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ABSTRACT

Due to the wide use of collective operations in Message Passing Interface (MPI) applications,

developing efficient collective communication routines is essential. Despite numerous research

efforts for optimizing MPI collective operations, it is still not clear how to obtain MPI

collective routines that can achieve high performance across platforms and applications. In

particular, while it may not be extremely difficult to develop an efficient communication

algorithm for a given platform and a given application, including such an algorithm in an

MPI library poses a significant challenge: the communication library is general-purpose and

must provide efficient routines for different platforms and applications.

In this research, a new library implementation paradigm called delayed finalization of

MPI collective communication routines (DF) is proposed for realizing efficient MPI collective

routines across platforms and applications. The idea is to postpone the decision of which

algorithm to be used for a collective operation until the platform and/or application are

known. Using the DF approach, the MPI library can maintain, for each communication op-

eration, an extensive set of algorithms, and use an automatic algorithm selection mechanism

to decide the appropriate algorithm for a given platform and a given application. Hence, a

DF based library can adapt to platforms and applications.

To verify that the DF approach is effective and practical, Ethernet switched clusters are

selected as the experimental platform and two DF based MPI libraries, STAGE-MPI and

STAR-MPI, are developed and evaluated. In the development of the DF based libraries,

topology-specific algorithms for all-to-all, all-gather, and broadcast operations are designed

for Ethernet switched clusters. The experimental results indicate that both STAGE-MPI

and STAR-MPI significantly out-perform traditional MPI libraries including LAM/MPI and

MPICH in many cases, which demonstrates that the performance of MPI collective library

xii



routines can be significantly improved by (1) incorporating platform/application specific

communication algorithms in the MPI library, and (2) making the library adaptable to

platforms and applications.
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CHAPTER 1

INTRODUCTION

A key building block of exploiting clusters of workstations, which have recently become

popular as high performance computing (HPC) platforms, is the Message Passing Interface

(MPI) that enables communication within the clusters. The standardization of MPI [51] has

facilitated the development of applications that use message passing as the programming

paradigm and has resulted in a large number of MPI applications. In order to deliver high

performance to these MPI applications, it is imperative that the library implementation of

MPI realizes the communications efficiently.

An important functionality provided by the MPI standard is the support for collective

communications. In a collective communication operation, multiple processors (or nodes)

participate in the operation, as opposed to only two processors (sender and receiver) in

a point–to–point communication operation. Studies have indicated that MPI collective

operations are used in most MPI applications and account for a significant portion of the

total time in some applications [65]. Despite the importance of MPI collective communication

operations and the research efforts that sought to optimize them, it is still not clear how

to realize MPI collective communication routines that can deliver high performance across

platforms and applications.

Traditionally, MPI library developers must decide at the library design time which

communication algorithm is to be used for a given collective operation in a given situation,

such as a given message size or a given number of processors. Such a library implementation

paradigm has many limitations. First, for the libraries to work in all cases, the algorithms

included in these libraries have to be general-purpose since much of the platform information

is unavailable at the library design time. For instance, the topology of the platform is

usually unknown and thus topology-specific communication algorithms cannot be included

1



in the library. However, such platform-specific (e.g. topology-specific) algorithms can usually

achieve much higher performance than general-purpose algorithms [15, 16, 17, 18, 24, 25].

Second, there are many important platform parameters that can significantly affect the

performance of a communication algorithm. These include OS context switching overheads,

nodal architecture, ratio between the network and the processor speeds, switch design,

amount of buffer memory in switches, and network topology. Since these parameters differ

from one platform to another, it is impossible for the library developer to make the right

choices on the communication algorithms across different platforms. As a result, the selection

of communication algorithms in traditional libraries is somewhat inadequate. Third, the

application behavior is not considered in the development of library routines as the collective

algorithms are decided before the application is known. MPI collective routines can be used

in different program contexts, which may require different algorithms to achieve the best

performance (for different contexts).

MPI developers have recognized these issues and have tried to remedy the problems by

developing adaptive MPI collective routines that allow different algorithms to be used for

an operation based on the message size and/or number of processors. However, due to the

limitation of the library implementation paradigm, where communication algorithms are

decided at the library design time, the software adaptability of these libraries, including

LAM/MPI [44] and MPICH [52], is limited. The routines may adapt only to message sizes

and the number of processors, but cannot adapt to platforms and applications. Hence,

although the problems described above are somewhat alleviated, they remain unsolved in

these libraries.

There are two essential issues for implementing efficient MPI collective communication

routines across platforms and applications. The first issue is to develop and include

platform/application specific algorithms in the library. This creates a fundamental dilemma:

on one hand, platform/application specific algorithms are designed for specific situations;

on the other hand, a communication library is usually general-purpose and must work in

different situations. Even if such algorithms were included in the library, the second issue

that is of a great importance is the ability of the MPI library to adapt to platforms and

applications by using the most efficient algorithms, including platform/application specific

and platform/application unaware, to carry out an operation in a given situation (platform

and application). Clearly, traditional MPI libraries such as LAM/MPI [44] and MPICH

2



[52] fail to address either of the two issues: the algorithms included in these libraries are

all platform/application unaware, and the library adaptability is limited. As a result, these

libraries are unable to deliver high performance for applications on many platforms [9].

The thesis of this dissertation is that (1) it is possible to develop an adaptive MPI library

whose collective routines can adapt to platforms and applications, and more importantly,

(2) the performance of MPI collective library routines can be significantly improved by

incorporating platform/application specific algorithms and making the library adaptive to

the platform/application. To verify this thesis, Ethernet switched clusters are selected

as the experimental platform and efficient adaptive MPI libraries are developed for this

platform. The reasons for choosing Ethernet clusters are that Ethernet is the most widely

used networking technology and that accesses to Ethernet switched clusters were available

at the time this research was conducted.

The contributions of this research can be classified into two areas. First, platform-

specific communication algorithms are developed for Ethernet switched clusters [15, 16, 17,

18, 24, 25]. Topology-specific communication algorithms for commonly used collective com-

munication routines, including MPI Alltoall, MPI Allgather, and MPI Bcast, are designed,

implemented, and evaluated. Second, a new paradigm for implementing MPI collective

routines, called the delayed finalization of MPI collective communication routines (DF)

approach, is proposed. The DF approach allows for more software adaptability than that of

traditional libraries. In particular, it allows platform-specific algorithms to be included in the

library, and it is able to find efficient algorithms for a given platform and/or application. To

study the effectiveness of the DF approach and investigate the difficulties in developing a DF

library, two DF library prototypes are designed, implemented, and evaluated [19, 20, 21, 22].

In the following, these contributions are discussed in details.

1.1 Topology-specific Communication Algorithms for
Ethernet Switched Clusters

The first step towards obtaining high performance collective communication routines is to

design algorithms that are optimized for the particular platform on which they will run so

that communications can be carried out efficiently. Such algorithms are usually architecture-

dependent. A major issue in Ethernet switched clusters is network contention. The physical

topology of an Ethernet switched cluster is a tree [74], which has a limited bisection width.

3



Without considering the network topology, it is very likely that two or more messages in

a collective operation use the same link at the same time, which causes contention and

degrades the performance. In general, using topology-unaware collective communication

algorithms can perform reasonably well when the message size is small since the network can

handle such cases without significantly degrading the performance. However, for collective

communications with large messages, the network contention problem can significantly affect

the communication performance. This is particularly true when the number of nodes is large

enough that the nodes must be connected to multiple switches. In this case, it is essential

to develop topology-specific collective communication algorithms that consider the network

topology to eliminate network contention.

In this work, topology-specific communication algorithms for efficiently realizing the all–

to–all, all–gather, and broadcast operations on Ethernet switched clusters are developed

[15, 16, 17, 18, 24, 25]. To evaluate these algorithms, automatic routine generators are

implemented. These generators take the topology information as input and generate

topology-specific MPI collective communication routines. The performance evaluation of

the generated routines for the different collective operations shows that in many cases the

topology-specific algorithms achieve significantly higher performance than the topology-

unaware algorithms included in LAM/MPI [44] and MPICH [52] libraries.

Although the topology-specific communication algorithms are proposed for Ethernet

switched clusters with physical tree topologies, many of the proposed algorithms can be used

in other networks since a tree topology can be embedded in most connected networks. This

will require finding the tree embedding with a spanning tree algorithm and then applying

the proposed topology-specific communication algorithms (for the tree topology).

1.2 Delayed Finalization of MPI Collective
Communication Routines

The idea of the delayed finalization of MPI collective communication routines (DF) approach

is to postpone the decision of which algorithm to be used for a collective operation until the

platform and/or the application are known. This potentially allows architecture and/or

application specific optimizations to be applied. There are two major components in a DF

library: (1) an algorithm repository and (2) an automatic algorithm selection mechanism.

The algorithm repository contains, for each operation, an extensive set of platform-unaware

4



and platform-specific algorithms that can potentially achieve high performance in different

situations. The automatic selection mechanism evaluates the communication performance

of different algorithms (from the repository) and selects the best communication algorithms

to be used in the final routine. Since there are many factors, including platform parameters

and application behavior, that can affect the performance of communication algorithms, and

since some factors are hard to model or measure in practice, developing an effective automatic

algorithm selection mechanism can be challenging. This thesis considers using an empirical

technique in the algorithm selection (also called tuning) process: different communication

algorithms are executed, the performance of each algorithm is measured, and the best

algorithm is chosen based on the performance measurements. The empirical approach allows

the aggregate effects of all factors that affect the performance to be used in the algorithm

selection process since the aggregate effects are summarized in the measurement results.

The implementation paradigm for a DF based library is different from that for the

traditional MPI libraries: the DF library developers only implement the communication

algorithms and the mechanisms to select the algorithms, but do not make decisions about

which algorithms to use for an operation. The final communication algorithms for an

operation are automatically selected by the algorithm selection mechanism, which may take

platform architecture and application into account.

To study the effectiveness of the DF approach and investigate the difficulties in developing

a DF library, two prototype DF libraries are designed, implemented, and evaluated. The

first DF prototype library is the Static Tuning and Automatic Generation of Efficient MPI

collective routines (STAGE-MPI) system [20], and the second DF prototype library is

composed of Self Tuned Adaptive Routines for MPI collective operations (STAR-MPI)

[22]. Both STAGE-MPI and STAR-MPI maintain an extensive algorithm repository but

differ in the tuning process. In STAGE-MPI, the tuning process occurs at the library

installation time. For each collective operation, the performance of different algorithms is

measured across different message sizes using a standard performance measurement scheme

such as Mpptest [32], and the best performing algorithm is decided for each message size. The

system then determines a message size range for each of the best performing algorithms and

automatically generates the final tuned routine, which may include different communication

algorithms for different message size ranges. In STAR-MPI, the tuning process occurs

dynamically at run-time in the context of application execution. Each time a STAR-MPI
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routine is invoked in an application, an algorithm from the repository is used to realize the

invocation and the performance of the algorithm is measured. After a sufficient number of

invocations of the routine, the best performing algorithm is decided and used in subsequent

invocations.

In STAGE-MPI, the tuning process can be very lengthy. Thus, the system is applicable

only when the platform is fixed and the routines are repeatedly invoked. Moreover, since

STAGE-MPI runs on the platform where the MPI library is to be installed and used, the

system selects efficient communication algorithms that are tuned to the given platform;

that is, the final routines practically adapt to the platform but not the applications. The

STAR-MPI library is designed for MPI programs where collective communication routines

are called iteratively a large number of times. STAR-MPI is applicable and well-suited for

typical supercomputing clusters where users are given a different partition every time they

run a job. Furthermore, as STAR-MPI routines run in the context of the application on the

platform, the routines are able to select communication algorithms that perform best for the

application on the platform. Thus, STAR-MPI routines can adapt to both the application

and platform.

The performance studies of STAGE-MPI and STAR-MPI indicate that both out-perform

traditional MPI libraries, including LAM/MPI [44] and MPICH [52], in many cases, which

demonstrates the effectiveness of the DF approach. By incorporating platform/application

specific communication algorithms in the library and making the library adaptive to the

platform/application with the DF approach, the performance of MPI collective routines can

be significantly improved over traditional MPI libraries.

1.3 Organization of Dissertation

The rest of this dissertation is organized as follows. Chapter 2 presents the related work.

Chapter 3 describes in details the topology-specific communication algorithms for the three

MPI collective routines (MPI Alltoall, MPI Allgather, and MPI Bcast). Chapter 4 discusses

the DF approach and libraries. Finally, Chapter 5 presents the conclusion and future work.
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CHAPTER 2

RELATED WORK

The research mostly related to this work falls into three broad areas: analysis of the charac-

teristics of MPI applications, optimizations of the MPI library, and empirical optimization

techniques. These related areas are described next.

2.1 Characteristics of MPI Applications

Over the years, parallel applications and parallel architectures have evolved. Since MPI

became a standard [50], a large number of MPI based parallel applications have been

developed. Analyzing the characteristics of MPI applications is essential to develop efficient

parallel systems. Some of the early work [1, 8] have focused on the use of MPI applications

for evaluation purposes. Work in [1] evaluates the overall performance of a large number of

parallel architectures using the NAS application benchmarks [54]. The study in [8] uses the

NAS benchmarks to evaluate two communication libraries over the IBM SP machine.

Recently, the MPI community has recognized the need to have efficient implementations

of the MPI standard. Characterizing and understanding the application behavior is critical

for developing an efficient MPI library, which is evident in numerous research efforts

focusing on analyzing MPI communication behavior [11, 23, 43, 71, 72, 80]. In [80],

the performance of parallel applications is analyzed using a technique that automatically

classifies inefficiencies in point-to-point communications. The study analyzes the usage of

MPI collective communication routines and their elapsed times. The studies in [23, 43]

performed quantitative measures of the static and dynamic MPI routines in scientific parallel

applications. Work in [71] performed statistical analysis of all-to-all elapsed communication

time on the IBM SP2 machine to understand the causes of performance drop as the number

of processors increases. The researchers in [72, 11] examined the NAS parallel benchmarks
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[54] to quantitatively describe the usage of MPI routines and the distribution of message

sizes.

The analysis performed on the parallel applications in these studies often involves the

investigation of communication attributes such as the type of MPI routines, message size,

message volume, message interval, bandwidth requirement, and communication elapsed

time. This thesis includes a study that focuses on a communication attribute for collective

operations: the process arrival pattern. Since a collective operation involves multiple

processes that can arrive at the routine call site at different times, the process arrival

pattern defines the timing when different processes arrive at the collective operation.

This communication attribute has a significant impact on the performance of collective

communication routines.

2.2 Optimizations of the MPI Library

The success of the MPI standard can be attributed to the wide availability of two MPI

implementations: LAM/MPI [44] and MPICH[52, 77]. Many researchers have worked on

optimizing the MPI library [47, 38, 26, 40, 55, 69, 75, 77]. In [40], optimizations of MPI

over Wide Area Networks by considering the network details are proposed. In [55], a

compiler based optimization approach is developed to reduce the software overheads in the

library. In [47], MPI point–to–point communication routines are optimized using a more

efficient primitive (Fast Message). Optimizations for a thread based MPI implementation

are proposed in [75]. Optimizations for clusters of SMPs are presented in [69]. A combined

compiler and library approach was proposed in [38]. In [26], multicast group management

schemes are proposed for MPI collective routines that are realized using multicast primitives.

Due to the importance of collective communications, many efficient collective communi-

cation algorithms have also been developed. This thesis considers three collective operations:

MPI Alltoall, MPI Allgather, and MPI Bcast. Existing algorithms for these operations are

surveyed next.

2.2.1 Algorithms for MPI Alltoall

The all-to-all operation is used in many high performance applications, including matrix

transpose, multi-dimensional convolution, and data redistribution. A large number of
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optimal message scheduling algorithms for different network topologies with different network

models were developed. Many of the algorithms were designed for specific network topologies

that are used in the parallel machines, including hypercube [36, 79], mesh [6, 68, 70, 76],

torus [34, 46], k-ary n-cube [79], and fat tree [14, 62]. Heuristic algorithms were developed for

the all-to-all operation on irregular topologies [48]. A framework that realizes the all-to-all

operation using indirect communications was reported in [37]. Efficient scheduling schemes

for clusters connected by a single switch were proposed in [73]. Some of the algorithms in [73]

were incorporated in the recent improvement of MPICH library [77]. The all–to–all operation

on Ethernet switched clusters with one or more switches is a special communication pattern

on a tree topology. Message scheduling for such cases has not been considered before.

2.2.2 Algorithms for MPI Allgather

Another commonly used operation in MPI applications is the all-gather operation, also

known as all–to–all broadcast. Similar to the all-to-all operation, many all-gather algorithms

were designed for specific network topologies that are used in the parallel machines, including

hypercube [36, 79], mesh [84, 68, 76], torus [84], k-ary n-cube [79], fat tree [42], and star

[56]. Work in [40] proposes optimizations of MPI collective operations, including all-gather,

on wide area networks. The study in [30] investigates an efficient all-gather scheme on SMP

clusters. Work in [85] explores the design of NIC-based all-gather with different algorithms

over Myrinet/GM. Some efforts [73, 77] have focused on developing algorithms for different

message sizes, and some of these algorithms have been also incorporated in the recent MPICH

library [52]. In [7], the authors developed an efficient all-gather algorithm for small messages.

The study in [4] compares a dissemination based all-gather with the recursive doubling

algorithm [77] on Ethernet and Myrinet. In [35], nearly optimal all-gather schemes were

developed for clusters connected by one or two switches. However, as indicated in [35] and

[33], the algorithm proposed for the general topology in [35] is not always optimal for clusters

connected by more than two switches.

2.2.3 Algorithms for MPI Bcast

The broadcast operation in different environments has been extensively studied and a

very large number of broadcast algorithms have been proposed. Algorithms developed for

topologies used in parallel computers such as meshes and hypercubes (e.g. [36, 41]) are
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specific to the targeted topologies and platforms and cannot be applied to Ethernet switched

clusters with physical tree topologies. Many researchers proposed the use of logical binomial

trees for the broadcast operation and developed algorithms for computing contention-free

binomial trees under different constraints [28, 39, 49]. In this thesis, pipelined broadcast tree

algorithms are proposed to efficiently realize the broadcast operation on Ethernet switched

clusters. Although atomic broadcast algorithms over physical tree topologies have also been

developed [10, 63], such algorithms are different from pipelined broadcast algorithms.

Pipelined broadcast has been studied in different environments [2, 3, 61, 67, 78, 81].

In [81], an algorithm was designed to compute contention-free pipelined trees on the mesh

topology. In [2, 3], heuristics for pipelined communication on heterogeneous clusters were

devised. These heuristics focus on the heterogeneity of the links and nodes, but not the

network contention, which is a major issue to consider in order to obtain efficient pipelined

broadcast algorithms. The effectiveness of pipelined broadcast in cluster environments was

demonstrated in [61, 67, 78]. It was shown that pipelined broadcast using topology-unaware

trees can be very efficient for clusters connected by a single switch. The research in this thesis

extends the work in [61, 67, 78] by considering clusters connected by multiple switches. In

particular, methods for building contention-free trees for pipelined broadcast over a physical

tree topology of multiple switches are developed and studied.

2.3 Empirical Optimization Techniques

Although researchers have developed many efficient communication algorithms to realize the

different MPI collective operations, determining when to use one algorithm over another in

a particular situation (e.g. message size, number of processors, platform, or application)

requires an efficient selection mechanism. In both STAGE-MPI and STAR-MPI, the

selection mechanism is a variation of the Automated Empirical Optimization of Software

(AEOS) technique [82]. The idea of AEOS is to optimize software automatically using an

empirical approach that includes timers, search heuristics, and various methods of software

adaptability. This technique has been successfully applied to realize various computational

library routines [5, 29, 82].

The technique in the STAGE-MPI system is closely related to the one used in the

tuning system proposed in [78]. Both systems use a static AEOS technique to optimize

collective communications. However, there are some significant differences. First, STAGE-
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MPI considers algorithms that are specific to the physical topology while algorithms in [78]

use logical topologies and are unaware of the physical topology. Second, the system in [78]

tries to tune and produce common routines for systems with different numbers of nodes.

STAGE-MPI is less ambitious in that routines for a specific physical topology are tuned.

By focusing on a specific physical topology, STAGE-MPI is able to construct highly efficient

routines. Third, [78] mainly focused on one-to-all and one-to-many communications and

studied various message pipelining methods to achieve the best performance. In addition

to one-to-all and one-to-many communications, STAGE-MPI also considers all–to–all and

many–to–many communications where pipelining is not a major factor that affects the

communication performance.
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CHAPTER 3

TOPOLOGY-SPECIFIC ALGORITHMS FOR

ETHERNET SWITCHED CLUSTERS

In Ethernet switched clusters, when the number of machines is large enough that they cannot

connect to a single crossbar switch, multiple switches must be used to connect the machines.

This reduces the network bisection width. In such a system, to eliminate network contention

and achieve high performance, the network topology must be considered in the development

of efficient communication algorithms. In this chapter, topology-specific communication

algorithms for all–to–all, all–gather, and broadcast operations are introduced.

The chapter is organized as follows. Section 3.1 discusses the network model and termi-

nology. Section 3.2 presents the topology-specific algorithm for the all–to–all personalized

communication (MPI Alltoall). Section 3.3 describes topology-specific algorithms for the

all–to–all broadcast operation (MPI Allgather). Section 3.4 presents the topology-specific

algorithms for the broadcast operation (MPI Bcast). Finally, Section 3.5 summarizes the

chapter.

3.1 Network Model & Terminology

In Ethernet switched clusters, it is assumed that each workstation is equipped with one

Ethernet port, and that each link operates in the duplex mode that supports simultaneous

communications on both directions with the full bandwidth. Communications in such a

system follow the 1-port model [3], that is, at one time, a machine can send and receive one

message. The switches may be connected in an arbitrary way. However, a spanning tree

algorithm is used by the switches to determine forwarding paths that follow a tree structure

[74]. As a result, the physical topology of the network is always a tree.

The network can be modeled as a directed graph G = (V, E) with nodes V corresponding
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to switches and machines, and edges E corresponding to unidirectional channels. Let S

be the set of all switches in the network and M be the set of all machines in the network

(V = S ∪M). Let u, v ∈ V , a directed edge (u, v) ∈ E if and only if there is a link between

node u and node v. The notion link (u, v) denotes the physical connection between nodes

u and v. Thus, link (u, v) corresponds to two directed edges (u, v) and (v, u) in the graph.

Since the network topology is a tree, the graph is also a tree: there is a unique path between

any two nodes. For the tree topology, the switches are assumed to only be intermediate nodes

while the machines can only be leaves. A switch as a leaf in the tree will not participate

in any communication and, thus, can be removed from the graph. Also, it is assumed that

there is at least one switch in the tree. Figure 3.1 shows an example cluster.

switches

machines

n5n0

s0

s2

s1

s3
n1

n2

n3 n4

Figure 3.1: An example Ethernet switched cluster

The terminology used in this chapter is defined next. A message, u → v, is data

transmitted from node u to node v. A message is also called a communication. The notion

path(u, v) denotes the set of directed edges in the unique path from node u to node v. For

example, in Figure 3.1, path(n0, n3) = {(n0, s0), (s0, s1), (s1, s3), (s3, n3)}. The path length

is defined as the number of switches a message travels through. For example, the path length

of n0 → n3 is 3. Two messages, u1 → v1 and u2 → v2, are said to have contention if they

share a common edge, that is, there exists an edge (x, y) such that (x, y) ∈ path(u1, v1) and

(x, y) ∈ path(u2, v2). A pattern is a set of messages. The notion u→ v → w → ...→ x→ y

is used to represent the pattern that consists of messages u→ v, v → w, ..., and x → y. A

pattern is contention free if there is no contention between each pair of the communications

in the pattern. A phase is a contention free pattern. The load on an edge is the number
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of times the edge is used in the pattern. The most loaded edge is called a bottleneck edge.

For the all–to–all operation, the terms “the load of an edge (u, v)” and “the load of a link

(u, v)” are the same. When discussing the all–to–all algorithm, the two terms will be used

interchangeably. |S| denotes the size of set S, B denotes the network bandwidth, and msize

denotes the message size.

3.2 All-to-All Personalized Communication

All–to–all personalized communication (AAPC) is one of the most common communication

patterns in high performance computing. In AAPC, each node in a system sends a different

message of the same size to every other node. The Message Passing Interface routine that

realizes AAPC is MPI Alltoall [51]. AAPC appears in many high performance applications,

including matrix transpose, multi-dimensional convolution, and data redistribution. Since

AAPC is often used to rearrange the whole global array in an application, the message size

in AAPC is usually large. Thus, it is crucial to have an AAPC implementation that can

fully exploit the network bandwidth in the system.

This section presents a message scheduling scheme [15, 16] that theoretically achieves

the maximum throughput of AAPC on any given Ethernet switched cluster. Similar

to other AAPC scheduling schemes [34], the proposed scheme partitions AAPC into

contention free phases. It achieves the maximum throughput by fully utilizing the bandwidth

in the bottleneck links in all phases. Based on the scheduling scheme, an automatic

routine generator is developed. The generator takes the topology information as input

and produces an MPI Alltoall routine that is customized for the specific topology. The

automatically generated routine is compared with the original routine in LAM/MPI [44]

and a recently improved MPI Alltoall implementation in MPICH [77]. The results show

that the automatically generated routine consistently out-performs the existing algorithms

when the message size is sufficiently large, which demonstrates the superiority of the

proposed AAPC algorithm in exploiting network bandwidth. In the following, the maximum

aggregate throughput for AAPC is described, the proposed scheduling scheme is detailed,

message scheduling based AAPC implementation issues are discussed, and the results of the

performance evaluation study are reported.
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3.2.1 Maximum Aggregate Throughput for AAPC

Since scheduling for AAPC when |M | ≤ 2 is trivial, let us assume that |M | ≥ 3. Note that

the load of AAPC pattern is equal to the load of a bottleneck edge. Let edge (u, v) be one

of the bottleneck edges for the AAPC pattern. Assume that removing link (u, v) partitions

tree G = (S ∪M, E) into two subtrees, Gu = (Su ∪Mu, Eu) and Gv = (Sv ∪Mv, Ev). Gu is

the connected component including node u, and Gv is the connected component including

node v. AAPC requires |Mu| × |Mv| × msize bytes data to be transferred across the link

(u, v) in both directions. The best case time to complete AAPC is |Mu|×|Mv|×msize

B
. The peak

aggregate throughput of AAPC is bounded by

|M | × (|M | − 1)× msize
|Mu|×|Mv|×msize

B

=
|M | × (|M | − 1)× B

Mu ×Mv

In general networks, this peak aggregate throughput may not be achieved due to node

and link congestion. However, as will be shown later, for the tree topology, this physical

limit can be approached through message scheduling.

3.2.2 AAPC Message Scheduling

In the following, an algorithm that constructs phases for AAPC is presented. The phases

conform to the following constraints, which are sufficient to guarantee optimality: (1) no

contention within each phase; (2) every message in AAPC appears exactly once in the phases;

and (3) the total number of phases is equal to the load of AAPC on a given topology. If

phases that satisfy these constraints can be carried out without inter-phase interferences,

the peak aggregate throughput is achieved.

The scheduling algorithm has three components. The first component identifies the root

of the system. For a graph G = (S ∪M, E), the root is a switch that satisfies two conditions:

(1) it is connected to a bottleneck edge; and (2) the number of machines in each of the

subtrees connecting to the root is less than or equal to |M |
2

. The second component performs

global message scheduling that determines the phases when messages between two subtrees

are carried out. Finally, the third component performs global and local message assignment,

which decides the final scheduling of local and global messages.
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3.2.2.1 Identifying the Root

Let the tree be G = (S ∪M, E). The process to find a root in the network is as follows. Let

link L = (u, v) be one of the bottleneck links. Link L partitions the tree into two subtrees

Gu and Gv. The load of link L is thus, |Mu| × |Mv| = (|M | −Mv) × |Mv|. Assume that

|Mu| ≥ |Mv|. If in Gu, node u has more than one branch containing machines, then node

u is the root. Otherwise, node u should have exactly one branch that contains machines

(obviously this branch may also have switches). Let the branch connect to node u through

link (u1, u). Clearly, link (u1, u) is also a bottleneck link since all machines in Gu are in Gu1
.

Thus, the process can be repeated for link (u1, u). This process can be repeated n times and

n bottleneck links (un, un−1), (un−1, un−2), ..., (u1, u), are considered until the node un has

more than one branch containing machines in Gun
. Then, un is the root. Node un should

have a nodal degree larger than 2 in G.

Lemma 1: Using the above process to find the root, each subtree of the root contains at

most |M |
2

machines.

Proof: Using the process described above, a root un and the connected bottleneck link

(un, un−1) are identified. Let Gun
= (Sun

∪Mun
, Eun

) and Gun−1
= (Sun−1

∪Mun−1
, Eun−1

)

be the two connected components after link (un, un−1) is removed from G. We have

|Mun
| ≥ |Mun−1

|, which implies |Mun−1
| ≤ |M |

2
. The load on the bottleneck link (un, un−1)

is |Mun
| × |Mun−1

|. Let node w be any node that connects to node un in Gun
and

Gw = (Sw ∪ Mw, Ew) be the corresponding subtree. We have |M |
2
≥ |Mun−1

| ≥ |Mw|
[Note: if |Mun−1

| < |Mw|, the load on link (un, w) is greater than the load on link (un, un−1)

(|Mw|×(|M |−|Mw |) > |Mun−1
|×(|M |−|Mun−1

|)), which contradicts the fact that (un, un−1)

is a bottleneck link]. Hence, each subtree of the root contains at most |M |
2

machines. 2

In Figure 3.2, link (s0, s1) is bottleneck link. Both nodes s0 and s1 can be the root.

Assume that s1 is selected as the root. It is connected with three subtrees ts0 that contains

three machines n0, n1, and n2, ts3 that contains two machines n3 and n4, and tn5 that

contains one machine n5.

3.2.2.2 Global Message Scheduling

Let the root connect to k subtrees, t0, t1, ..., tk−1, with |M0|, |M1|, ..., and|Mk−1| machines

respectively. Figure 3.3 shows the two-level view of the network. Only global messages
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Figure 3.2: Identifying the root in an example cluster
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Figure 3.3: A two level view of the network

use the links between the subtrees and the root. Local messages only use links within a

subtree. Let us assume that |M0| ≥ |M1| ≥ ... ≥ |Mk−1|. Thus, the load of AAPC is

|M0| × (|M1|+ |M2|+ ... + |Mk−1|) = |M0| × (|M | − |M0|), and we must schedule both local

and global messages in |M0|× (|M |− |M0|) phases while maintaining contention-free phases.

This is done in two steps. First, phases are allocated for global messages where messages

from one subtree to another subtree are treated as groups. Second, individual global and

local messages are assigned to particular phases.

The notation ti → tj will be used to represent either a message from a machine in subtree

ti to a machine in subtree tj or general messages from subtree ti to subtree tj. The global
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Table 3.1: Phases from ring scheduling

Phase 0 Phase 1 ... Phase k − 2
t0 → t1 t0 → t2 ... t0 → tk−1

t1 → t2 t1 → t3 ... t1 → t0
... ... ... ...

tk−2 → tk−1 tk−2 → t0 ... tk−2 → tk−3

tk−1 → t0 tk−1 → t1 ... tk−1 → tk−2

message scheduling decides phases for messages in ti → tj. Let us first consider a simple

case where |M0| = |M1| = ... = |Mk−1| = 1. In this case, there is |Mi| × |Mj| = 1 message

in ti → tj. A ring scheduling algorithm [77, 73] can be used to schedule the messages in

1 × (k − 1) = k − 1 phases. In the ring scheduling, ti → tj is scheduled at phase j − i − 1

if j > i and phase (k − 1)− (i − j) if i > j. The ring scheduling produces k − 1 phases as

shown in Table 3.1.

When scheduling messages with any number of machines in a subtree, all messages from

one subtree to another are grouped into consecutive phases. The total number of messages

from ti to tj is |Mi| × |Mj|. The ring scheduling is extended to allocate phases for groups

of messages. In the extended ring scheduling, for subtree ti, the messages to other subtrees

follow the same order as in the ring scheduling. For example, for t1, messages in t1 → t2

happen before messages in t1 → t3, messages in t1 → t3 happen before messages in t1 → t4,

and so on. Specifically, the phases are allocated as follows. Note that messages in ti → tj

occupy |Mi| × |Mj| consecutive phases.

• When j > i, messages in ti → tj start at phase p = |Mi|×
∑j−1

k=i+1 |Mk|. If i+1 > j−1,

p = 0.

• When i > j, messages in ti → tj start at phase p = |M0| × (|M | − |M0|)− (|Mj| ×
∑i

k=j+1 |Mk|).

Lemma 2: Using the extended ring scheduling described above, the resulting phases have

the following two properties: (1) the number of phases is |M0| × (|M | − |M0|); and (2) in

each phase, global messages do not have contention on links connecting subtrees to the root.

Proof: When j > i, messages in ti → tj start at phase |Mi| ∗ (|Mi+1|+ |Mi+2|+ ... + |Mj−1|)
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and end at phase |Mi| ∗ (|Mi+1| + |Mi+2| + ... + |Mj−1| + |Mj|) − 1 < |M0| ∗ (|M1| +
... + |Mk−1|) = |M0| ∗ (|M | − |M0|). When i > j, messages in ti → tj start at

phase |M0| ∗ (|M | − |M0|) − (|Mi| + |Mi−1| + ... + |Mj+1|) ∗ |Mj| and end at phase

|M0|∗(|M |−|M0|)−(|Mi|+ |Mi−1|+ ...+ |Mj+1|)∗|Mj|+ |Mi|∗|Mj|−1 < |M0|∗(|M |−|M0|).
Thus, the number of phases is less than or equal to |M0|∗(|M |−|M0|). Note the phase count

starts at phase 0. Messages in t0 → tk−1 start at phase |M0| ∗ (|M1|+ |M2|+ ...+ |Mk−2|) and

end at phase |M0| ∗ (|M1|+ |M2|+ ...+ |Mk−2|)+ |M0| ∗ |Mk−1|− 1 = |M0| ∗ (|M |− |M0|)− 1.

Thus, the number of phases is exactly |M0| ∗ (|M | − |M0|). Examining the starting and

ending phases for messages in ti → tj, it can be shown that phases for ti → tj, j 6= i, do

not overlap and that phases for tj → ti, j 6= i, do not overlap. Thus, at each phase, at most

one node in a subtree is sending and at most one node in a subtree is receiving. As a result,

the two edges of the link connecting a subtree to the root will be used at most once in each

phase. Hence, in each phase, global messages do not have contention on links connecting

subtrees to the root.2

2

1 2 1 0

2 0 2 1
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Figure 3.4: Global message scheduling for the example in Figure 3.2

Figure 3.4 shows the scheduling of global messages for the example shown in Figure 3.2.

In this figure, there are three subtrees: t0 = ts0 with |M0| = 3, t1 = ts3 with |M1| = 2, and

t2 = tn5 with |M2| = 1. Following the above equations, messages in t1 → t2 start at p = 0,

messages in t0 → t2 start at p = 6, and messages in t2 → t0 start at p = 0. Figure 3.4 also

shows that some subtrees are idle at some phases. For example, subtree t1 does not have a

sending machine in phase 2.
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3.2.2.3 Global and Local Message Assignment

Let the root connect to k subtrees, t0, t1, ..., tk−1, with |M0|, |M1|, ..., |Mk−1| machines,

respectively. Assume |M0| ≥ |M1| ≥ ... ≥ |Mk−1|. As shown previously, global messages

are scheduled in |M0| × (|M | − |M0|) phases. Consider subtree ti, the total number of local

messages in ti is |Mi| × (|Mi| − 1), which is less than the total number of phases. Thus, if in

each phase, one local message in each subtree can be scheduled without contention with the

global messages, all messages in AAPC can be scheduled in |M0|× (|M |− |M0|) phases. The

contention free scheduling of global and local messages is based on the following lemma.

Lemma 3: Let G = (S∪M, E) be a tree and x 6= y 6= z ∈ S∪M , path(x, y)∩path(y, z) = φ.

Proof: Assume that path(x, y) ∩ path(y, z) 6= φ. There exists an edge (u, v) that belongs

to both path(x, y) and path(y, z). As a result, the composition of the partial path

path(y, u) ⊆ path(y, z) and path(u, y) ⊆ path(x, y) forms a non-trivial loop: edge (u, v)

is in the loop while edge (v, u) is not. This contradicts the assumption that G is a tree. 2

Lemma 4: Using the global message scheduling scheme, at each phase, the global messages

do not have contention.

Proof: Let the root connect to subtrees t0, t1, ..., tk−1. From Lemma 2, at each phase, there

is no contention in the link connecting a subtree to the root. Also, there is no contention

when there is only one global message in a subtree in a phase. Thus, the only case when

global messages may have contention inside a subtree is when there are two global messages

involving nodes in a subtree in a phase: one global message, x→ o1, is sent into the subtree

and the other one, o2 → y, is sent out from the subtree (x, y ∈ Mi; o1 and o2 are in other

subtrees). The sub-path for x → o1 inside ti is equal to path(x, root) and the sub-path for

o2 → y is equal to path(root, y). From Lemma 3, these two paths do not have contention

inside ti. 2

The contention free scheduling of local messages is also based on Lemma 3. Let

u, v ∈ ti and u 6= v. From Lemma 3, there are three cases when message u → v can

be scheduled without contention (with global messages) in a phase: (1) node v is the sender

of a global message, and node u is the receiver of a global message; (2) node v is the sender

of a global message, and there is no receiving node of a global message in ti; and (3) node u

is the receiver of a global message, and there is no sending node of a global message. Note

that by scheduling at most one local message in each subtree, the scheduling algorithm does
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Table 3.2: Rotate pattern for realizing ti → tj when |Mi| = 6 and |Mj| = 4

phase comm. phase comm phase comm phase comm
0 ti,0 → tj,0 6 ti,0 → tj,2 12 ti,1 → tj,0 18 ti,1 → tj,2
1 ti,1 → tj,1 7 ti,1 → tj,3 13 ti,2 → tj,1 19 ti,2 → tj,3
2 ti,2 → tj,2 8 ti,2 → tj,0 14 ti,3 → tj,2 20 ti,3 → tj,0
3 ti,3 → tj,3 9 ti,3 → tj,1 15 ti,4 → tj,3 21 ti,4 → tj,1
4 ti,4 → tj,0 10 ti,4 → tj,2 16 ti,5 → tj,0 22 ti,5 → tj,2
5 ti,5 → tj,1 11 ti,5 → tj,3 17 ti,0 → tj,1 23 ti,0 → tj,3

not have to consider the specific topologies of the subtrees.

Let us now consider global messages assignment. Let us number the nodes in subtree ti

as ti,0, ti,1, ..., ti,(|Mi|−1). To realize inter-subtree communication ti → tj, 0 ≤ i 6= j < k,

each node in ti must communicate with each node in tj in the allocated |Mi| × |Mj| phases.

The algorithm uses two different methods to realize inter-subtree communications. The first

scheme is the broadcast scheme. In this scheme, the |Mi| × |Mj| phases are partitioned into

|Mi| rounds with each round having |Mj| phases. In each round, a different node in ti sends

one message to each of the nodes in tj. This method has the flexibility in selecting the order

of the senders in ti in each round and the order of the receivers in tj within each round. The

following pattern is an example of such scheme:

ti,0 → tj,0, ..., ti,0 → tj,|Mj |−1, ti,1 → tj,0, ..., ti,1 → tj,|Mj |−1, ..., ti,|Mi|−1 → tj,0, ..., ti,|Mi|−1 → tj,|Mj |−1.

The second scheme is the rotate scheme. Let D be the greatest common divisor of

|Mi| and |Mj|. Thus, |Mi| = a × D and |Mj| = b × D. In this scheme, the pattern for

receivers is a repetition of Mi times of some fixed sequence that enumerates all nodes in

tj. One example of a fixed sequence is tj,0, tj,1, ...tj,|Mj |−1, which results in a receiver pattern

of tj,0, tj,1, ...tj,|Mj |−1, tj,0, tj,1, ...tj,|Mj |−1, ..., tj,0, tj,1, ... tj,|Mj |−1. Unlike the broadcast scheme, in a

rotate scheme, the sender pattern is also an enumeration of all nodes in ti in every |Mi|
phases. There is a base sequence for the senders, which can be an arbitrary sequence that

covers all nodes in ti. In the scheduling, the base sequence and the “rotated” base sequence

are used. Let the base sequence be ti,0, ti,1, ...ti,|Mi|−1. The base sequence can be rotated

once, which produces the sequence ti,1, ...ti,|Mi|−1, ti,0. Sequence ti,2, ...ti,|Mi|−1, ti,0, ti,1 is the

result of rotating the base sequence twice. The result from rotating the base sequence n
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Table 3.3: Mapping between senders and the receivers in Step 2

round 0 round 1 ... round |M0| − 2 round |M0| − 1 ...
send recv send recv ... send recv send recv ...
t0,0 t0,1 t0,0 t0,2 ... t0,0 t0,|M0|−1 t0,0 t0,0 ...
t0,1 t0,2 t0,1 t0,3 ... t0,1 t0,0 t0,1 t0,1 ...
... ... ... ... ... ... ... ... ... ...

t0,|M0|−2 t0,|M0|−1 t0,|M0|−2 t0,0 ... t0,|M0|−2 t0,|M0|−3 t0,|M0|−2 t0,|M0|−2 ...
t0,|M0|−1 t0,0 t0,|M0|−1 t0,1 ... t0,|M0|−1 t0,|M0|−2 t0,|M0|−1 t0,|M0|−1 ...

times can be defined similarly. The senders are scheduled as follows. The base sequence is

repeated b times for the first a× b ×D phases. For phases that are multiples of a × b ×D

phases, rotations are then performed to find a new sequence that is repeated b times. It can

be shown that all messages in ti → tj are realized in the rotate scheme.

Table 3.2 shows an example when |Mi| = 6 and |Mj| = 4. In this case, a = 3, b = 2, and

D = 2. The receivers repeat the pattern tj,0, tj,1, tj,2, tj,3. The base sequence for the senders

is ti,0, ti,1, ti,2, ti,3, ti,4, ti,5. This sequence is repeated 2 times. At phase 2 ∗ 3 ∗ 2 = 12, the

senders follow a rotated sequence ti,1, ti,2, ti,3, ti,4, ti,5, ti,0 and repeat the pattern 2 times. It

can be verified that all messages in ti → tj are realized.

The following two lemmas illustrate the properties of the broadcast pattern and the rotate

pattern.

Lemma 5: In the broadcast pattern that realizes ti → tj, each sender ti,k occupies |Mj|
continuous phases.

Proof: Straight-forward from the definition of the broadcast pattern. 2.

Lemma 6: In the rotate pattern that realizes ti → tj, counting from the first phase for

messages in ti → tj, each sender in ti happens once in every |Mi| phases and each receiver

in tj happens once in every |Mj| phases.

Proof: Straight-forward from the definition of the rotate pattern. 2.

Either the broadcast pattern or the rotate pattern can be used to realize messages in

ti → tj, 0 ≤ i 6= j < k. The challenge in the scheduling, however, is that all local messages

must be embedded in the |M0| × (|M | − |M0|) phases. The scheduling algorithm is shown in

Figure 3.5. The algorithm consists of six steps, explained next.

In the first step, messages from t0 to all other subtrees tj, 1 ≤ j < k are scheduled using
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Input: Results from global message scheduling that identify which phases are used to
realize ti → tj for all 0 ≤ i 6= j < k

Output: (1) the phase to realize each global message mi,i1 → mj,j1,
0 ≤ i1 < |Mi|, 0 ≤ j1 < |Mj |, 0 ≤ i 6= j < k.

(2) the phase to realize each local message mi,i1 → mi,i2 ,
0 ≤ i1 6= i2 < |Mi|, 0 ≤ i < k.

Step 1: Assign phases to messages in t0 → tj , 1 ≤ j < k.
1.a: For each t0 → tj, the receivers in tj are assigned as follows:

at phase p in the phases for t0 → tj, machine mj,(p−|M0|×(|M |−|M0|)) mod |Mj |

is the receiver.
/* it can be verified that a sequence enumerating the nodes in tj is repeated |M0|

times in phases for t0 → tj . */
1.b: For each t0 → tj, the senders in t0 are assigned according to the rotate pattern with

the base sequence m0,0,m0,1, ...,m0,|M0 |−1.

Step 2: Assign phases to messages in ti → t0, 1 ≤ i < k.
2.a: Assign the receivers in ti → t0:

/* Step 1.b organizes the senders in t0 in such a way that every |M0| phases, all
nodes in t0 appear as the sender once. |M0| phases are called a round */

The receiver pattern in ti → t0 is computed based on the sender pattern in t0 → tj
according to the mapping shown in Table 3.3. Round r has the same mapping as
round r mod |M0|.
/* the mapping ensures that the local messages in t0 can be scheduled */

2.b: Assign the senders in ti using the broadcast pattern with order:
mi,0, mi,1, ..., mi,|Mi|−1.

Step 3: Schedule local messages in t0 in phase 0 to phase |M0| × (|M0| − 1).
Message m0,i → m0,j, 0 ≤ i 6= j < |M0|, is scheduled at the phase where m0,i is the
receiver of a global message and m0,j is the sender of a global message.

Step 4: Assign phases to global messages in ti → tj, i > j and j 6= 0. Use the broadcast
pattern with receivers repeating pattern mj,0, mj,1, ..., mj,|Mj|−1 for each sender mi,k

and senders following the order mi,0, mi,1, ..., mi,|Mi|−1.

Step 5: Schedule local messages in ti, 1 ≤ i < k, in phases for ti → Ti−1.
/* the last phase for ti → Ti−1 is phase |M0| × (|M | − |M0|)− 1.*/
Steps 1 through 4 ensure that for each local message mi,i1 → mi,i2, there is a phase
in the phases for ti → Ti−1 such that mi,i2 is the sender of a global message and either
mi,i1 is a receiver of a global message or no node in ti is receiving a global message.
This step schedules mi,i1 → mi,i2 in this phase.

Step 6: Use either the broadcast pattern or the rotate pattern for global messages in ti → tj ,
i < j and i 6= 0. Scheduling these messages would not affect scheduling of local messages.

Figure 3.5: The global and local message assignment algorithm
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the rotate scheme. First, the receivers in t0 → tj are assigned such that at phase p, node

tj,(p−|M0|×(|M |−|M0|)) mod |Mj | is the receiver. The pattern aligns the receivers with the receivers

in ti → tj when i > j. As will be shown in Step 5, this alignment is needed to correctly

schedule local messages. The rotate pattern ensures that each node in t0 appears once as

the sender in every |M0| phases counting from phase 0.

In the second step, messages in ti → t0 are assigned. In this step, phases are partitioned

into rounds with each round having |M0| phases. The main objective of this step is to schedule

all local messages in t0. This is achieved by creating the pattern shown in Table 3.3, which is

basically a rotate pattern for t0 → t0. Since in step 1, each node in t0 appears as a sender in

every |M0| phases, the scheduling of receivers in ti → t0 can directly follow the mapping in

Table 3.3. Using this mapping, every node in t0 appears as a receiver in every |M0| phases,

which facilitates the use of a broadcast pattern to realize messages in ti → t0, i > 0. After

the receiver pattern is decided, the senders of ti → t0 are determined using the broadcast

scheme with the sender order ti,0, ti,1, ..., ti,|Mi|−1.

Step 3 embeds local messages in t0 in the first |M0| × (|M0| − 1) phases. Note that

|M0| × (|M0| − 1) ≤ |M0| × (|M | − |M0|). Since the global messages for nodes in t0 are

scheduled according to Table 3.3, for each t0,n → t0,m, 0 ≤ n 6= m < |M0|, there exists a

phase in the first |M0| × (|M0| − 1) phases such that t0,n is a receiver of a global message

while t0,m is a sender of a global message. Thus, all local messages in t0, t0,n → t0,m,

0 ≤ n 6= m < |M0|, can be scheduled in the first |M0| × (|M0| − 1) phases.

In Step 4, global messages in ti → tj, i > j and j 6= 0 are assigned using the

broadcast scheme as follows: ti,0 → tj,0, ..., ti,0 → tj,|Mj |−1, ti,1 → tj,0, ..., ti,1 → tj,|Mj |−1, ti,|Mi|−1 →

tj,0, ..., ti,|Mi|−1 → tj,|Mj |−1.

In Step 5, local messages in subtrees ti, ti, 1 ≤ i < k, are scheduled in the phases

for ti → ti−1. Note that |Mi−1| ≥ |Mi| and there are |Mi| × |Mi−1| phases for messages

in ti → ti−1, which is more than the |Mi| × (|Mi| − 1) phases needed for local messages

in ti. There are some subtle issues in this step. First, all local messages are scheduled

before assigning phases to global messages in ti → tj, 1 ≤ i < j. The reason that global

messages in ti → tj, 1 ≤ i < j, do not affect the local message scheduling in subtree

tn, 1 ≤ n < k, is that all local messages are scheduled in phases after the first phase for

t0 → tn (since |Mn| × |Mn−1| ≤ |M0| × |Mn|) while phases for ti → tj, 1 ≤ i < j, are

all before that phase. Second, let us examine how exactly a communication ti,i2 → ti,i1 is
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scheduled. From Step 4, the receiver in tj → ti, j > i, is organized such that, at phase p,

ti,(p−|M0|×(|M |−|M0|)) mod |Mi| is the receiver. From Step 1, receivers in t0 → ti are also aligned

such that at phase p, ti,(p−|M0|×(|M |−|M0|)) mod |Mi| is the receiver. Hence, in the phases for

ti → ti−1, either ti,(p−|M0|×(|M |−|M0|)) mod |Mi| is a receiver of a global message or no node in

ti is receiving a global message. Thus, at all phases in ti → ti−1, it can be assumed that

the designated receiver is ti,(p−|M0|×(|M |−|M0|)) mod |Mi| at phase p. In other words, at phase p,

ti,(p−|M0|×(|M |−|M0|)) mod |Mi| can be scheduled as the sender of a local message. Now, consider

the sender pattern in ti → ti−1. Since ti → ti−1 is scheduled using the broadcast pattern,

each ti,i1 is sending in |Mi−1| continuous phases. Since the receiving pattern covers every

node, ti,i2 ∈ ti, in every |Mi| continuous phases and |Mi−1| ≥ |Mi|, there exists at least one

phase where ti,i1 is sending a global message and ti,i2 is the designated receiver of a global

message. Local message ti,i2 → ti,i1 is scheduled in this phase.

Finally, since all local messages are scheduled, either the broadcast scheme or rotate

scheme can be used to realize messages in ti → tj, i < j and i 6= 0.

Theorem 1: The global and local message assignment algorithm in Figure 3.5 produces

phases that satisfy the following conditions: (1) all messages in AAPC are realized in

|M0| × (|M | − |M0|) phases; and (2) there is no contention within each phase.

Proof: From Lemma 2, all global messages are scheduled in |M0|× (|M |−|M0|) phases. Step

3 in the algorithm indicates that local messages in t0 are scheduled in |M0|×(|M0|−1) phases.

In Step 5, all local messages in ti are scheduled in the phases allocated to communications

in ti → ti−1. Thus, all messages in AAPC are scheduled in |M0| × (|M | − |M0|) phases.

Lemma 4 shows that there is no contention among global messages in each phase. Since

local messages in different subtrees cannot have contention and since in one phase, at most

one local message in a subtree is scheduled, the contention can only happen between a global

message and a local message inside a subtree. Yet, due to local message assignment done in

steps 3 and 5 and from Lemma 3, all local messages have no contention with global messages.

Thus, there is no contention within a phase. 2

Table 3.4 shows the result of the global and local message assignment for the example

in Figure 3.2. In this table, it is assumed that t0,0 = n0, t0,1 = n1, t0,2 = n2, t1,0 = n3,

t1,1 = n4, and t2,0 = n5. First, the receiver pattern in t0 → t1 and t0 → t2 is determined.

For messages in t0 → t1, t1,(p−9) mod 2 is the receiver at phase p, which means the receiver

pattern from phase 0 to phase 5 are t1,1, t1,0, t1,1, t1,0, t1,1, t1,0. After that, the rotation
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Table 3.4: Results of global and local message assignment for the cluster in Figure 3.2

global messages local messages
phase t0 → {t1, t2} t1 → {t2, t0} t2 → {t0, t1} t0 t1 t2

0 t0,0 → t1,1 t1,0 → t2,0 t2,0 → t0,1 t0,1 → t0,0

1 t0,1 → t1,0 t1,1 → t2,0 t2,0 → t0,2 t0,2 → t0,1

2 t0,2 → t1,1 t2,0 → t0,0 t0,0 → t0,2

3 t0,0 → t1,0 t1,0 → t0,2 t0,2 → t0,0

4 t0,1 → t1,1 t1,0 → t0,0 t0,0 → t0,1 t1,1 → t1,0

5 t0,2 → t1,0 t1,0 → t0,1 t0,1 → t0,2

6 t0,0 → t2,0 t1,1 → t0,0

7 t0,1 → t2,0 t1,1 → t0,1 t2,0 → t1,0 t1,0 → t1,1

8 t0,2 → t2,0 t1,1 → t0,2 t2,0 → t1,1

pattern is used to realize all messages in t0 → t1 and t0 → t2. The results are shown in

the second column in the table. In the second step, messages in t1 → t0 and t2 → t0 are

assigned. Messages in t2 → t0 occupy the first round (first three phases). Since the sender

pattern in the first round is t0,0, t0,1, and t0,2, according to Table 3.3, the receiver pattern

should be t0,1, t0,2, t0,0. The receivers for t1 → t0 are assigned in a similar fashion. After

that, the broadcast pattern is used to realize both t1 → t0 and t2 → t0. In Step 3, local

messages in t0 are assigned in the first 3× 2 = 6 phases according to the assignment of the

sender and receiver of global messages in each phase. For example, in phase 0, local message

t0,1 → t0,0 is scheduled since node t0,0 is a sender of a global message and t0,1 is a receiver

of a global message. Note that the mapping in Table 3.3 ensures that all local messages in

t0 can be scheduled. In Step 4, t2 → t1 is scheduled with a broadcast pattern. In Step 5,

local messages in t1 and t2 are scheduled. The local messages in t1 are scheduled in phases

for t1 → t0, that is, from phase 3 to phase 8. The alignment of the receivers in t0 → t1 and

t2 → t1 ensures that each machine in t1 appears as the designated receiver in every |M1| = 2

phases starting from the first phase for t0 → t1. Notice that in phase 6, the designated

receiver is t1,1. In t1 → t0, each node in t1 is the sender for |M0| = 3 consecutive phases and

the receiver pattern in t1 covers every node in every 2 phases. All local messages in t1 can

be scheduled. In this particular example, message t1,0 → t1,1 is scheduled at phase 7 where

t1,0 is a (designated) receiver of a global message and t1,1 is a sender of a global message, and
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t1,1 → t1,0 is scheduled at phase 4. Finally, in Step 6, the broadcast pattern for messages in

t1 → t2 is used.

3.2.3 Message Scheduling Based AAPC Implementations

One naive method to achieve contention-free AAPC is to separate the contention-free phases

computed by the message scheduling algorithm using barrier synchronizations. In theory,

this implementation achieves contention-free communication for AAPC. In practice, there

are two major limitations in this implementation. First, the barrier synchronizations would

incur substantial synchronization overheads unless special hardware for the barrier operation

such as the Purdue PAPERS [13] is available. Second, using barriers to separate all phases

may be overly conservative in allowing the data to be injected into the network. Most

network systems have some mechanisms such as buffering to resolve contention. Allowing the

network system to resolve a limited degree of contention usually results in a better utilization

of network resources than resolving contention at the user layer with barriers. Hence, it may

be more efficient to use the contention-free phases to limit contention instead of to totally

eliminate contention. To address the first limitation, other synchronization mechanisms with

less overheads such as the pair-wise synchronization can be used to replace the barriers. To

address the second limitation, the separation of the communications in different phases may

only be partially enforced (or not enforced) instead of being fully enforced. These issues

give rise to many variations in how the contention-free AAPC phases can be used to realize

AAPC efficiently. Note that synchronization messages can also cause contention. However,

such contention is ignored since synchronization messages are small and such contention can

usually be resolved by the network system effectively.

In the following, the variations of message scheduling based AAPC schemes that are

used to evaluate the proposed message scheduling algorithm are discussed. A scheme is

classified as fully synchronized when a synchronization mechanism is used to separate each

pair of messages (in different phases) that have contention, partially synchronized when a

synchronization mechanism is only used to limit the potential network contention, or not

synchronized when no synchronization mechanism is employed. The implementations that

are considered include schemes with no synchronizations, fully and partially synchronized

schemes with pair-wise synchronizations, and fully and partially synchronized schemes with

barrier synchronizations.
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3.2.3.1 Implementations with No Synchronizations

The simplest scheme is to use the contention-free phases to order the send and receive

operations without introducing any synchronization mechanism. Ordering the messages

according to the contention-free phases may reduce the network contention in comparison

to other arbitrary ordering of the messages. This scheme is called the no-sync. scheme.

For systems with multiple switches, a machine may be idle in some phases. These idle

machines may move messages from one phase to an earlier phase in the no-sync. scheme,

which destroys the contention-free phase structure. Dummy messages can be added so that

all machines are busy in all phases, which may improve the chance for maintaining the

contention-free phase structure. Ideally, the dummy communications can happen between

any two idle machines in a phase. However, allowing dummy communications between

an arbitrary pair of machines significantly increases the complexity for scheduling the

dummy messages. In the implementation, a simple approach is taken to limit the dummy

communications to be within one switch. Specifically, for each idle machine in a phase,

the scheme tries to find another machine in the same switch that does not receive or does

not send. If such a machine exists, a dummy communication between the two machines is

created. If such a machine does not exist, a dummy self-communication (send to self) is

inserted in the phase for the idle machine. This scheme is called the dummy scheme.

3.2.3.2 Implementations with Pair-wise Synchronizations

The implementations with no synchronization cannot guarantee contention-free commu-

nications. With pair-wise synchronizations, the contention-free communications can be

maintained by ensuring that two messages that have contention are carried out at different

times. There are two ways to perform the pair-wise synchronizations: sender-based and

receiver-based. In the sender-based synchronization, to separate messages a → b in phase p

and c→ d in phase q, p < q, the synchronization message a→ c is sent after a sends a→ b,

and c sends c → d only after it receives the synchronization message. In the receiver-based

synchronization, the synchronization message b → c is sent after b finishes receiving a → b,

and c sends c → d only after it receives the synchronization message. The sender-based

scheme is more aggressive in that the synchronization message may be sent before a → b

completes. Thus, some data in a → b may reside in the network when c → d starts. The
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receiver-based scheme may be over-conservative in that the synchronization message is sent

only after the data in a→ b are copied into the application space in b.

The required synchronizations for the fully synchronized scheme are computed as follows.

For every communication in a phase, a check is made to see if a synchronization is

needed for every other communication at later phases and a dependence graph is built,

which is a directed acyclic graph. After deciding all synchronization messages for all

communications, redundant synchronizations in the dependence graph are computed and

removed. The redundant synchronizations are the ones that can be derived from other

synchronizations. For example, assume that message m1 must synchronize with message

m2 and with another message m3. If message m2 also needs to synchronize with message

m3, then the synchronization from m1 to m3 can be removed. Let |M | and |S| be the

numbers of machines and switches respectively. The dependence graph contains O(|M |2)
nodes. The complexity to build the graph is O(|M |4|S|2) and the complexity to remove

redundant synchronizations is O(|M |6). Since these computations are performed off-line,

such complexity is manageable. In code generation, synchronization messages are added for

all remaining edges in the dependence graph. This way, the AAPC algorithm maintains a

contention-free schedule while minimizing the number of synchronization messages.

In a partially synchronized scheme, the AAPC phases are partitioned into blocks of

phases. The number of phases in a block, bs, is a parameter. Block 0 contains phases 0

to bs − 1, block 1 contains phases bs to 2 × bs − 1, and so on. The partially synchronized

schemes use synchronizations to separate messages in different blocks instead of phases. The

order of communications within one block is not enforced. The required synchronizations in a

partially synchronized scheme are computed by first computing the required synchronizations

for the fully synchronized scheme and then removing the synchronizations within each block.

In summary, there are four types of implementations with pair-wise synchronizations.

They are named as follows: sender all for the fully synchronized scheme with sender-based

synchronizations; sender partial (bs) for the partially synchronized scheme with sender-based

synchronizations and the parameter bs (the number of phases in a block); receiver all for the

fully synchronized scheme with receiver-based synchronizations; and receiver partial (bs) for

the partially synchronized scheme with receiver-based synchronizations.
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3.2.3.3 Implementations with Barrier Synchronizations

The fully barrier synchronized AAPC scheme is the one with a barrier between each pair of

phases. In the partially barrier synchronized scheme, the AAPC phases are partitioned into

blocks of phases. The number of phases in a block, bs, is a parameter. A barrier is added

between each pair of blocks (one barrier every bs phases). There are three variations of

partially barrier synchronized schemes: no synchronization within each block, sender-based

pair-wise synchronization within each block, and receiver-based pair-wise synchronization

within each block. These implementations with barriers are named as follows: barrier all

for the fully synchronized scheme; barrier partial & none (bs) for the partially synchronized

schemes with no synchronizations within each block; barrier partial & sender (bs) for the

partially synchronized schemes with sender all within each block; barrier partial & receiver

(bs) for the partially synchronized scheme with receiver all within each block.

Table 3.5: Message scheduling based AAPC schemes used in the evaluation

Name (parameter) description
No-sync. no synchronization
Dummy no synchronization with dummy communications for idle machines
Sender all fully synchronized with sender-based pair-wise synchronizations
Sender partial (bs) partially synchronized with sender-based pair-wise synchronizations
Receiver all fully synchronized with receiver-based pair-wise synchronizations
Receiver partial (bs) partially synchronized with receiver-based pair-wise synchronizations
Barrier all fully synchronized with barrier synchronizations
Barrier partial & none (bs) partially synchronized with barrier synchronizations,

no synchronization within each block
Barrier partial & sender (bs) partially synchronized with barrier synchronizations,

sender all within each block of phases
Barrier partial & receiver (bs) partially synchronized with barrier synchronizations,

receiver all within each block of phases

Tuned scheduling based the best implementation selected from all of the schemes above

3.2.4 Performance Evaluation

For each of the AAPC variations described previously, a routine generator is developed. The

generator takes the topology information as input and automatically produces a customized

MPI Alltoall routine that employs the particular scheme for the given topology. The

automatically generated routines run on MPICH 2-1.0.1 point-to-point primitives. Also,
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an automatic tuning system (STAGE-MPI which is discussed in the next chapter) is used

to select from all of the message scheduling based schemes the best schemes to form a tuned

routine for each topology. Practically, the performance of the tuned routines represents

the best performance that can be obtained from the proposed message scheduling based

implementations. Table 3.5 gives the names and brief descriptions of the schemes used in

the evaluation. Note that although the tuning system can theoretically be used to carry

out all experiments, it is only used to generate the tuned routines. All experiments are

performed by manually executing the algorithms.

The message scheduling based schemes are compared with the original MPI Alltoall

routine in LAM/MPI 7.1.1 [44] and a recent improved MPICH 2-1.0.1 [77]. LAM/MPI 7.1.1

and MPICH 2-1.0.1 are compiled with the default setting. Both LAM/MPI and MPICH

MPI Alltoall routines are based on point-to-point primitives. Since LAM/MPI and MPICH

have different point-to-point implementations, the LAM/MPI algorithm is also ported to

MPICH and the performance of the ported routine is reported, which will be referred to

as LAM-MPICH. Hence, in the evaluation, message scheduling based implementations are

compared with each other and with native LAM/MPI 7.1.1, native MPICH 2-1.0.1, and

LAM-MPICH.

The experiments are performed on a 32-node Ethernet switched cluster. The nodes of the

cluster are Dell Dimension 2400 with a 2.8GHz P4 processor, 128MB of memory, and 40GB

of disk space. All machines run Linux (Fedora) with 2.6.5-1.358 kernel. The Ethernet card

in each machine is Broadcom BCM 5705 with the driver from Broadcom. These machines

are connected to Dell PowerEdge 2224 100Mbps Ethernet switches.

The code segment used in the performance measurement is shown in Figure 3.6. A barrier

operation is performed after each all-to-all operation to ensure that the communications in

different invocations do not affect each other. Since only AAPC with reasonably large

messages is considered, the overhead introduced by the barrier operation is insignificant.

The results reported are the averages of 50 iterations of MPI Alltoall (ITER NUM = 50)

when msize ≤ 256KB and 20 iterations when msize > 256KB.

The topologies used in the studied are shown in Figure 3.7, two 24-node clusters in

Figure 3.7 (a) and Figure 3.7 (b) and two 32-node clusters in Figure 3.7 (c) and Figure 3.7 (d).

These topologies are referred to as topologies (1), (2), (3), and (4). The aggregate

throughput, which is defined as |M |×(|M |−1)×msize

communication time
, is used as the performance metric and
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for (i=0; i< WARMUP ITER; i++) MPI Alltoall(...);
MPI Barrier(...);
start = MPI Wtime();
for (count = 0; count < ITER NUM; count ++){

MPI Alltoall(...);
MPI Barrier(...);
}
elapsed time = MPI Wtime() - start;

Figure 3.6: Code segment for measuring the performance of MPI Alltoall

(d) Topology (4)
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Figure 3.7: Topologies used in the evaluation
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is reported in all experiments.

Figures 3.8 compares the tuned scheduling based implementation with MPICH, LAM,

and LAM-MPICH for topologies (1), (2), (3) and (4). In the figures, the theoretical peak

aggregate throughput is also shown as a reference. The peak aggregate throughput is

obtained using the formula in Section 3.2.1, assuming a link speed of 100Mbps with no

additional overheads. The algorithm in LAM/MPI does not perform any scheduling while

the improved MPICH performs a limited form of scheduling. Both do not achieve high

performance on all topologies since the network contention issue is not fully addressed in

the implementations. On the contrary, by introducing proper synchronization into the

contention-free AAPC phases, the tuned scheduling based routine consistently achieves

(sometimes significantly) higher performance than MPICH, LAM, and LAM-MPICH in the

four topologies when the message size is larger than 4KB. This demonstrates the strength

of the message scheduling scheme.

Next, different synchronization mechanisms and different methods to incorporate syn-

chronizations into the contention-free phases in scheduling based AAPC implementations

are investigated. The trends in the experimental results for the four topologies are somewhat

similar. Thus, for each experiment, only the results for two topologies are reported.

Figure 3.9 compares the receiver-based pair-wise synchronization with the sender-based

pair-wise synchronization. When the message size is small, receiver all offers better

performance. When the message size is large, the sender-based scheme gives better results.

With the sender-based pair-wise synchronization, the AAPC scheme injects data into the

network aggressively: a message me in one phase may not be fully executed (the message

may still be in the network system) before the next message ml that may have contention

with me starts. Hence, the sender-based scheme allows a limited form of network contention.

On the other hand, using the receiver-based pair-wise synchronization, a message ml that

may have contention with an earlier message me can start only after the message me is

received. The results indicate that the limited contention in the sender-based scheme can be

resolved by the network system and the sender-based synchronization scheme offers better

overall performance when the message size is reasonably large. Since the scheduling based

implementations are designed for AAPC with reasonably large messages, the send-based

scheme is used for pair-wise synchronization in the rest of the evaluation.

Figure 3.10 compares the performance of message scheduling based AAPC schemes with
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(a) Results for topology (1)
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(b) Results for topology (2)
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(c) Results for topology (3)

 0

 100

 200

 300

 400

 500

1024512256128643216842

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
M

bp
s)

Message size (KB)

Peak
Tuned scheduling based

MPICH
LAM

LAM-MPICH

(d) Results for topology (4)

Figure 3.8: The performance of different AAPC implementations

different synchronization mechanisms, including no-sync., dummy, sender all, and barrier

all. The aggregate throughput achieved by no-sync. and dummy is much lower than that

achieved by the fully synchronized schemes. Also, adding dummy communications to the idle

machines seems to improve the performance over the no-sync. scheme in some situations (e.g.

topology (2) with msize = 64KB) and to degrade the performance in some other situations.

Due to the complexity of AAPC, it is unclear whether adding dummy communications is

effective in maintaining the phase structure. The fully synchronized scheme with barriers

incurs very large overheads when the message size is small. Even when the message size is

large, barrier all still performs slightly worse than sender all in most cases. The 128KB

case in Figure 3.10 (a) where barrier all out-performs sender all is an exception. It is
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(b) Results for topology (3)

Figure 3.9: Sender-based synchronization versus receiver-based synchronization
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(a) Results for topology (2)
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(b) Results for topology (3)

Figure 3.10: Message scheduling based schemes with different synchronization mechanisms

difficult to decide the reason for this case: there are too many factors that can contribute

to the performance. Yet, the trend clearly shows that the pair-wise synchronization is

more efficient than the barrier synchronization in the implementation of the phased all-to-all

communication algorithm.

Figure 3.11 compares the performance of partially synchronized schemes with sender-

based pair-wise synchronizations, including sender partial (2), sender partial (8), and sender

partial (16) with that of no-sync. and sender all. The trend in the figures is that as the
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Figure 3.11: Partially synchronized schemes with sender-based pair-wise synchronizations
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(a) Results for topology (2)
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Figure 3.12: Schemes with barrier synchronizations

message size increases, more synchronizations are needed to achieve high performance. The

fully synchronized scheme performs the best when the message size is large (≥ 32KB).

However, the partially synchronized schemes are more efficient for medium sized messages

(2KB to 16KB) than both no-sync. and sender all.

Figure 3.12 shows the performance of different schemes with barrier synchronizations.

When the message size is large, Barrier partial & none (4) performs similar to the no-

sync. scheme. When the message size is small, Barrier partial & none (4) incurs
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Figure 3.13: Performance of Sender all and tuned scheduling based

significant overheads. These results indicate that partially synchronized schemes with no

synchronizations within each block are not effective. In all experiments, the hybrid barrier

and sender-based pair-wise synchronizations never perform better than both barrier all and

sender all, which indicates that such a combination may not be effective. The sender

all scheme consistently achieves high performance when the message size is reasonably

large. Figure 3.13 compares the performance of sender all and tuned scheduling based. The

performance of sender all is very close to tuned scheduling based when the message size is

larger than 16KB.

Figure 3.14 shows the performance of different synchronization schemes for large mes-

sages. As discussed earlier, for large messages, fully synchronized schemes are more effective

than partially synchronized schemes. Figure 3.14 shows the results for sender all, barrier all,

barrier partial & sender (4), barrier partial & sender (8), and barrier partial & sender (16).

As can be seen from the figure, when the message size is larger than 512KB, the relative

performance of these fully synchronized schemes is quite stable. Ordering the synchronization

schemes based on the performance from high to low yields: sender all, barrier partial & sender

(16), barrier partial & sender (8), and barrier partial & sender (4), and barrier all. These

results indicate that the sender-based pair-wise synchronization is sufficient even for large

messages in the implementation. The heavy weight MPI barrier introduces more overheads

without tangible benefits in realizing the phased all-to-all communication.
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Figure 3.14: Performance of different fully synchronized schemes for large messages

3.3 All-to-All Broadcast Operation

All–to-all broadcast, also known as all-gather, is another common collective communication

operation in high performance computing. In this operation, each node sends the same data

to all other nodes in the system. The Message Passing Interface routine that realizes this

operation is MPI Allgather [51]. An example all-to-all broadcast on 4 machines is shown in

Figure 3.15. Let the number of machines be P . By definition, each node (machine) must

receive a total of (P − 1) × msize data from other nodes. Thus, the minimum time to

complete the operation is
(P − 1)×msize

B
.

This is the absolute lower bound on the time to complete all–to–all broadcast. Regardless

of how the network is connected, no all–to–all broadcast algorithm can have a shorter time.

P0
P1
P2
P3

A
A
A
A

B
B
B
B

C
C
C
C

D
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D
D

A
B
C
D

P0
P1
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all−to−all broadcast

Figure 3.15: All-to-all Broadcast on 4 nodes
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This thesis considers all-to-all broadcast on homogeneous clusters connected by either

store-and-forward (such as Ethernet) or cut-through (such as Myrinet) switches with arbi-

trary network topologies (regular or irregular). Let us use the term store-and-forward/cut-

through cluster to refer to a cluster with store-and-forward/cut-through switches. In a store-

and-forward cluster, the communication time of a message may be significantly affected by

the path length of the message, defined as the number of switches a message passes through.

In a cut-through cluster, the communication time of a message is virtually independent of

the path length of a message.

In this section, algorithms that achieve maximum bandwidth efficiency for all–to–all

broadcast on tree topologies are developed. Using these algorithms, all–to–all broadcast on

a cut-through cluster with any tree topology has a completion time close to (P−1)×msize

B
,

the lower bound. In other words, using these algorithms, the reduction in the network

connectivity in a tree topology as compared to the system connected by a single switch

almost results in no performance degradation for this operation. Since a tree topology

can be embedded in most connected networks, it follows that the nearly optimal all-to-

all broadcast algorithms can be obtained for most topologies, regular or irregular, by first

finding a spanning tree of the network and then applying the proposed algorithms. Note

that some routing schemes may prevent a tree from being formed in a connected network.

The approach cannot be applied to such systems.

In order to perform all-to-all broadcast efficiently on a store-and-forward cluster, the

algorithm must minimize the communication path lengths in addition to achieving maximum

bandwidth efficiency. This turns out to be a much harder algorithmic problem. While

it cannot be proved formally, this problem is suspected to be NP-complete. However, in

this work, the conditions for a store-and-forward cluster with multiple switches to support

efficient all-to-all broadcast are identified. In addition, schemes that give optimal solutions

for the common cases when each switch is connected to a small number of other switches

are developed.

The performance of the algorithms is evaluated using an Ethernet switched cluster with

different network topologies. As will be shown later, the performance study confirms that the

proposed algorithms achieve nearly optimal performance on clusters with different topologies.

Using the proposed algorithms, the performance of all–to–all broadcast on multiple switches

is similar to that on a single switch. This result contrasts the results shown in section 3.2
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for all–to–all personalized communication, where the network connectivity has significant

impacts on the performance. The study also shows that the topology-unaware algorithms

used in LAM/MPI[44] and MPICH[52] are not effective on some topologies. Depending on

the topology, the proposed algorithms sometimes out-perform the LAM/MPI and MPICH

routines to a very large degree (e.g. by a factor of more than 10). In the following, the

problem definition is discussed, the proposed schemes to solve the problems are detailed,

and the experimental results of the performance study are reported.

3.3.1 Problem Definition

This work focuses on bandwidth efficient all–to–all broadcast schemes, which can be applied

when the message size is sufficiently large. Hence, let us assume that the message size,

msize, is sufficiently large such that communication time is dominated by the bandwidth

term. Other communication overheads, such as software startup overheads, are relatively

insignificant and are ignored. Let the path length for the message be d. In a cut-through

cluster with no network contention, the communication time for a msize-byte message is

roughly msize
B

. Note that the communication time in a cut-through cluster is independent

of the path length. Let pkt be the packet size in a store-and-forward cluster. The time for

transferring a msize-byte message in a store-and-forward cluster is roughly msize
B

+(d−1)×pkt

B
.

Depending on the value of msize and pkt, the term (d− 1) × pkt

B
, introduced by the store-

and-forward mechanism, may account for a significant portion of the overall communication

time.

In a topology where there are multiple paths between two nodes, the routing issue needs

to be considered. However, the major result of this effort is that a tree topology can support

the all–to–all broadcast operation as efficiently as any other topology. Since the techniques

are developed for the tree topology, where there is only a single path between each pair of

nodes and the routing issues do not exist, the focus in the remaining of this section will be

on the tree topology and the routing issues will be ignored. The routing issue may need to

be considered in the construction of the spanning tree of a general topology.

3.3.1.1 Logical Ring Based All-to-All Broadcast Algorithm

The proposed schemes are based on the logical ring all-to-all broadcast algorithm, which

was used for single-switch clusters and two-switch clusters [35, 52]. The algorithm works
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as follows. Let the cluster contain P machines, numbered as n0, n1, ..., nP−1. Let

F : {0, ..., P − 1} → {0, ..., P − 1} be a one-to-one mapping function. Thus, nF (0), nF (1), ...,

nF (P−1) is a permutation of n0, n1, ..., nP−1. The algorithm works by repeating the following

logical ring pattern P − 1 times:

nF (0) → nF (1) → ...→ nF (P−1) → nF (0).

In the first iteration, each machine nF (i), 0 ≤ i ≤ P − 1, sends its own data to machine

nF ((i+1) mod P ) and receives data from machine nF ((i−1) mod P ). In subsequent iterations, each

machine nF (i) forwards what it received in the previous iteration to machine nF ((i+1) mod P )

and receives from machine nF ((i−1) mod P ). After P − 1 iterations, all data from all machines

reach all machines in the system. Note that in each iteration, each machine must copy the

data it receives into the right place of the output buffer.

All logical ring based all-to-all broadcast algorithms operate in the same fashion. The

key for such an algorithm to achieve good performance is to find the logical ring pattern that

can carry out communications as efficiently as possible. This is the problem to consider.

Let the slowest communication time in the logical ring pattern be tslowest. Since the logical

ring pattern is repeated P − 1 times to realize all-to-all broadcast, the total communication

time is (P − 1) × tslowest. In a cut-through cluster, if there exists a mapping such that the

logical ring pattern is contention free, tslowest ≈ msize
B

and the total time for the all-to-all

broadcast operation is T ≈ (P−1)×msize

B
, which is the theoretical lower bound. Hence, for a

cut-through cluster, the challenge is to find a mapping such that the logical ring pattern is

contention free. This problem is stated as follows.

Problem 1 (finding a contention free logical ring): Let G = (S ∪ M, E) be a tree

graph. Let the number of machines in the system be P = |M |, and let the machines

in the system be numbered as n0, n1, ..., nP−1. The problem is to find a one-to-one

mapping function F : {0, 1, ..., P − 1} → {0, 1, ..., P − 1} such that the logical ring pattern

nF (0) → nF (1) → ...→ nF (p−1) → nF (0) is contention free.

For clusters with store-and-forward switches, assuming that the logical ring pattern is

contention free and that the longest path length in the pattern is d, tslowest ≈ (d−1)pkt

B
+msize

B
,

and the total time is T ≈ (P−1)×msize

B
+ (d − 1) × (P − 1) × pkt

B
. Hence, to minimize the

communication time, the logical ring must (1) be contention free, and (2) have the smallest

d, the longest path length in the ring. This problem is stated as follows.

Problem 2 (Finding a contention free logical ring with the smallest maximum path length):
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Let G = (S∪M, E) be a tree graph. Let the number of machines in the system be P = |M |,
and let the machines in the system be numbered as n0, n1, ..., nP−1. The problem is

to find a mapping function F : {0, 1, ..., P − 1} → {0, 1, ..., P − 1} such that (1) the

logical ring pattern nF (0) → nF (1) → ... → nF (P−1) → nF (0) is contention free, and (2)

max 0 ≤ i ≤ P−1 {length(nF (i) → nF ((i+1) mod P ))} is minimized.

Clearly, Problem 1 is a sub-problem of Problem 2. Unfortunately, only a polynomial

time solution for Problem 1 is developed, but not for Problem 2. It is strongly believed that

Problem 2 is NP-complete although it cannot be proved formally. Common special cases of

Problem 2 when each switch is connected with a small number of switches are considered and

a polynomial algorithm that finds the optimal solutions for such cases is developed. Also,

the necessary and sufficient conditions is established for a store-and-forward cluster to have

a contention-free logical ring with a maximum path length of 2. It must be noted that the

topologies in most practical clusters have small diameters. The solution for Problem 1 can

be directly applied to such clusters to obtain nearly optimal performance.

3.3.2 Constructing Contention Free Logical Rings

In the following, the polynomial time algorithm for solving Problem 1 is presented. Also,

optimal solutions for special cases of Problem 2 are discussed.

3.3.2.1 Problem 1

Let G = (S ∪M, E) be a tree graph. Let the number of machines in the system be P = |M |
and the machines in the system be numbered as n0, n1, ..., nP−1. This numbering scheme

is called global numbering. Let us assume that all switches are intermediate nodes in the

tree. Let G′ = (S, E ′) be a subgraph of G that only contains switches and the links between

switches. The algorithm, which will be called Algorithm 1, determines the mapping for a

contention free logical ring pattern in two steps.

• Step 1: Number the switches based on the Depth First Search (DFS) of G′. An example

DFS numbering of the switches is shown in Figure 3.16. The switches are denoted as

s0, s1, ..., s|S|−1, where si is the ith switch arrived in DFS traversal of G′.

• Step 2: Let the Xi machines connecting to switch si, 0 ≤ i ≤ |S| − 1, be numbered

as ni,0, ni,1, ..., ni,Xi−1. This numbering scheme is called local numbering. A one-to-
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one mapping function (and its reverse function) can be established between the global

numbering and local numbering. Xi may be 0 when no machine is connected to si.

The logical ring n0,0 → ... → n0,X0−1 → n1,0 → ... → n1,X1−1 → ...n|S|−1,0 → ... →
n|S|−1,X|S|−1−1 → n0,0 is contention free (this will be formally proved). The mapping

function F for the above logical ring pattern can be obtained using the mapping

function from the global numbering to the local numbering.

0

1

2 3

4

5

6 7

Figure 3.16: DFS numbering

Lemma 7: Let G′ = (S, E ′) be the subgraph of G that contains only switches and links

between switches. Let s0, s1, ..., s|S|−1 be the DFS ordering of the switches, where si is

the ith switch arrived in DFS traversal of G′. Communications in the following pattern are

contention free: s0 → s1 → ...→ s|S|−1 → s0.

Proof: Figure 3.16 shows an example DFS numbering of the switches. One can easily see

that in this example, pattern s0 → s1 → s2 → ... → s7 → s0 is contention free. Next, this

lemma is formally proved by induction.

Base case: When there is one switch, there is no communication and thus no contention.

Induction case: Assume that the communication pattern in a k-switch system does not have

contention. Consider a (k + 1)-switch system with switches s0, s1, ..., sk. Removing the

last switch sk from the system, a k-switch system is obtained. The DFS ordering of the

k-switch system is exactly the same as the (k + 1)-switch system with sk removed. Hence,

from the induction hypothesis, the communication pattern in the k-switch system, that is,
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s0 → s1 → ... → sk−1 → s0, does not have contention. Now, let us consider the (k + 1)-

switch system where we need to prove that pattern s0 → s1 → ... → sk → s0 does not have

contention. The pattern in the (k + 1)-switch system adds two communications sk−1 → sk

and sk → s0 to and removes one communication sk−1 → s0 from the pattern in the k-switch

system. Thus, to prove that the pattern in the (k + 1)-switch system is contention free, we

only need to show that communications sk−1 → sk and sk → s0 do not introduce contention.

Based on the way DFS operates, switch sk must be the child of one of the switches along

the path from s0 to sk−1. Hence, there are three cases to be considered: sk is a child of sk−1,

sk is a child of a switch s′i along the path from s0 to sk−1 (excluding s0 and sk−1), and sk is

a child of s0, . These three cases are depicted in Figure 3.17. The following facts are used

in the proof of the three cases.

• Fact (a): The link directly connecting switch sk does not have contention with all

communications in the k-switch system, that is, s0 → s1 → ... → sk−1 → s0. This is

because the link is not part of the k-switch system.

• Fact (b): From the induction hypothesis, communication sk−1 → s0 does not have

contention with communications in pattern s0 → s1 → ...→ sk−1.

Now, let us consider the three cases in Figure 3.17.

• Case (1): Switch sk is a child of sk−1. sk−1 → sk does not have contention with any

other communications (Fact (a)). sk → s0 is the concatenation of two paths: sk → sk−1

and sk−1 → s0. sk → sk−1 does not have contention with all other communications

(Fact (a)) and sk−1 → s0 does not introduce contention (Fact (b)).

• Case (2): Switch sk is a child of some switch s′i along the path from s0 to sk−1. In

this case, sk−1 → sk is the concatenation of two paths: sk−1 → s′i and s′i → sk.

sk−1 → s′i does not have contention with all other communications since it is a sub-

path of sk−1 → s0 (Fact (b)). Path s′i → sk does not cause contention (Fact (a)).

Similar arguments apply to sk → s0.

• Case (3): Switch sk is a child of s0. This follows similar arguments as in Case (1).

Thus, the pattern s0 → s1 → ...→ s|S|−1 → s0 is contention free. 2
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Figure 3.17: Three cases

Theorem 2: The logical ring pattern resulted from Algorithm 1 is contention free.

Proof: Algorithm 1 basically obtains the logical ring mapping by (1) grouping all machines

connected to a switch together, and (2) ordering the groups of machines based on the DFS

order of the switches. To prove that the mapping is contention free, it must be shown that

all links between a machine and a switch are contention free and all links between switches

are contention free. Since each machine sends and receives exactly once in the logical ring

pattern, a link between a machine and a switch is used in both direction exactly once, which

indicates that there is no contention on these links. For the links between switches, since the

algorithm orders the group of machines (connected to each switch) based on the DFS order,

it can be easily shown that the usage of the inter-switch links in the logical ring is exactly

the same as the pattern described in Lemma 7. From Lemma 7, there is no contention on

the links between switches. 2

Using Algorithm 1, the contention free logical ring can be found for a tree topology. In

networks with an arbitrary topology, this contention free logical ring can be found by first

finding a spanning tree and then applying Algorithm 1. The two steps may be combined by

using the DFS tree to realize the logical ring.

3.3.2.2 Problem 2

To solve Problem 2, a contention free logical ring with the smallest maximum path length

must be found. This thesis was not able to either design a polynomial algorithm that exactly

solves Problem 2 for all cases or prove this problem to be NP-complete. Thus, this problem
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is left open. The thesis makes the following two contributions to this problem. First, the

sufficient and necessary conditions for a cluster to support a contention free logical ring with

a maximum path length of 2 are identified. Note that logical rings with a maximum path

length of 1 only exist for clusters connected by a single switch. For clusters with multiple

switches, the smallest possible maximum path length in the logical ring is 2 since for each

switch, there exists at least one machine that communicates with a machine in another

switch. The path length for this communication is at least 2. Hence, this result can be used

by a network designer to design a store-and-forward cluster with efficient all-to-all broadcast

support. Second, an algorithm that finds optimal solutions is developed for the cases when

each switch in the system is connected to a small number of other switches. Here, the term

optimal solutions means logical rings with the smallest maximum path lengths. A logical

ring with a maximum path length of i will be referred to as an i-hop logical ring.

3.3.2.3 Clusters with 2-hop Logical Rings

The sufficient and necessary conditions for a cluster to have a 2-hop logical ring will be

formally proved. This result is summarized in the following theorem.

Theorem 3: For a tree graph G = (S ∪M, E), there exists a contention free 2-hop logical

ring if and only if the number of machines directly connected to each switch is larger than

or equal to the number of switches directly connected to the switch.

Proof: Let us first prove the necessary condition. Assume that there exists a switch, A,

that directly connects to more switches than machines. Let us refer to the switches directly

connected to A as A-neighbor switches. Let all nodes connecting to A through an A-neighbor

switch form an A-neighbor subtree. Clearly, the number of A-neighbor subtrees is equal to

the number of A-neighbor switches. Under the assumption that all switches are intermediate

nodes in the tree topology, each A-neighbor subtree contains at least one machine. Since

there are more A-neighbor subtrees than the number of machines attached to A, in the logical

ring, at least one machine in an A-neighbor subtree must send a message to a machine in

another A-neighbor subtree. The path length of this communication is at least 3 (2 A-

neighbor switches plus A). Hence, to have a contention free 2-hop logical ring, each switch

must directly connect to at least the same number of machines as the number of switches.

Before the sufficient condition is proved, let us introduce the concept of a logical array

pattern of a tree (or a subtree), which is rooted at a switch. The term the logical array of
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a switch is used to denote the logical array of the tree rooted at the switch. Let the tree

(subtree) contain Y machines, n0, n1, ..., and nY −1. Let F : {0, ..., Y −1} → {0, ..., Y −1} be

a one-to-one mapping function. The logical array pattern is nF (0) → nF (1) → ...→ nF (Y −1).

Let us distinguish the first machine, nF (0), and the last machine, nF (Y −1), of the logical

array from other machines in the logical array since these two machines must be treated

differently. From the definition, it can be seen that the logical array differs from the logical

ring by excluding the last communication nF (Y −1) → nF (0).

Now, let us consider the sufficient condition. Assume that the number of machines

directly connected to each switch is equal to or larger than the number of switches directly

connected to the switch. The algorithm performs a post-order traversal of the switches. For

each subtree associated with a non-root switch, the algorithm finds the logical array pattern

that satisfies the following three conditions: 1) the logical array pattern is contention free, 2)

the maximum path length in the pattern is less than or equal to 2, and 3) the first machine,

nF (0), and the last machine, nF (Y −1), are directly connected to the root of the subtree. More

specifically, the algorithm processes each non-root switch as follows.

• Case (1): The switch does not directly connect to other switches except its parent. Let

the switch directly connect to X machines, n0, ..., nX−1. The array pattern for the

switch is n0 → n1 → ...→ nX−1 with the first machine n0 and the last machine nX−1.

It can be verified that the three conditions are met.

• Case (2): The switch directly connects to some machines and some switches other

than its parent. Let us use the term “sub-switches” to denote the switches directly

connected to the current switch other than its parent. Each sub-switch is the root of a

subtree. Since the switches are processed following the post-order traversal order, the

logical arrays for all sub-switches have been computed. Let the current switch connect

to i sub-switches, denoted as t0, t1, ..., ti−1, and j machines, denoted as m0, m1, ...,

mj−1. We have j ≥ i + 1 since the parent switch does not count in i. For sub-switch

tk, 0 ≤ k ≤ i− 1, the notations tF
k , tLk , and tFk → ... → tLk are used to denote the first

machine, the last machine, and the logical array respectively. The logical array for the

current switch is m0 → tF0 → ... → tL0 → m1 → tF1 → ... → tL1 → m2 → ... → mi−1 →
tFi−1 → ...→ tLi−1 → mi → mi+1 → ...→ mj−1. This case is depicted in Figure 3.18.

Now let us examine the three conditions for the logical array of the current switch. It
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Figure 3.18: Constructing the logical array for an intermediate switch

is obvious that the logical array of the current switch is contention free if the logical

arrays of the sub-switches are contention free. The path length for messages mk → tFk ,

0 ≤ k ≤ i− 1, and messages tL
k → mk+1, 0 ≤ k ≤ i− 1, is exactly 2 since tF

k and tLk are

attached to the sub-switch tk. Since the logical arrays of sub-switches tF
k → ... → tLk ,

0 ≤ k ≤ i − 1, have a maximum path length of 2, the logical array pattern of the

current switch has a maximum path length of 2. The first machine m0 and the last

machine mj−1 are attached to the current switch. Hence, all three conditions are met.

The processing of root is similar except that the logical ring pattern is constructed instead

of the logical array pattern. Let the root directly connect to i top level sub-switches and

j machines. When the root does not connect to sub-switches, i = 0. Let us denote the i

sub-switches as t0, t1, ..., ti−1 and the j machines as m0, m1, ..., mj−1. We have j ≥ i. For

each sub-switch tk, 0 ≤ k ≤ i − 1, let us use tFk , tLk , and tFk → ... → tLk to denote the first

machine, the last machine, and the logical array respectively. The logical ring pattern for

the tree is m0 → tF0 → ... → tL0 → m1 → tF1 → ... → tL1 → m2 → ... → mi−1 → tFi−1 →
... → tLi−1 → mi → mi+1 → ... → mj−1 → m0. Note that when i = j, tLi−1 sends to m0 in

the logical ring. Following similar arguments as in Case (2), the ring pattern for the root is

contention free with a maximum path length less than or equal to 2. Thus, when each switch

connects to at least the same number of machines as the number of switches, a contention

free 2-hop logical ring can be constructed. 2

The proof of the sufficient condition is a constructive algorithm. This algorithm that

finds a 2-hop contention free logical ring is called Algorithm 2. Figure 3.19 shows the results
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(b) Logical ring from Algorithm 2

Figure 3.19: Logical rings from Algorithm 1 and Algorithm 2

of applying Algorithm 1 and Algorithm 2 to an 8-machine cluster. As can be seen from the

figure, both mappings are contention free. Algorithm 1 computes a logical ring that has a

maximum hop of 4 (from machine 7 to machine 0 in Figure 3.19 (a)) while the logical ring

computed using Algorithm 2 has a maximum hop of 2 as shown in Figure 3.19 (b). For a

store-and-forward cluster, using a 2-hop logical ring is expected to perform better than a

4-hop logical ring.

3.3.2.4 Finding Optimal Logical Rings

In the following, an algorithm is described for finding optimal logical rings, that is, logical

rings with the smallest maximum path lengths. While this algorithm can apply to all

topologies, it has a polynomial time complexity only when the number of switches directly

connecting to each switch in the system is a small constant. The following lemma provides

the foundation for this algorithm.

Lemma 8: Let the P machines in a tree topology G = (S ∪M, E) (rooted at switch R) be

numbered as n0, n1, ..., nP−1. Let F : {0, 1, ..., P − 1} → {0, 1, ..., P − 1} be a one-to-one

mapping function. The logical ring nF (0) → nF (1) → ...→ nF (P−1) → nF (0) is contention free

if and only if for each subtree that contains X machines, there exists a number 0 ≤ i ≤ P −1

such that nF (i), nF (i+1 mod P ), ..., nF (i+X−1 mod P ) are machines in the subtree.

Proof: This lemma states that the necessary and sufficient conditions for a logical ring

to be contention free is that all machines in each subtree occupy consecutive positions (the

consecutive positions can be wrapped around) in the logical ring. Notice that these conditions

apply to all subtrees in the system assuming any arbitrary switch as the root. Since only the

relative positions of the machines in the logical ring will have an impact on the contention

free property of the ring, it can be assumed that the first machine of a top level tree starts
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at nF (0) in a contention free logical ring without loss of generality.

Let us first prove the necessary condition by contradiction. Assume that the machines

in a subtree are not in consecutive positions in the logical ring, there exist at least two

numbers i and j such that nF (i) and nF (j) are in the subtree while machines nF (i−1 mod P )

and nF (j−1 mod P ) are not in the subtree. Since a communication from a machine outside a

subtree to a machine inside a subtree must always use the link connecting the subtree to

the rest of the tree, communications nF (i−1 mod P ) → nF (i) and nF (j−1 mod P ) → nF (j) have

contention. This contradicts the assumption that the logical ring is contention free.

To prove the sufficient condition, first, the following claim is proved by induction: Let

the P machines in a tree topology rooted at switch R be numbered as n0, n1, ..., nP−1. Let

F : {0, 1, ..., P − 1} → {0, 1, ..., P − 1} be a one-to-one mapping function. If the machines in

each subtree occupy consecutive positions in the logical array nF (0) → nF (1) → ...→ nF (P−1),

then communications in nF (0) → nF (1) → ... → nF (P−1), R → nF (0), and nF (P−1) → R are

contention free. In other words, the logical array nF (0) → nF (1) → ...→ nF (P−1) is contention

free. In addition, the paths from the root to the first machine in the logical array (nF (0))

and from last machine in the logical array (nF (P−1)) to the root do not have contention with

each other and with communications in the logical array.

Base case: It is trivial to show that when there is only a single machine in the system,

there is no contention.

Induction case: Consider a tree with n top level subtrees t0, t1, ..., tn−1. Since machines

in any subtree occupy consecutive positions in the logical array, machines in each subtree tk,

0 ≤ k ≤ n−1 occupy consecutive positions. Let us denote tF
k , tLk , and Tk = tFk → ...→ tLk be

the first machine, the last machine, and the logical array for tk respectively. Let us denote

Rk the root of subtree tk. Follow the induction hypothesis: communications in Tk = tFk →
...→ tLk , Rk → tFk , and tLk → Rk are contention free. Let T0′ , T1′ , ..., T(n−1)′ be a permutation

of T0, T1, ..., Tn−1, where Tk′ = tFk′ → ...→ tLk′, 0 ≤ k ≤ n−1. Since machines in each subtree

tk occupy consecutive positions in the array, the logical array nF (0) → nF (1) → ...→ nF (P−1)

can be rewritten as tF1′ → ... → tL1′ → tF2′ → ... → tL2′ → ... → tF(n−1)′ → ... → tL(n−1)′ . Since

all subtrees are disjoint, the contentions in the logical array can be only caused by the inter-

subtree communications, tLk′ → tF(k+1)′ , 0 ≤ k ≤ n − 2. tLk′ → tF(k+1)′ has three components:

tLk′ → Rk′, Rk′ → R → R(k+1)′ , and R(k+1)′ → tF(k+1)′ . Since subtree Tk′ happens once

in the logical array, Rk′ → R → R(k+1)′ will not cause contention. From the induction
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hypothesis, tLk′ → Rk′ cannot cause contention within subtree tk′. Since communications

in other subtrees do not use links in tk′, tLk′ → Rk′ will not cause contention in the logical

array. Similarly, R(k+1)′ → tF(k+1)′ will not cause contention. Hence, the logical array nF (0) →
nF (1) → ... → nF (P−1) (or tF1′ → ... → tL1′ → tF2′ → ... → tL2′ → ... → tF(n−1)′ → ... → tL(n−1)′)

is contention free. Similar arguments can be applied to show that communications R → tF
1′

and tL(n−1)′ → R do not have contention between each other and do not have contention with

tF1′ → ... → tL1′ → tF2′ → ... → tL2′ → ... → tF(n−1)′ → ... → tL(n−1)′ . Thus, communications in

tF1′ → ...→ tL1′ → tF2′ → ...→ tL2′ → ...→ tF(n−1)′ → ...→ tL(n−1)′ , R→ tF1′ , and tL(n−1)′ → R are

contention free. This finishes the proof of the claim.

It can be shown that nF (P−1) → nF (0) is either equal to or a sub-path of nF (P−1) → R→
nF (0). Hence, nF (P−1) → nF (0) does not have contention with nF (0) → nF (1) → ...→ nF (P−1)

and logical ring nF (0) → nF (1) → ...→ nF (P−1) → nF (0) is contention free. 2

Lemma 8 generalizes the results in Algorithm 1 and Algorithm 2, which find two special

cases that satisfy the conditions in this lemma. It can be seen that the optimal logical ring

is the concatenation of logical arrays for top-level subtrees. The logical arrays for top-level

subtrees are the concatenations of the logical arrays for second level subtrees, and so on.

The relation between the optimal logical ring and the logical arrays for subtrees is shown

in Figure 3.20. This relation motivates solving this problem by reducing the optimal logical

ring problem into an optimal logical array problem (optimal logical arrays are the arrays

with the smallest maximum path length), which has the optimal substructure property: the

optimal logical array for a tree contains the optimal logical arrays for its subtrees. Lemma

8 also indicates that only logical arrays where machines in each subtree occupy consecutive

positions need to be considered in order to obtain the optimal logical ring. Hence, the

dynamic programming technique can be applied to compute optimal logical arrays for each

subtree in a bottom-up fashion.

Let us consider how to reduce the optimal logical ring problem into optimal logical array

problems. Let Opt : {0, 1, ..., P − 1} → {0, 1, ..., P − 1} be a one-to-one mapping function

such that nOpt(0) → nOpt(1) → ... → nOpt(P−1) → nOpt(0) is an optimal logical ring for a tree

topology G = (S ∪ M, E) rooted at switch R. Without loss of generality, let us assume

that nOpt(0) is the first machine in a top-level subtree. Under the assumption that a switch

cannot be a leaf, the root at least has two top-level subtrees. Thus, nOpt(P−1) must be in

another top-level subtree and the path nOpt(P−1) → nOpt(0) = nOpt(P−1) → R → nOpt(0).
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Figure 3.20: The relationship between the optimal logical ring and logical arrays for subtrees

Hence, the optimal logical ring can be considered to have two components: the logical array

nOpt(0) → nOpt(1) → ... → nOpt(P−1) and the wrap around link nOpt(P−1) → nOpt(0). For a

node m, let us use the notation h(m) to denote the height of m, which is defined as the

path length from root to m (counting the root as one switch). The height of a node is

with respect to a particular subtree (root of the subtree). We have length(nOpt(P−1) →
nOpt(0)) = length(nOpt(P−1) → R → nOpt(0)) = h(nOpt(P−1)) + h(nOpt(0)) − 1. The

length of the wrap around link is a function of the heights of the first machine and

the last machine (with respect to the whole tree). Hence, if an optimal logical array

nF ′(0) → nF ′(1) → ... → nF ′(P−1) can be found such that h(nF ′(0)) = h(nOpt(0)) and

h(nF ′(P−1)) = h(nOpt(P−1)), here F ′ is a one-to-one mapping function, then, the maximum

path length of logical ring nF ′(0) → nF ′(1) → ... → nF ′(P−1) → nF ′(0) is less than or equal

to the maximum path length of nOpt(0) → nOpt(1) → ... → nOpt(P−1) → nOpt(0), and the

logical ring nF ′(0) → nF ′(1) → ... → nF ′(P−1) → nF ′(0) is also an optimal logical ring. Hence,

finding an optimal logical ring can be done by first finding an optimal logical array for each

of the possible combinations of h(nOpt(0)) and h(nOpt(P−1)) and then choosing one that forms

a logical ring with the smallest maximum path length. Let the tree height of G be H, the

potential values for h(nOpt(0)) and h(nOpt(P−1)) are in the range of 0..H.

Next, the algorithm to determine the maximum path length of the optimal logical ring is

described. Minor modifications can be made to obtain the actual optimal logical ring. For

each node A (a machine or a switch), a two-dimensional table A.optimal is used to store the

maximum path length of the optimal logical arrays for the subtree rooted at A. The entry
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A.optimal[i][j] stores the maximum path length of the optimal logical array with the height

of the first machine being i and the height of the last machine being j. Note that the height

is with respect to the subtree rooted at A (the distance from the node to A). Thus, once the

optimal data structure at the root R, R.optimal, is computed, the optimal maximum path

length of the logical ring is

mini,j(max(R.optimal[i][j], i + j − 1)).

The R.optimal[i][j] is the optimal logical array with the first machine at height i and the

last machine at height j, and i + j − 1 is the path length of the wrap around link. The term

max(R.optimal[i][j], i + j− 1) is the best maximum path length when the ring is formed by

having a logical array starting at height i and ending at height j.

Now let us consider how to compute the A.optimal data structure at each node A. As in

Algorithm 2, this data structure is computed in a bottom-up fashion (post-order traversal).

For each machine A, A.optimal[0][0] = 0 and A.optimal[i][j] =∞, i 6= 0 or j 6= 0. If A is a

switch, all subtrees of A have been processed. Let A have n subtrees t0, t2, ..., tn−1. Let us

assume that among the n subtrees, k are rooted at switches (each of the subtrees is rooted

at a switch). The rest n− k are single-machine subtrees (each of the subtrees contains only

a single machine). The algorithm first enumerates all possible different sequences of the n

subtrees. Since all machines are the same, switching their positions in the sequence yields

the same sequence. Hence, there are at most k-permutation of an n-set (selecting k positions

for the k subtrees rooted at switches from the n possible positions in the sequence), that

is, n(n − 1)...(n − k + 1) = n!
(n−k)!

= O(nk), different sequences. Here, factorial function

n! = n× (n− 1)× ...× 1.

For each sequence seq = t0′t1′ ... t(n−1)′ , the seq.optimal data structure is computed for

the case when the subtrees are concatenated in the particular order t0′ → t1′ → ...→ t(n−1)′ .

There are three cases. First, if seq only has one subtree t0′ , then seq.optimal[i][j] =

t0′ .optimal[i][j]. Second, if seq contains two subtrees t0′ and t1′ , the optimal data structure

for the sequence is computed as follows:

seq.optimal[i][j] = mink,l{max(t0′ .optimal[i][k], t1′ .optimal[l][j], k + l + 1)}.
To find the optimal logical array t0′ → t1′ that starts at height i and ends at height j,

the array in t0′ must start at height i and the array in t1′ must end at height j. However,

the array in t0′ can end at any position and the array in t1′ can start at any position. For a

logical array that is composed of the array in t0′ that starts at height i and ends at height
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k and the array in t1′ that starts at height l and ends at height j, the maximum path

length is the maximum of three elements: the maximum path length of the array in t0′

(t0′ .optimal[i][k]), the maximum path length of the array in t1′ (t1′ .optimal[l][j]), and the

length of tL0′ → tF1′ = tL0′ → A→ tF1′ , which is equal to k+l+1. This formula takes into account

all possible combinations to concatenate the two subtrees. Third, if seq contains more than

two subtrees, the seq.optimal data structure can be obtained by repeatedly applying the

concatenation of two logical arrays (the second case).

The optimal data structure for A can be obtained from the optimal data structures for

all possible sequences using the following formula:

A.optimal[i][j] = min
seq is a sequence

{seq.optimal[i − 1][j − 1]}.

This formula examines all possible sequences to determine the optimal logical array for a

given i and j. Notice that, for a node m, when h(m) = i in subtree rooted at A, h(m) = i−1

in the subtrees of A. Intuitively, this algorithm examines all possible cases when all machines

in each subtree must be placed in consecutive positions in the logical ring and stores the

optimal results at the root of the subtree. By induction, it can be formally shown that this

algorithm finds the maximum path length of the optimal logical ring for the tree.

This algorithm, which will be called Algorithm 3, operates in a similar fashion to

Algorithm 2. The difference is that, under the assumptions for Algorithm 2, only one optimal

logical array for each subtree must be considered to obtain the optimal logical ring for the

whole tree. Without those assumptions, many optimal logical arrays for different heights

of the first and last machines must be computed and stored. In addition, the process to

determine the optimal logical arrays becomes much more complex.

Let us now examine the complexity of this algorithm. Let the number of nodes be |V |,
the maximum nodal degree be n (n usually equals to the maximum number of ports in a

switch), the maximum number of switches directly connecting to one switch be k, the tree

height be H. The size of the table to store the optimal logical arrays is O(H 2). The time to

concatenate two logical arrays is O(H4). Since a node can have at most a sequence of size

n, computing the optimal data structure for one sequence is O(nH4). Given that each node

can have at most O(nk) sequences, the time to process each node is then O(nknH4). Thus,

the complexity of the whole algorithm is O(|V |nk+1H4). When k is a small constant, this
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algorithm has a polynomial time complexity. In practice, while |V | can be a large number

(e.g. a cluster of a few thousand nodes), the values of n, k, H are usually small.

3.3.3 Performance Evaluation

Two approaches are used to evaluate the proposed algorithms. First, an automatic routine

generator is developed; it takes the topology information as input and generates, based on the

algorithms presented, customized topology-specific all–gather routines. The performance of

the generated routines on multiple topologies is compared with that of the all–gather routines

in LAM/MPI 7.1.1 [44] and the recently improved MPICH 2-1.0.1 [52]. The experiments

are performed on a 32-machine Ethernet switched cluster. Second, the performance of

the algorithms is studied on large networks through simulation. In the following, the

measurement results on small clusters are presented first and the simulation results are

presented second.

MPI Barrier(MPI COMM WORLD);
start = MPI Wtime();
for (count = 0; count < ITER NUM; count ++) {

MPI Allgather(...);
}
elapsed time = MPI Wtime() - start;

Figure 3.21: Code segment for measuring MPI Allgather performance

The generated all–gather routines use LAM/MPI 7.1.1 point-to-point primitives and

run over LAM/MPI 7.1.1. LR1, LR2, and LR3 are used to denote the routines obtained

from Algorithm 1 (finding a contention free logical ring), Algorithm 2 (finding a contention

free 2-hop logical ring), and Algorithm 3 (finding an optimal contention free logical ring)

respectively. Note that in cases when LR2 can find 2-hop rings, LR3 can also find 2-hop

rings. To report fair performance comparison, the MPICH all–gather implementation is

ported to LAM/MPI, and MPICH-LAM is used to denote the ported all–gather routine. It

was found that, in the latest version of MPICH, the performance of the all–gather operation

using native MPICH and MPICH-LAM is very close. In the performance evaluation, LR1,
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LR2, and LR3 are compared with LAM and MPICH-LAM. To measure the performance of

the MPI Allgather routine, the approach similar to Mpptest [32] is used. Figure 3.21 shows

an example code segment for measuring the performance. The number of iterations is varied

according to the message size: more iterations are used for small message sizes to offset the

clock inaccuracy. For the message ranges 4KB − 12KB, 16KB − 96KB, and 128KB, the

number of iterations 50, 20, and 10 are used, respectively. The results are the averages of

three executions. The average time among all machines is used as the performance metric.
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Figure 3.22: Topologies used in the experiments

The experiments are performed on a 32-machine Ethernet switched cluster. The machines

of the cluster are Dell Dimension 2400 with a 2.8GHz P4 processor, 128MB of memory,

and 40GB of disk space. All machines run Linux (Fedora) with 2.6.5-1.358 kernel. The

Ethernet card in each machine is Broadcom BCM 5705 with the driver from Broadcom.

These machines are connected to Dell PowerConnect 2224 and Dell PowerConnect 2324

100Mbps Ethernet switches. Figure 3.22 shows the topologies used in the experiments. Parts

(a) to (d) of the figure represent clusters of 16 machines connected by 1, 2, and 4 switches
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with different topologies. Parts (e) and (f) show 32-machine clusters of 4 switches, each

having 8 machines attached. These two clusters have exactly the same physical topology,

but different node assignments. The topologies in the figure are referred to as topology (1),

topology (2), topology (3), topology (4), topology (5), and topology (6).
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Figure 3.23: Performance of LR1, LAM, and MPICH-LAM on topologies (1) to (4)

Figure 3.23 shows the performance of LAM, MPICH-LAM, and LR1 on topologies (1)

to (4). Figure 3.23 (a) shows the performance of LAM. The LAM algorithm has almost

the same performance for topologies (1)-(4). The tree-based algorithms used in the LAM

all–gather implementation do not exploit all network links and do not create bottleneck
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Figure 3.24: Performance of LR1, LAM, and MPICH-LAM on topologies (5) and (6)

links in all four topologies. However, the network is under-utilized. As can be seen in

Figure 3.23 (d), the LAM/MPI routine performs much worse than MPICH and LR1. The

results for MPICH are shown in Figure 3.23 (b). MPICH changes the algorithm when

msize = 32KB. When msize < 32KB, MPICH uses the recursive doubling algorithm,

which has similar performance for all topologies. Using a topology-unaware logical ring

algorithm when msize ≥ 32KB, MPICH provides very different performance for the four

topologies. It performs best on topology (1), where the cluster is connected by a single

switch, but significantly worse on topologies (2), (3), and (4), which indicates that the

network topology can significantly affect MPICH performance. From Figure 3.23 (c), it can

be seen that LR1 achieves very similar performance on all four topologies, which is attributed

to the ability of LR1 in finding the contention free logical ring on different topologies. The

performance of LR1 on all topologies is similar to the performance of LR1 on the single switch

topology (topology (1)). This demonstrates the optimality of LR1 in terms of achieving

nearly optimal all-to-all broadcast performance on different topologies. Figure 3.23 (d)

compares LR1 with LAM and MPICH on topology (4). It is shown that LR1 performs

substantially better than LAM and MPICH.

Figures 3.24 (a) and (b) show the performance results for LAM, MPICH-LAM, and

LR1 on topologies (5) and (6) respectively. The extreme poor performance of LAM on
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Table 3.6: LR1 vs. LR2 on topology (4)

msize LR1 topo.(4) LR2 topo.(4) LR1 topo.(1)
(4-hop) (2-hop) (1-hop)

32KB 50.9ms 48.0ms 47.0ms
48KB 72.9ms 68.4ms 67.2ms
64KB 116.9ms 95.7ms 90.8ms
96KB 180.0ms 172.7ms 162.6ms
128KB 236.8ms 233.7ms 220.6ms

both topologies can be easily seen. As shown in Figure 3.24 (a), the topology-unaware

ring algorithm used in MPICH, when msize ≥ 16KB, achieves nearly optimal performance

(same as LR1) for this topology. In this case, the topology-unaware ring algorithm operates

exactly the same as LR1. However, with the same physical topology and a different node

assignment in topology (6), the topology-unaware algorithm performs much worse than LR1

as shown in Figure 3.24 (b). This again shows that the performance of MPICH depends

heavily on the network configuration. Unlike LAM and MPICH, LR1 consistently achieves

high performance for different topologies. To illustrate, when the message size is 128KB, the

completion times for LR1, LAM, and MPICH-LAM on topology (6) are 473.7ms, 5346ms,

and 3595ms respectively. This means that LR1 achieves a performance that is more than 11

times better than LAM and almost 8 times better than MPICH.

Table 3.6 shows the impact of selecting a logical ring with a shorter path length. For

topology (4), LR1 results in a logical ring with a maximum path length of 4 hops, and LR2

results in a logical ring with a maximum path length of 2 hops. In addition to the results of

LR1 and LR2, the table also includes results for topology (1), which is essentially a 1-hop

ring. The results for topology (1) is provided for references since no logical ring algorithm

can out-perform 1-hop ring. There are two observations from the table. First, the impact

of path length on the performance is noticeable, but not very large in comparison to the

impact of contention. Second, by minimizing the maximum path length of the ring on the

Ethernet switched cluster, some performance improvement can be obtained. In general, the

2-hop ring performs better than the 4-hop ring, but worse than the 1-hop ring. Note that

the theoretical lower bound time for all-to-all broadcast with a message size of 64KB on a
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16-machine 100Mbps cluster is 15×64×1024×8
100×106 = 78.6ms. Considering the protocol overheads

in MPI and TCP/IP layers as well as the software/hardware delays, the performance of LR2

(95.7ms) is very close to optimal.

Next, a study of how these algorithms perform on large store-and-forward clusters is

presented. This study is performed through simulation. In the simulation, it is assumed

that the networks have arbitrary topologies. This allows us to evaluate the impacts of tree

construction methods and to compare the results of different methods in computing logical

rings. Since the logical rings found by all proposed algorithms are contention free, the

maximum path length is used as the performance metric.

In the simulation, each random cluster is first generated. After the random cluster is

generated, a tree construction method is used to build a spanning tree for the random

cluster. Finally, the proposed algorithms are applied to compute logical rings. The random

cluster is generated as follows: the number of machines and the number of switches for a

cluster are decided. In the experiments, the ratio between the number of machines and

the number of switches is fixed to be 5:1 (on average, each switch has five machines).

The random connectivity among switches is generated using the Georgia Tech Internetwork

Topology Models (GT-ITM) [86] with an average nodal degree of 4. Once the topology for

the switches is generated, each machine is randomly distributed to any switch with equal

probability. Three tree construction methods are considered: Breadth First Search (BFS)

tree, Depth First Search (DFS) tree, and random tree. The BFS tree is created by first

randomly selecting a root and then performing BFS on the graph. The DFS tree is created

by first randomly selecting a root and then performing DFS. The random tree is created by

repeatedly adding a random link to form a tree (if adding a link forms a loop, the link is not

added).

Figure 3.25 shows the maximum path lengths in the logical rings computed using LR1

and LR3 with the three tree construction methods. Each point in the figure is the average

of 50 random topologies. Figure 3.25 (a) shows that (1) the maximum path lengths of the

logical rings computed by LR1 is much larger than those computed by LR3, and (2) the

performance of LR1 depends heavily on the method used to construct the spanning tree.

Using BFS trees yields much better results than using random trees, which in turn has much

better results than DFS trees. This is because BFS trees usually have small tree heights while

DFS trees are usually tall. Figure 3.25 (b) shows that LR3 produces much smaller maximum
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Figure 3.25: Performance of LR1 and LR3 with different tree construction methods

path lengths in its rings. In all experiments performed on different kinds of random graphs,

there is a very high probability that the maximum path length of each ring produced by

LR3 is 3. This is reflected in Figure 3.25 (b): the average maximum path length is around

3, regardless of the cluster sizes. Furthermore, LR3 is not sensitive to the tree construction

methods. BFS trees, DFS trees, and random trees yield very similar results. This indicates

that LR3 is a robust algorithm for large networks.

3.4 Broadcast Operation

Broadcast is one of the most common collective communication operations. The broadcast

operation requires a message from the root machine (the sender) to reach all other machines

in the system at the end of the operation. The Message Passing Interface routine that

realizes this operation is MPI Bcast [51]. Broadcast algorithms are typically classified as

either atomic broadcast algorithms or pipelined broadcast algorithms [2]. Atomic broadcast

algorithms distribute the broadcast message as a whole through the network. Such

algorithms apply to the cases when there is only one broadcast operation and the broadcast

message cannot be split. When there are multiple broadcast operations or when the

broadcast message can be split into a number of segments, a pipelined broadcast algorithm

can be used, which distributes messages (segments) in a pipelined fashion.
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This section investigates the use of pipelined broadcast to realize MPI Bcast on Ethernet

switched clusters when the message size is reasonably large. In this case, broadcasting a large

message is carried out by a sequence of pipelined broadcasts with smaller message segments.

In the pipelined broadcasts, communications on different branches of the logical broadcast

tree can be active at the same time. To maximize the performance, communications that

can potentially happen simultaneously should not share the same physical channel and cause

network contention. Hence, the logical broadcast trees for pipelined broadcast should be

contention-free. In this section, algorithms for computing various contention-free broadcast

trees, which are suitable for pipelined broadcast on Ethernet switched clusters, are developed.

The pipelined broadcast schemes are theoretically analyzed and empirically evaluated by

comparing their performance with that of other commonly used broadcast algorithms. The

results from the theoretical and experimental study, which is discussed later, indicate the

following.

• When the message size is large, pipelined broadcast can be more effective than other

broadcast schemes including the ones used in MPICH 2-1.0.1 (the latest MPICH release)

[52] and LAM/MPI 7.1.1 (the latest LAM/MPI release) [44] to a large degree. Moreover, for

large messages, the performance of pipelined broadcast on Ethernet switched clusters using

a contention-free linear tree is close to the theoretical limit of the broadcast operation.

• Contention-free broadcast trees are essential for pipelined broadcast to achieve high

performance on clusters with multiple switches. Pipelined broadcast using topology unaware

broadcast trees may result in poor performance in such an environment.

• While it is difficult to determine the message segment size for pipelined broadcast

to achieve the minimum communication time, finding one segment size that gives good

performance is relatively easy since a wide range of message sizes can yield reasonably good

performance for a given pipelined broadcast algorithm.

In the following, a number of commonly used broadcast algorithms are analyzed first.

The algorithms for computing various contention-free broadcast trees on Ethernet switched

clusters are then presented. Finally, the performance evaluation study is discussed.

3.4.1 Broadcast on Ethernet Switched Clusters

Let the number of machines in the broadcast operation be P . Let us assume that the time

taken to send a message of size n between any two machines can be modeled as T (n) =
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α+n×β, where α is the startup overhead and β is the per byte transmission time. When an

msize-byte message is split into segments of sizes s1, s2, ..., and sk, T (s1)+T (s2)+...+T (sk) ≥
T (msize). Splitting a large message into small segments will increase the startup overheads

and thus, the total communication time. Under the assumption that the startup overhead

is insignificant in T (si), 1 ≤ i ≤ k, T (s1) + T (s2) + ... + T (sk) ≈ T (msize).

Let the communication completion time be the duration between the time when the

root starts sending and the time when the last machine receives the whole message. In

the broadcast operation, each machine receives msize data and the lower bound of the

completion time is at least T (msize). As will be shown later, this lower bound is approached

by pipelined broadcast when msize is sufficiently large.

Figure 3.26 shows some common broadcast trees, including linear tree, binary tree, k-ary

tree, binomial tree, and flat tree. Common atomic broadcast algorithms include the flat

tree and binomial tree algorithms. In the flat tree algorithm, the root sequentially sends the

broadcast message to each of the receivers. The completion time is thus (P −1)×T (msize).

In the binomial tree algorithm[28, 49], broadcast follows a hypercube communication pattern

and the total number of messages that the root sends is log(P ). Hence, the completion time

is log(P )× T (msize). In both of the flat tree and binomial tree algorithms, the root is busy

throughout the communication and pipelined communication cannot be used to improve

performance. Another interesting non-pipelined broadcast algorithm is the scatter followed

by all-gather algorithm, which is used in MPICH [52]. In this algorithm, the msize-byte

message is first distributed to the P machines by a scatter operation (each machine gets msize
P

-

byte data). After that, an all-gather operation is performed to combine messages to all nodes.

In the scatter operation, P−1
P
× msize data must be moved from the root to other nodes,

and the time is at least T (P−1
P
×msize). In the all-gather operation, each node must receive

P−1
P
×msize-byte data from other nodes and the time is at least T (P−1

P
×msize). Hence,

the completion time for the whole algorithm is at least 2×T (P−1
P
×msize) ≈ 2×T (msize).

Now, let us consider pipelined broadcast. Assume that the msize-byte broadcast message

is split into X segments of size msize
X

, broadcasting the msize-byte message is realized by X

pipelined broadcasts of segments of size msize
X

. To achieve good performance, the segment

size, msize
X

, should be small while keeping the startup overhead insignificant in T (msize
X

). For

example, in the experimental cluster, a segment size of 1KB results in good performance in

most cases. Hence, when msize is very large, X can be large.
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Figure 3.26: Examples of broadcast trees

The completion time for the X pipelined broadcasts depends on the broadcast tree, which

decides the size of each pipeline stage and the number of pipelined stages. For simplicity,

let us assume for now that there is no network contention in pipelined broadcast. Under the

1-port model, the size of a pipeline stage is equal to the time to send the number of messages

that a machine must send in that stage, which is equal to the nodal degree of the machine

in the broadcast tree. The number of pipelined stages is equal to the tree height. Let the

broadcast tree height be H and the maximum nodal degree of the broadcast tree be D. The

largest pipeline stage is D × T (msize
X

). The total time to complete the communication is

roughly

(X + H − 1)× (D × T (msize
X

)).

When msize is very large, X will be much larger than H − 1. In this case, (X + H −
1)(D×T (msize

X
)) ≈ X×(D×T (msize

X
)) ≈ D×T (msize). This simple analysis shows that for

large messages, trees with a small nodal degree should be used. For example, using a linear

tree, shown in Figure 3.26 (a), H = P and D = 1. The communication completion time is

(X +P −1)×T (msize
X

). When X is much larger than P , (X +P −1)×T (msize
X

) ≈ T (msize),

which is the theoretical limit of the broadcast operation.
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Table 3.7: The performance of broadcast algorithms for very large messages

Algorithm performance
Flat tree (P − 1)× T (msize)
Binomial tree log2(P )× T (msize)
scatter/allgather 2× T (msize)
Linear tree (pipelined) T (msize)
Binary tree (pipelined) 2× T (msize)
k-ary tree (pipelined) k × T (msize)

Using the linear tree, the number of pipelined stages is P , which results in a long time to

drain the pipeline when P is large. To reduce the number of pipelined stages, a general k-ary

tree, that is, a tree with a maximum nodal degree of k, can be used. When k = 2, such trees

are called binary trees. Assuming a complete binary tree is used, H = log2(P ) and D = 2.

The completion time is (X+log2(P )−1)×2×T (msize
X

) = (2X+2log2(P )−2)×T (msize
X

). When

X is sufficiently large, (2X + 2log2(P )− 2)× T (msize
X

) ≈ 2T (msize). When broadcasting a

very large message, pipelined broadcast with a binary tree is not as efficient as that with a

linear tree. However, when 2X + 2log2(P )− 2 ≤ X + P − 1 or X ≤ P − 2log2(P ) + 1, the

binary tree is more efficient. In other words, when broadcasting a medium sized message,

a binary tree may be more efficient than a linear tree. Under the 1-port model, when

using general k-ary trees, k > 2, for pipelined broadcast, the size of the pipelined stage

increases linearly with k while the tree height decreases proportionally to the reciprocal of

the logarithm of k, assuming that trees are reasonably balanced such that the tree height

is O(logk(P )). Hence, under the 1-port model, it is unlikely that a k-ary tree, k > 2, can

offer much better performance than a binary tree. For example, assuming a complete k-ary

tree, k > 2, is used for pipelined broadcast, H = logk(P ) and D = k. The completion time

is (X + logk(P )− 1)× (k× T (msize
X

)), which is larger than the time for the complete binary

tree for most practical values of X and P . The empirical study confirms this. Table 3.7

summarizes the performance of broadcast algorithms when the broadcast message size is

very large.
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3.4.2 Computing Contention-Free Broadcast Trees

As shown in Table 3.7, pipelined broadcast is likely to achieve high performance when the

broadcast message is large. There are two obstacles that prevent this technique from being

widely deployed. First, for pipelined broadcast to be effective, the logical broadcast tree must

be contention-free. Finding a contention-free broadcast tree is a challenging task. Second,

it is difficult to decide the optimal segment size for pipelined broadcast. In the following,

algorithms for computing contention-free broadcast trees over physical tree topologies will

be presented. Later, it will be shown that while deciding the optimal segment size may be

difficult, it is relatively easy to find one size that achieves good performance.

Under the 1-port model, communications originated from the same machine cannot

happen at the same time. Thus, a contention-free tree for pipelined broadcast only

requires communications originated from different machines to be contention-free. Since

each communication in a linear tree originates from a different machine, all communications

in the contention-free linear tree must be contention-free. In a contention-free k-ary tree,

communications from a machine to its (up to k) children may have contention.

3.4.2.1 Contention-Free Linear Trees

Let the machines in the system be n0, n1, ..., nP−1. Let F : {0, 1, ..., P−1} → {0, 1, ..., P−1}
be any one-to-one mapping function such that nF (0) is the root of the broadcast operation.

nF (0), nF (1), ..., nF (P−1) is a permutation of n0, n1, ..., nP−1 and nF (0) → nF (1) → nF (2) →
...→ nF (P−1) is a logical linear tree. The task is to find an F such that the communications

in the logical linear tree do not have contention.

Let G = (S ∪M, E) be a tree graph with S being the switches, M being the machines,

and E being the edges. Let P = |M | and nr be the root machine of the broadcast. Let

G′ = (S, E ′) be a subgraph of G that only contains switches and links between switches. A

contention-free linear tree can be computed in the following two steps.

• Step 1: Starting from the switch that nr is directly connected to, perform Depth First

Search (DFS) on G′. Number the switches based on the DFS arrival order. An example

numbering of the switches in the DFS order is shown in Figure 3.27. The switches are

denoted as s0, s1, ..., s|S|−1, where si is the ith switch arrived in the DFS traversal of

G′. The switch that nr attaches to is s0.
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• Step 2: Let the Xi machines connecting to switch si, 0 ≤ i ≤ |S| − 1, be numbered as

ni,0, ni,1, ..., ni,Xi−1. nr = n0,0. Xi = 0 when there is no machine attaching to si. The

following logical linear tree is contention-free (this will be formally proved): n0,0(nr)→
...→ n0,X0−1 → n1,0 → ...→ n1,X1−1 → ...→ n|S|−1,0 → ...→ n|S|−1,X|S|−1−1.

This algorithm is referred to as Algorithm 4. There exist many contention-free logical

linear trees for a physical tree topology. It will be proved shortly that Algorithm 4 computes

one of the contention-free logical linear trees.

Lemma 9: Let G′ = (S, E ′) be the subgraph of G that contains only switches and links

between switches. Let s0, s1, ..., s|S|−1 be the DFS ordering of the switches, where si is the

ith switch arrived in DFS traversal of G′. Communications in {s0 → s1, s1 → s2, ..., s|S|−2 →
s|S|−1, s|S|−1 → s0} are contention free. 2

0

1

2 3

4

5

6 7

Figure 3.27: DFS numbering

The proof of Lemma 9 can be found in Section 3.3.2. Figure 3.27 shows an example.

Clearly, communications in {s0 → s1, s1 → s2, s2 → s3, s3 → s4, s4 → s5, s5 → s0} are

contention-free.

Lemma 10: Let s0, s1, ..., s|S|−1 be the DFS ordering of the switches. Let 0 ≤ i < j ≤ k <

l ≤ |S| − 1, si → sj does not have contention with sk → sl.

Proof: From Lemma 9, path(si → si+1), path(si+1 → si+2), ..., path(sj−1 → sj),

path(sk → sk+1), path(sk+1 → sk+2), ..., path(sl−1 → sl) do not share any edge. It follows

that path(si → si+1) ∪ path(si+1 → si+2) ∪ ... ∪ path(sj−1 → sj) does not share any edge

with path(sk → sk+1) ∪ path(sk+1 → sk+2) ∪ ... ∪ path(sl−1 → sl). Since the graph is a
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tree, path(si → sj) ⊆ path(si → si+1) ∪ path(si+1 → si+2) ∪ ... ∪ path(sj−1 → sj) and

path(sk → sl) ⊆ path(sk → sk+1) ∪ path(sk+1 → sk+2) ∪ ... ∪ path(sl−1 → sl). Thus, si → sj

does not have contention with sk → sl. 2

Theorem 4: The logical linear tree obtained from Algorithm 4 is contention free.

Proof: The linear tree is formed by grouping all machines attached to each switch together

and ordering the switches based on the DFS order. Since each machine occurs in the linear

tree exactly once, the link to and from each machine is used at most once in the linear

tree. Thus, the intra-switch communications do not have contention. Since the switches are

ordered based on DFS, from Lemma 10, the inter-switch communications do not have any

contention. Hence, the linear tree is a contention-free linear tree. 2

3.4.2.2 Contention-Free Binary Trees

As discussed earlier, since the tree height directly affects the time to complete the operation,

the ideal binary tree for pipelined broadcast is one with the smallest tree height. Unfor-

tunately, the problem of finding a contention-free binary tree with the smallest tree height

is difficult to solve. In the following, a heuristic that computes contention-free binary trees

while trying to minimize the tree heights is proposed. Although this heuristic may not find

trees with the smallest tree heights, the simulation study indicates that the trees found by

this heuristic are close to optimal. The heuristic is based on the contention-free linear tree

obtained from Algorithm 4. The following lemma is the foundation of this heuristic.

Lemma 11: Let us re-number the logical linear tree obtained from Algorithm 4 (n0,0(nr)→
... → n0,X0−1 → n1,0 → ... → n1,X1−1 → ... → n|S|−1,0 → ... → n|S|−1,X|S|−1−1) as

m0(nr)→ m1 → ...→ mP−1. Let 0 ≤ i < j ≤ k < l ≤ P − 1, communication mi → mj does

not have contention with communication mk → ml.

Proof: Let mi = na,w, mj = nb,x, mk = nc,y, and ml = nd,z. Since i < j ≤ k < l,

a ≤ b ≤ c ≤ d. Path(mi → mj) has three components: (mi, sa), path(sa → sb), and

(sb, mj). Path(mk → ml) has three components: (mk, sc), path(sc → sd), and (sd, ml).

When a = b, communication mi → mj does not have contention with communication

mk → ml since (mi, sa) and (sb, mj) are not in path(sc → sd). Similarly, when c = d,

communication mi → mj does not have contention with communication mk → ml. When

a < b ≤ c < d, from Lemma 10, path(sa → sb) does not share edges with path(sc → sd).

Hence, communication mi → mj does not have contention with communication mk → ml in
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all cases. 2

Let m0 → m1 → ... → mP−1 be the linear tree obtained from Algorithm 4. For

0 ≤ i ≤ j ≤ P − 1, let us denote sub-array S(i, j) = {mi, mi+1, ..., mj}. The heuristic

constructs contention-free binary trees for all sub-arrays S(i, j), 0 ≤ i ≤ j ≤ P − 1.

Notice that for a sub-array S(i, j), there always exists at least one contention-free binary

tree since the linear tree is a special binary tree. Let tree(i, j) represent the contention-

free binary tree computed for S(i, j). Tree(0, P − 1) is the binary tree that covers all

machines. The heuristic builds tree(i, j) with communications ma → mb, i ≤ a < b ≤ j.

Let 0 ≤ i ≤ j < k ≤ l ≤ P − 1, from Lemma 11, tree(i, j) does not have contention with

tree(k, l).

Figure 3.28 shows the heuristic (Algorithm 5). In this algorithm, tree[i][j] stores tree(i, j),

and best[i][j] stores the height of tree(i, j). Lines (2) to (12) are the base cases for binary

trees with 1, 2, and 3 nodes. Note that under the 1-port model, mi → mi+1 and mi → mi+2

cannot happen at the same time. Hence, tree {mi → mi+1, mi → mi+2} is the contention

free binary tree for machines mi, mi+1, and mi+2. Lines (13) to (26) iteratively compute

trees that cover 4 to P machines. To compute tree(i, j), j > i + 2, the heuristic decides a

k, i + 1 < k ≤ j, so that tree(i, j) is formed by having mi as the root, tree(i + 1, k − 1)

as the left child, and tree(k, j) as the right child. Line (17) makes sure that mi → mk

does not have contention with communications in tree(i + 1, k − 1), which is crucial to

ensure that the binary tree is contention-free. The heuristic chooses a k with the smallest

max(best[i + 1][k − 1], best[k][j]) + 1 (lines (18) to (21)), which minimizes the tree height.

At the end, tree[0][P − 1] stores the contention-free binary tree. Assume that the number

of switches is less than P , the complexity of this algorithm is O(P 4).

Theorem 5: The logical binary tree computed by Algorithm 5 is contention-free.

Proof: It will be proved that, for all i and j, 0 ≤ i ≤ j ≤ P − 1, (1) tree[i][j] only consists

of communications ma → mb, i ≤ a < b ≤ j; and (2) tree[i][j] is contention free.

Base case: It is trivial to show that trees with 1, 2, or 3 nodes satisfy the two conditions.

For example, the 2-node tree rooted at node mi contains nodes {mi, mi+1} and one edge

mi → mi+1 (from lines (5) - (8) in Figure 3.28). This tree satisfies condition (1) since it only

consists of communications mi → mi+1. This tree is contention free since there is only one

communication in the tree.

Induction case: Since tree[i][j] = tree[i + 1][k− 1] ∪ tree[k][j] ∪ {mi → mi+1, mi → mk},
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(1) Let m0 → m1 → ...→ mP−1 be the linear tree obtained from Algorithm 4.
(2) for (i = 0; i < P ; i + +) do
(3) best[i][i] = 0; tree[i][i] = {};
(4) enddo
(5) for (i = 0; i < P − 1; i + +) do
(6) best[i][i + 1] = 1;
(7) tree[i][i + 1] = {mi → mi+1};
(8) enddo
(9) for (i = 0; i < P − 2; i + +) do
(10) best[i][i + 2] = 1;
(11) tree[i][i + 2] = {mi → mi+1, mi → mi+2};
(12) enddo
(13) for (j = 3; j < P ; j + +) do
(14) for (i = 0; i < P − j; i + +) do
(15) best[i, i + j] =∞;
(16) for (k = i + 2; k ≤ i + j; k + +) do
(17) if (mi → mk does not have contention

with tree[i + 1][k − 1]) then
(18) if (best[i][i + j] > max(best[i + 1][k − 1],

best[k][i + j]) + 1) then
(19) best[i][i + j] = max(best[i + 1][k − 1],

best[k][i + j]) + 1;
(20) index = k;
(21) endif
(22) endif
(23) enddo
(24) tree[i][i + j] = tree[i + 1][index− 1]∪

tree[index][i + j] ∪ {mi → mi+1, mi → index};
(25) enddo
(26) enddo
(27) tree[0][P − 1] stores the final result.

Figure 3.28: Heuristic to compute contention-free binary trees (Algorithm 5)
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i+2 < j and i+1 < k ≤ j, tree[i][j] only consists of communications ma → mb, i ≤ a < b ≤ j.

From Lemma 11, communications in tree[i + 1][k − 1] do not have contention with

communications in tree[k][j]; mi → mi+1 does not have contention with communications

in tree[k][j] and tree[i + 1][k − 1]; and mi → mk does not have contention with tree[k][j].

Thus, only mi → mk can potentially cause contention with communications in tree[i +

1][k − 1]. Since the algorithm makes sure that mi → mk does not cause contention with

communications in tree[i + 1][k − 1] (line (17)), there is no contention in tree[i][j]. 2

Algorithm 5 can be easily extended to compute general k-ary trees. S(i, j) can be

basically partitioned into k sub-arrays which form the k subtrees. Precautions must be

taken to prevent the communications from the root to a subtree from causing contention

with communications in the subtrees.

The trees computed by Algorithm 5 are evaluated through simulation. Figure 3.29 shows

the results when applying Algorithm 5 to clusters with different sizes (up to 1024 machines).

Two cases are considered, on average 16 machines per switch and on average 8 machines per

switch. For the 8 machines/switch case, a 1024-machine cluster has 128 switches. The cluster

topologies are generated as follows. First, the size of the clusters to be studied is decided

and the random tree topologies for the switches are generated by repeatedly adding random

links between switches until a tree that connects all nodes is formed (links that violate

the tree property are not added). After that, machines are randomly distributed to each

switch with a uniform probability. For each size, 20 random topologies are generated and

the average height of the 20 trees computed using Algorithm 5 is reported. For comparison,

the tree heights of complete binary trees for all sizes are also shown. As can be seen from

the figure, the trees computed using Algorithm 5 are not much taller than the complete

binary tree, which indicates that the tree computed using Algorithm 5 is close to optimal.

Notice that the height of the complete binary tree is the lower bound of the height of the

optimal contention-free binary tree. In most cases, contention-free complete binary trees do

not exist.

3.4.3 Performance Evaluation

The performance of pipelined broadcast with different types of broadcast trees on different

physical topologies are evaluated. The physical topologies used in the evaluation are shown

in Figure 3.30. The topologies in Figure 3.30 are referred to as topologies (1), (2), (3), (4),
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Figure 3.29: Performance of Algorithm 5

and (5). Topology (1) contains 16 machines connected by a single switch. Topologies (2),

(3), (4), and (5) are 32-machine clusters with different network connectivity. Topologies (4)

and (5) have exactly the same physical topology, but different node assignments.

The experiments are conducted on a 32-node Ethernet switched cluster. The nodes of the

cluster are Dell Dimension 2400 with a 2.8GHz P4 processor, 128MB of memory, and 40GB

of disk space. All machines run Linux (Fedora) with 2.6.5-1.358 kernel. The Ethernet card

in each machine is Broadcom BCM 5705 with the driver from Broadcom. These machines

are connected to Dell PowerConnect 2224 and Dell PowerConnect 2324 100Mbps Ethernet

switches.

To evaluate the pipelined broadcast schemes, automatic routine generators are developed.

These generators take the topology information as input and automatically generate cus-

tomized MPI Bcast routines that employ pipelined broadcast with different contention-free

broadcast trees. The generated routines are written in C. They use MPICH point-to-point

primitives and are compiled with the mpicc compiler in MPICH with no additional flags in the

evaluation. The generated routines are compared with the original MPI Bcast in LAM/MPI

7.1.1 [44] and MPICH 2-1.0.1 [52]. The code segment for the performance measurement

is shown in Figure 3.31. Multiple iterations of MPI Bcast are measured. Within each

iteration, a barrier is added to prevent pipelined communication between iterations. Since

only broadcasts with msize ≥ 8KB are considered, the barrier overhead is insignificant to
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Figure 3.30: Topologies used in the evaluation

the total communication time. When reporting the performance of pipelined broadcast, by

default, only the results with optimal segment sizes are reported, which are determined by

an automatic tuning system (STAGE-MPI is discussed in the next chapter). Note that, as

shown in Figure 3.36, while the optimal segment sizes are difficult to obtain, a wide range

of segment sizes can yield performance close to the optimal.

MPI Barrier(MPI COMM WORLD);
start = MPI Wtime();
for (count = 0; count < ITER NUM; count ++) {

MPI Bcast(...);
MPI Barrier(...);
}
elapsed time = MPI Wtime() - start;

Figure 3.31: Code segment for measuring MPI Bcast performance

Figure 3.32 shows the performance of pipelined broadcast using different contention-free

trees on topology (1). The performance of pipelined broadcast on topologies (2), (3), (4),

and (5) has a similar trend. As can be seen from the figure, when the message size is large

(≥ 32KB), the linear tree offers the best performance. For medium sized messages (8KB to

16KB), the binary tree offers the best performance. In all experimental settings, the 3-ary

73



 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

32K16K8K

C
om

pl
et

io
n 

tim
e 

(m
s)

Message size (bytes)

3-ary tree
Binary tree
Linear tree

Pingpong/2

(a) Medium sized messages

 0

 100

 200

 300

 400

 500

 600

2M1M512K256K128K64K

C
om

pl
et

io
n 

tim
e 

(m
s)

Message size (bytes)

3-ary tree
Binary tree
Linear tree

Pingpong/2

(b) Large sized messages

Figure 3.32: Performance of pipelined broadcast with different broadcast trees on topology
(1)

tree is always worse than the binary tree, which confirms that k-ary trees, k > 2, are not

effective. In the rest of the performance evaluation, only the performance of the linear tree

and the binary tree is shown. The line titled “pingpong/2” in Figure 3.32 shows the time to

send a single message of a given size between two machines, that is, T (msize). When the

message size is large (≥ 256KB), the communication completion time for linear trees is very

close to T (msize), which indicates that pipelined broadcast with the linear tree is clearly a

good choice for Ethernet switched clusters when the message is large. The time for binary

trees is about twice the time to send a single message.

Figures 3.33 and 3.34 compare the performance of pipelined broadcast using contention-

free trees with the algorithms used in LAM/MPI and MPICH on topologies (1), (4), and

(5). The results for topologies (2) and (3) are similar to those for topology (4). Since all

algorithms run over MPICH except LAM, a binomial tree implementation (the algorithm

used in LAM) over MPICH is also included in the comparison. MPICH uses the scatter

followed by all-gather algorithm for large messages (> 12KB) and the binomial tree for

small messages. When the message size is reasonably large (≥ 8KB), the pipelined broadcast

routines significantly out-perform the none-pipelined broadcast algorithms used in LAM and

MPICH. For topology (1) and (4), when the message size is large (≥ 512KB), MPICH has
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similar performance to the pipelined broadcast using binary trees. This is compatible with

the analysis in Section 3.4.1 that both should have a completion time of around 2×T (msize).

However, pipelined broadcast with linear trees is about twice as fast as MPICH when

msize ≥ 512KB. For topology (5), MPICH performs much worse than pipelined broadcast

with binary trees. This is because the MPICH all-gather routine uses topology unaware

algorithms and its performance is sensitive to the physical topology. Note that the MPICH

all-gather routine changes algorithms when the broadcast message size is 512KB. Hence, the

performance curve for MPICH is non-continuous at this point (512KB) for some topologies.
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Figure 3.33: Performance of different broadcast algorithms (medium sized messages)

Figure 3.35 compares pipelined broadcast using contention-free trees with that using

topology unaware trees. In the comparison, the topology unaware linear tree in [61, 78] is
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Figure 3.34: Performance of different broadcast algorithms (large sized messages)

used: n0 → n1 → ... → nP−1 (n0 is the root). For topology unaware binary trees, the

complete binary tree is assumed, where node nk has children n2k+1 and n2k+2 and parent

n k−1

2

. For topology (2), the topology unaware linear tree happens to be contention free. As

a result, its performance is exactly the same as the contention-free linear tree. However, for

topology (5), this is not the case, the topology unaware linear tree incurs significant network

contention and its performance is much worse than the contention-free linear tree. For

example, for broadcasting 1MB data on topology (5), the communication completion time is

58.4ms for the contention-free linear tree and 209.1ms for the topology unaware linear tree.

The contention-free tree is 258% faster than the topology unaware tree. Topology unaware

binary trees cause contention in all topologies except topology (1) in the experiments and
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Figure 3.35: Contention-free broadcast trees versus topology unaware broadcast trees
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Figure 3.36: Pipelined broadcast using linear trees with different segment sizes

their performance is significantly worse than the contention-free binary trees. These results

indicate that to achieve high performance, contention-free broadcast trees must be used.

One of the important issues in pipelined broadcast is how to find a segment size that

can achieve good performance. Figure 3.36 shows the impacts of segment sizes on the

performance of pipelined broadcast with contention-free linear trees. The results for pipelined

broadcast with binary trees have a similar trend. These figures indicate that pipelined

broadcast is not very sensitive to the segment size. Changing from a segment size of 0.5KB
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to 2KB does not significantly affect the performance, especially in comparison to using a

different algorithm. While finding the optimal segment size may be hard, deciding one size

that can achieve good performance should not be very difficult since a wide range of segment

sizes can result in near optimal performance.

3.5 Summary

In clusters of workstations where the network contention can significantly degrade the

communication performance, of which Ethernet clusters are examples, developing efficient

communication algorithms requires the consideration of the network topology. The perfor-

mance evaluation studies of the generated routines for the all-to-all, all-gather, and broadcast

operations show that the proposed topology-specific algorithms can in many cases out-

perform the ones included in the original LAM/MPI [44] and MPICH [52] libraries.

A natural question that may arise is whether or not such topology-specific communication

algorithms are enough to achieve high performance in all cases. To discuss this issue, let

us consider the following experiment. Using the same experimental setup and performance

measurement scheme described in Section 3.2.4, the performance of three different all–to–all

algorithms, including a topology-specific one, is considered on the same 32-node Ethernet

cluster with a different topology configuration, which is shown in Figure 3.37. The topology-

unaware algorithms used in the experiment are pair and ring while the topology-specific

algorithm is sender-all. The pair algorithm partitions the all-to-all communication into p−1

steps (phases). In step i, node j sends/receives a message from/to node i ⊕ j (exclusive or).

The ring algorithm is similar to the pair algorithm except that, in each step, node j sends

a messages to node (j + i) mod p and receives a message from node (j − i) mod p. Details

about the topology-specific algorithm can be found in Section 3.2.3.
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Figure 3.37: Example topology

The results of the experiment are shown in Table 3.8. For this particular topology, the
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Table 3.8: Completion time of different all–to–all algorithms

msize ring pair sender-all
2KB 44.83ms 56.60ms 116.7ms
4KB 93.00ms 103.1ms 160.4ms
8KB 184.0ms 198.2ms 266.0ms
16KB 366.1ms 395.0ms 446.3ms
32KB 731.0ms 783.1ms 830.0ms
64KB 1696ms 1881ms 1731ms
128KB 3383ms 3863ms 3626ms
256KB 5914ms 6254ms 6130ms
512KB 11.66s 15.60s 12.33s
1MB 23.41s 26.60s 25.09s

most efficient communication algorithm to realize the all–to–all operation across all message

sizes is the ring algorithm. The table shows that the topology-specific algorithm (Sender-

all) did not perform as well as the ring algorithm for the different message sizes, including

large ones, although it can theoretically achieve the maximum bandwidth efficiency when the

message size is sufficiently large. The results illustrate the following two important issues.

First, the use of topology-specific communication algorithms can achieve high performance

in many situations. However, there are situations (such as this particular topology) in which

other algorithms, including topology-unaware ones, may actually offer higher performance.

This indicates that developing platform-specific communication algorithms is important but

not enough to always achieve the best performance. In any given situation, there are other

factors besides the network topology that can significantly affect the performance of a

communication algorithm. Second, the most efficient algorithm for one situation may be

vastly different from that of another. To obtain an efficient collective routine, it is necessary

to (1) have different communication algorithms that can potentially achieve high performance

in different situations and (2) to be able to select the most efficient algorithm for a given

situation.
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CHAPTER 4

DELAYED FINALIZATION OF MPI COLLECTIVE

COMMUNICATION ROUTINES

For collective communication routines to achieve high performance across platforms and

applications, they must be able to adapt to platform and/or application configurations: the

most efficient algorithm for a given configuration may be vastly different from that for a

different configuration. The challenges in developing efficient MPI collective communication

routines lie not so much in the development of an individual algorithm for a given situation.

In fact, many efficient algorithms for various operations have been developed for different

networks and different topologies. The major challenge lies in the mechanism for a library

routine to adapt to platform and/or application configuration and to find the most efficient

algorithm for a given configuration.

In this chapter, a new library implementation paradigm that allows MPI libraries to be

more adaptive is proposed. This new approach is called the delayed finalization of MPI

collective communication routines (DF). The idea of the DF approach is to decide the

communication algorithms that will be used to carry out a collective operation after the

platform and/or the application are known, which allows for applying architecture and/or

application specific optimizations. A DF library includes two components: (1) an extensive

set of communication algorithms; and (2) an automatic algorithm selection mechanism that

performs the selection (or tuning) process on the algorithms to find the best communication

algorithms for a given configuration. As mentioned previously, the implementation paradigm

for a DF library is different from that for traditional MPI libraries. In particular, the DF

library developers only implement the communication algorithms and the mechanisms to

select the algorithms. They do not make decisions about which algorithms to use in an

operation. The final communication algorithms for an operation are automatically selected
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by the algorithm selection mechanism. Figure 4.1 shows a high level view of a DF library.

Algorithms
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Figure 4.1: High level view of a DF library

In contrast with traditional MPI libraries that only use platform-unaware communication

algorithms, the algorithm repository of a DF library contains, for each operation, platform-

specific communication algorithms in addition to an extensive set of platform-unaware

communication algorithms. These communication algorithms are specifically optimized for

the particular platform and can potentially achieve high performance in different situations.

Armed with the algorithm repository, a DF library uses an automatic algorithm selection

mechanism to select the best algorithm for an operation in a given situation. Many

algorithm selection schemes can be used. One example is to use a performance model

to predict the performance of the communication algorithms in a particular situation and

select the algorithm based on the prediction results. This model based approach can

be very complicated since there are many factors that can affect the performance, and

these factors can sometimes be very difficult to model. This thesis investigates the use

of an empirical approach for the algorithm selection mechanism, where the performance

of different communication algorithms is measured empirically and the best algorithm is

selected based on the measured results. The employed empirical techniques in this thesis,

which are variations of Automatic Empirical Optimization of Software (AEOS) [82], allows

the aggregate effect of all factors that affect the performance of communication algorithms

to be summarized in the measurements and used in the algorithm selection process.

To study the effectiveness of the DF approach and investigate the difficulties in im-
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plementing a DF library, two prototype DF libraries are developed. The first prototype

DF library is the Static Tuning and Automatic Generation of Efficient MPI collective

routines (STAGE-MPI) system [20]. STAGE-MPI is a system consisting of an algorithm

repository and a static empirical approach that performs the selection or tuning process at

the library installation time. For each supported collective operation, STAGE-MPI examines

the performance of different algorithms across different message sizes and decides the best

algorithms, finds the message size range for each of the best algorithms, and automatically

generates a final MPI routine that may include different algorithms for different message size

ranges. The second prototype DF library consists of Self Tuned Adaptive Routines for MPI

collective operations (STAR-MPI) [22]. The routines in STAR-MPI are capable of carrying

out the tuning process dynamically at run-time as the application executes. When a STAR-

MPI routine is invoked in an application, an algorithm from STAR-MPI repository is chosen

to realize the invocation and its performance is measured. After sufficient invocations of

the routine and examining the performance of all algorithms, the best performing algorithm

based on the measured results is used to realize the subsequent invocations.

This chapter is organized as follows. Section 4.1 discusses the STAGE-MPI [20] system.

Section 4.2 discusses the application behavior and its impacts on collective operations [21]

as a motivation for the STAR-MPI [22] library that is presented in Section 4.3. Finally,

Section 4.4 summarizes the chapter.

4.1 STAGE-MPI

STAGE-MPI [20] is one realization of the DF approach. It integrates the two DF components:

an algorithm repository and an automatic selection mechanism. The algorithm repository

of STAGE-MPI includes topology-specific communication algorithms in addition to an

extensive set of topology-unaware communication algorithms for each supported MPI

collective operation. The topology-specific algorithms are automatically generated by routine

generators included in STAGE-MPI. The automatic selection mechanism in STAGE-MPI is

a variation of the Automated Empirical Optimization of Software (AEOS) technique [82],

and it is used to select the best communication algorithm among the different algorithms

in the repository. Using STAGE-MPI, the algorithm selection (tuning) process is performed

at library installation time, where all algorithms for an operation are executed and their
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performance is measured, and the best performing algorithms are determined for different

situations based on the measured results. The integration of the algorithm repository and the

empirical selection mechanism enables STAGE-MPI to adapt to different architectures and

construct efficient collective communication routines that are customized to the architectures.

Because the repository includes topology-specific algorithms designed for Ethernet

switched clusters, STAGE-MPI achieves the best performance on Ethernet clusters. How-

ever, STAGE-MPI can also run on other platforms that support either LAM/MPI [44] or

MPICH [52]. For these platforms, only the platform-unaware algorithms are included in its

repository. The system currently tunes the following MPI collective communication routines:

MPI Alltoall, MPI Alltoallv, MPI Allgather, MPI Allgatherv, MPI Allreduce, MPI Bcast,

and MPI Reduce. The routines produced by the system run on either LAM/MPI [44] or

MPICH [52]. As will be shown later, evaluating the performance of the generated tuned

routines shows that they are very robust and yield good performance for clusters with

different network topologies. The tuned routines sometimes out-perform the routines in

LAM/MPI and MPICH to a very large degree. In the following, the STAGE-MPI system is

described first, and the performance evaluation of the system is presented second.

4.1.1 The System
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Figure 4.2: System overview
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As shown in Figure 4.2, there are five major components in STAGE-MPI: the ex-

tensible topology/pattern specific routine generator, the extensible algorithm repository,

the search heuristics, the extensible timing mechanisms, and the drivers. The extensi-

ble topology/pattern specific routine generator takes topology description and sometimes

pattern description and generates topology/pattern specific routines. For MPI Alltoall,

MPI Allgather, MPI Allreduce, MPI Reduce, and MPI Bcast, only the topology description

is needed. The pattern description is also needed for MPI Alltoallv and MPI Allgatherv. This

module is extensible in that users can provide their own routine generators with their own

topology descriptors and pattern descriptors to replace STAGE-MPI built-in generators.

For each supported MPI routine, the algorithm repository contains an extensive set of

algorithms to be used in the tuning process. These algorithms include STAGE-MPI built-in

topology/pattern unaware algorithms, topology/pattern specific algorithms generated by the

routine generator module, and the results from the individual algorithm tuning drivers. Each

routine in the repository may have zero, one, or more algorithm parameters. The repository

is extensible in that it allows users to add their own implementations. The search heuristics

determine the order in the search of the parameter space for deciding the best values for

algorithm parameters. The extensible timing mechanisms determine how the timing results

are measured. The timing results are used to guide the selection of the algorithms. This

module is extensible in that users can supply their own timing mechanisms. The driver

module contains individual algorithm tuning drivers and the overall tuning driver. The

individual algorithms’ tuning drivers tune algorithms with parameters, produce routines

with no parameters (parameters are set to optimal values), and store the tuned routines

back in the algorithm repository. The overall tuning driver considers all algorithms with no

parameters and produces the final tuned routine. Next, each module will be described in

more details.

4.1.1.1 Algorithm Repository

Before discussing the communication algorithms, the cost model that is used to give a rough

estimate of the communication performance for the algorithms is described. It must be

noted that some parameters in the cost model that can contribute significantly to the overall

communication costs, such as sequentialization costs and network contention costs described

below, are very difficult to quantify. In practice, they cannot be measured accurately since
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they are non-deterministic in nature. As a result, this cost model can be only used to

justify the selection of algorithms in STAGE-MPI repository, but cannot be used to predict

accurately which algorithm will be most effective for a given platform setting. STAGE-

MPI uses an empirical approach to select the most effective implementations, and can even

operate without the cost model.

Cost Model

A simple model to estimate the cost of collective communication algorithms has been widely

used [77]. This simple model assumes that the time taken to send a message between any two

nodes can be modeled as α + nβ, where α is the startup overhead (software overheads plus

hardware delay), β is the per byte transmission time, and n is the number of bytes transferred.

The simple model also assumes that communications between different pairs are unaware

of each other, which is somewhat inaccurate for the all–to–all type of communications.

When the message size is large, network contention may be the single factor that dominates

the communication time. Barriers are often introduced in the communication operation to

alleviate the network contention problem. To model the communications more accurately,

these factors need to be taken into consideration. Let p be the number of processes. A

slightly more complex model that reflects the following costs is used.

• Per pair communication time. The time taken to send a message of size n bytes between

any two nodes can be modeled as α + nβ, where α is the startup overhead, and β is the per

byte transmission time.

• Sequentialization overhead. Some algorithms partition the all-to-all type of communication

into a number of phases. A communication in a phase can only start after the completion

of some communications in the previous phases. This sequentialization overhead may limit

the parallelism in the communication operation. The term θ denotes the sequentialization

overhead between 2 phases. For a communication with m phases, the sequentialization

overhead is (m− 1)θ.

• Synchronization overhead. There are two types of synchronizations in the algorithms:

light-weight δl and heavy-weight δh. A light-weight barrier ensures that a communication

happens before another while a heavy-weight barrier uses a system wide synchronization by

calling MPI Barrier. In most cases, δh is larger than δl, which is larger than θ.

• Contention overhead. Contention can happen in three cases: node contention γn when
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multiple nodes send to the same receiver, link contention γl when multiple communications

use the same network links, and switch contention γs when the amount of data passing a

switch is more than the switch capacity. The term γ = γn + γl + γs denotes the sum of all

contention costs.

Using this model, the time to complete a collective communication is expressed in the

above five terms (α, β, θ, δ, and γ). The startup time and sequentialization overhead terms

are important in algorithms for small messages while the bandwidth, synchronization costs,

and contention overhead terms are important in algorithms for large messages.

In the rest of the following, p denotes the number of processes and n denotes the

message size (passed as a parameter to routines MPI Alltoall, MPI Allgather, MPI Allreduce,

MPI Bcast, and MPI Reduce, that is, n = sendcount ∗ size of element). Each node in

the system can send and receive a message simultaneously, which is typical in Ethernet

switched clusters. In the following, it is assumed by default that an algorithm does not have

parameters, unless specified otherwise.

Algorithms for MPI Alltoall

Simple algorithm. This algorithm basically posts all receives and all sends, starts the

communications, and waits for all communications to finish. Let i → j denote the

communication from node i to node j. The order of communications for node i is i → 0,

i→ 1, ..., i→ p− 1. The estimated time for this algorithm is (p− 1)(α + nβ) + γ.

Spreading Simple algorithm. This is similar to the simple algorithm except that the order

of communications for node i is i → i + 1, i → i + 2, ..., i → (i + p − 1) mod p. This

communication order may potentially reduce node contention. The estimated time is the

same as that for simple algorithm except that the γ term might be smaller.

2D mesh algorithm. This algorithm organizes the nodes as a logical x × y mesh and

tries to find the factoring such that x and y are close to
√

p. The all–to–all operation is

carried out first in the x dimension and then in the y dimension. For all data to reach

all nodes, the all–to–all operation is actually an all-gather operation that collects all data

from each node to all nodes in each dimension. Thus, assuming x = y =
√

p, the message

size for the all-gather operation in the x dimension is pn and the message size for the all-

gather operation in the y dimension is p
√

pn. The estimated time for this algorithm is

(
√

p − 1)(α + pnβ) + (
√

p − 1)(α + p
√

pnβ) + θ + γ = 2(
√

p − 1)α + (p − 1)pnβ + θ + γ.
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Compared to the simple algorithms, the 2D mesh algorithm sends fewer messages, but more

data. There is a θ term in the estimated time since communications are carried out in two

phases.

3D mesh algorithm. This algorithm organizes the nodes as a logical x×y×z mesh. Assume

x = y = z = 3
√

p. The estimated time is 3( 3
√

p − 1)α + (p − 1)pnβ + 2θ + γ. Compared to

2D mesh algorithm, this algorithm sends fewer messages, but consists of three phases, which

introduce a 2θ sequentialization overhead.

Recursive doubling (rdb) algorithm. When the number of processes is a power of two,

the recursive doubling algorithm is the extension of the 2D mesh and 3D mesh algorithms

to the extreme: a lg(p)-dimensional mesh with 2 nodes in each dimension. This algorithm

first performs an all-gather operation to collect all data from all nodes to each node. Each

node then copies the right portion of the data to its receiving buffer. Details about recursive

doubling can be found in [77]. When the number of nodes is a power of two, the estimated

time is lg(p)α+(p− 1)pnβ +(lg(p)− 1)θ + γ. When the number of processes is not a power

of two, the cost almost doubles [77]. Compared to the 3D mesh algorithm, this algorithm

has a smaller startup time, but larger sequentialization overhead.

Bruck algorithm. This is another lg(p)-step algorithm that sends less extra data in

comparison to the recursive doubling algorithm. Details can be found in [7, 77]. When the

number of processes is a power of two, the estimated time is lg(p)α+ np

2
lg(p)β+(lg(p)−1)θ+γ.

This algorithm also works with slightly larger overheads when the number of processes is

not a power of two.

The above algorithms are designed for communication of small messages. Thus, the

bandwidth and the contention terms in the estimated time are insignificant. To achieve

good performance, the best trade-off must be found between the startup overhead and the

sequentialization overhead. Next, algorithms designed for large messages are discussed.

Ring algorithm. This algorithm partitions the all-to-all communication into p − 1 steps

(phases). In step i, node j sends a messages to node (j + i) mod p and receives a message

from node (j − i) mod p. Thus, this algorithm does not incur node contention if all phases

are executed in a lock-step fashion. Since different nodes may finish a phase and start a new

phase at different times, the ring algorithm only reduces the node contention (not eliminates

it). The estimated time is (p− 1)(α + nβ) + (p− 2)θ + γn + γs + γl.

Ring with light barrier algorithm. This algorithm adds light-weight barriers between the
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communications in different phases that can potentially cause node contention and eliminates

such contention. The estimated time is (p−1)(α+nβ)+(p−2)δl +γs +γl. Compared to the

ring algorithm, this algorithm incurs overheads for the light-weight barriers while reducing

the contention overheads.

Ring with MPI barrier algorithm. The previous algorithm allows phases to proceed

in an asynchronous manner which may cause excessive data injected into the network.

The ring with MPI barrier algorithm adds an MPI barrier between two phases and makes

the phases execute in a lock-step fashion, resulting in a less likely switch contention. The

estimated time is (p− 1)(α + nβ) + (p− 2)δh + γl. Compared to the ring with light barrier

algorithm, this algorithm incurs heavy-weight synchronization overheads while reducing the

switch contention overheads.

Ring with N MPI barriers algorithm. Adding a barrier between every two phases may

be an over-kill and may result in the network being under-utilized since most networks and

processors can effectively handle a certain degree of contention. The ring with N MPI barriers

algorithm adds a total of 1 ≤ N mpi barrier ≤ p− 2 barriers in the whole communication

(a barrier is added every p−1
N mpi barrier+1

phases). This allows the contention overheads and

the synchronization overheads to be compromised. The estimated time for this algorithm

is (p− 1)(α + nβ) + Nδh + γn + γs + γl. This algorithm has one parameter, the number of

barriers (N mpi barrier). The potential value is in the range of 1 to p− 2.

Pair algorithm. The algorithm only works when the number of processes is a power of two.

This algorithm partitions the all-to-all communication into p − 1 steps. In step i, node j

sends and receives a message to and from node j ⊕ i (exclusive or). The estimated time is

the same as that for the ring algorithm. However, in the pair algorithm, each node interacts

with one other node in each phase compared to two in the ring algorithm. The reduction of

the coordination among the nodes may improve the overall communication efficiency. Similar

to the ring family algorithms, there are pair with light barrier, pair with MPI barrier,

and pair with N MPI barriers algorithms.

The ring family and the pair family algorithms try to remove node contention and

indirectly reduce other contention overheads by adding synchronizations to slow down

communications. These algorithms are topology-unaware and may not be sufficient to

eliminate link contention since communications in one phase may share the same link in

the network. The topology-specific algorithm removes link contention by considering the
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network topology.

Topology-specific algorithm. A message scheduling algorithm that was developed in

Section 3.2 is used. This algorithm finds the optimal message scheduling by partitioning the

all–to–all communication into phases such that communications within each phase do not

have contention, and a minimum number of phases are used to complete the communication.

The estimated time for this algorithm depends on the topology.

Algorithms for MPI Allgather

Since the MPI Allgather communication pattern is a special all–to–all communication

pattern, most of the all–to–all algorithms can be applied to perform an all-gather operation.

STAGE-MPI includes the following all-gather algorithms that work exactly like their all-

to-all counterparts (same estimated time), simple, spreading simple, ring, ring with

light barrier, ring with MPI barrier, ring with N MPI barriers, pair, pair with

light barrier, pair with MPI barrier, and pair with N MPI barriers. The following

all-gather algorithms have different estimated times from their all–to–all counterparts: 2D

mesh with an estimated time of 2(
√

p−1)α+(p−1)nβ+θ+γ, 3D mesh with an estimated

time of 3( 3
√

p−1)α+(p−1)nβ+2θ+γ, and Recursive doubling (rdb). When the number

of processes is a power of two, the estimated time of rdb is lg(p)α+(p−1)nβ+(lg(p)−1)θ+γ.

The repository also includes the following algorithms:

Bruck algorithm. The bruck all-gather algorithm is different from the bruck all-to-all

algorithm. Details can be found in [7, 77]. When the number of processes is a power of

two, the estimated time is similar to the recursive doubling algorithm. The time is better

than that of recursive doubling when the number of processes is not a power of two.

Gather-Bcast algorithm. This algorithm first gathers all data to one node and then

broadcasts the data to all nodes. Assume that the gather and broadcast operations use

the binary tree algorithm, the estimated time is lg(p)(α + nβ) + (lg(p)− 1)θ + γ for gather

and lg(p)(α + pnβ) + (lg(p)− 1)θ + γ for broadcast.

Topology-specific algorithm. The topology-specific logical ring (TSLR) all–gather algo-

rithm that was developed in Section 3.3 is used. The algorithm constructs a contention-free

logical ring pattern. To complete an all–gather operation, the algorithm repeats the logical

ring communication pattern p− 1 times. In the first iteration, each node sends its own data

to the next adjacent node in the logical ring. In the following iterations, each node forwards
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what it received in the previous iteration to its adjacent node. Details about this algorithm

can be found in Section 3.3. The estimated time is (p−1)(α+nβ)+(p−2)θ+γs. Note that

MPICH [52] uses a topology- unaware logical ring (LR) algorithm that operates in the same

way as the TSLR algorithm. However, without considering the network topology, the ring

pattern in the MPICH algorithm may result in severe network contention, which degrades

the performance.

Algorithms for MPI Allreduce

The implementations for MPI Allreduce assume the reduction operation is commutative.

Reduce-Bcast algorithm. The algorithm first performs a reduction to a node and then

broadcasts the results to all nodes. The completion time depends on the reduce and broadcast

routines.

All-gather based algorithm. The algorithm first gathers all data to all nodes. Then, each

node performs the reduction locally. This algorithm uses the tuned MPI Allgather routine,

which can be topology-specific. The time for this algorithm depends on the tuned all–gather

routine.

Recursive doubling (rdb) algorithm. This algorithm is similar to the all-gather based

algorithm except that the reduction operation is performed while the data are being

distributed. Since the computation costs are ignored, the estimated time is the same as

recursive doubling for all-gather.

MPICH Rabenseifner (MPICH Rab) algorithm. This algorithm completes in two

phases: a reduce-scatter followed by an all-gather. The reduce-scatter is realized by recursive

halving, which has a similar estimated time as recursive doubling. The all-gather is realized

by recursive doubling. The time for this algorithm is roughly 2 times that of rdb algorithm

for all-gather with a message size of n
p
. More details about the algorithm can be found in

[64].

Rabenseifner variation 1 (Rab1) algorithm. This is a Rabenseifner algorithm with the

all-gather operation performed using the tuned all-gather routine. This algorithm may be

topology-specific since the tuned all-gather routine may be topology specific.

Rabenseifner variation 2 (Rab2) algorithm. In this variation, the reduce-scatter

operation is realized by the tuned all–to–all routine with a message size of n
p

and the all–

gather operation is realized by the tuned all–gather routine with a message size of n
p
.
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Algorithms for MPI Bcast

Linear tree algorithm. Let p0 be the root of the broadcast. The algorithm follows a store-

and-forward communication pattern: p0 → p1 → ... → pp−1. The broadcast message is sent

from p0 to p1 first, p1 to p2 second, and so forth until the message reaches the last processor

pp−1. The estimated time for this algorithm is (p− 1)(α + nβ).

Flat tree algorithm. In this algorithm, the root sequentially sends the broadcast message

to each of the receivers. Thus, the estimated time is (p− 1)(α + nβ).

Binomial tree algorithm. The broadcast operation in this algorithm follows a hypercube

communication pattern and the total number of messages the root sends is lg(p). Hence,

the completion time is lg(p)(α + nβ) + γl + γs. Details about this algorithm can be found in

[28, 49].

Scatter-Allgather algorithm. Using this algorithm, a broadcast operation is realized by a

scatter operation followed by an all–gather operation. First, the message is distributed to

the p processors, where each processor gets n
p

message. After that, an all–gather operation

is performed to combine the n
p

messages to all nodes. The total completion time for this

algorithm depends on the all–gather routine.

Topology-specific algorithms. There are two topology-specific algorithms: pipelined linear

tree and pipelined binary tree. These algorithms are intended for broadcasts of large

messages. Let H be the height of the logical broadcast tree and D be the nodal degree.

In pipelined broadcast, the broadcast message can be broken into X messages each of size

n
X

. The total time to complete the pipelined communication is roughly (X + H − 1)× (D×
(α + n

X
β)). When the message size is very large, the startup cost α can be ignored, and X

can be much larger than H−1. Thus, the completion time is roughly X×D× n
X

β ≈ D×nβ.

Thus, when using a logical linear tree (D = 1), the broadcast completion time is roughly nβ,

and in the case of a binary tree (D = 2), the completion time is 2nβ. Detailed discussion of

the two algorithms can be found in Section 3.4.

Algorithms for MPI Reduce

The communication in the reduction operation is the reverse of that in the broadcast

operation: nodes send messages to root. Hence, all broadcast algorithms can be used to

perform the reduce operation with the communication in the reversed direction. Note that

since messages are sent from multiple nodes to the root at the same time, node contention
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can be imminent. In addition, depending on the communication algorithm, link and switch

contention can occur.

Linear tree algorithm. Let p0 be the root of the reduce operation. The algorithm operates

as follows: pp−1 sends its data to pp−2 who will perform the reduction operation on its own

data and the received data; pp−2 sends the new reduced data to pp−3, which in turn applies

the reduction on its own data and received data. The process continues until p0 receives the

so far reduced data and performs the reduction operation on it. The estimated time for this

algorithm is (p− 1)(α + nβ).

Flat tree algorithm. This algorithm is similar to the version used in the broadcast operation.

The difference is that the root sequentially receives the message to be reduced from each

of the senders. The estimated time is (p − 1)(α + nβ) + γ. Note that, unlike the flat tree

broadcast algorithm, contention (γn + γl + γs) may occur in this algorithm as nodes send

their data to the root.

Binomial tree algorithm. This is also similar to the version used in the broadcast operation

except that the data flows in the opposite direction: from nodes to root. The completion

time is lg(p)(α + nβ) + γ.

MPICH Rabenseifner (MPICH Rab) algorithm. This algorithm is similar to the one

used for the all-reduce operation. The algorithm completes in two phases: a reduce-scatter

followed by a gather. The reduce-scatter is realized by recursive halving while the gather is

realized by binomial tree. More details of the algorithm can be found in [64].

Topology-specific algorithms. Similar to the pipelined algorithms for the broadcast

operation, there are pipelined linear tree and pipelined binary tree algorithms for the reduce

operation. Note that the reduction operation is applied at intermediate nodes as the pipelined

data segments flow towards the root. The estimated time for the algorithms is the same as

the ones used in the broadcast operation, with the addition of the computation cost of

performing the reduction operation.

Algorithms for MPI Alltoallv

Most of the topology-unaware all–to–all algorithms can be used to realize the MPI Alltoallv

operation. STAGE-MPI contains the all–to–allv version of the following all–to–all algo-

rithms: simple, spreading simple, and the ring and pair families algorithms.

Topology-specific algorithms. There are two topology-specific MPI Alltoallv algorithms:
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greedy algorithm and all–to–all based algorithm. These two algorithms are extensions

of the algorithms with the same names in the CCMPI package developed in [38]. Since

MPI Alltoallv supports many-to-many communication with different message sizes, there

are three issues in realizing this communication: balancing the load, reducing network

contention, and minimizing the number of phases. The greedy algorithm focuses on balancing

the load and reducing network contention while the all–to–all based algorithm considers all

three issues when scheduling messages. Details about these algorithms can be found in [38].

Algorithms for MPI Allgatherv

Most of the topology-unaware all-gather algorithms are extended to the all-gatherv oper-

ation. The algorithms include the simple, recursive doubling, ring and pair families

algorithms. The topology-specific algorithm is based on the topology-specific all-gather

algorithm.

4.1.1.2 Timing Mechanisms

The timing mechanisms constitute the most critical component in STAGE-MPI as it decides

how the performance of a routine is measured. Since the measurement results are used to

select the best algorithms, it is essential that the timing mechanism gives accurate timing

results. Unfortunately, the performance of a communication routine depends largely on the

application behavior. STAGE-MPI makes the timing module extensible, which allows users

to supply application specific timing mechanisms that can closely reflect the application

behavior. In addition, STAGE-MPI has three built-in timing mechanisms from which users

can select the one that best matches their needs. These built-in timing mechanisms are

variations of the Mpptest approach [32], and the timing results of these mechanisms are

fairly consistent and repeatable for the routines STAGE-MPI currently supports.

Figure 4.3 shows a code segment for each of the different built-in timing mechanisms

supported in STAGE-MPI. Part (a) of the figure represents the plain Mpptest scheme, where

the performance of multiple invocations of a routine is measured. Part (b) shows the Mpptest

+ barrier scheme. In this scheme, a barrier is added within each iteration to prevent pipelined

communication between the iterations. Finally, Part (c) describes the Mpptest + computation

performance measurement scheme. To resemble the interaction between computations and

communications in real applications, in this scheme, a computation code segment is added
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MPI_Barrier(MPI_COMM_WORLD)
start = MPI_Wtime();
for (i = 0;  i < ITER;  i++)
     MPI_Alltoall(..);
elapsed = MPI_Wtime() − start;

for (i = 0;  i < ITER;  i++){
MPI_Barrier(MPI_COMM_WORLD)
start = MPI_Wtime();

     MPI_Alltoall(..);
elapsed += (MPI_Wtime() − start);

}

elapsed = 0;

(a) Mpptest (b) Mpptest + barrier

(c) Mpptest + computation

for (i = 0;  i < ITER;  i++){
elapsed = 0;

}

        a[k] = b[k+1] + a[k−1];
   for (k = 0; k  < 1000; k++)
for (j = 0;  j < BOUND;  j++)

start = MPI_Wtime();
     MPI_Alltoall(..);

elapsed += (MPI_Wtime() − start);

/* computation */

Figure 4.3: Three different built-in timing mechanisms in STAGE-MPI

within each iteration. As shown in the figure, the execution time for the computation can

be controlled by setting the variable BOUND.

4.1.1.3 Search Heuristics

The search heuristics decide the order that the parameter space is searched to find the

best algorithm parameters, which decide the time to tune a routine. In STAGE-MPI, the

ring with N MPI barriers and pair with N MPI barriers algorithms have one algorithm

parameter, N mpi barrier, which has a small solution space. Similarly, pipelined linear and

binary tree algorithms for the broadcast and reduce operations have one algorithm parameter,

segment size, of small solution space. STAGE-MPI only supports a linear search algorithm,

that is, deciding the best solution for each parameter by linearly trying out all potential

values. STAGE-MPI handles multiple parameters cases by assuming that the parameters

are independent from each other. The linear search algorithm is sufficient for STAGE-MPI.

4.1.1.4 Drivers

The process for tuning MPI Alltoall, MPI Allgather, MPI Allreduce, MPI Reduce, and

MPI Bcast is different from that for tuning MPI Alltoallv and MPI Allgatherv, and that
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is depicted in Figure 4.4. The process contains four steps. In the first step, STAGE-MPI

prompts the user for inputs, which include (1) the routine(s) to tune, (2) whether to consider

topology-specific routines, (3) which routine generator to use (users can choose the built-in

generator or supply their own generator), (4) the topology description file, (5) the timing

mechanism (users can choose among the built-in ones or supply their own timing program).

In the second step, STAGE-MPI generates the topology-specific routines if requested. In

the third step, algorithms with parameters are tuned. The tuning is carried out as follows.

First, for a set of fixed message sizes (currently set to 1B, 64B, 512B, 1KB, 2KB, 4KB,

8KB, 16KB, 32KB, 64KB, 128KB, and 256KB), the linear search algorithm is used to

find the best performing value for each parameter for each of the sizes. STAGE-MPI then

examines each pair of adjacent message sizes. If the best parameter values are the same

for the two sizes, STAGE-MPI will use the parameter values for all message sizes in the

range between the two sizes. If different best parameter values are used for the two points

of the message sizes, a binary search algorithm is used to decide the crossing point where

the parameter value should be changed. For each operation, STAGE-MPI assumes the same

algorithm when the message size is larger than or equal to 256KB. This step generates a

tuned routine for the particular algorithm with the best parameter values set for different

ranges of message sizes. This tuned routine is stored back in the algorithm repository as

an algorithm without parameters. In the last step, all algorithms with no parameters are

considered. The process is similar to that in step 3. The only difference is that instead of

tuning an algorithm with different parameter values, this step considers different algorithms.

Figure 4.5 (a) shows an example of the final generated all-to-all routine.

When tuning MPI Alltoallv and MPI Allgatherv, STAGE-MPI also asks for the pattern

description file in addition to other information. The routine generator uses both the

topology and pattern information and produces a routine for the specific topology and

pattern. Tuning algorithms with parameters in the third step is straight-forward, STAGE-

MPI just measures the performance of all potential values for a parameter for the specific

pattern and decides the best parameter values. Finally, the last step considers all algorithms

and selects the best algorithm. STAGE-MPI potentially generates a different implementation

for each invocation of a routine. To produce a compact routine for an application, STAGE-

MPI allows the pattern description file to contain multiple patterns, which may correspond

to the sequence of invocations of the routine in the application. This pattern file can be
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Step 1: Prompt the user for the following information:
1.1 which routine to tune;
1.2 whether or not to include topology-specific routines;
1.3 which routine generator to use;
1.4 the topology description file;
1.5 which timing mechanism to use;

Step 2: Generate the topology-specific routines.

Step 3: Tune algorithms with parameters.
3.1 Decide the best parameter values for a set of message sizes

(currently 1B, 64B, 256B, 1KB, 2KB, 4KB, 8KB,
16KB, 32KB, 64KB, 128KB, 256KB).

3.2 Find the exact message sizes when the best
parameter values are changed (binary search).

3.3 Generate one routine with the best parameters set
and store it in the algorithm repository.

Step 4: Final tuning, generate the final routine.
/* only considers algorithms with no parameters */
4.1 Decide the best algorithm for a set of message sizes

(currently 1B, 64B, 256B, 1KB, 2KB, 4KB, 8KB,
16KB, 32KB, 64KB, 128KB, 256KB).

4.2 Find the exact message sizes when the best
algorithms are changed using (binary search).

4.3 Generate the final routine with the best algorithms
selected for different message ranges.

Figure 4.4: A tuning process example

created by profiling the program execution. STAGE-MPI then creates a sequence of tuned

implementations for the sequence of patterns. To reduce the code size, before a tuned routine

is generated for a pattern, the pattern is compared with other patterns whose routines have

been generated. If the difference is under a threshold value, the old tuned routine will be

used for the new pattern. Figure 4.5 (b) shows an example of the final generated all–to–allv

routine for an application.
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int alltoall tuned(...) {
if ((msg size >= 1) && (msg size < 8718))

alltoall simple(...);
else if ((msg size >= 8718) && (msg size < 31718))
alltoall pair light barrier(...);

else if ((msg size >= 31718) && (msg size < 72032))
alltoall pair N mpi barrier tuned(...);

else if (msg size >= 72032)
alltoall pair mpi barrier(sbuff, scount, ...);

}

(a) An example tuned MPI Alltoall routine

int alltoallv tuned(...) {
static int pattern = 0;
if (pattern == 0) {
alltoallv tspecific alltoall(...); pattern++;
} else if ((pattern >= 1) && (pattern < 100)) {
alltoallv ring(...); pattern ++;
} else { MPI alltoallv(...); pattern++; }
}

(b) An example tuned MPI Alltoallv routine

Figure 4.5: Examples of tuned routines

4.1.2 Performance Evaluation

The experiments are performed on a 32-node Ethernet-switched cluster. The nodes of the

cluster are Dell Dimension 2400 with a 2.8GHz P4 processor, 128MB of memory, and 40GB

of disk space. All machines run Linux (Fedora) with 2.6.5-1.358 kernel. The Ethernet card

in each machine is Broadcom BCM 5705 with the driver from Broadcom. These machines

are connected to Dell PowerConnect 2224 and Dell PowerConnect 2324 100Mbps Ethernet

switches.

Experiments on many topologies are conducted. In all experiments, the tuned routines

are robust and offer high performance. Three representative topologies are used to report
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Figure 4.6: Topologies used in the experiments

the results, which are shown in Figure 4.6. Figure 4.6 (a) is a 16-node cluster connected

by a single switch. Clusters connected by a single Ethernet switch are common in practice.

Parts (b) and (c) of the figure show 32-node clusters of different logical topologies but the

same physical topology, each having four switches with 8 nodes attached. Most current

MPI implementations use a naive logical to physical topology mapping scheme. Both of the

logical topologies can be easily created by having different host files. The three topologies

are referred to as topology (a), topology (b), and topology (c).

The performance of the tuned routines is compared with routines in LAM/MPI 6.5.9

and a recently improved MPICH 1.2.6 [77] using both micro-benchmarks and applications.

The tuned routines are built on LAM point-to-point primitives. During the experiments,

MPICH point-to-point primitives were not as efficient as LAM on the experimental platform.

As a result, even though MPICH has more advanced collective communication algorithms

in comparison to LAM, it does not always achieve higher performance. To make a fair

comparison, MPICH-1.2.6 routines are ported to LAM. MPICH-LAM represents the ported

routines. The term TUNED denotes the tuned routines. In the evaluation, TUNED is

compared with LAM, MPICH, and MPICH-LAM.
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Table 4.1: Tuned MPI Alltoall, MPI Allgather, and MPI Allreduce

topo. MPI Alltoall MPI Allgather MPI Allreduce
(a) simple (n < 8718) 2D mesh (n < 10844) tuned all-gather (n < 112)

pair light barrier (n < 31718 ) TSLR (n < 75968) rdb (n < 9468)
pair N MPI barriers (n < 72032) pair MPI barrier (else) Rab1 (n < 60032)
pair MPI barrier (else) MPICH Rab (n < 159468)

Rab2 (else)
(b) bruck (n < 112) 3D mesh (1n < 208) Rab1 (n < 17)

ring (n < 3844) TSLR (else) rdb (n < 395)
ring N MPI barriers (n < 6532) MPICH Rab (n < 81094)
ring light barrier (n < 9968) Rab2 (else)
pair N MPI barriers (n < 68032)
pair MPI barrier (else )

(c) bruck (n < 86) 3D mesh (n < 3999) tuned all-gather (n < 17)
simple (n < 14251) TSLR (else) rdb (n < 489)
pair MPI barrier (else) Rab1 (n < 20218)

Rab2 (else)

4.1.2.1 Tuned Routines & Tuning Time

Table 4.1 shows the tuned MPI Alltoall, MPI Allgather, and MPI Allreduce for topologies

(a), (b), and (c). In this table, the algorithms selected in the tuned routines are sorted in

increasing order based on their applicability to message sizes. This approach allows for using

the message size upper bound to specify the range of the message sizes that an algorithm is

applied in the tuned routine. For example, the pair with light barrier algorithm is applied

in the tuned MPI Alltoall on topology (a) for message sizes from 8718 bytes to 31717 bytes.

For comparison, the algorithms in LAM/MPI and MPICH are depicted in Table 4.2. Since

topologies (a), (b), and (c) have either 16 nodes or 32 nodes, only the algorithms for 16 nodes

or 32 nodes are included in Table 4.2. There are a number of important observations. First,

from Table 4.1, it can be seen that for different topologies, the best performing algorithms

for each operation are quite different, which indicates that the one-scheme-fits-all approach

in MPICH and LAM cannot achieve good performance for different topologies. Second,

the topology-specific algorithms are part of the tuned MPI Allgather and MPI Allreduce

routines for all three topologies. Although the topology specific all-to-all routine is not

selected in the tuned routines for the three topologies, it offers the best performance for

other topologies when the message size is large. These results indicate that using topology-

unaware algorithms alone is insufficient to obtain high performance routines. Hence, an
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empirical approach must be used with the topology-specific routines to construct efficient

communication routines for different topologies. Third, although the MPICH algorithms in

general are much better than LAM algorithms, in many cases, they do not use the best

algorithms for the particular topology and for the particular message size. As will be shown

shortly, by empirically selecting better algorithms, the tuned routines sometimes out-perform

MPICH routines to a very large degree.

Table 4.2: LAM/MPI and MPICH algorithms for MPI Alltoall, MPI Allgather, and
MPI Allreduce

routine LAM MPICH
MPI Alltoall simple bruck (n ≤ 256)

spreading simple (n ≤ 32768)
pair (else)

MPI Allgather gather-bcast rdb (n ∗ p < 524288)
LR (else)

MPI Allreduce reduce-bcast rdb (n < 2048)
MPICH Rab. (else)

Table 4.3: Tuning time

tuned routine topo. (a) topo. (b) topo. (c)
MPI Alltoall 1040s 6298s 6295s
MPI Allgather 1157s 6288s 6326s
MPI Allreduce 311s 261s 296s
MPI Alltoallv 64s 177s 149s
MPI Allgatherv 63s 101s 112s

Table 4.3 shows the tuning time of STAGE-MPI. In the table, the tuning time for

MPI Allreduce assumes that MPI Alltoall and MPI Allgather have been tuned. The time for

MPI Alltoallv is the tuning time for finding the best routine for one communication pattern:

all–to–all with 1KB message size. The time for MPI Allgatherv is the tuning time for finding

the best routine for one communication pattern: all–gather with 1KB message size. The

tuning time depends on many factors such as the number of algorithms to be considered, the
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number of algorithms having parameters and the parameter space, the search heuristics, the

network topology, and how the timing results are measured. As can be seen from the table, it

takes minutes to hours to tune the routines. The time is in par with that for other empirical

approach based systems such as ATLAS [82]. Hence, like other empirical based systems,

STAGE-MPI is applicable when this tuning time is relatively insignificant, e.g. when the

application has a long execution time, or when the application is executed repeatedly on the

same platform.

4.1.2.2 Performance of Individual Routines

An approach similar to Mpptest [32], which is shown in Figure 4.3 (a), is used to measure the

performance of an individual MPI routine. The number of iterations is varied according to the

message size: more iterations are used for small message sizes to offset the clock inaccuracy.

For the message ranges 1B − 3KB, 4KB − 12KB, 16KB − 96KB, 128KB − 256KB, and

> 256KB, the respective number of iterations used are: 100, 50, 20, 10, and 5. The results

for these micro-benchmarks are the averages of three executions. The average time among

all nodes is used as the performance metric.

The results for MPI Alltoall, MPI Allgather, and MPI Allreduce are reported. The

performance of MPI Alltoallv and MPI Allgatherv depends on the communication pattern.

The two routines will be evaluated with applications, and the results will be shown shortly.

Since in most cases, MPICH has better algorithms than LAM, and MPICH-LAM offers the

highest performance. the focus will be on comparing TUNED with MPICH-LAM. Before

presenting the results, two general observations in the experiments are pointed out.

1. Ignoring the minor inaccuracy in the performance measurement, for all three topologies

and all three operations, the tuned routines never perform worse than the best

corresponding routines in LAM, MPICH, and MPICH-LAM.

2. For all three topologies and all three operations, the tuned routines out-perform the

best corresponding routines in LAM, MPICH, and MPICH-LAM by at least 40% at

some ranges of message sizes.

Figure 4.7 shows the performance of MPI Alltoall results on topology (a). For small

messages (1 ≤ n ≤ 256), both LAM and TUNED use the simple algorithm, which offers
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Figure 4.7: MPI Alltoall on topology (a)

higher performance than the bruck algorithm used in MPICH. When the message size is 512

bytes, MPICH changes to the spreading simple algorithm, which has similar performance to

the simple algorithm. TUNED, LAM, and MPICH-LAM have similar performance for the

message size in the range from 256 bytes to 9K bytes. Figure 4.7 (b) shows the results for

larger message sizes. For large messages, TUNED offers much higher performance than both

MPICH and LAM. For example, when the message size is 128KB, the time for TUNED is

200.1ms and the time for MPICH-LAM (the best among LAM, MPICH, and MPICH-LAM)

is 366.2ms, which constitutes an 83% speedup. The performance curves for topology (b) and

topology (c) show a similar trend. Figure 4.8 shows the results for topology (b). For a very

wide range of message sizes, TUNED is around 20% to 42% better than the best among

LAM, MPICH, and MPICH-LAM.

Figure 4.9 shows the performance results for MPI Allgather on topology (c). When

the message size is small, TUNED performs slightly better than other libraries. However,

when the message size is large, the tuned routine significantly out-performs routines in other

libraries. For example, when the message size is 32KB, the time is 102.5ms for TUNED,

1362ms for LAM, 834.9ms for MPICH, and 807.9ms for MPICH-LAM. TUNED is about 8

times faster than MPICH-LAM. This demonstrates how much performance differences can

be made when the topology information is taken into consideration. In fact, the topology-

specific logical ring algorithm (TSLR), used in TUNED, can in theory achieve the same
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Figure 4.8: MPI Alltoall on topology (b)
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Figure 4.9: MPI Allgather on topology (c)

performance for any Ethernet switched cluster with any number of nodes as the performance

for a cluster with the same number of nodes connected by a single switch. On the other

hand, the performance of the topology-unaware logical ring algorithm (LR), used in MPICH,

can be significantly affected by the way the logical nodes are organized.

Figure 4.10 shows the results for MPI Allreduce on topology (c). TUNED and MPICH-

LAM have a similar performance when the message size is less than 489 bytes. When

the message size is larger, TUNED out-performs MPICH-LAM to a very large degree even
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Figure 4.10: MPI Allreduce on topology (c)

though for a large range of message sizes, both TUNED and MPICH-LAM use variations

of the Rabenseifner algorithm. For example, for message size 2048 bytes, the time is 2.5ms

for TUNED versus 4.3 ms for MPICH-LAM. For message size 64KB, the time is 55.9ms for

TUNED versus 102.4ms for MPICH-LAM.

4.1.2.3 Performance of Application Programs

Three application programs are used in the evaluation: IS, FT, and NTUBE. IS and FT come

from the Nas Parallel Benchmarks (NPB) [54]. The IS (Integer Sort) benchmark sorts N

keys in parallel and the FT (Fast Fourier Transform) benchmark solves a partial differential

equation (PDE) using forward and inverse FFTs. Both IS and FT are communication

intensive programs with most communications performed by MPI Alltoall and MPI Alltoallv

routines. The class B problem size supplied by the benchmark suite is used for the evaluation.

The NTUBE (Nanotube) program performs molecular dynamics calculations of thermal

properties of diamond [66]. The program simulates 1600 atoms for 1000 steps. This is also a

communication intensive program with most communications performed by MPI Allgatherv.

Table 4.4 shows the execution time for using different libraries with different topologies.

The tuned library consistently achieves much better performance than the other implemen-

tations for all three topologies and for all programs. For example, on topology (a), TUNED

improves the IS performance by 59.8% against LAM, 338.1% against MPICH, and 61.9%
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Table 4.4: Execution time (seconds)

benchmark library topo. (a) topo. (b) topo. (c)
LAM 15.5s 38.4s 36.5s

IS MPICH 42.5s 58.2s 51.5s
MPICH-LAM 15.7s 35.5s 33.4s
TUNED 9.7s 28.4s 28.6s

LAM 409.4s 320.8s 281.4s
FT MPICH 243.3s 365.8s 281.1s

MPICH-LAM 242.0s 246.0s 305.6s
TUNED 197.7s 206.0s 209.8s

LAM 214.3s 304.1s 179.6s
NTUBE MPICH 49.7s 244.5s 88.7s

MPICH-LAM 47.2s 236.8s 80.9s
TUNED 35.8s 47.6s 45.0s

against MPICH-LAM. Notice that the execution time on topologies (b) and (c) is larger

than that on topology (a) even though there are 32 nodes on topologies (b) and (c) and 16

nodes on topology (a). This is because all programs are communication bounded and the

network in topologies (b) and (c) has a smaller aggregate throughput than that in topology

(a).

4.1.2.4 Impacts of Different Timing Mechanisms on Performance of Collective
Routines

As mentioned previously, STAGE-MPI supports three built-in timing mechanisms that can

be used to measure the performance of collective routines. Thus, it is worthwhile studying

the impacts of using a different performance measurement scheme on the performance of

collective routines. The study is performed as follows. STAGE-MPI tunes the collective

routines using different timing mechanisms, including Mpptest, Mpptest + barrier, and

Mpptest + computation (with a computation load introducing 25ms in each iteration). The

final generated routines are used in the application benchmarks, and the performance is

measured.

Table 4.5 summarizes the results of using different timing mechanisms on the performance

of communication routines in the application benchmarks. For each application benchmark,
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Table 4.5: Performance of applications on topology (a) using collective routines tuned with
different timing mechanisms

benchmark timing scheme communication algorithm time
IS Mpptest ring with MPI barrier 9.70s
MPI Alltoallv Mpptest+barrier ring with light barrier 9.79s

Mpptest+computation ring with MPI barrier 9.70s
FT Mpptest ring with MPI barrier 197.7s
MPI Alltoall Mpptest+barrier ring with light barrier 192.3s

Mpptest+computation ring with MPI barrier 197.7s
NTUBE Mpptest rdb 35.80s
MPI Allgatherv Mpptest+barrier spreading simple 34.79s

Mpptest+computation LR 35.72s

the table shows the communication algorithms that resulted from STAGE-MPI using

different timing mechanisms as well as the total application execution time. The results

shown are for topology (a). When conducting the study on topologies (b) and (c), it was

observed that the different timing schemes resulted in the same communication algorithms

for the particular collective routines used in the benchmarks. There are two observations

that can be drawn from the table. First, the performance of the applications with collective

routines tuned with different performance measurement schemes is quite similar. Second,

while in some cases tuning collective routines using different timing mechanisms results in

the same communication algorithms, there are cases where different timing mechanisms

can result in the selection of different communication algorithms. For example, tuning the

all-gatherv operation on topology (a) for the NTUBE benchmark with the three timing

mechanisms results in three different communication algorithms. However, the selected

algorithms under the different timing scheme seem to have similar performance, which is

reflected in the similar total execution times.

The results of this preliminary study shows that using any of the three built-in timing

mechanisms in STAGE-MPI to tune the collective routines is very likely to yield routines of

similar performance. While this is observed in the set of benchmarks and on the topologies

considered in this study, investigating this issue further is an interesting future direction.
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4.2 Application Behavior and Its Impacts on
Collective Operations

Although STAGE-MPI results in an implementation of MPI collective communication

routines with a level of software adaptability exceeding that of LAM/MPI [44] and MPICH

[52], it still has some limitations. One limitation is that the generated routines can only

adapt to the platform when the standard Mpptest micro-benchmark [32] is used to measure

the performance. In any MPI application program, collective communication routines can be

used in different program contexts, and in every context, the application behaves differently.

Different application behavior can have a significant impact on the performance of a collective

communication algorithm, which indicates that a different algorithm may need to be used for

a different context in order to achieve high performance. This section investigates application

behavior as well as its impacts on the MPI collective communication operations. The results

indicate that the application behavior has a significant impact on performance. This implies

that STAGE-MPI routines may not be optimal. Ideally, a DF library should be able to

adapt to both the platform and the application.

For an MPI collective operation, the application behavior is summarized as the process

arrival pattern, which defines, as a result of involving multiple processes in a collective

operation, the timing when different processes arrive at the collective operation (the call site

of the collective communication routine). A process arrival pattern is said to be balanced

when all processes arrive at the call site at roughly the same time, and imbalanced otherwise.

The terms, balanced and imbalanced process arrival patterns, are quantified in Section 4.2.1.

The process arrival pattern (application behavior) can have a profound impact on the

performance of a collective operation because it decides the time when each process can

start participating in the operation. Unfortunately, this important factor has been largely

overlooked. MPI developers routinely make the implicit assumption that all processes

arrive at the same time (a balanced process arrival pattern) when developing and analyzing

algorithms for MPI collective communication operations [61, 77]. In fact, it is widely believed

that, to develop a high performance MPI application, application developers should balance

the computation and let MPI developers focus on optimizing the cases with balanced process

arrival patterns. It will be shown later that this common belief has flaws: even assuming

that the computation in an application is perfectly balanced, the process arrival patterns for
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MPI collective operations are usually imbalanced.

In this section, the process arrival patterns for MPI collective operations are studied

in a number of applications. The study [21] is performed on two commercial off-the-shelf

(COTS) clusters: a high-end Alphaserver cluster (the Lemieux machine located in Pittsburgh

Supercomputing Center (PSC) [60]) and a low-end Beowulf cluster with Gigabit Ethernet

connection. These two clusters are believed to be representative, and that the results can

apply to a wide range of practical clusters. In this study, the process arrival patterns in a set

of MPI benchmarks are characterized on these two clusters, a micro-benchmark where each

process performs exactly the same computation is examined to understand the behavior of

applications with a balanced computation load, and the impacts of imbalanced process arrival

patterns on some commonly used algorithms for MPI collective operations are investigated.

The findings of this study include the following.

• The process arrival patterns for MPI collective operations are usually imbalanced. In

all benchmarks, the balanced process arrival patterns are only observed for collective

operations that follow other collective operations (consecutive collective calls).

• In cluster environments, it is virtually impossible for application developers to control

the process arrival patterns in their programs without explicitly invoking a global

synchronization operation.

• The performance of the MPI collective communication algorithms that were studied is

sensitive to process arrival patterns. In particular, the algorithms that perform better

with a balanced process arrival pattern tend to perform worse when the process arrival

pattern becomes more imbalanced.

This section is organized as follows. First, the process arrival pattern and the parameters

used to characterize it are formally defined. Second, the benchmarks are described, the

experimental setup and the data collection method are explained, and the statistics of process

arrival patterns in the programs are presented. Third, the process arrival patterns in a micro-

benchmark that has a perfect computation load distribution is presented and the causes for

such a program to have imbalanced process arrival patterns are investigated. Fourth, the

impact of process arrival patterns on some common algorithms for MPI collective operations
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is evaluated. Finally, the implication of the imbalanced process arrival patterns on the

development and evaluation of algorithms for MPI collective operations are discussed.

4.2.1 Process Arrival Pattern

Let n processes, p0, p1, ..., pn−1, participate in a collective operation. Let ai be the time that

process pi arrives at the collective operation. The process arrival pattern can be represented

by the tuple (a0, a1, ..., an−1). The average process arrival time is ā = a0+a1+...+an−1

n
. Let fi be

the time that process pi finishes the operation. The process exit pattern can be represented

by the tuple (f0, f1, ..., fn−1). The elapsed time that process pi spends in the operation is

thus ei = fi − ai, the total time is e0 + e1 + ... + en−1, and the average per node time is

ē = e0+e1+...+en−1

n
. In an application, the total time or the average per node time accurately

reflects the time that the program spends on the operation. The average per node time (ē)

is used to denote the performance of an operation (or an algorithm).

Let us use the term imbalance in the process arrival pattern to signify the differences

in the process arrival times at a collective communication call site. Let δi be the time

difference between pi arrival time ai and the average arrival time ā, δi = |ai − ā|. The

imbalance in the process arrival pattern can be characterized by the average case imbalance

time, δ̄ = δ0+δ1+...+δn−1

n
, and the worst case imbalance time, ω = maxi{ai} − mini{ai}.

Figure 4.11 shows an example process arrival pattern on a 4-process system and depicts the

parameters described.

An MPI collective communication operation typically requires each process sending

multiple messages to other processes. A collective communication algorithm organizes

the messages in the operation in a certain way. For example, in the pair algorithm for

MPI Alltoall [77], the messages in the all-to-all operation are organized in n− 1 phases: in

phase 0 ≤ i ≤ n− 1, process pj sends a message to process pj ⊕ i (exclusive or) and receives

a message from the same process. The impact of an imbalance process arrival pattern on the

performance of a collective algorithm is mainly caused by the early completions or late starts

of some messages in the operation. In the pair algorithm, early arrivals of some processes will

cause some processes to complete a phase and start the next phase while other processes are

still in the previous phase, which may cause system contention and degrade the performance.

Hence, the impacts of an imbalanced process arrival pattern can be better characterized by

the number of messages that can be completed during the period when some processes arrive
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Figure 4.11: Process arrival pattern

while others do not. To capture this notion, the worst case and average case imbalance times

are normalized by the time to communicate one message. The normalized results are called

the average/worst case imbalance factor. Let T be the time to communicate one message in

the operation, the average case imbalance factor equals to δ̄
T

and the worst case imbalance

factor equals to ω
T
. A worst case imbalance factor of 2 means that by the time the last process

arrives at the operation, the process that arrives first may have completed two messages in

the operation. The imbalanced process arrival patterns will be characterized by their average

and worst case imbalance factors. In general, a process arrival pattern is balanced if the

worst case imbalance factor is less than 1 (all processes arrive within a message time) and

imbalanced otherwise.

4.2.2 Process Arrival Patterns in MPI Programs on Two Plat-
forms

In the following, a brief description of the platforms, benchmarks, and data collection method

used in this study is presented. The process arrival pattern statistics are then discussed.

4.2.2.1 Platforms

The process arrival pattern statistics are collected on two representative platforms: a high-

end cluster and a low-end Beowulf cluster. The high-end cluster is the Lemieux machine
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located in Pittsburgh Supercomputing Center (PSC) [60]. The machine consists of 750

Compaq Alphaserver ES45 nodes, each of which includes four 1-GHz SMP processors

with 4GB of memory. The nodes are connected with a Quadrics interconnection network,

and they run Tru64 Unix operating system. All programs are compiled with the native

mpicc on the system and linked with the native MPI and ELAN library. ELAN is a

low-level internode communication library for Quadrics. Some of the times for point-to-

point communications with different message sizes between processors in different nodes are

summarized in Table 4.6. These numbers, which are obtained using a pingpong program,

are used to compute imbalance factors in the benchmark study.

The low-end cluster is a 16-node Beowulf cluster. The nodes of the cluster are Dell

Dimension 2400 with a 2.8GHz P4 processor, 128MB of memory, and 40GB of disk space.

All machines run Linux (Fedora) with 2.6.5-1.358 kernel. The Ethernet card in each machine

is Broadcom BCM 5705 with the driver from Broadcom. These machines are connected to

a Dell PowerConnect 2624 1Gbps Ethernet switch. This system uses MPICH 2-1.0.1 for

communication. All programs are compiled with the mpicc that comes with the MPICH

package. Some of the times for point-to-point communications with different message sizes

are summarized in Table 4.7.

Table 4.6: One way point-to-point communication time on Lemieux

size time size time size time
(B) (ms) (B) (ms) (B) (ms)

4 0.008 4K 0.029 64K 0.291

256 0.008 16K 0.079 128K 0.575

1024 0.0207 32K 0.150 256K 1.138

Table 4.7: One way point-to-point communication time on the Beowulf cluster

size time size time size time
(B) (ms) (B) (ms) (B) (ms)

4 0.056 4K 0.150 64K 0.846

256 0.063 16K 0.277 128K 1.571

1024 0.088 32K 0.470 256K 3.120
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4.2.2.2 Benchmarks

Table 4.8: Summary of benchmarks (e. time is execution time while c. time is communication
time)

benchmark description #lines e. time c. time
(n=64) (n=64)

FT solves PDE with forward and inverse FFTs 2234 13.4s 8.3s
IS sorts integer keys in parallel 1091 2.2s 1.6s
LAMMPS simulates dynamics of molecules in different states 23510 286.7s 36.1s
PARADYN simulates dynamics of metals and metal alloys molecules 6252 36.6s 33.1s
NBODY simulates effects of gravitational forces on N bodies 256 59.5s 1.5s
NTUBE 1 performs molecular dynamics calculations of diamond 4480 894.4s 32.3s
NTUBE 2 performs molecular dynamics calculations of diamond 4570 852.9s 414.1s

Table 4.8 summarizes the seven benchmarks. For reference, the code size is shown as well

as the execution and collective communication elapsed times for running the programs on 64

processors on Lemieux. Table 4.9 shows the major collective communication routines in the

benchmarks and their dynamic counts and message sizes assuming the number of processors

is 64. There are significant collective operations in all programs. Next, each benchmark and

the related parameters/settings used in the experiments are briefly described.

FT (Fast-Fourier Transform) is one of the parallel kernels included in the NAS parallel

benchmarks [54]. FT solves a partial differential equation (PDE) using forward and inverse

FFTs. The collective communication routines used in this benchmark include MPI Alltoall,

MPI Barrier, MPI Bcast, and MPI Reduce with most communications being carried out by

the MPI Alltoall routine. Class B problem size supplied by the NAS benchmark suite is used

in the evaluation.

IS (Integer Sort) is a parallel kernel from the NAS parallel benchmarks. It uses bucket sort

to order a list of integers. The MPI collective routines in this program are MPI Alltoall,

MPI Alltoallv, MPI Allreduce, and MPI Barrier. Most communications in this program are

carried out by the MPI Alltoallv routine. Class B problem size for this benchmark is used

in the experiments.

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) [45] is a classical

parallel molecular dynamics code. It models the assembly of particles in a liquid, solid, or

gaseous state. The code uses MPI Allreduce, MPI Bcast, and MPI Barrier. The program is

run with 1720 copper atoms for 3000 iterations in the experiments.
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Table 4.9: The dynamic counts of major collective communication routines in the bench-
marks (n = 64)

benchmark routine msg size dynamic count

FT MPI Alltoall 131076 22
MPI Reduce 16 20

IS MPI Alltoallv 33193∗ 11
MPI Allreduce 4166 11
MPI Alltoall 4 11

LAMMPS MPI Allreduce 42392 2012
MPI Bcast 4-704 48779
MPI Barrier 4055

PARADYN MPI Allgatherv 6-1290∗ 16188
MPI Allreduce 4-48 13405

NBODY MPI Allgather 5000 300

NTUBE 1 MPI Allgatherv 16000∗ 1000

NTUBE 2 MPI Allreduce 8 1000
* the average of all message sizes in the v-version routines.

PARADYN (Parallel Dynamo) [58] is a classical parallel molecular dynamics simulation.

It utilizes the embedded atom method potentials to model metals and metal alloys. The

program uses MPI Allgather, MPI Allgatherv, MPI Allreduce, MPI Bcast, and MPI Barrier.

In the experiments, an example input file supplied by the benchmark code is used and 6750

atoms of liquid crystals are simulated in 1000 time steps.

NBODY [57] simulates over time steps the interaction, in terms of movements, positions

and other attributes, among the bodies as a result of the net gravitational forces exerted on

one another. It has applications in various areas such as strophysics, molecular dynamics

and plasma physics. The code is a naive implementation of the nbody method and uses

MPI Allgather and MPI Gather collective communications. The code runs with 8000 bodies

and for 300 time steps.

NTUBE 1 performs molecular dynamics calculations of thermal properties of diamond

[66]. This version of the code uses MPI Allgatherv and MPI Reduce. In the evaluation, the

program runs for 1000 steps and each processor maintains 100 atoms.

NTUBE 2 is a different implementation of the Nanotube program. The functionality of

NTUBE 2 is exactly the same as NTUBE 1. The collective communication routines used in
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this program are MPI Allreduce and MPI Reduce. In the evaluation, the program runs for

1000 steps with each processor maintaining 100 atoms.

4.2.2.3 Data Collection

To investigate process arrival patterns and other statistics of MPI collective communications,

an MPI wrapper library was developed. The wrapper records an event at each MPI process

for each entrance and exit of an MPI collective communication routine. An event record

contains information about the timing, the operation, and the message size of the collective

operation. The times are measured using MPI Wtime routine. Events are stored in memory

during program execution. Once the application code calls MPI Finalize, all processors

write these events to a log file for post-mortem analysis. On Lemieux, the experiments are

conducted with a batch partition of 32, 64, and 128 processors (4 processors per node).

4.2.2.4 Process Arrival Pattern Statistics

Table 4.10 and Table 4.11 show the average of the worst/average case imbalance factors

among all collective routines in each benchmark on Lemieux and Beowulf cluster respectively.

The two tables reveal several notable observations.

Table 4.10: The average of the worst/average case imbalance factors among all collective
routines on Lemieux

imbalance factor
benchmark n = 32 n = 64 n = 128

average worst average worst average worst
FT 1017 6751 215 1266 91 633
IS 102 521 80 469 61 357
LAMMPS 9.1 40 6.1 33 3.8 23
PARADYN 5.4 27 5.3 28 8.7 44
NBODY 17 90 15 104 13 129
NTUBE 1 572 2461 2281 16K 4524 36K
NTUNE 2 24K 85K 44K 168K 83K 336K

First, the average of the worst case imbalance factor for all programs on both clusters are

quite large, even for FT, whose computation is fairly balanced. Second, the process arrival

pattern depends heavily on the system architecture. For example, the imbalance factors for
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Table 4.11: The average of the worst/average case imbalance factors among all collective
routines on the Beowulf cluster

benchmark imbalance factor
average worst

FT 256 1119
IS 1241 9536
LAMMPS 252 582
PARADYN 11 73
NBODY 12 48
NTUBE 1 4.1 17
NTUNE 2 8.2 36.1

NTUBE 1 and NTUBE 2 are much larger on Lemieux than on the Beowulf cluster. This

is because these two programs were designed for single CPU systems. When running them

on Lemieux, an SMP cluster, the process arrival patterns become extremely imbalanced.

On the other hand, the imbalance factors for LAMMPS, which contains a large number

of MPI Bcast calls, are much smaller on Lemieux than on the Beowulf cluster. This is

because Lemieux has hardware support for MPI Bcast while the Beowulf cluster uses a

point-to-point communication based implementation. It must be noted that the network

on Lemieux is much faster than that on the Beowulf cluster: the same imbalance time

will result in a larger imbalance factor on Lemieux. Third, the increase of the number of

processors affects the imbalance factor (on Lemieux). On one hand, more processors may

result in a larger worst case imbalance factor since more processors contribute to the worst

case imbalance. This is usually the case when the per processor workload is fixed as in the

NTUBE 1 benchmark. On the other hand, when the problem size is fixed as in FT and IS,

the imbalance factors may decrease as the number of processors increases. This is due to the

reduction of the processor and communication workload (and thus the imbalance) at each

node as the number of processors increases.

Operations that account for most of the communication times typically have large

message sizes. Thus, operations with large message sizes are distinguished from those

with small message sizes in Figure 4.12, which shows the distribution of the worst case

imbalance factor for both operations with medium and large message sizes (> 1000 bytes)
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and operations with small message sizes (≤ 1000 bytes). All benchmarks are equally weighted

when computing the distribution. The results on Lemieux are for the 128-processor case. As

can be seen from parts (a) and (b) of the figure, there is a significant portion of operations

with both small sizes and medium/large sizes having large imbalance factors (> 32) and only

a small fraction of the operations have a balanced process arrival pattern. For example, on

Lemieux, only about 15% of the operations with small messages and 34% of the operations

with medium and large messages have a worst case imbalance factor less than 2. The figure

also shows that the process arrival patterns are more imbalanced on the Beowulf cluster than

on Lemieux. On the 16-processor Beowulf cluster, more than 90% of process arrival patterns

for both large and small message sizes have a worst case imbalance factor larger than 8,

which means that when the last process arrives, the first process may have completed half

of the operation.

(a) Lemieux (128 processors) (b) Beowulf cluster

Figure 4.12: The distribution of worst case imbalance factors on the two platforms

Figure 4.13 and Figure 4.14 break down the distribution of the worst case imbalance

factors in the seven benchmarks. Figure 4.13 shows the results for operations with small

messages (≤ 1000 bytes) on the two platforms while Figure 4.14 shows the results for

operations with medium and large messages (> 1000 bytes). From these figures, it can be

seen that different benchmarks exhibit very different process arrival patterns. For example,

on Lemieux, 100% of operations with medium/large messages in PARADYN have a balanced

process arrival pattern (worst case balance factor < 1) while a significant portion of the
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operations in other benchmarks have imbalanced process arrival patterns.

(a) Lemieux (128 processors) (b) Beowulf cluster

Figure 4.13: The distribution of worst case imbalance factors in each benchmark for
operations with small message sizes (≤ 1000 Bytes) on both platforms

While Figure 4.13 and Figure 4.14 give a good summary about the imbalance in the

process arrival patterns in all benchmarks, not all summarized results are representative.

For example, NBODY has a few operations with small messages, which are called in the

application verification phase (outside the main loop). The imbalance factors for the

collective operations that are important in the benchmarks (in the main loop and accounting

for a significant amount of time) are shown in Table 4.12. Compared with the imbalance

factors shown in Tables 4.10 and 4.11, it can be seen that the process arrival patterns for

these important routines are generally more balanced than the average of all routines in the

applications. This indicates that programmers are more careful about the load balancing

issue in the main loop. However, on both platforms, only the MPI Alltoallv in IS can be

classified as having balanced process arrival patterns. Examining the source code reveals

that this routine is called right after other MPI collective routines. All other routines have

more or less imbalanced process arrival patterns.

Another interesting statistic is the characteristics of process arrival pattern for each

individual call site. If the process arrival patterns for each call site in different invocations

exhibit heavy fluctuation, the MPI routine for this call site must achieve high performance in

all different types of process arrival patterns to be effective. On the other hand, if the process

117



(a) Lemieux (128 processors) (b) Beowulf cluster

Figure 4.14: The distribution of worst case imbalance factors in each benchmark for
operations with medium and large message sizes (> 1000 Bytes) on both platforms

Table 4.12: The imbalance factor for major collective routines in the benchmarks

Lemieux (n = 128) Beowulf
benchmark major routine imbalance factor imbalance factor

average worst average worst
FT MPI Alltoall 2.9 24 26 124
IS MPI Alltoallv 0.0 0.2 0.2 0.8

MPI Allreduce 148 772 3871 30K
LAMMPS MPI Bcast 0.2 3.2 276 620

MPI Allreduce 16 87.3 128 1201
MPI Barrier 40 222 98 411

PARADYN MPI Allgatherv 0.8 6 9.1 61
MPI Allreduce 15 68.7 13 86

NBODY MPI Allgather 13 129 12 48
NTUBE 1 MPI Allgatherv 78 120 3.4 14
NTUBE 2 MPI Allreduce 81K 314K 8.2 36
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arrival patterns for the same call site is statistically similar, the MPI implementation will

only need to optimize for the particular type of process arrival patterns, which is easier to

accomplish. In the benchmarks, it is observed that the process arrival patterns for different

invocations of the same call site exhibit a phased behavior: the process arrival patterns are

statistically similar for a period of time before they change. In some cases, the process arrival

patterns for the same call site are statistically similar in the whole program. Figure 4.15

depicts two representative cases on Lemieux with 128 processors. Part (a) of the figure shows

the imbalance factors for each invocation of the MPI Alltoall routine in FT while part (b)

shows the imbalance factors for each invocation of the MPI Allgather in NBODY. As can

be seen from the figure, the majority of the calls have similar worst case and average case

imbalance factors despite some large spikes that occur once in a while. This indicates that it

might be feasible to customize the routine for each MPI call site and get good performance.
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Figure 4.15: The imbalance factors for major collective routines in FT and NBODY on
Lemieux with 128 processors

4.2.3 Process Arrival Patterns in a Micro-Benchmark

Since a well designed MPI program typically has a balanced computation load, understanding

the process arrival patterns in this type of programs is particularly important. One surprising

result in the previous subsection is that even programs with evenly distributed computation
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loads have very imbalanced process arrival patterns. However, these programs are too

complex to determine what exactly is causing the imbalanced process arrival patterns. Let us

study a simple micro-benchmark, shown in Figure 4.16, where all processes perform exactly

the same amount of computation (computation loads are perfectly balanced), and measure

the process arrival patterns. The goal is to determine whether application programmers

can control the critical process arrival patterns in their MPI programs. In this micro-

benchmark, a barrier is called before the main loop, which is executed 1000 times. There

are two components inside the loop: lines (5) to (7) simulating the computation and an

MPI Alltoall() operation in line (9) after the computation. The computation time can be

adjusted by changing the parameter XTIME.

(1) ...
(2) MPI Barrier(...);
(3) for (i=0; i<1000; i++) {
(4) /* compute for roughly X milliseconds */
(5) for (m=0; m< XTIME; m++)
(6) for (k=1, k<1000; k++)
(7) a[k] = b[k+1] - a[k-1] * 2;

(8) arrive[i] = MPI Wtime();
(9) MPI Alltoall(...);
(10) leave[i] = MPI Wtime()
(11)}

Figure 4.16: Code segment for a micro-benchmark

The process arrival patterns for the all-to-all operation are measured and the results for

message size 64KB are shown. Smaller message sizes result in larger imbalance factors.

The computation time is set to roughly 200ms for both clusters. Figure 4.17 shows the

worst/average case imbalance factors in each iteration on Lemieux with 128 processors and

on the 16-node Beowulf cluster. In both clusters, there is substantial imbalance in the process

arrival patterns even though all processors perform exactly the same computations. The

imbalance factors on Lemieux are larger than those on the Beowulf cluster for a few reasons.

First, Lemieux has more processes and thus, has the higher chance to be imbalanced. Second,
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on Lemieux, different jobs share the network in the system; the uncertainty in messaging

can cause the imbalance. Third, Lemieux has a faster network, the same imbalance time

results in a higher imbalanced factor.
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Figure 4.17: Process arrival patterns in the micro-benchmark (64KB message size, 200ms
computation time) on the two platforms

One potential cause for the imbalanced process arrival patterns is that different machines

may require different periods of time to run the computation even though the machines are

homogeneous. An earlier study [59] has shown that this can be caused by operating system

events. Figure 4.18 compares the computation imbalance in the micro-benchmark with the

imbalance in process arrival patterns on the two platforms. The computation imbalance time

is defined as the maximum time among all processes to execute the computation minus the

minimum time among all processes. To consistently compare with the imbalance in arrival

patterns, the computation imbalance time is normalized by the time to send one message

(64KB). As can be seen in the figure, the computation imbalance is quite significant in both

clusters. Yet, the worst case imbalance factor for the process arrival patterns is much larger

than the computation imbalance. This is attributed to the fact that different processes take

different times to perform the all-to-all operation: the imbalance in process arrival pattern is

the accumulated effect of the imbalance in the computation and the imbalance in the process

exit pattern of the all-to-all operations.
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Figure 4.18: Computation imbalance versus arrival pattern imbalance on the two platforms

To further understand the characteristics of the computation imbalance, the XTIME

parameter is changed such that the computation lasts for 50ms, 100ms, 200ms, 400ms, and

800ms. The computation imbalance time in each iteration is measured, and the results for

the average over the 1000 iterations are presented. Figure 4.19 plots the average computation

imbalance time with respect to the total computation time on the two platforms. As

can be seen from the figure, from 50ms to 800ms, the computation imbalance increases

almost linearly with respect to the total computation time. This indicates that when the

computation between two collective operation is sufficiently large, the process arrival pattern

imbalance will also be very large. Moreover, this is inherent to the system, and it is impossible

for application developers to overcome. This is the reason that, in the benchmark study of the

previous subsection, only balanced process arrival patterns in consecutive collective routine

calls were observed: when there is a computation in between, it is difficult to have a balanced

process arrival pattern.

This study indicates that the way a program is coded is only one of many factors that can

affect process arrival patterns. Other factors, including the inherent computation imbalance

and the process exit pattern, which may be affected by the collective communication

algorithm and network hardware, are beyond the control of application developers. It is

impractical to assume that application programmers can balance the load to make the process
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Figure 4.19: Computation imbalance versus total computation time

arrival patterns balanced in a program. The only way to ensure a balanced process arrival

pattern is to explicitly call a synchronization operation. Hence, in most cases, the process

arrival patterns in MPI programs will be imbalanced.

4.2.4 Impact of Imbalanced Process Arrival Patterns on the Per-

formance of Collective Communication Algorithms

Most of the MPI collective communication algorithms were designed (and evaluated)

assuming a balanced process arrival pattern. Since process arrival patterns in MPI programs

are likely to be imbalanced, it would be interesting to know how these algorithms respond

to imbalanced process arrival patterns. In this subsection, a study of the impact of the

process arrival pattern on the performance of commonly used algorithms for MPI Alltoall

are reported.

Algorithms for MPI Alltoall that are adopted in MPICH [77], including the simple, bruck,

pair, and ring algorithms are considered. The simple algorithm basically posts all receives

and all sends, starts the communications, and waits for all communications to finish. The

order of communications for process pi is pi → pi+1, pi → pi+2, ..., pi → p(i+n−1) mod n. The

bruck algorithm [7] is a lg(n)-step algorithm that is designed for achieving efficient all-to-

123



all with small messages. The pair algorithm only works when the number of processes, n,

is a power of two. It partitions the all-to-all communication into n − 1 steps. In step i,

process pj sends and receives a message to and from process pj ⊕ i (exclusive or). The ring

algorithm also partitions the all-to-all communication into n− 1 steps. In step i, process pj

sends a messages to process p(j+i) mod n and receives a message from process p(j−i) mod n. All

algorithms are implemented over MPI point-to-point primitives. More detailed description of

these algorithms can be found in [77]. In addition to these algorithms, the native MPI Alltoall

provided on Lemieux, whose algorithm could not be identified, is also considered.

(1) r = rand() % MAX IMBALANCE FACTOR;
(2) for (i=0; i<ITER; i++) {
(3) MPI Barrier (...);
(4) for (j=0; j<r; j++) {
(5) ... /* computation time equal to one msg time */
(6) }
(7) t0 = MPI Wtime();
(8) MPI Alltoall(...);
(9) elapse += MPI Wtime() - t0;
(10)}

Figure 4.20: Code segment for measuring the impacts of imbalanced process arrival patterns

Figure 4.20 outlines the code segment that is used to measure the performance with a

controlled imbalance factor in the random process arrival patterns. The worst-case imbalance

factor is controlled by a variable MAX IMBALANCE FACTOR. Line (1) generates a

random number, r, that is bounded by MAX IMBALANCE FACTOR. Before the all-to–

all routine is measured (in lines (7) to (9)), the controlled imbalanced process arrival

pattern is created by first calling a barrier (line (3)) and then introducing some computation

between the barrier and the all-to-all routine. The time to complete the computation is

controlled by r. The time spent in the loop body in line (5) is made roughly equal to

the time for sending one message (see Table 4.6 and Table 4.7), and the total time for

the computation is roughly equal to the time to send r messages. Hence, the larger the

value of MAX IMBALANCE FACTOR is, the more imbalanced the process arrival pattern
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becomes. Note that the actual worst case imbalance factor, especially for small message

sizes, may not be bounded by MAX IMBALANCE FACTOR since the process exit patterns

of MPI Barrier may not be balanced.

For each process arrival pattern, the routine is measured 100 times (ITER =

100) and the average elapsed time on each node is recorded. Each experiment in-

volves one fixed value of MAX IMBALANCE FACTOR. For each experiment with one

MAX IMBALANCE FACTOR value, 32 random experiments are performed (32 random

process arrival patterns with the same MAX IMBALANCE FACTOR). The communication

time for each experiment is reported by the confidence interval (of the average communication

time) with a 95% confidence level, computed from the results of the 32 experiments.

Part (a) of Figure 4.21 shows the results for 1 Byte all-to-all communication on Lemieux

with 32 processors. When MAX IMBALANCE FACTOR ≤ 9, the bruck algorithm

performs better than the ring and pair algorithms, and all three algorithms perform

significantly better than the simple algorithm. However, when the imbalance factor is

larger (17 ≤ MAX IMBALANCE FACTOR ≤ 129), the simple algorithm shows better

results. The algorithm used in the native MPI Alltoall routine performs much better than

all four algorithms in the case when MAX IMBALANCE FACTOR ≤ 129. When

MAX IMBALANCE FACTOR = 257, the native algorithm performs worse than the

ring and simple algorithms. These results show that under different process arrival patterns

with different worst case imbalance factors, the algorithms have very different performance.

When the imbalance factor increases, one would expect that the communication time

should increase. While this applies to the bruck, ring, pair and the native algorithms,

it is not the case for the simple algorithm: the communication time actually decreases

as MAX IMBALANCE FACTOR increases when MAX IMBALANCE FACTOR ≤ 17.

The reason is that, in this cluster, 4 processors share the network interface card. With mod-

erate imbalance in the process arrival pattern, different processors initiate their communica-

tions at different times, which reduces the resource contention and improves communication

efficiency.

Part (b) of Figure 4.21 shows the performance when the message size is 64KB. When

MAX IMBALANCE FACTOR ≤ 9, the pair algorithm is noticeably more efficient than

the ring algorithm, which in turn is faster than the simple algorithm. However, the simple al-

gorithm offers the best performance when MAX IMBALANCE FACTOR ≥ 33. The ring
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Figure 4.21: MPI Alltoall on Lemieux (32 processors)
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Figure 4.22: MPI Alltoall on the Beowulf cluster
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algorithm is also better than the pair algorithm when MAX IMBALANCE FACTOR ≥
65. For this message size, the native MPI Alltoall routine performs worse than all three

algorithms when MAX IMBALANCE FACTOR ≤ 65. Figure 4.21 (b) also shows

that each algorithm performs very differently under process arrival patterns with different

imbalance factors.

Parts (a) and (b) of Figure 4.22 show the results on the Beowulf cluster for the two

message sizes. The trend on the Beowulf cluster is similar to that on Lemieux. From this

study, it can be seen that while algorithms behave differently under different message sizes

and on different platforms, the common observation in all experiments is that each algorithm

performs very differently under different process arrival patterns. Moreover, the algorithm

that performs better under a balanced process arrival pattern may perform worse when the

process arrival pattern becomes more imbalanced (e.g. the pair versus the simple algorithm).

This indicates that evaluating collective communication algorithms based on the balanced

arrival pattern only is insufficient for finding efficient practical algorithms. In order for MPI

collective communication routines to achieve high performance, the impact of imbalanced

process arrival patterns on communication algorithms must be taken into account.

4.2.5 Implication of the Imbalanced Process Arrival Pattern

It is unlikely that one algorithm for a collective operation can achieve high performance for

all process arrival patterns. One potential solution is to have the communication library

maintain a set of algorithms and to dynamically select the best algorithm. The work

presented in the next section (STAR-MPI) is an attempt in this direction. Regardless of

how the library is implemented, a common issue that must be addressed is how to select a

good collective communication algorithm. Addressing this issue requires the understanding

of the implication of the imbalanced process arrival pattern, which is discussed next.

4.2.5.1 Algorithms for MPI Collective Operations

Algorithms for MPI collective operations can be classified into three types, which are called

globally coordinated algorithms, store-and-forward algorithms, and directly communicating

algorithms. Globally coordinated algorithms require the coordination of all processors to

carry out the operation efficiently. Such algorithms include all of the phased algorithms,

where the complex collective operation is partitioned into phases and each process is assigned
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a certain duty in each phase. Examples of the globally coordinated algorithms include the

ring and pair all-to-all algorithms [77], the bruck all-to-all algorithm [7], and the recursive

doubling all-gather algorithm [77]. An imbalanced process arrival pattern may have a very

large impact on this type of algorithms since the processes may not be able to coordinate as

they are designed.

The store-and-forward algorithms use the store-and-forward mechanism to carry out the

collective operations. Examples include various logical tree based broadcast algorithms and

the logical ring all-gather algorithm [77]. In store-and-forward algorithms, there is some

coordination among the processes and the imbalanced process arrival pattern may have

some impact on such algorithms: when a process that stores and forwards a message in the

operation arrives late, all processes that depend on the forwarded message will be affected.

The directly communicating algorithms do not require any global coordination among

processes and do not use the store-and-forward mechanism. Such algorithms require the

least amount of coordination among the three types of algorithms. Examples include the

simple all-to-all algorithms [77] and the flat tree broadcast algorithm (the root sends to each

of the receivers in sequence). An imbalanced process arrival pattern has the smallest impact

on such algorithms.

The globally coordinated algorithms usually achieve the best performance among the

three types of algorithms for the same operation when the process arrival pattern is balanced.

As a result, such algorithms are commonly adopted in MPI implementations. However, the

imbalanced process arrival pattern also affects this type of algorithms more than other types

of algorithms. The study in the previous subsection suggests that globally coordinated

algorithms may be over-rated while directly communicating algorithms may be under-rated.

Hence, it would be meaningful to re-evaluate different types of MPI collective communication

algorithms, taking the process arrival pattern characteristics into consideration.

4.2.5.2 MPI Collective Operations

There are two types of MPI collective operations: globally synchronized and not globally

synchronized operations. The not globally synchronized operations include MPI Bcast,

MPI Scatter, MPI Gather, and MPI Reduce. In such operations, a process may exit before

all processes arrive. However, some algorithms for these types of operations may require all

processes to arrive before any process can exit. One example is the pipelined broadcast
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algorithm [2]. These types of algorithms are called globally synchronized algorithms.

Although using a globally synchronized algorithm to realize a not globally synchronized

operation may achieve high performance under the assumption that the process arrival

pattern is balanced, the study in the previous subsection indicates that it may be unwise to

use a globally synchronized algorithm to realize a not globally synchronized operation in a

general purpose MPI library since the process arrival pattern is generally imbalanced.

The globally synchronized operations include MPI Alltoall, MPI Allreduce, and MPI Allg-

ather. Such operations require either an explicit or implicit global synchronization: a process

can exit such operations only after all processes arrive. For globally synchronized operations,

the total communication time will be proportional to the worst case imbalanced factor

(assuming the process arrival time is uniformly distributed between the first and the last

process arrival time) when the worst case imbalanced factor is very large. For this type of

operations, it does not make much sense to consider the cases when the imbalanced factor

is very large (in this case, all algorithms will have similar performance). Hence, the library

developers should focus on finding good algorithms for the cases when the imbalanced factor

is not very large.

4.3 STAR-MPI

The study in the previous section indicated that the process arrival pattern of collective

operations in MPI programs is likely to be imbalanced. Since this important aspect

of application behavior can have a significant impact on the performance of a collective

communication algorithm, it must be considered when developing efficient MPI collective

communication routines: the impact of process arrival pattern must be included in the

performance evaluation of a collective communication algorithm. This means that, in

order for MPI collective communication routines to achieve high performance, they need

to adapt not only to platform parameters but also to application behavior. To achieve this

adaptability, the performance of communication algorithms must be measured in the context

of the application on the platform.

In this section, another prototype DF library is presented: Self Tuned Adaptive Routines

for MPI collective operations (STAR-MPI) [22]. STAR-MPI is a library of collective

communication routines that are capable of carrying out the tuning process in the context

of application execution. Unlike STAGE-MPI, which generates collective routines that
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practically adapt only to the platform, STAR-MPI routines are adaptable to both platforms

and applications. STAR-MPI maintains a set of algorithms for each operation and applies

the Automatic Empirical Optimization of Software (AEOS) technique [82] at run time to

dynamically select (tune) the algorithms as the application executes. STAR-MPI targets

programs that invoke a collective routine a large number of times (programs that run for a

large number of iterations).

One major issue in STAR-MPI is whether the AEOS technique can effectively select good

algorithms at run time. Hence, the primary objective is to develop AEOS techniques that can

find the efficient algorithms at run time. Under the condition that efficient algorithms can

be found, the secondary objective is to reduce the tuning overhead. STAR-MPI incorporates

various techniques for reducing the tuning overhead while selecting an efficient algorithm.

The performance of STAR-MPI is evaluated and the results show that (1) STAR-MPI is

robust and effective in finding efficient MPI collective routines; (2) the tuning overheads

are manageable when the message size is reasonably large; and (3) STAR-MPI finds the

efficient algorithms for the particular platform and application, which not only out-performs

traditional MPI libraries to a large degree, but also offers better performance in many cases

than STAGE-MPI that has a super-set of algorithms.

4.3.1 The STAR-MPI Library

all−to−all

MPI Application

STAR_Alltoall(buf, ....);
.....

..........
/* same prototype as
    MPI_Alltoall(...) */

STAR−MPI

STAR_Alltoall STAR_Allgather

mechanisms
(AEOS)

empirical
dynamic dynamic

empirical
mechanisms
(AEOS)

algorithms
all−gather

algorithms

Figure 4.23: High level view of STAR-MPI

The high level view of the STAR-MPI library is shown in Figure 4.23. STAR-MPI is an
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independent layer or library that contains a set of collective communication routines whose

prototypes are the same as the corresponding MPI collective communication routines. MPI

programs can be linked with STAR-MPI to accesses the adaptive routines. As shown in the

figure, an MPI Alltoall in an application is replaced with STAR Alltoall routine. Different

from traditional MPI libraries, each STAR-MPI routine has access to an algorithm repository

that contains multiple implementations for the operation. In addition, each STAR-MPI

routine incorporates a dynamic Automatic Empirical Optimization of Software (AEOS)

[82] module, which performs self-monitoring and self-tuning during program execution. By

maintaining multiple algorithms that can achieve high performance in different situations for

each operation and using a dynamic empirical approach to select the most efficient algorithm,

STAR-MPI is able to adapt to the application and platform.

STAR-MPI runs over MPICH. The routines supported in STAR-MPI include MPI Alltoall,

MPI Allgather, MPI Allgatherv, MPI Allreduce, MPI Bcast, and MPI Reduce. STAR-MPI

is designed for Ethernet switched clusters. All algorithms in STAR-MPI come from the

algorithm repository of STAGE-MPI, which were designed for Ethernet switched clusters.

Hence, STAR-MPI achieves the best results on Ethernet switched clusters, although it can

also tune routines for other types of clusters. In the following, the algorithms maintained in

STAR-MPI are summarized first and the dynamic AEOS technique is described second.

4.3.1.1 Collective Algorithms in STAR-MPI

As shown in Figure 4.23, each collective routine in STAR-MPI includes an algorithm

repository that contains a set of communication algorithms. These algorithms can potentially

achieve high performance in different situations. The organization of the algorithm repository

is similar to that of STAGE-MPI, which is shown in Section 4.1.1.1. It includes both

topology-unaware algorithms and topology-specific algorithms. The topology-specific algo-

rithms are automatically generated based on the topology information when it is available. In

cases when the topology information is not available, only the topology-unaware algorithms

are used in the tuning. Meta-data is associated with each algorithm to describe important

properties of the algorithms. One example of the meta-data is the range of the message sizes

where the algorithm can be efficiently applied. The AEOS algorithm in STAR-MPI may use

the meta-data information to select the communication algorithms that would be included

in a particular tuning process.
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Selecting algorithms to be included in STAR-MPI is very important for the performance

since (1) the number of algorithms in the repository directly affects the time to tune the

routine, and (2) the performance of each of the algorithms selected directly affects the

program execution time since it must be executed even if it is not used in the final routine.

Hence, the criteria for including an algorithm in STAR-MPI are more strict than those for

including an algorithm in STAGE-MPI: the set of algorithms used in STAR-MPI is a subset

of the algorithms in STAGE-MPI. The selection represents a trade-off between overhead

and effectiveness. Including more algorithms makes STAR-MPI more effective and robust,

but will introduce more overhead in the tuning process. The selection is based on previous

experience with STAGE-MPI. First, algorithms that are rarely selected by STAGE-MPI

are removed. Second, some algorithms in STAGE-MPI have a large parameter space. It

takes a long tuning time to obtain the algorithm with the best parameter values. STAR-

MPI replaces such an algorithm (with a large parameter space) by a small number of most

promising algorithm instances.

Next, the STAR-MPI algorithms for MPI Alltoall, MPI Allgather, and MPI Allreduce

are mentioned. These routines are used in the performance evaluation. MPI Allgatherv has

exactly the same sets of algorithms as MPI Allgather. Details about each of the algorithms

can be found in the discussion of STAGE-MPI repository in Section 4.1.1.1.

Algorithms for MPI Alltoall

There are 13 all-to-all algorithms in STAR-MPI: simple, 2D mesh, 3D mesh, recursive

doubling (rdb), bruck, ring, ring with light barrier, ring with MPI barrier, pair, pair with

light barrier, pair with MPI barrier, topology-specific with sender-sync, and topology-specific

with receiver-sync. The 2D mesh, 3D mesh, rdb, and bruck algorithms are designed for small

messages. STAR-MPI only uses them to tune for messages up to 256 bytes.

Algorithms for MPI Allgather

STAR-MPI maintains 12 algorithms for MPI Allgather. The all-gather communication

pattern is a special all–to–all communication pattern (sending the same copy of data to each

node instead of sending different messages to different nodes). The STAR-MPI algorithm

repository for MPI Allgather includes the following algorithms that work similar to their all-

to-all counterparts: simple, 2D mesh, 3D mesh, rdb, ring, ring with light barrier, ring with
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MPI barrier, pair, pair with light barrier, pair with MPI barrier. STAR-MPI also includes

the bruck all-gather algorithm [7], which is different from the bruck all-to-all algorithm.

Details can be found in [7, 77]. In addition, STAR-MPI repository includes the topology-

specific logical ring (TSLR), which is described in Section 3.3. This algorithm is included

when topology information is available. Otherwise, the topology-unaware logical ring (LR)

is included instead.

Algorithms for MPI Allreduce

STAR-MPI maintains 20 algorithms for MPI Allreduce. These algorithms can be classified

into three types.

In the first-type algorithms, the MPI Allreduce operation is performed by first using an

MPI Allgather to gather the data in all nodes and then performing the reduction operation.

The all-gather has the following variations: bruck, 2D mesh, 3D mesh, rdb, and ring.

The second-type algorithms are variations of the Rabenseifner algorithm [64], where

the all-reduce operation is performed by a reduce-scatter operation followed by an all-

gather operation. The reduce-scatter is realized by recursive halving [64] and the all-gather

implementation has the following variations: simple, 2D mesh, 3D mesh, rdb, bruck, ring,

ring with light barrier, ring with MPI barrier, and TSLR/LR. The term Rab1-x denotes this

type of algorithms with x all-gather implementations. For example, Rab1-2D means the

variation with the 2D mesh all-gather algorithm.

The third-type algorithms are also variations of the Rabenseifner algorithm [64], where

the all-reduce operation is performed by a reduce-scatter operation followed by an all-gather

operation. In this case, the reduce-scatter operation is realized by an all-to-all operation. The

algorithm is denoted by the pair (all-to-all, all-gather). STAR-MPI maintains the following

algorithms: (ring, TSLR/LR), (ring with light barrier, TSLR/LR), (ring with MPI barrier,

TSLR/LR), (ring, ring), (ring with light barrier, right with light barrier), and (ring with MPI

barrier, ring with MPI barrier). The notion Rab2-(x, y) will be used to denote this type of

algorithms with the (x, y) algorithms. For example, Rab2-(ring, ring) denotes the (ring,

ring) variation of this type of algorithms.
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4.3.1.2 Dynamic AEOS Algorithm in STAR-MPI

Given a set of algorithms, the primary objective of the dynamic AEOS algorithm is to find

the most efficient algorithm (among the set of algorithms) for an application running on

a given platform. The second objective is to minimize the overheads. Next, the AEOS

algorithm that achieves these two objectives is described.

Different MPI call sites or even the same call site invoked with different message sizes

constitute different program contexts. As shown in the previous study of Section 4.2, MPI

routines used in different program contexts usually have different program behavior. To

achieve the maximum tuning effectiveness, routines in different contexts must be tuned

independently. STAR-MPI addresses this issue as follows. For each MPI collective routine,

STAR-MPI supports N independent but identical routines, where N is a parameter.

Different call sites of the same MPI routine in an MPI program can be tuned independently.

To deal with the case of invoking the same call site with different message sizes, STAR-MPI

allows each call site to tune for a pre-defined number, X, of message sizes. If a call site has

more than X different message sizes during the program execution, STAR-MPI tunes for the

first X sizes and uses the default MPI routine for the rest of sizes. Note that in practice, a

call site in an MPI program usually results in only a small number of message sizes, most

call sites only have one message size. This arrangement allows the dynamic AEOS algorithm

to focus on tuning for one message size on one call site to maximize the tuning effectiveness.

In the rest of the section, it will be assumed that the AEOS algorithm is applied to tune one

message size on one call site.

In the course of program execution, a STAR-MPI routine (for one message size in each

call site) goes through two stages: Measure Select and Monitor Adapt. In the Measure Select

stage, in each invocation of the routine, one of the algorithms in the repository is used

to realize the operation and the performance of the algorithm is measured. During the

Measure Select stage, all algorithms in the repository will be executed and measured a

number of times. The number of times that each algorithm is executed and measured in

this stage is a system parameter. At the end of the Measure Select stage (all algorithms are

executed and measured), an all-reduce operation is performed to compute the performance

results on all processors and an algorithm is selected as the best algorithm based on the

measured performance. The performance of all other algorithms is stored for future use.
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Notice that for the whole Measure Select stage, only one additional all-reduce communication

(with a reasonable small message size) is performed. Note also that in this stage, less efficient

algorithms end up being used to carry out the operation since their performance must

be measured. After the Measure Select stage, it is expected that the selected algorithm

will deliver high performance for the subsequent invocations. However, this may not

always occur due to various reasons. For example, the initial measurement may not be

sufficiently accurate, or the workload in the application may change. To handle such

situations, in the Monitor Adapt stage, STAR-MPI continues monitoring the performance

of the selected algorithm and adapts (changes the algorithm) when the performance of the

selected algorithm deteriorates.

Figure 4.24 shows the details of the dynamic AEOS algorithm. In the figure, the use

of STAR Alltoall illustrates how to tune MPI Alltoall. The AEOS algorithm is the same

for all operations supported in STAR-MPI. It is important to understand that all internal

states of STAR Alltoall (or any other STAR-MPI collective routine) are static since it must

be retained between invocations. Each time STAR Alltoall is called, the algorithm first

computes (line 1) the message size, x, for the operation. Once the message size is known,

the algorithm can be in either of the two previously described stages depending on the value of

best algorithmx. As shown in lines 3-6, if best algorithmx points to an invalid communication

algorithm index, denoted by NIL, then the algorithm is in the Measure Select stage and

calls the Measure Select() routine. Otherwise, it is in the Monitor Adapt stage and calls the

Monitor Adapt() routine.

The logic of the Measure Select() routine (lines 7-18) is straight-forward. It runs and

measures each algorithm ITER times. ITER is a parameter that can be controlled and is by

default set to 10 in the current system. This number was determined experimentally; it is a

trade-off between the tuning overhead and measurement accuracy. When all communication

algorithms are examined, the Dist Time() routine is called (line 17) to compute the

communication time for all algorithms and distribute the results to all processors, and the

Sort Alg() routine is called (line 18) to sort the algorithms based on their performance and

select the best algorithm (set the value for best-algorithmx). Notice that the algorithm is

selected based on the best performance measured.

Once best algorithmx is set, the AEOS algorithm enters the Monitor Adapt stage. In this

stage, the algorithm pointed by best-algorithmx is used to realize the operation. The AEOS
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ITER: number of iteration to examine an
algorithm
δ: monitoring factor, initialized to 2
T: threshold used to switch between algorithms
TOTAL ALGS: total number of algorithms to
examine
func: pointer to a given function pointed by
indexx

best algorithmx ← NIL;
STAR Alltoall(sbuf, scount, stype, ...)

MPI Type size(stype, & size)1

x← scount * size2

if (best algorithmx == NIL)3

Measure Select(sbuf, scount, stype..., x)4

else5

Monitor Adapt(sbuf, scount, stype, ..., x)6

indexx ← iterx ← 0
Measure Select(sbuf, scount, stype, ..., x)

func ← Alltoall Alg(indexx)7

t0 ← MPI Wtime()8

func(sbuf, scount, ...)9

t1 ← MPI Wtime()10

le time[indexx][iterx] ← t1 - t011

iterx++12

if (iterx == ITER)13

iterx ← 014

indexx++15

if (indexx == TOTAL ALGS)16

Dist Time(le time, ge time, best time)17

best-algorithmx ← Sort Alg(best time, x)18

Monitor Adapt(sbuf, scount, stype, ..., x)
func ← Alltoall Alg(best algorithmx)19

t0 ← MPI Wtime()20

func(sbuf, scount, ...)21

t1 ← MPI Wtime()22

total[0] ← total[0] + (t1 - t0)23

if (δ*ITER - monitorx ≤ ITER)24

total[1] ← total[1] + (t1 - t0)25

monitorx++26

if (monitorx == δ * ITER)27

MPI Allreduce(total, ave, 2, .., MPI SUM, ..)28

ave[0] ← total[0] / monitorx29

ave[1] ← total[1] / ITER30

if (ave[0] < (1+ε) * best time[1])31

δ ← δ * 232

else if (ave[0] ≥ (1+ε) * best time[1])33

if (ave[1] ≥ (1+ε) * best time[1])34

best time[best algorithmx] ← ave[0]35

best-algorithmx ← Sort Alg(best time, x)36

δ ← 237

monitorx ← total[0] ← total[1] ← 038

Dist Time(le time, ge time, best time)
MPI Allreduce(le time, ge time,..MPI SUM,..)39

foreach i in 0 .. TOTAL ALG40

foreach j in 0 .. ITER41

ge time[i][j] ← ge time[i][j] / nprocs42

foreach i in 0 .. TOTAL ALG43

best time[i]←MIN(ge time[i][j])44

0≤j<ITER

Figure 4.24: Using STAR-MPI algorithm to tune MPI Alltoall

task in this stage is to monitor the performance of the selected communication algorithm

and to change (adapt) to another algorithm when the performance of the selected algorithm

deteriorates.

The Monitor Adapt() routine is shown in lines 19-38. The logic is as follows. First, the

algorithm pointed by best-algorithmx is used to realize the operation and the performance on

each processor is measured. The monitoring is done locally (no global communication)

during the monitoring period, which is defined as δ ∗ ITER invocations, where δ is a

variable whose value is initialized to be 2. At the end of the monitoring period, an all-

reduce operation is performed to compute the performance of the selected algorithm and
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distribute the performance results to all processors. If the average communication time of

the selected algorithm during the monitoring period is less than (1 + ε) ∗ second best time,

the length of the monitoring period is doubled. Here, ε is a system parameter, currently set

to 10%. If the average communication is more than (1 + ε) ∗ second best time, there are

two cases. If the average communication time of the last ITER invocations is also larger

than (1 + ε) ∗ second best time, this indicates that the selected algorithm may not be as

efficient as the second best algorithm and, thus, the second best algorithm is now selected.

The average time of the replaced algorithm is recorded and algorithms are re-sorted based

on their performance. When a new algorithm is selected, δ is reset to 2. If the average

communication time of the last ITER invocations is less than (1 + ε) ∗ second best time, the

bad performance measured may be caused by some special events and the AEOS algorithm

resets δ = 2 so that the selected algorithm can be monitored more closely.

The monitoring is critical to ensure that STAR-MPI will eventually find an efficient

algorithm. A number of trade-offs between monitoring overheads and algorithm effectiveness

are made in the Monitor Adapt routine. First, the length of the monitoring period, which is

controlled by δ, doubles every time the selected algorithm continues to perform well. This

reduces the monitoring overhead: if the selected algorithm continues to perform well, the

total number of all-reduce operations in the Monitor Adapt stage is a logarithm function

of the total number of invocations. However, this creates a chance for STAR-MPI to

adapt too slowly due to large monitoring periods. In practice, an upper bound can be

set for δ to alleviate this problem. Second, a simple heuristic is used to decide whether

the selected algorithm is still performing well. A more complex statistical approach may

improve the monitoring accuracy by better filtering out noise in the measurement or program

execution. Such an approach will incur more computation and more communication in

the Monitor Adapt stage. The simple approach is adopted since it works quite well in the

experiments.

4.3.1.3 Enhancing Measure Select by Algorithm Grouping

As can be seen from the previous discussion, most of the tuning overheads occur in the

Measure Select stage. When the message size is reasonably large, the bookkeeping overhead

in STAR-MPI is relatively small. However, the penalty for using less efficient algorithms

to realize an operation can be potentially very high. Two parameters affect this penalty:
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the parameter ITER and the number of less efficient algorithms in the repository. Hence,

ideally, one would like to reduce the number of algorithms as much as possible. However,

the problem is that reducing the number of algorithms may make the system less robust and

that before the algorithm is executed and measured, it is difficult to decide which algorithm

is more efficient than other algorithms.

Algorithm grouping is one way to reduce the number of algorithms to be probed without

sacrificing the tuning effectiveness. Algorithm grouping is based on the observation that a

collective communication algorithm usually optimizes for one or multiple system parameters.

When a system parameter has a strong impact on the performance of a collective operation,

the algorithms that optimize this parameter tend to out-perform other algorithms that do not

consider this parameter. Based on this observation, algorithm grouping groups algorithms

based on their optimization objectives. For example, the 2D mesh, 3D mesh, rdb, and

bruck algorithms for MPI Alltoall all try to reduce the startup overhead in the operation

by reducing the number of messages. If the startup overhead in an operation is important,

any of these algorithms will out-perform other algorithms that do not reduce the number of

messages. Hence, these four algorithms can be joined into one group. Once all algorithms

are joined into groups, the Measure Select() routine can first identify the best performing

groups by comparing algorithms in different groups (one algorithm from each group) and

then determine the best performing algorithm by evaluating all algorithms in that group.

This two-level tuning scheme reduces the number of algorithms to be measured in the

Measure Select phase while maintaining the tuning effectiveness (theoretically, all algorithms

are still being considered). Notice that algorithm grouping also affects the Monitor Adapt

stage: when a new algorithm in a new group is selected, if the algorithms in the new group

have not been probed, the system must first examine all algorithms in the group before

selecting the best performing algorithm. In the remainder of the section, the AEOS algorithm

without grouping is called the basic AEOS algorithm and with grouping the enhanced AEOS

algorithm.

The effectiveness of algorithm grouping depends on how the algorithms are grouped.

In STAR-MPI, the algorithms are grouped based on the previously described performance

model for STAGE-MPI in Section 4.1.1.1. Algorithms that optimize the same set of

parameters are merged in one group. Specifically, the 13 all-to-all algorithms are partitioned

into 6 groups: group 1 contains simple; group 2 (used only for small messages (≤ 256B))
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contains rdb, 2D mesh, 3D mesh, and bruck; group 3 contains ring and pair; group 4 contains

ring with light barrier and pair with light barrier; group 5 contains ring with MPI barrier

and pair with MPI barrier; group 6 contains the two topology specific algorithms. The 12

algorithms for MPI Allgather are partitioned into 6 groups: group 1 contains simple; group 2

contains rdb, 2D mesh, 3D mesh, and bruck; group 3 contains ring and pair; group 4 contains

ring with light barrier and pair with light barrier; group 5 contains ring with MPI barrier and

pair with MPI barrier; group 6 contains either the topology-unaware logical ring (LR) or the

topology specific logical ring (TSLR) algorithm (if topology information is known). The 20

all-reduce algorithms are partitioned into 3 groups based on the three types of algorithms.

Notice that although this grouping scheme may not be optimal, it allows for evaluating the

grouping technique that is proposed to improve dynamic AEOS scheme.

In general, grouping trades tuning overheads with the quality of the selected algorithm:

the best performing algorithm may not be selected with grouping. However, in all tests, the

enhanced STAR-MPI selected as good (or virtually as good as) an algorithm as did the basic

AEOS algorithm while significantly reducing the overhead.

4.3.2 Performance Evaluation

Most of the experiments are performed on Ethernet-switched clusters since STAR-MPI is

equipped with algorithms that are designed for Ethernet-switched clusters. To demonstrate

the robustness of the STAR-MPI technique, STAR-MPI is also tested on the Lemeiux

machine at Pittsburgh Supercomputing Center (PSC) [60]. The nodes of the Ethernet

clusters are Dell Dimension 2400 with a 2.8GHz P4 processor, 128MB of memory, and 40GB

of disk space. All machines run Linux (Fedora) with 2.6.5-1.358 kernel. The Ethernet card

in each machine is Broadcom BCM 5705 with the driver from Broadcom. These machines

are connected to Dell PowerConnect 2224 and Dell PowerConnect 2324 100Mbps Ethernet

switches. The topologies used in the experiments are shown in Figure 4.25. Part (a) of

the figure is a 16-node cluster connected by a single switch while part (b) shows a 32-node

cluster connected by 4 switches, with 8 nodes attached to each switch. The topologies are

referred to as topology (a) and topology (b), respectively.

As discussed earlier, there are two major performance issues in STAR-MPI. First, for

STAR-MPI to be efficient, the AEOS technique must be able to select good communication

algorithms at run-time. To examine the capability of STAR-MPI in selecting good commu-
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Figure 4.25: Topologies used in the experiments

nication algorithms, the performance of STAR-MPI (STAR) is compared with the original

MPICH 2.1.0.1 (MPICH) and STAGE-MPI (STAGE). Second, STAR-MPI introduces over-

head in both the Measure Select and Monitor Adapt stages. In the Measure Select stage,

less efficient communication algorithms are executed to carry out the operations. Such

overhead is denoted as Oc
MS. Additional overhead is introduced in this stage to execute the

AEOS logic (e.g. measuring, computing, and recording the performance of all communication

algorithms). The term Oa
MS denotes such overhead. In the Monitor Adapt stage, the

overhead is introduced to monitor the performance and to execute the logic to determine

whether the current communication algorithm should be changed. The overhead in the

Monitor Adapt stage is denoted as OMA. This subsection is organized as follows. First, the

basic AEOS algorithm is compared with the enhanced AEOS algorithm that uses algorithm

grouping. The capability of STAR-MPI in selecting good communication algorithms is then

studied in a number of application programs. After that, the overhead of STAR-MPI is

evaluated. Finally, the results of experiments on the Lemieux cluster at PSC are presented.

4.3.2.1 Basic AEOS .vs. Enhanced AEOS

For STAR-MPI to be efficient, it must (1) be able to find the efficient communication

algorithms and (2) find the algorithms as quickly as possible. The communication algorithm

found at the end of the Measure Select stage usually (but not always) offers reasonably

good performance and is used thereafter. Hence, a good indication of the performance of

an AEOS algorithm is (1) the quality of the communication algorithm selected at the end

140



of Measure Select, and (2) the duration of the Measure Select stage, which measures how

fast the AEOS algorithm can find the selected algorithm. In the following, the basic and

enhanced AEOS algorithms are compared using these two metrics.

for (i = 0; i < 500; i++) {
... // computation that lasts roughly 5 times

// the collective operation time
start = MPI Wtime();
MPI Alltoall(...);
elapsed += (MPI Wtime() - start);

}

Figure 4.26: An example micro-benchmark

Micro-benchmarks that are similar to the one shown in Figure 4.26 are used in the

comparison. This micro-benchmark simulates programs with a perfect computation load

distribution. The main loop contains both computation and collective communication. The

time for the computation in the loop is set to be roughly 5 times the total communication

time. The elapsed time for the communication is measured and reported.

Table 4.13 shows the number of invocations in the Measure Select stage, the total

communication time in this stage, and the algorithms selected by the basic and enhanced

AEOS algorithms. As expected, the enhanced scheme greatly reduces the number of

invocations and the time in the Measure Select stage. Moreover, the algorithms selected by

the two schemes are mostly the same. In cases when the selected algorithms are different (e.g.

128KB all-to-all and 128KB all-reduce), the performance of the different communication

algorithms is very similar. Experiments with different message sizes and different topologies

are conducted and similar observations are obtained. Hence, it can be concluded that the

enhanced scheme is more efficient than the basic scheme. In the rest of the subsection, only

the results of STAR-MPI with the enhanced AEOS algorithm are reported.

4.3.2.2 Application Results

Since STAR-MPI targets programs that invoke collective routines a large number of times,

the application benchmarks are selected such that they (1) run for a large number of iterations
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Table 4.13: Basic AEOS vs. enhanced AEOS on topology (a)

operation msg Measure basic enhanced
size Select

all-to-all 2KB # of 90 50
invocations
time (ms) 2181 1183
algorithm simple simple

128KB # of 90 60
invocations
time (ms) 31953 19018
algorithm ring light barrier pair light barrier

all-gather 2KB # of 120 60
invocations
time (ms) 2055 1229
algorithm simple simple

128KB # of 120 60
invocations
time (ms) 41233 18335
algorithm TSLR TSLR

all-reduce 2KB # of 200 110
invocations
time (ms) 2413 1571
algorithm Rab1-2D Rab1-2D

128KB # of 200 110
invocations
time (ms) 25319 7895
algorithm Rab1-3D Rab1-bruck

and (2) have significant collective communications. To achieve high performance for this type

of programs, it is critical that STAR-MPI must eventually select efficient communication

algorithms to carry out the collective operations. The results shown here mainly reflect the

capability of STAR-MPI in selecting efficient communication algorithms.

Four applications are used in the evaluation: FFTW [27], LAMMPS [45], NTUBE [66],

and NBODY [57]. FFTW [27] is a C library of routines for computing the discrete Fourier

transform in one or more dimensions, of arbitrary input size, and of both real and complex

data. When using the benchmark test driver, the value of l (linear size) is 1500 and the

value of nfft (number of Fourier transforms to execute) is 500. The LAMMPS (Large-scale
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Atomic/Molecular Massively Parallel Simulator) [45] benchmark models the assembly of

particles in a liquid, solid, or gaseous state. In the experiments, the program ran with 1720

copper atoms for 10000 iterations. The NTUBE (Nanotube) program performs molecular

dynamics calculations of thermal properties of diamond [66]. In the evaluation, NTUBE runs

for 1000 steps and simulate 25600 atoms. Finally, NBODY [57] simulates over time steps

the interaction, in terms of movements, position and other attributes, among the bodies

as a result of the net gravitational forces exerted on one another. The code ran for 1000

steps with 8000 bodies on topology (a) and 25600 bodies on topology (b). Note that the

number of iterations or time steps for each benchmark is chosen such that it is sufficient

enough (1) to allow STAR-MPI routines finish the Measure Select stage and (2) to achieve

considerable performance gains that will amortize the overheads associated with the STAR-

MPI technique. For the different benchmarks, Table 4.14 shows the major MPI collective

routines and the message sizes for topologies (a) and (b). These routines account for a

significant portion of the total application times and are tuned using STAR-MPI.

Table 4.14: Collective routines in the applications on different topologies

program routine topo. msg size
FFTW MPI Alltoall (a) 141376B

(b) 33856B
LAMMPS MPI Allreduce (a) 42382B

(b) 42382B
NTUBE MPI Allgatherv (a) 256000B

(b) 128000B
NBODY MPI Allgather (a) 20000B

(b) 32000B

Next, Table 4.15 shows the different communication algorithms selected in STAR,

STAGE, and MPICH to realize the collective operations in the four application benchmarks.

The STAR algorithms in the table are the final algorithms selected for the application.

Some algorithms in the table are not included in STAR-MPI and thus have not been

discussed. The description of these algorithms can be found in Section 4.1.1.1. There are two

main observations. First, MPICH has limited software adaptability as it only considers the

message size and the number of processors. In particular, for all benchmarks except NBODY,

the communication algorithms that MPICH uses are the same across both topologies. In
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the case of NBODY, the message sizes of the all-gather operation on the two topologies were

not in the same range, which caused MPICH to use two different communication algorithms.

Since MPICH does not take into consideration application behavior and all aspects of the

platform, its predetermined selection of algorithms will be inadequate in many cases. Second,

with the exception of NTUBE and NBODY on topology (b), the table shows that the STAR-

MPI versions of communication algorithms for the different collective operations are quite

different than (and superior to) the ones used by STAGE-MPI. The reason these algorithms

are picked by STAR-MPI but not STAGE-MPI, although the algorithms are available in

its repository, is that STAGE-MPI has only architectural information and selects the best

algorithms for Mpptest, not the applications. As a result, STAGE-MPI may not yield the

most efficient algorithm for an application since the program context is unavailable. STAR-

MPI attains full adaptability for the collective operations because it has access to application

information.

Table 4.15: Communication algorithms used in STAR, STAGE, and MPICH on different
topologies (T)

benchmark T. STAR STAGE MPICH

FFTW (a) pair with light barrier pair with MPI barrier pair
(MPI Alltoall) (b) pair with light barrier tuned pair with N MPI barrier pair

LAMMPS (a) Rab1-ring with light barrier Rab1-tuned MPICH Rab
(MPI Allreduce) (b) Rab1-rdb Rab2-(tuned, tuned) MPICH Rab

NTUBE (a) TSLR pair with MPI barrier LR
(MPI Allgatherv) (b) TSLR TSLR LR

NBODY (a) simple TSLR rdb
(MPI Allgather) (b) TSLR TSLR LR

The results for the application benchmarks for MPICH, STAR, and STAGE are sum-

marized in Table 4.16. Note that in all cases, STAR overhead is included in the presented

results, while MPICH and STAGE both have no run-time overhead. First, the ability of

STAR to select better communication algorithms than MPICH and STAGE is evident in the

significant performance gains shown in the table. For all benchmarks running on the two

topologies, except for NTUBE on topology (a), STAR is superior to MPICH. For example,

for the FFTW benchmark, STAR achieves a 64.9% and 31.7% speedups over MPICH on

topology (a) and topology (b), respectively. Also, substantial gains are seen for LAMMPS
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(85.6%) and NTUBE (408.9%) on topology (b). The result for the NTUBE benchmark

on topology (a) shows that STAR performs slightly worse than MPICH. This is because

both STAR and MPICH use the same communication algorithm to realize the all-gatherv

operation in the benchmark, with STAR paying the extra tuning overhead.

Comparing STAR to STAGE shows that in many cases STAR is also superior. For

example, on FFTW, STAR speedup relative to MPICH is much larger than that of

STAGE(65% to 11% on topology (a) and 32% to 7.7% on topology (b)). STAR speedup

is also much greater on LAMMPS (b) and NBODY (a), and STAR does not slow down on

NTUBE (a), as described earlier, whereas STAGE does. This demonstrates the effectiveness

of STAR that has a subset of algorithms in selecting better communication algorithms than

STAGE, which has a super-set of algorithms. In two of the other cases (LAMMPS (a),

NBODY (b)), the performance is similar, with STAGE slightly better. The one exception

is on NTUBE (b), where STAGE speedup is much larger than STAR. Let us look at these

last three cases next.

Table 4.16: Application completion times on different topologies

benchmark topo. STAR STAGE MPICH

FFTW (a) 350.8s 519.6s 578.6s
(b) 636.3s 778.0s 838.1s

LAMMPS (a) 9780s 9515s 11040s
(b) 1991s 2432s 3696s

NTUBE (a) 568.0s 725.0s 566.0s
(b) 758.4s 601.0s 3860s

NBODY (a) 4002s 4268s 4304s
(b) 2167s 2120s 2946s

Table 4.17 shows the performance of STAR with and without overhead, relative to

STAGE. The performance of STAR without overhead, denoted as STAR’, is obtained

by running the final routine selected by STAR-MPI without the tuning and monitoring

overheads. From Figure 4.17, it can be seen that STAR-MPI without overheads performs

at least as good as STAGE, which indicates that the performance penalty (versus STAGE)

is due to the overheads. As will be shown soon, the overhead is mainly introduced in the

Measure Select stage. The AEOS algorithm in STAR-MPI is robust. If applications run
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for more iterations, the tuning overheads will be amortized. For example, if NTUBE runs

for 2000 instead of 1000 time steps, the absolute STAR overhead would remain roughly the

same, while the relative STAR overhead would decrease substantially. Notice that STAGE-

MPI also has overhead: STAGE-MPI must be run over a significant period of time when a

new platform is encountered. STAGE-MPI overheads are not considered in this experiment.

Note also that the NTUBE (a) result shows that tuning with Mpptest can sometimes lead

to the algorithms that significantly degrade the performance for an application. This is a

major limitation of STAGE-MPI.

Table 4.17: Application completion times

benchmark topo. STAR STAGE STAR’
LAMMPS (a) 9780s 9515s 9420s
NTUBE (b) 758.4s 601.0s 601.0s
NBODY (b) 2167s 2120s 2120s

4.3.2.3 STAR-MPI Overhead

Using the micro-benchmarks similar to the code in Figure 4.26, the overhead of STAR-

MPI is examined in depth. The measured overheads include the overhead introduced by

the execution of less efficient algorithms, Oc
MS, and the overheads for running the AEOS

algorithm in both stages of STAR-MPI, namely Oa
MS and OMA. Note that besides the OMA

overhead in the Monitor Adapt stage, STAR-MPI may introduce extra overheads in this stage

if it adapts to a different algorithm. While such adaptation is occasionally observed (all such

adaptation occurs in the first monitoring period in the experiments), it is a low probability

random event. Hence, only Oa
MS, Oc

MS, and OMA are evaluated. In the following, the per

invocation time of STAR-MPI collective routines in the Measure Select and Monitor Adapt

stages is examined, and then the time is broken down in terms of the different overheads.

The per invocation times in the Measure Select and Monitor Adapt stages of STAR-MPI

all-to-all, all-gather, all-reduce routines with different message sizes on topology (a) and (b)

are shown in Table 4.18. The results are obtained using the micro-benchmark with 500 iter-

ations, which include the iterations for both the Measure Select and Monitor Adapt stages.

For example, for all-gather on topology (b) with message size 64KB, the Measure Select
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Table 4.18: Per invocation time (ms) for collective operations in the micro-benchmark

STAR
operation topo. msg MPICH Measure Monitor

size Select Adapt
all-to-all (a) 16KB 32.0 46.4 27.0

64KB 305.7 192.1 114.6
256KB 519.4 658.7 498.6

(b) 16KB 324.0 366.4 323.2
64KB 1493 1366 1108

256KB 6079 7154 5716
all-gather (a) 16KB 31.8 46.0 25.5

64KB 111.6 147.2 104.5
256KB 446.0 596.8 416.9

(b) 16KB 87.8 293.8 58.66
64KB 1532 1232 542

256KB 6432 5037 2004
all-reduce (a) 16KB 5.9 12.0 4.6

64KB 18.7 24.4 18.6
256KB 68.3 95.5 68.4

(b) 16KB 18.4 26.4 9.68
64KB 82.0 76.8 34.3

256KB 335.4 250 128.6

stage occupies 60 invocations and the Monitor Adapt stage occupies 440 invocations. For

reference, the per invocation time for MPICH is also shown. There are a number of common

observations for all operations on both topologies. First, the per invocation times are very

different for the Measure Select stage and the Monitor Adapt stage. This is because the best

performing algorithm significantly out-performs some of the algorithms in the repository.

Second, as shown in the table, although the per invocation time of STAR-MPI in the

Measure Select stage reflects a quite significant overhead, such overhead is amortized (and

then offset) by the gains due to the selection of a better communication algorithm during

the post tuning or Monitor Adapt stage. Third, in some cases (e.g. all-gather on topology

(b) with message sizes of 64KB and 256KB), STAR-MPI out-performs MPICH even in the

Measure Select stage. This is because some of the communication algorithms that STAR

utilizes during tuning are more efficient than those in MPICH.

Table 4.19 breaks down the per invocation time in terms of the Oa
MS, Oc

MS, and OMA

147



Table 4.19: Per invocation overheads (in millisecond) for collective operations in the micro-
benchmark

operation topo. msg size Oa
MS Oc

MS OMA

all-to-all (a) 16KB 0.04 46.4 0.01
64KB 0.35 191.8 0.06

256KB 1.60 657.1 0.30
(b) 16KB 0.01 366.4 0.4

64KB 0.01 1366.0 1.4
256KB 0.01 7153.9 5.8

all-gather (a) 16KB 0.01 45.9 0.03
64KB 0.01 147.2 0.1

256KB 0.7 596.1 0.2
(b) 16KB 0.01 293.8 0.08

64KB 0.01 1232 0.8
256KB 0.01 5037.0 0.6

all-reduce (a) 16KB 0.02 12.0 0.02
64KB 0.01 24.39 0.03

256KB 0.01 95.4 0.05
(b) 16KB 0.05 26.3 0.03

64KB 0.15 76.5 0.07
256KB 0.5 249.5 0.20

overheads for the same STAR-MPI collective routines. For the different message sizes,

the table shows that Oa
MS and OMA are very small and account for less than 0.3% of the

per invocation times (shown previously in Table 4.18) for the Measure Select stage or the

Monitor Adapt stage. On the other hand, it is easily observed that Oc
MS can be very large.

Thus, most of the overhead of STAR-MPI is due to the communication overhead in the

tuning phase. This indicates that the selection of the set of communication algorithms is

very critical for STAR-MPI to achieve high performance. Moreover, for different topologies,

the table shows that STAR-MPI may introduce very different overheads. For example, the

STAR-MPI all-gather routine introduces much more overhead on topology (b) than that

on topology (a). This is because the topology can significantly affect the performance of a

collective communication algorithm. Since the impact of topology is so significant, it may

be worthwhile to develop a performance model that can take network topology into account

and use the prediction from such a model to reduce the number of algorithms to be probed.
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4.3.2.4 STAR-MPI on Lemieux

To further study the effectiveness and impact of STAR-MPI technique on different platforms,

experiments are performed on the Lemieux supercomputing cluster, located in Pittsburgh

Supercomputing Center (PSC)[60]. The machine consists of 750 Compaq Alphaserver ES45

nodes, each of which includes four 1-GHz SMP processors with 4GB of memory. The

nodes are connected with a Quadrics interconnection network, and they run Tru64 Unix

operating system. The experiments are conducted with a batch partition of 128 processors

running on 32 dedicated nodes, although other jobs were concurrently using the network.

The benchmarks are compiled with the native mpicc on the system and linked with the

native MPI and ELAN libraries. ELAN is a low-level internode communication library that

efficiently realizes many features of the Quadrics interconnection such as multicast.

The algorithms used in the collective communication routines in the native MPI library

could not be identified. The Quadrics interconnect in this machine has very efficient hardware

support for multicast. As a result, for collective operations that have a multicast or broadcast

component, including all-gather, all-gatherv, and all-reduce, the native routines out-perform

STAR-MPI (sometimes to a large degree) since all STAR-MPI algorithms are based on point-

to-point primitives. However, STAR-MPI all-to-all routine offers better performance than

the native routine on this cluster.
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Figure 4.27: All-to-all micro-benchmark results on 128 processors (Lemieux), average per
invocation time
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The micro-benchmark results for MPI Alltoall (500 iterations) on Lemieux are shown

in Figure 4.27. The NATIVE legend denotes the performance of the native MPI routines.

Part (a) of the figure shows the results for small messages while part (b) shows the results

for medium/large messages. As shown in both parts of the figure, for all message sizes,

STAR offers higher performance than NATIVE, especially as the message size increases. For

example, when the message size is 256KB, the respective completion times for STAR and

NATIVE are 1005.6ms and 1329.5ms with STAR achieving a speedup of 32.3%. A similar

performance trend is evident when experimenting on the FFTW application benchmark with

l = 5700 and nfft = 500. The execution time for the benchmark using STAR-MPI is 184.3s

as opposed to 212.8s for NATIVE, which is a 15.5% speedup.

Although the communication algorithms in STAR-MPI were designed for Ethernet-

switched clusters, not for Lemieux, as shown in this experiment, STAR-MPI can improve the

performance for other types of clusters. This demonstrates the robustness of the proposed

DF technique.

4.4 Summary

The ability of MPI collective communication routines to adapt across platforms and applica-

tions is critical to construct efficient communication routines. Traditional library implemen-

tations of MPI, including LAM/MPI [44] and MPICH [52], fall short of such adaptability.

The delayed finalization of MPI collective communications (DF) approach overcomes this

limitation: it allows platform-specific algorithms to be included in the library and selects

the best communication algorithm for a collective operation in a given platform and/or

application configuration. STAGE-MPI and STAR-MPI integrate the two components of

a DF technique: an algorithm repository of different communication algorithms (platform-

specific and platform-unaware) that can potentially achieve high performance in different

situations and an automatic algorithm selection mechanism, which is based on the AEOS [82]

empirical approach, to select the best algorithm for a given situation. STAGE-MPI considers

the architectural information of the platform to produce at the library installation time

efficient MPI collective routines that significantly out-perform the ones used in LAM/MPI

[44] and MPICH [52]. One limitation of STAGE-MPI routines is that they only adapt to the

platform but not applications. The behavior of collective operations in MPI applications was
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studied, and it was found that an important aspect of application behavior, process arrival

pattern, must be considered in the development of efficient MPI collective routines. The

results of the study indicated that the performance evaluation of collective communication

algorithms in the context of the application on the platform is necessary to achieve high

performance. These results are considered in the development of the STAR-MPI library,

which empirically measures the performance of communication algorithms in the context of

both the application and platform. STAR-MPI routines are more efficient, achieve a higher

level of software adaptability, and significantly out-perform the routines in traditional MPI

libraries as well as the ones generated by STAGE-MPI in many cases.

The results in this chapter support the thesis of the dissertation: it is possible to develop

an adaptive MPI library whose collective routines can adapt to platforms and applications,

and the performance of MPI collective library routines can be significantly improved by

incorporating platform/application specific communication algorithms in the library and

making the library routines adaptive to the platform/application.
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CHAPTER 5

CONCLUSION & FUTURE WORK

5.1 Conclusion

Realizing MPI collective communication routines that can achieve high performance across

platforms and applications is challenging. In this research, the delayed finalization of

MPI collective communication routines (DF) approach is proposed and investigated. By

maintaining for each collective operation an extensive set of communication algorithms

that may include both platform/application specific and platform/application unaware

algorithms, and postponing the selection of the algorithms until the platform and/or

application are known, DF based MPI libraries such as STAGE-MPI and STAR-MPI

offer significantly better performance to applications than traditional MPI libraries such

as LAM/MPI and MPICH. This demonstrates the effectiveness and practicality of the DF

approach in realizing efficient MPI collective routines across platforms and applications.

5.2 Future Work

5.2.1 Performance Measurement Scheme for STAGE-MPI

One limitation of STAGE-MPI system is that it tunes MPI collective routines for Mpptest

[32] programs, which may not select the best communication algorithm for real applications

because the application context is unavailable. Note that the performance results of any

timing mechanisms that are based on Mpptest-like schemes give a reasonable (but not

highly accurate) estimate of how well an algorithm would perform in an application. A

potential performance refinement opportunity is to use performance measurement schemes

that somehow can reflect aspects of the application behavior. For example, to account for the

impact of process arrival patterns at MPI collective call sites, in applications where a major
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collective routine is preceded by either a computation or another collective routine, users

can measure the computation delay or the gap between the two collective routines. Such

information can be then used to synthesize a performance measurement scheme (program)

reflecting to some degree that particular program behavior. The new scheme can be used in

STAGE-MPI to get more accurate performance estimates of the communication algorithms,

which may result in selecting better communication algorithms.

Another related interesting issue is the impact of different timing mechanisms on the

performance of the tuned collective communication routines. One potential study is to

examine the impact of different timing mechanisms on one-to-all, one-to-many, all-to-one,

and many-to-one types of collective operations as well as on different types of collective

algorithms including globally coordinated, store-and-forward, and directly communicating

(Section 4.2.5 details such algorithms).

5.2.2 Extending the DF Libraries

A potential future direction is to extend the DF libraries to other platforms with different

nodal and networking architectures, such as systems with SMPs (or dual-core processors)

or systems connected by Infiniband. Although STAGE-MPI and STAR-MPI can currently

function properly on these platforms, they can only utilize the platform-unaware commu-

nication algorithms in the tuning process. To achieve higher performance, algorithms that

are optimized for one or more parameters of these platforms may need to be developed. For

example, in clusters of SMPs, memory bandwidth might be a performance factor, which

may require developing algorithms that are specific to SMPs and can efficiently realize the

memory bandwidth.

5.2.3 Process Arrival Pattern Sensitive Collective Algorithms

In this thesis, the process arrival patterns in MPI applications were studied. It was

found that the arrival patterns can have a significant impact on the performance of

collective communication algorithms and that the characteristics of arrival patterns must be

considered in the development of efficient MPI collective routines. For example, as described

in Section 4.2.5.1, many collective algorithms can be classified as globally coordinated

algorithms, which include all phased algorithms such as the all–to–all ring, pair, and bruck

algorithms [77, 7]. For these algorithms, an imbalanced process arrival pattern may cause
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the processes to be unable to coordinate as they are designed to: some processes may start

a new phase earlier while others are still finishing their assigned tasks in the current phase.

Potential future work in this context is to develop collective communication algorithms that

are sensitive to process arrival patterns. These algorithms will attempt to cope with the

negative effects of imbalanced arrival patterns.

5.2.4 Model Based DF Approach

The limitation of the empirical approach is that it takes a very long time to decide the

best algorithm since all algorithms must be executed and measured. Using a performance

model, the performance of different algorithms can be predicted analytically, which eliminates

the execution and measurement overheads in the algorithm selection process: the efficient

algorithm can be determined instantly. As discussed earlier, the challenge for developing

a model based DF library is the development of analytical performance models that can

predict the performance of different algorithms with sufficient accuracy.
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