicles to gather their location quickly bef@ubmerging and operating via inertial measurement
units. These vehicles can then discreetly send their positions acoustically to a listening node

attached to the mission control station.

One reason for the slant towards automation instead of autonotingt isophisticatedobotic

systems can be very expensive. For example, even a lightly equipped REMUS 100 vehicle from
Hydroid is several hundretthousand dollars. It therefore becomes a major component of every
mission to protect the device from harm adoWith that in mind, the REMUS control software
devel opers have placed strict | imits on many
very limited behaviors to be performed. These behaviors are formed mostly by commanding the
vehicle to follav multiple straight line combinations to form a more complex pattern. For example,

a mowthelawn pattern is formed by giving the vehicle a rectangular area to search and a track
spacing parameter. The track spacing will usually be determined by thensdidtlof the sidescan
sonars. If the sidescan sonar can map the ground thirty feet in both directions then, depending on
the amount of overlap desired, a track spacing of sixty feet might be chosen as shigurei@.

These types of behaviors are usually employed to do a quick, economical search of a particular
area. If something of interest is found in the returned images the vehicle may be sent out to further
invedigate. These investigations are usually performed at a higher resolution and the vehicles will
typically make multiple passes at the intended target to ensure that a decipherable image is

returned.

12

etc...

Swath width: 30 ft

e

Complete coverage: 60
ft (ideal)

Figure 9TA t ypi cthdlawmd wt ype search pattern as performed ¢k

To accommodate under water network research, t
door entrydo into daleethe RECOhlpBDIThis overtide tuhclioeatity
allows a behavior deeloper a much finer degree of control over the M\elec6 s s peed, dep
heading thus allowinghe implementation ofiser definedautonomoushehavios onboard the

REMUS vehiclelt is also, however, bound by time and distance restrictions.

The typical peplanned missions focus mainly on area of coverage and vehicle safety.
Communications do take place but asiallysecondary objectives. Most information is stored

onboard and retrieved after mission completion.

13

1.3 Common Graph Searching Algorithms

Utilizing computer algorithms to search a continuous space requires partitioning of that space into
discrete chunks that are operable by those algorithms. Typically, large areas are broken down into
grids of varying cell sizes. These cells represent the aggregaefithe land contained within

that cell (e.g. land type or elevatiorseeFigure10). In this way,an algorithm might break up a

10 meter by 10 meter sized landssanto 10,000 10 squarecentimeter cells. Then, in a logical
manner, proceed to search each one individually for relevant information about it. This information
might lead to the detection of an object being searched for or simply a path from anarnether.

In this section we will discuss three closely related methodsdarching these discrete cell

Breadth First, Dijkstra, and A*.

10 cm? Cells

7 Type: Snow

Elev: 4k meters
10m

. Type: Water
Elev: 500 meters

Figure 10- A 10m x 10m land mass broken down into 18quare-cm cells

10m

1.3.1 Breadth First Seach

The Breadth First Searas not strictly a path finding algorithm butathera very thorough
approach to searching through a graph of c@lish only a minoradditionto the process during

each iteratiorit is guaranteed to provide the shortest MaramabDistance between tvad ourcells.

To begin, 1 is provided with a starting cell whichannotatesThen, it gathers alldf hat cel |

14

(@)}

neighborgnto a queueAfter gathering the information needed from the starting cell it pops the

next cell off ofthe queue where the process stalttever again. When the traversal is complete,

the shortest path from any cell on the map to the starting cell is known. Sample code for this simple

algorithm is shown ifrigure 11.

private void BreadthFirstSearch(Cell start , Cell end)

_frontier.Enqueue(start);
while (_frontier.Count > 0)

Cell current = _frontier.Dequeue();
List <Cell > neighbors = GetNeighbors(current);
for (int i=0;i<neighbors.Count;i++)

Cell neighbor = neighbors][i];
if (neighbor.Visited == false)

_frontier.Enqueue(neighbor);
neighbor.Visited = true ;
neighbor.CameFrom = current;
}
}
}
}

Figure 11 - A sample of a modified Breadth First Algorithm used to search an area.

1.3.2 Dijkstra

Dijkstrads algorithm was created by Edsger
Mathematik[21]. The algorithm itself rusvery similaty to the modified Breadth First Search
algorithm proposed in sectiadh3.1 Dijkstra, however, also tracks distances fromre arell to
another. In our simple terrain exampleFagure 10 this might mean that travelling uphill might
cost more than travelling downhill. Similarly, travelling@gs water might be much more costly

thantravelling across flaground orimpossible altogether. With a little bit of ingenuity, influences

Di

can be placed on cells that cause a travelling vehicle to avoid locations due to the necessity of

concealment or ber mission requirements. A sample code block is showfigare 12. The

frontier collection is now &st sorted by priority That means thdahe search will continualong

15

the currently shortest patiWith an extra line of code that causes the search to termvhatghe

goal is found, we can begin executing vehicle movement mucheguick

private void DijkstraSearch(Cell start, Cell end)
{
_frontier.Add(0, start);
while (_frontier.Count > 0)
{
Cell current = _frontier[0];
_frontier.RemoveAt(0);

if (current == end) break ;
List <ICell > neighbors = GetNeighbors(current);
for (int i=0;i<neighbors.Count; i++)

ICell neighbor = neighborsi];
float newCost = CalculateDistance(current, neighbor);
if (neighbor.Visited == false || newCost < neighbor.DistanceSoFar)

_frontier.Add(newCost, neighbor);
neighbor.DistanceSoFar = newCost;
neighbor.Visited = true ;
neighbor.CameFrom = curr ent;

Figure 12 - Sample code demonstrating an implementation of Dijkstra's Algorithm

1.3.3 A*
The A*dgorithmr uns much | i ke Dijkstrabés algorithm. T
prioritize which cell to tr av erostigedinthedrontier| n Di |j

according to the currently traversed distance. In A*, the cellglaced in the frontier by that same
value plus a heuristic. This heuristic may be determined by any group implementing the algorithm
but a commonly used one is the straight line distance between the current cell and the goal cell.
For exampleif the algoithm has travellethrough a number of cells equaling 3 meters so far and
the next neighbor in line is 3.5 meters away from the goal, then a value of 6.5 is used as the priority.
This cell will be searched before another neighbor, whose current distaodyg 5 but whose
straight line distance to the goal is 6 (i.e. priority 7). Sample code for the A* algorithm is shown

in Figurel3.

16

private void AStarSearch(Cell start, Cell end)

_frontier.Add(0, start);
while (_frontier.Count > 0)

ICell current = _frontier.ElementAt(0).Value;
_frontier.RemoveAt(0);
if (current.Visited == false)

current.Visited = true ;

if (current == end) break ;

List <Cell > neighbors = GetNeighbors(current);
for (int i=0;i<neighbors.Count; i++)

Cell neighbor = neighbors]i];
if (neighbor.Visited == false)

float dist= CalculateDistance (current, neighbor);
float newCost = dist + current.DistanceSoFar;
if (newCost < neighbor.DistanceSoFar)
{
float priority = newCost + Heuristic(neighbor, end);
_frontier.Add(priority, neighbor);
neighbor.DistanceSoFar = newCost;
neighbor.CameFrom = current;

Figure 13- Sample code demonstrating an implementation of the A* algorithm

1.4 Behavior Trees

Software lehavior treegre a programming paradigm tltaime to the forefront of video game Al

in2005t hr ough a talk given by Damian 1 sl a

Damian was involved in the Al development for the extremely popular game Halo 2 for XBOX.

His talk began by addressing common issues when dealing with Al: podgmein par

scalability, a lack of direetbility, and random vs. intentional behaviors. It then progressed through

at

t

ways to address each probl em. |t concluded

hY

rendered trivial through judicious use of the right repgteseat i on, 0 whi ¢ h,

behavior tree. The concept worked so well that it was reused in the development of Halo 3, another

very popular title for the Xbox 360.

17

n

h e

W

Behavior trees are organized as directed acyclic graphs. During each updatbeypigph is

traversed from top to bottornd left to right(Figure 14). During this traversal each node will
assume one of a number of node states. These v
with any others that the designer feels neces@ryg . runni ng, uMmpossible i al i z
NodeStatus enumeration will be shown in secfigh8 Each successful traversal represents one

time slice and congtites a performance parameter of the system which can be adjusted up or
down.For example, a video game developer may shoot for one complete traversal every 16ms (60
frames / second) while a vehicle autonomy developeranaay notequiresuch a highraversal

rate.

RXIZTIS
AN AN

e N

Left to right

Figure 14 - Behavior tree traversal method

Inner nodes of the graph can be any of a collection of sequences or selectors, called composites,
and decorators. Leaf nodes are conditi(assertionspr actions. Composites contain multiple

child nodes and will generally assume the NodeStatus of their last running child node but are not

18

required to do so. Decorators, too, will typi¢
any clever methd to set it differently. For example, a decorator may run a successful child node

and instead return failure due to the length of time that the node took to run.

The utility of behavior trees only manifests itself if strict interfaces are followed. Téassithat

as long as developers adhere to the standard usages, collections of behaviors can easily be
developed and used across a wide rangg@plications The easiest way to understand this will be
through the use of an example followed by a sample iogolementation. But first, weill define

basicbehavior tree terminology.

1.4.1 Nodes

The atomic unit of a behavior tree isxade It will contain ata minimum one public function,
Tick(), whichwill return a NodeStatu®s n o Noelgstatus will indicaterhether the update was
asuccess or failur@he necessity and utility of such a simple interface will become evident as we

proceedhrough our example

Parent

|

// Behavior Tree Node
public NodeStatus Tick() {/*...*/}

|

Children

Figure 15 - A Behavior Tree Node

The implementation of a node can take the form &feguenceselector decoratoy action or

assertionSequences and selectors are called composite nodes. This is because they will contain

19

multiple child nodes. Decorators will always contamly one child mde. Actions and assertions
will be leaf nodes and contain zero childr&he unofficial but generally accepted depiction of
these blocks is shown Figurel6. When paced in a tree, each of these blockstik considered
a nodeSimple modifications tthe makeup of a behavior treen cause margifferent behaviors

to emerge.

action
sequence decorator i /
selector ‘ assertion

Timer ‘

?
Counter
Loop 1/?
‘\ Wrapper

Figure 161 The fundamental building blocks of a behavior treesequence, selector, decorator, action, & assertion.

1.4.2 Sequences

Sequences are like database transactions. They run their children one after the other and either pass
or fail as a group like a logical AND statement. If a sequence fails to complete duripdade,u

the last running node is called immediately on the next update. There are special variations of
sequences called sequence loops. These variants run in order but instead of reporting to their parent

they continue to restart execution at the firstcchode for a set number of iterations.

Tick(); l] return Success; Tick(); I I return Failure; Tick(); l I return Failure;

. Not .
Success Success Success Success Failure called Success Success Failure

Figure 17 - An example of a sequence success and failure

20

1.4.3 Selectors

Selectors are the complement of sequences and act like logical OR statements. Each child of a
selector is tested in order. Failures are ignored but the first success is reported back up the tree,
short circuiting subsequent nodes. Priority selectors apeaial case in which each node is
assigned a priority and run in descendanigrity order. During each traversal of the graph, higher
priority selectors may override the continuation of a lower priority node. Random selectors are
another special casewhich a child node is chosen at random. This equips the behaviaritinee

more variety of character.

Tick(); | \ return Success; Tick(); |] return Success; Tick(); l] return Failure;

? ? ?

Not Not . Not . .
Success Failure Success Failure Failure Failure
called called called

Figure 18 - An example of a selector success and failure

1.4.4 Decorator Nodes

Decorator nodes contain only one child and are useghforce certain constraints. They might
contain counter variables to maximize the number of times a behavior will run, a loop to ensure a
certain number of runs, a timer to enforce time lengthseiween runs, or code to handle
exceptions. If resourcese shared, a decorator node is a natural place togkst, mutexes, and
semaphoredn Figure 19, the image on the right shows how a timer can return failureoutith

running its child node since its last activation was too recent.

21

Timer Timer

Tick(); l ‘[return Success; Tick(); l] return Failure;

if(Time.Now> minDelta){ } if(Time.Now> minDelta){ }
// true // false

|

Not
Success

called

Figure 19- An example of a decorator being used as a timer to determine whether or not to call its child node

1.4.5 Actions

Actions, as opposed to composite sequences and selectors, cause the actor to effect a world change.
Outside of a few common use cases, most of these nodes will be unigue to a software project and
are what differentiate it from otherslany times these nodewill make calls into a proprietary

library like a vehicle control clask an underwater mission project, this mightdeommuniate

with a network sensor, plan a path to collect somages, or ged GPS fix.

Tick(); | l return Success;

Success Success Success «— Actions

- = == Proprietary Code

Figure 20 - An example of action nodes calling proprietary code

22

