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ABSTRACT 

Many of todayôs underwater vehicles have a limited set of pre-planned behaviors that are of 

varying utility. This is due, in part, to very low underwater communication rates and difficulties 

observing the vehicleôs underwater behavior pattern. The video game industry is a multi-billion 

dollar enterprise constantly investing in high quality, high performance frameworks for controlling 

intelligent agents. One such framework is called Behavior Trees. This project proposes a novel 

autonomy framework enabling easily reconfigurable behaviors for both land based and underwater 

vehicles to discover and map acoustic nodes using a modular open systems approach based on 

behavior trees and action repositories. 
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CHAPTER 1  

INTRODUCTION  

1.1 Underwater Acoustic Sensor Networks 

Difficulties encountered with the underwater transmission medium have subdued widespread 

underwater research for many years. In fact, 95% of the worldôs underwater realm remains 

unexplored [1]. Advancements in digital signal processing (DSP) technology that enable high-rate, 

reliable communications have enabled scientists and engineers to set up underwater acoustic 

networks for monitoring and wide-area communication applications [2]. Scientific journals have 

produced a wealth of information regarding acoustic layer protocols designed at optimizing point-

to-point communications among nodes. One notable example of this is Seaweb (see section 1.1.2). 

1.1.1 Underwater Communication 

Underwater communications pose problems to researchers less evident in terrestrial networks. 

Lower bandwidth, extended multi-path (Figure 1), and large Doppler shifts all contribute to the 

already complex issue [3]. Also, MAC layer conflicts1 in the air are usually resolved faster than a 

human can comprehend. Underwater signal conflicts are very time consuming to rectify and waste 

precious battery life in the recovery due to the much slower propagation of carrier waves. 

Underwater networks cannot use radio frequency communication methods due to the very high 

absorption rate of these frequencies in water. Even high powered lasers are completely absorbed 

                                                 
1 MAC layer conflicts arise when multiple transmitters attempt to transmit simultaneously. 
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within 1 km [4] and are thus unsuitable for sparse underwater networks. Currently, only acoustic 

signals provide the range and bandwidth necessary for their communication [5]. These signals, 

traveling roughly 1500 meters per second (varying according to pressure, temperature, and 

salinity), provide lower bandwidth, higher latency, and strict energy constraints. Trade-offs 

between data rate and communication distance have guided many commercial underwater products 

into the range of 7 kHz and 30 kHz providing data rates between 80 and 38400 bits per second up 

to 6 km [6] [7] [8] [9]. Higher data rates are generally achieved through focusing of the beam 

direction. This would be unsuitable for searching nodes in unknown locations, however. Omni 

directional beams query in all directions but suffer more from signal attenuation. 

Underwater multi-path occurs when a loosely focused transmission is received after taking 

different paths to the receiver. These paths are due mainly to reflections at the surface and the 

bottom, as well as refraction in the water, mainly at greater depths [10]. These divergent, faded 

signals arrive at the receiver out of phase with the original signal and may cause reinforcement or 

cancellation. 

 
Figure 1 - Multi -path and refraction causing distorted signals at the receiver in a shallow and deep environment 
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1.1.2 Seaweb 

Seaweb is an underwater wireless networking concept conceived in the late 90s by the Space and 

Naval Warfare Systems Center, San Diego, comprising a scalable number of underwater stationary 

nodes, peripherals, and gateway buoys [11] that employ spread spectrum modulation for 

asynchronous multiple access to the physical medium2. Its original intent was for naval command, 

control, communications, computers, intelligence, surveillance, and reconnaissance (C4ISR). 

Several experiments on commercial off the shelf (COTS) telesonar modems have proven 

 
Figure 2 ï These are the different types of nodes in an Underwater Acoustic Sensor Network: (a) attached to a gateway 

buoy (b) attached to an autonomous underwater vehicle (c) resting on sea floor (d) suspended from water craft (e) moored 

to sea floor and suspended in the column by a flotation device 

                                                 
2 In this case, the physical medium is the water. 
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the capabilities of the program to self-organize message routes and optimize modulation 

parameters for each message in the clear-to-send (CTS) response of a node. 

Figure 2 shows several of the different types of underwater communication nodes. Stationary 

nodes may be placed directly on the seafloor or moored. Moored nodes are anchored to the seafloor 

and suspended in the water column by a buoy so as to maintain a certain altitude above sea floor 

(ASF). They provide more reliable communication but are also more susceptible to damage by 

passing ships, curious passersby, or vandals. Mobile nodes may be of the moored type, with 

mechanisms to raise or lower depth, or an unmanned underwater vehicle (UUV) type, capable of 

traversing the node field and returning to a retrieval point. Nodes may also be directly attached to 

floating buoys or to small boats. A buoy mounted node, like moored nodes, introduces more risk 

into the design [12]. 

1.1.3 Localization 

The localization of nodes underwater is a difficult task due to the high sensitivity of acoustic 

channels to multi-path, Doppler shift, refraction, and, among other things, extremely low 

bandwidth. Research efforts are ongoing and are applied at the acoustic modem level of a design. 

Modern underwater modems, like the WHOI MicroModem and Benthos 900 modems, are very 

effective at quickly determining the distance between two nodes. However, having the simple 

range between two underwater nodes is insufficient to provide accurate localization. Techniques 

must be employed to handle the three dimensional nature of the underwater environment. 

Multilateration is a range-based localization scheme where sensor nodes measure distances to 

known nodes, or anchors, by signal time-of-flight (TOF) [13]. Since the underwater domain is 

three dimensional, 4 sets of linearly independent readings are required to solve the equation: (x ï 
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xi)
2 + (y ï yi)

2 + (z ï zi)
2 = di

2. Since many nodes can determine their depth (z component) from 

onboard pressure sensors, ranges between nodes can be projected onto a single two dimensional 

plane and well established 2D localization schemes can be used instead [14]. 

1.1.4 Topologies 

There are three basic types of underwater network topologies: Centralized, distributed, and multi-

hop [2] (see Figure 3). Centralized topologies rely on one or more ómasterô nodes that direct all of 

the other nodes. Both distributed and multi-hop topologies rely on a peer-to-peer connection 

through direct communication or through a network route, respectively. Centralized topologies 

afford a great deal of control over the transmission medium by directing which nodes should speak 

and when. However, they also introduce critical nodes which can shut down very large portions of 

a network given only a single failure. They are also very limited in scale. The nominal range of an 

acoustic transponder is 6 kilometers [15]. 

 
Figure 3 ï The three basic topologies of an underwater network. (a) centralized (b) distributed (c) multi-hop. Double 

arrows indicate communication paths. 
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1.1.5 Lost Nodes 

When underwater sensor networks are deployed for extended lengths of time, possibly several 

years, lost nodes become more and more likely. Underwater currents have a tendency to shift the 

contents of the seafloor and thereby move the nodes with it. In the presence of a hurricane, it is 

highly likely that previously placed nodes will be displaced by several meters and perhaps in a 

condition unfavorable to receive or transmit acoustic signals. Regardless of the underwater routing 

protocol chosen for this network topology, other underwater sensors will have to be utilized to 

acquire and identify the lost node. 

1.1.6 Mobile Nodes 

While terrestrial networks may rely on densely packed, inexpensive nodes, a more economical 

underwater approach must be pursued. Underwater sensor nodes are very expensive and the 

desired coverage space is usually very large [16]. Since the mid-1950s, mobile nodes, specifically 

autonomous underwater vehicles, have helped to overcome many of the traditional underwater 

network problems such as battery life and a poor communication path. 

POWER 

Undersea modems usually rely on batteries for their power and recharging or replacing them is not 

trivial. Since many underwater acoustic sensor networks (UASNs) are in place for years at a time, 

energy consumption must be closely monitored. Also, since transmit power is typically 100 times 

greater than receive power [16], transmit time should be severely limited. On the other hand, AUV 

power usage is dominated by propulsion efforts. Their batteries, however, can be easily recharged 

or replaced at an underwater docking station or at surface maintenance area. 
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COMPUTING 

A typical underwater vehicle will contain several PC/104 stacks (see Figure 4) which is the 

standard for compact embedded pc modules. Each board performs a unique capability required for 

the system to operate as a whole. For example, in Figure 4, one board is the main CPU, while 

others may be SATA drive controllers, analog I/O boards, Ethernet control boards, or PCMCIA 

adapters. These stacks are desirable due to their rigid use of standard measurements, connections, 

and interoperability. The PC/104 specifications are maintained by the PC/104 Consortium3. 

 
Figure 4 - A basic PC/104 stack 

http://www.rtd.com/PC104 

MANEUVERABILITY  

Poor communications paths may be due to natural obstructions or poor placement of the transducer 

relative to the desired transmission direction. AUVs freely overcome this obstacle simply by 

                                                 
3 Visit the PC/104 Consortium website at http://www.pc104.org/ 
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repositioning themselves in the most optimal location for communicating. Engineers all over the 

world dedicate themselves to improving the art of underwater vehicle design. Worthy of note are 

two vehicles used heavily by the United States Navy for myriad underwater missions. The Remote 

Environmental Measuring UnitS (REMUS) vehicle was developed by the Woods Hole 

Oceanographic Institution and is manufactured by Hydroid. The Bluefin vehicle class shares a 

name with its developer, Bluefin Robotics. 

1.1.6.1 REMUS 

REMUS vehicles are designed at Woods Hole Oceanographic Instituteôs Oceanographic Systems 

Lab and come in variants 100, 600, 3000, and 6000. These numbers indicate the max depth in 

meters at which the vehicle is rated to operate [17]. The REMUS 100 is a light vehicle, weighing 

only about 100 pounds depending on sensor configuration, and can be launched easily from a small 

boat with just 2 people. This makes it suitable for quick, low cost mapping and characterization 

surveys of up to 10 hours [18]. Available payload sensors include a dual 900/1800 kHz side scan 

sonar and a forward looking camera. 

 
Figure 5 ïA REMUS 100 vehicle with associated equipment (from www.km.kongsberg.com) 
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The REMUS vehicle comes with a control program called the Vehicle Interface Program (VIP). It 

is a PC based graphical interface program that issues user commands to the vehicle and displays 

the vehicleôs internal status back to the user. It performs both pre- and post-mission analysis. 

Missions are programmed through a scripting language and are limited to a few preprogrammed 

behaviors. These small behaviors can be cobbled together to form more complex behaviors. The 

built in behaviors favor reliability and repeatability over finesse and as such do not provide any 

dynamic or reactive decision making capability to the user. Some variants of the REMUS include 

an onboard embedded computer capable of overriding the main computerôs control. This board is 

networked into the vehicleôs onboard switch and gives behavior developers the ability to create far 

more complex behaviors but with strict controls built in. There is both a time and a distance 

constraint on each override instance. One obvious rationale for an override would be for an 

obstacle avoidance controller. Given forward looking sonar capabilities the vehicle would detect 

upcoming objects and make adjustments to travel over or around them before coming back to the 

preprogrammed track. 

1.1.6.2 Bluefin 

 
Figure 6 ïA Bluefin Robotics Bluefin-9 vehicle (from www.bluefinrobotics.com) 
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Bluefin Robotics develops and supports an array of vehicles known as Bluefin-9, 12, and 21. The 

number indicates the diameter of the vehicle. The Bluefin-9 is a small, highly maneuverable 

vehicle weighing about 140 pounds. This makes it a viable candidate for quick, low cost mapping 

and characterization just like the REMUS 100. With the added weight come slightly higher specs 

than the REMUS 100. The Bluefin-9ôs stated max speed is 5 knots, it can reach depths of 200 

meters, and its endurance is about 12 hours at 3 knots [19]. 

1.1.6.3 Search Based Sensors 

Typical underwater vehicles are equipped with sidescan sonars. These devices use sound instead 

of light to map surroundings. While hardly comparable to modern high-definition cameras, images 

from these devices can be analyzed and determined to be of further interest, in which case a vehicle 

can be redeployed and use a higher resolution underwater camera to capture a photo of the object 

of interest. The REMUS 100 uses a dual 900/1800 kHz sidescan for low resolution, long range 

imaging and high resolution, short range imaging, respectively. 

 
Figure 7 - Low resolution 900 kHz sonar image compared to a high resolution 1800 kHz image. (Image from 

oceanexplorer.noaa.gov) 
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Figure 8 ï Left: A sonar image of an interesting object. Right: A closer look at the object with an underwater camera. 

(Images from NATO Undersea Research Centre) 

1.2 Underwater Robotic Behaviors ï Automation vs. Autonomy 

Underwater missions are inherently difficult to observe. This puts programmers of underwater 

vehicle control algorithms under heightened pressure to incorporate vehicle safety into their 

behaviors. In many cases this has led, understandably, to a very limited set of highly automated 

yet severely restrictive underwater vehicle behaviors. These behaviors are typically preplanned, 

scripted movements with sections of code operating in sequential order until mission completion. 

Very little, if any room for vehicle borne decision making, or autonomy, is allowed. Some of the 

tension involved with allowing vehicles to operate out of sight and autonomously can be relieved 

by viable communication techniques to maintain vehicle location and mission status. One such 

implementation is the Portable Acoustic RADIo Geo-referenced Monitoring system 

(PARADIGM). It was developed by the Woods Hole Oceanographic Institution to satisfy these 

vehicle navigation and tracking requirements [20]. The implementation of this system requires 

radio buoys, acting as anchor nodes, to be deployed. Underwater vehicles acting within the radius 

of the buoysô communication range (2 km to 6km) can ópingô them and determine its location and 

make navigational corrections. Similarly, the buoy may ping the vehicle to determine its location 
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and report it back to a userôs tracking station. While effective in controlled areas, discreet 

operations require more discreet means of localization. Onboard GPS antennas allow surfaced 

vehicles to gather their location quickly before submerging and operating via inertial measurement 

units. These vehicles can then discreetly send their positions acoustically to a listening node 

attached to the mission control station. 

One reason for the slant towards automation instead of autonomy is that sophisticated robotic 

systems can be very expensive. For example, even a lightly equipped REMUS 100 vehicle from 

Hydroid is several hundred-thousand dollars. It therefore becomes a major component of every 

mission to protect the device from harm or loss. With that in mind, the REMUS control software 

developers have placed strict limits on many of the vehicleôs capabilities by only allowing a few 

very limited behaviors to be performed. These behaviors are formed mostly by commanding the 

vehicle to follow multiple straight line combinations to form a more complex pattern. For example, 

a mow-the-lawn pattern is formed by giving the vehicle a rectangular area to search and a track 

spacing parameter. The track spacing will usually be determined by the swath width of the sidescan 

sonars. If the sidescan sonar can map the ground thirty feet in both directions then, depending on 

the amount of overlap desired, a track spacing of sixty feet might be chosen as shown in Figure 9. 

These types of behaviors are usually employed to do a quick, economical search of a particular 

area. If something of interest is found in the returned images the vehicle may be sent out to further 

investigate. These investigations are usually performed at a higher resolution and the vehicles will 

typically make multiple passes at the intended target to ensure that a decipherable image is 

returned. 
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Figure 9 ïA typical ómow-the-lawnô type search pattern as performed by an AUV. 

To accommodate underwater network research, the engineers at Hydroid have provided a óback 

door entryô into the REMUSôs controller called the Recon protocol. This override functionality 

allows a behavior developer a much finer degree of control over the vehicleôs speed, depth, and 

heading thus allowing the implementation of user defined autonomous behaviors onboard the 

REMUS vehicle. It is also, however, bound by time and distance restrictions. 

The typical preplanned missions focus mainly on area of coverage and vehicle safety. 

Communications do take place but are usually secondary objectives. Most information is stored 

onboard and retrieved after mission completion. 
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1.3 Common Graph Searching Algorithms 

Utilizing computer algorithms to search a continuous space requires partitioning of that space into 

discrete chunks that are operable by those algorithms. Typically, large areas are broken down into 

grids of varying cell sizes. These cells represent the aggregate data of the land contained within 

that cell (e.g. land type or elevation ï see Figure 10). In this way, an algorithm might break up a 

10 meter by 10 meter sized land mass into 10,000 ï 10 square-centimeter cells. Then, in a logical 

manner, proceed to search each one individually for relevant information about it. This information 

might lead to the detection of an object being searched for or simply a path from one cell to another. 

In this section we will discuss three closely related methods for searching these discrete cells: 

Breadth First, Dijkstra, and A*. 

 
Figure 10 - A 10m x 10m land mass broken down into 10 square-cm cells 

1.3.1 Breadth First Search 

The Breadth First Search is not strictly a path finding algorithm but rather a very thorough 

approach to searching through a graph of cells. With only a minor addition to the process during 

each iteration it is guaranteed to provide the shortest Manhattan Distance between two of our cells. 

To begin, it is provided with a starting cell which it annotates. Then, it gathers all of that cellôs 
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neighbors into a queue. After gathering the information needed from the starting cell it pops the 

next cell off of the queue where the process starts all over again. When the traversal is complete, 

the shortest path from any cell on the map to the starting cell is known. Sample code for this simple 

algorithm is shown in Figure 11. 

private  void  BreadthFirstSearch( Cell  start , Cell  end)  
{  
 _frontier.Enqueue(start);  
 while  (_frontier.Count > 0)  
 {  
  Cell  current = _frontier.Dequeue();  
  List <Cell > neighbors = GetNeighbors(current);  
  for  ( int  i = 0; i < neighbors.Count; i++)  
  {  
   Cell  neighbor = neighbors[i];  
   if  (neighbor.Visited == false )  
   {  
    _frontier.Enqueue(neighbor);  
    neighbor.Visited = true ;  
    neighbor.CameFrom = current;  
   }  
  }  
 }  
}  

Figure 11 - A sample of a modified Breadth First Algorithm used to search an area. 

1.3.2 Dijkstra  

Dijkstraôs algorithm was created by Edsger Dijkstra in 1956 and published in 1959 in Numerische 

Mathematik [21]. The algorithm itself runs very similarly to the modified Breadth First Search 

algorithm proposed in section 1.3.1. Dijkstra, however, also tracks distances from one cell to 

another. In our simple terrain example of Figure 10 this might mean that travelling uphill might 

cost more than travelling downhill. Similarly, travelling across water might be much more costly 

than travelling across flat ground or impossible altogether. With a little bit of ingenuity, influences 

can be placed on cells that cause a travelling vehicle to avoid locations due to the necessity of 

concealment or other mission requirements. A sample code block is shown in Figure 12. The 

frontier collection is now a list sorted by priority. That means that the search will continue along 
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the currently shortest path. With an extra line of code that causes the search to terminate when the 

goal is found, we can begin executing vehicle movement much quicker. 

private  void  DijkstraSearch( Cell  start, Cell  end)  
{  
 _frontier.Add( 0, start);  
 while  (_frontier.Count > 0)  
 {  
  Cell  current = _frontier[0];  
  _frontier.RemoveAt(0);  
  if  (current == end) break ;  
  List <ICell > neighbors = GetNeighbors(current);  
  for  ( int  i = 0; i < neighbors.Count; i++)  
  {  
   ICell  neighbor = neighbors[i];  
   float  newCost = CalculateDistance(current, neighbor);  
   if  (neighbor.Visited == false  || newCost < neighbor.DistanceSoFar)  
   {  
    _frontier.Add(newCost, neighbor);  
    neighbor.DistanceSoFar = newCost;  
    neighbor.Visited = true ;  
    neighbor.CameFrom = curr ent;  
   }  
  }  
 }  
}  

Figure 12 - Sample code demonstrating an implementation of Dijkstra's Algorithm 

1.3.3 A*  

The A* algorithm runs much like Dijkstraôs algorithm. The difference is in the way the algorithms 

prioritize which cell to traverse next. In Dijkstraôs algorithm, the cells are prioritized in the frontier 

according to the currently traversed distance. In A*, the cells are placed in the frontier by that same 

value plus a heuristic. This heuristic may be determined by any group implementing the algorithm 

but a commonly used one is the straight line distance between the current cell and the goal cell. 

For example, if the algorithm has travelled through a number of cells equaling 3 meters so far and 

the next neighbor in line is 3.5 meters away from the goal, then a value of 6.5 is used as the priority. 

This cell will be searched before another neighbor, whose current distance is only 1, but whose 

straight line distance to the goal is 6 (i.e. priority 7). Sample code for the A* algorithm is shown 

in Figure 13. 
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private  void  AStarSearch( Cell  start, Cell  end)  
{  
 _frontier.Add(0, start);  
 while  (_frontier.Count > 0)  
 {  
  ICell  current = _frontier.ElementAt(0).Value;  
  _frontier.RemoveAt(0);  
  if  (current.Visited == false )  
  {  
   current.Visited = true ;  
   if  (current == end) break ;  
   List <Cell > neighbors = GetNeighbors(current);  
   for  ( int  i = 0; i < neighbors.Count; i++)  
   {  
    Cell  neighbor = neighbors[i];  
    if  (neighbor.Visited == false )  
    {  
     float  dist = CalculateDistance ( current, neighbor);  
     float  newCost = dist + current.DistanceSoFar;  
     if  (newCost < neighbor.DistanceSoFar)  
     {  
      float  priority =  newCost + Heuristic(neighbor, end);  
      _frontier.Add(priority, neighbor);  
      neighbor.DistanceSoFar = newCost;  
      neighbor.CameFrom =  current;  
     }  
    }  
   }  
  }  
 }  
}  

Figure 13 - Sample code demonstrating an implementation of the A* algorithm 

1.4 Behavior Trees 

Software behavior trees are a programming paradigm that came to the forefront of video game AI 

in 2005 through a talk given by Damian Isla at the Game Developerôs Conference (GDC) 2005. 

Damian was involved in the AI development for the extremely popular game Halo 2 for XBOX. 

His talk began by addressing common issues when dealing with AI: poor run-time, poor 

scalability, a lack of direct-ability, and random vs. intentional behaviors. It then progressed through 

ways to address each problem. It concluded with the statement that, ñhard problems can be 

rendered trivial through judicious use of the right representation,ò which, in this case, was a 

behavior tree. The concept worked so well that it was reused in the development of Halo 3, another 

very popular title for the Xbox 360. 
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Behavior trees are organized as directed acyclic graphs. During each update cycle the graph is 

traversed from top to bottom and left to right (Figure 14). During this traversal each node will 

assume one of a number of node states. These will typically comprise ósuccessô and ófailure,ô along 

with any others that the designer feels necessary (e.g. running, uninitialized, etcé). A possible 

NodeStatus enumeration will be shown in section 1.4.8. Each successful traversal represents one 

time slice and constitutes a performance parameter of the system which can be adjusted up or 

down. For example, a video game developer may shoot for one complete traversal every 16ms (60 

frames / second) while a vehicle autonomy developer may or may not require such a high traversal 

rate. 

 
Figure 14 - Behavior tree traversal method 

Inner nodes of the graph can be any of a collection of sequences or selectors, called composites, 

and decorators. Leaf nodes are conditions (assertions) or actions. Composites contain multiple 

child nodes and will generally assume the NodeStatus of their last running child node but are not 
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required to do so. Decorators, too, will typically assume their childôs status but a designer may use 

any clever method to set it differently. For example, a decorator may run a successful child node 

and instead return failure due to the length of time that the node took to run. 

The utility of behavior trees only manifests itself if strict interfaces are followed. This means that 

as long as developers adhere to the standard usages, collections of behaviors can easily be 

developed and used across a wide range of applications. The easiest way to understand this will be 

through the use of an example followed by a sample code implementation. But first, we will  define 

basic behavior tree terminology. 

1.4.1 Nodes 

The atomic unit of a behavior tree is a node. It will contain at a minimum one public function, 

Tick(), which will return a NodeStatus. A nodeôs NodeStatus will indicate whether the update was 

a success or failure. The necessity and utility of such a simple interface will become evident as we 

proceed through our example. 

 
Figure 15 - A Behavior Tree Node 

The implementation of a node can take the form of a sequence, selector, decorator, action, or 

assertion. Sequences and selectors are called composite nodes. This is because they will contain 
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multiple child nodes. Decorators will always contain only one child node. Actions and assertions 

will be leaf nodes and contain zero children. The unofficial but generally accepted depiction of 

these blocks is shown in Figure 16. When placed in a tree, each of these blocks is still considered 

a node. Simple modifications to the makeup of a behavior tree can cause many different behaviors 

to emerge. 

 
Figure 16 ïThe fundamental building blocks of a behavior tree: sequence, selector, decorator, action, & assertion. 

1.4.2 Sequences 

Sequences are like database transactions. They run their children one after the other and either pass 

or fail as a group like a logical AND statement. If a sequence fails to complete during an update, 

the last running node is called immediately on the next update. There are special variations of 

sequences called sequence loops. These variants run in order but instead of reporting to their parent 

they continue to restart execution at the first child node for a set number of iterations.  

 
Figure 17 - An example of a sequence success and failure 
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1.4.3 Selectors 

Selectors are the complement of sequences and act like logical OR statements. Each child of a 

selector is tested in order. Failures are ignored but the first success is reported back up the tree, 

short circuiting subsequent nodes. Priority selectors are a special case in which each node is 

assigned a priority and run in descending priority order. During each traversal of the graph, higher 

priority selectors may override the continuation of a lower priority node. Random selectors are 

another special case in which a child node is chosen at random. This equips the behavior tree with 

more variety of character. 

 
Figure 18 - An example of a selector success and failure 

1.4.4 Decorator Nodes 

Decorator nodes contain only one child and are used to enforce certain constraints. They might 

contain counter variables to maximize the number of times a behavior will run, a loop to ensure a 

certain number of runs, a timer to enforce time lengths in-between runs, or code to handle 

exceptions. If resources are shared, a decorator node is a natural place to put locks, mutexes, and 

semaphores. In Figure 19, the image on the right shows how a timer can return failure without 

running its child node since its last activation was too recent. 
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Figure 19 - An example of a decorator being used as a timer to determine whether or not to call its child node 

1.4.5 Actions 

Actions, as opposed to composite sequences and selectors, cause the actor to effect a world change. 

Outside of a few common use cases, most of these nodes will be unique to a software project and 

are what differentiate it from others. Many times these nodes will make calls into a proprietary 

library like a vehicle control class. In an underwater mission project, this might be to communicate 

with a network sensor, plan a path to collect sonar images, or get a GPS fix. 

 
Figure 20 - An example of action nodes calling proprietary code 














































































































































































































































