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ABSTRACT

Applications in embedded systems often need to meet specified timing constraints. It

is advantageous to not only calculate the Worst-Case Execution Time (WCET) of an

application, but to also perform transformations that attempt to reduce the WCET, since

an application with a lower WCET will be less likely to violate its timing constraints.

A compiler has been integrated with a timing analyzer to obtain the WCET of a

program on demand during compilation. This environment is used to investigate three

different types of compiler optimization techniques to reduce WCET. First, an interactive

compilation system has been developed that allows a user to interact with a compiler and

get feedback regarding the WCET. In addition, a genetic algorithm is used to automatically

search for an effective optimization phase sequence to reduce the WCET. Second, a WCET

code positioning optimization has been investigated that uses worst-case path information

to reorder basic blocks so that the branch penalties can be reduced in the worst-case path.

Third, WCET path optimizations, similar to frequent path optimizations, are used to reduce

the WCET.

There are several contributions to this work. To the best of our knowledge, this is the

first compiler that interacts with a timing analyzer to use WCET predictions during the

compilation of applications. The dissertation demonstrates that a genetic algorithm search

can find an optimization sequence that simultaneously improves both WCET and code size.

New compiler optimizations have been developed that use WC path information from a

timing analyzer. The results show that the WCET code positioning algorithm typically

finds the optimal layout of the basic blocks with the minimal WCET. It is also shown that

frequent path optimizations can be applied on WC paths using worst-case path information

from a timing analyzer to reduce WCET. These new compiler optimizations described in

this dissertation not only significantly reduce WCET, but also are completely automatic.
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CHAPTER 1

INTRODUCTION

Generating acceptable code for applications residing on embedded systems is challenging.

Unlike most general-purpose applications, embedded applications often have to meet various

stringent constraints, such as time, space, and power. Constraints on time are commonly

formulated as worst-case (WC) timing constraints. If these timing constraints are not met,

even only occasionally in a hard real-time system, then the system may not be considered

functional.

The worst-case execution time (WCET) of an application must be calculated to determine

if its timing constraint will always be met. Simply measuring the execution time is not safe

since it is difficult to determine input data that will cause the executable to produce the

WCET. Accurate and safe WCET predictions can only be obtained by a tool that statically

and correctly analyzes an application to calculate an estimated WCET. Such a tool is called a

timing analyzer, and the process of performing this calculation is called timing analysis. It is

desirable to not only predict the WCET accurately, but to also improve it. An improvement

in the WCET of a task may enable an embedded system to meet timing constraints that

were previously infeasible.

WCET constraints can impact power consumption as well. Reducing the WCET of a task

may allow an embedded system developer to use a lower clock rate to save additional power,

which is valuable for mobile applications. The energy consumption E by an application is

proportional to V 2ft, where V is the supply voltage, f is the clock frequency, and t is the

time taken to run the application [1]. If the WCET is reduced by 10%, the clock rate can be

lowered by 10% while still meeting the deadline. Setting a lower clock rate can also lower the

supply voltage V, which reduces the power consumption quadratically. It will be shown in

this dissertation that the WCET compiler optimizations that we have applied will typically

reduce ACET as well. Even when the ACET increases, if this increase does not outweigh
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the benefit of the reduction in the supply voltage, then the WCET optimization will still

reduce the energy consumption E.

Dynamic voltage scaling (DVS) is a technique to reduce energy consumption by dynam-

ically adjusting the clock rate as low as possible while still making an application meet

its timing constraint. However, the number of voltage levels for a processor is limited and

the granularity of changing the voltage has overhead. In addition, many processors do not

support DVS.

One common embedded system is a digital signal processor (DSP). Kernels for DSP

applications have been historically written and optimized by hand in assembly code to ensure

high performance [2]. However, assembly code is less portable, harder to develop, debug,

and maintain. Many embedded applications are now written in high-level programming

languages, such as C, to simplify their development. In order for these applications to

compete with the applications written in assembly, aggressive compiler optimizations are

used to ensure high performance.

The execution time of an embedded application typically varies depending on the input

data. The goal of most compiler optimizations is to improve the average case execution time

(ACET), which is the typical execution time for a program, and/or code size. However,

in this research, compiler optimizations are used to improve the WCET of an application,

which is the maximum execution time of the application.

An interactive compilation system called VISTA (VPO Interactive System for Tuning

Applications) [3, 4] is used to perform the experiments. VISTA allows users to develop

embedded system applications in a high level language and still be able to tune the WCET

of an application. VISTA has been integrated with a WC timing analyzer to automatically

obtain WCET feedback information, which includes the WC paths and their WCETs.

Figure 1.1 shows how the compiler obtains the WCET information after performing a

sequence of optimizations. The compiler sends information about the control flow and the

current instructions that have been generated to the timing analyzer. Predictions regarding

the WCET and WC path information are sent back to the compiler from the timing analyzer

to guide the compiler optimizations.

WCET compiler optimization has some advantages over ACET compiler optimization.

First, some ACET compiler optimizations need profiling to detect the frequently executed

2
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Figure 1.1. The Compiler Interacts with the Timing Analyzer to Obtain the WCET

paths to perform optimization. Profiling requires input data from the user that is supposed

to represent average usage of the program. In contrast, WCET predictions do not rely on

profiling and are totally automatic. Second, typically WCET compilation is faster than

ACET compilation since performing timing analysis is faster than executing code. Further-

more, profiling on many embedded systems requires simulation, which can significantly slow

down the compilation.

In this research, three different types of compiler optimization techniques have been

developed to reduce the WCET of an application. First, a genetic algorithm is used to

search for an effective optimization phase sequence that best reduces the WCET of the

application. This method can reduce WCET and code size simultaneously when the fitness

value for the genetic algorithm addresses both WCET and code size [5]. Second, a WCET

code positioning optimization attempts to reduce WCET by reordering the basic blocks [6].

The number of unconditional jumps and taken branches that occur along the worst-case path

is minimized by making basic blocks along the worst-case path contiguous in memory. Third,

WCET path optimizations are used to reduce the WCET by code duplication. Traditional

path-based compiler optimizations are used to reduce the ACET by optimizing frequently

executed paths. Since these frequently executed paths may not be the worst-case (WC)

paths, similar path optimizations on WC paths can be applied to reduce the WCET of a

task [7]. The first method is a black box solution, in which the WC path information is

not needed, while the last two methods are white box solutions, in which the WC path

information is used to guide the optimizations.

The remainder of this dissertation has the following organization. Chapter 2 contains

the prior work to this research, including WCET prediction and other WCET reduction

techniques. The underlying architecture used for this research is the StarCore SC100.

3



Therefore, Chapters 3, 4 and 5 introduce the StarCore SC100 processor and how to retarget

this machine to both the VPO (very portable optimizer) compiler and the timing analyzer

used at FSU, respectively. The experimental environment in which this research was

accomplished is presented in Chapter 6 and the benchmarks used are described in Chapter 7.

The three compiler optimization techniques to reduce the WCET for embedded applications

are discussed in the next three chapters. Chapter 8 presents applying a genetic algorithm

to search for an effective optimization sequence that best reduces the WCET. Chapter 9

presents the code positioning algorithm to reduce the WCET for the optimal layout of the

code in memory. Chapter 10 describes how to reduce WCET by adapting and applying path

optimizations designed for frequent paths to WC paths in an application. Future work in

this research area is outlined in Chapter 11 and the conclusions are given in Chapter 12.
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CHAPTER 2

RELATED WORK

Research on reducing the WCET for embedded systems using compiler optimizations is

a new area of research. However, this research is built upon prior work, such as WCET

prediction techniques and compiler optimizations. This chapter summarizes the prior

research on WCET prediction and reduction techniques. Prior research directly related

to the three new WCET reduction techniques are presented in separate prior work sections

in the chapters describing these techniques.

2.1 Prior Work on WCET Predictions

There has been much work on WCET predictions. Each of the general techniques for

predicting WCET is discussed in the following subsections. Note that there are several

other timing analysis techniques that are variations on the ones described in this section.

Each of the general techniques has advantages and disadvantages. The reasons why the

WCET prediction technique used in our timing analyzer is appropriate for performing WCET

compiler optimizations are also discussed.

2.1.1 Timing Schema

In the 1980s, Shaw and Park started using timing schema to predict the maximum

execution time of real-time programs [8, 9]. A WCET prediction tool has been developed

later based on a timing schema, which is associated with each source-level program language

construct [10]. In order to consider the effect of pipelining and caches on the execution time,

the timing schema for each language construct contains WC pipeline and cache information.

The timing bound for the whole program can be obtained by concatenation and union of

the timing schema based on the source-level language constructs.
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One limitation of this approach is that the prediction is associated with the source code

instead of only the assembly. Compiler optimizations that change the control flow would

invalidate the one-to-one correspondence between the source code and machine code. This

limitation prevents the analysis of optimized code. Thus, the WCET from the timing schema

cannot be easily used to guide the compiler optimizations to reduce the WCET.

2.1.2 Path Analysis

Another WCET prediction tool has been developed that is based on path analysis

[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. The compiler provides the instruction

and the control flow information. The path analysis is performed by the timing analyzer at

the machine code level to calculate the execution time for each path in order to find the WC

path. The execution time of a program is calculated by following a timing tree, where each

node is a loop or a function.

This timing analyzer examines all the paths at each loop level to find the WC path. The

analysis time is proportional to the number of paths at each loop level [17]. Since the path

analysis technique to predict the WCET is performed at the machine instruction level, it is

accurate and provides WCET path information that is useful for applying WCET compiler

optimizations. Path analysis is used in this dissertation to predict the WCET of embedded

applications. More details of this method are presented in Chapter 5.

2.1.3 Integer Linear Programming

The Integer Linear Programming (ILP) timing analysis method converts the problem of

estimating WCET into a set of ILP constraints [25] [26]. After the ILP formulation, existing

ILP solvers are used to determine the maximum total execution time. These ILP solvers can

potentially determine a tight bound on a program’s execution time.

The ILP approach is appealing since it is elegant and simple. However, it is common to

have a large number of variables in the ILP constraints for even relatively small programs.

It can be time-consuming to calculate the WCET using existing ILP solvers to deal with

such a large number of variables. Furthermore, even if the WCET is obtained, only a single

6



value representing the WCET is produced. This WCET prediction does not provide detailed

information that can be used by compiler optimizations to improve the WCET.

2.1.4 Symbolic Execution

The symbolic execution method extends the instruction level architecture simulation

technology with the capability of handling unknown input data values. Since the WC

input data is unknown, it will appear that this approach would have to simulate all paths

throughout the program to find the WCET. However, by using a path-merging strategy,

this simulation technique can reduce the number of paths to be simulated [27]. Many

paths are not simulated when the method finds that a branch must have a specific result.

Symbolic execution can provide very accurate WCET prediction since it implicitly handles

most functional constraints. But it can be very inefficient since it must simulate all loop

iterations. Thus, the analysis time is proportional to the WCET of the program being

analyzed. Such slow analysis would significantly increase compilation time if used in a

compiler.

2.2 Prior Work on Reducing WCET

While there has been much work on developing compiler optimizations to reduce

execution time and, to a lesser extent, to reduce space and power consumption, there

has been very little work on compiler optimizations to reduce WC performance. Marlowe

and Masticola outlined a variety of standard compiler optimizations that could potentially

affect the timing constraints of critical portions in a task [28]. They proposed that

some conventional transformations may even lengthen the execution time for some sets of

inputs. These optimizations should be used with caution for real-time programs with timing

constraints. However, no implementation was described in their paper. Hong and Gerber

developed a programming language with timing constructs to specify the timing constraints

and used a trace scheduling approach to improve code in critical sections of a program [29].

Based on these code-based timing constraints, they attempt to meet the WCET requirement

for each critical section when performing code transformations. However, no empirical results

were given since the implementation did not interface with a timing analyzer to serve as a

7



guide for the optimizations or to evaluate the impact on reducing WCET. Both of these

papers outlined strategies that attempt to move code outside of critical sections within an

application that have been designated by a user to contain timing constraints. In contrast,

most real-time systems use the WCET of an entire task to determine if a schedule can

be met. Lee et. al., used WCET information to generate code on a dual instruction set

processor for the ARM and the Thumb [30]. ARM code is generated for a selected subset

of basic blocks that can impact the WCET. Thumb code is generated for the remaining

blocks. In this way, they can reduce the WCET while minimizing code size. They are using

WCET information to choose the instruction set to select when generating code. In contrast,

compiler optimizations are used to improve the WCET on a single instruction set processor.
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CHAPTER 3

THE STARCORE SC100 ARCHITECTURE

The StarCore SC100, a Digital Signal Processor (DSP), is the architecture that is used in

this research. The StarCore SC100 is a collaborative effort between Motorola and Agere and

have been used in embedded system applications, such as DSL modems, wireless handsets,

IP telephony, motor control, and consumer electronics. This low-to-middle performance DSP

has the properties of compact code density, low power consumption and low cost [31]. There

are no caches and no operating system in a SC100 system, which facilitates accurate WCET

predictions.

In the StarCore SC100, there are three main functional units: the Program Sequencer

Unit (PSEQ), the Data Arithmetic and Logic Unit (DALU), and the Address Generation

Unit (AGU). The PSEQ performs instruction fetch, instruction dispatch, and exception

processing. The DALU has one Arithmetic Logic Unit (ALU) to perform the arithmetic and

logical operations, and the AGU has two Address Arithmetic Units (AAU) to perform address

calculations. The SC100 contains a register file with 32 registers. 16 registers are used to

store data (data registers) and 16 registers are used to store addresses (address registers).

Each data register contains 40 bits and each address register contains 32 bits. The size of

instructions can vary from one word (two bytes) to five words (ten bytes) depending upon

the type of instruction, the addressing mode used, and the register number referenced. The

SC100 machine has DSP addressing modes which are:

• register indirect: (Rn)

• post-increment: (Rn)+

• post-decrement: (Rn)-

• post-increment by offset: (Rn)+Ni
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• index by offset: (Rn+N0)

• indexed: (Rn+Rm)

• displacement: (Rn+x)

The SC100 has a 5-stage pipeline. The five stages are:

• Prefetch: Generate the address for the fetch set and update the Program Counter

(PC).

• Fetch: Read the fetch set from memory.

• Dispatch: Dispatch an instruction to the appropriate unit (AGU or DALU). Decode

AGU instructions.

• Address Generation: Decode DALU instructions. Generate addresses for loads/stores.

Generate target addresses for transfer of controls. Perform AGU arithmetic instruc-

tions.

• Execution: Perform DALU calculations. Update results.

The prefetch stage in the pipeline always fetches the next sequential instruction. There-

fore, the SC100 processor incurs a pipeline delay whenever an instruction transfers control

to a target that is not the next sequential instruction since the pipeline has to be flushed

to fetch the target instruction and there are no branch prediction or target buffers that are

used. A transfer of control (taken branches, unconditional jumps, calls, and returns) results

in a one to three cycle penalty depending on the type of the instruction, the addressing mode

used, and if the transfer of control uses a delay slot. In this machine, if a conditional branch

instruction is taken, then it takes three more cycles than if it was not taken. Unconditional

jump instructions take two extra cycles if they use immediate values and take three extra

cycles if they are PC-relative instructions. There are delayed change-of-flow instructions to

allow filling-delay-slots optimizations. These delayed change-of-flow instructions require one

less cycle of delay than the corresponding regular change-of-flow instructions. Transfers of

control on this machine also incur an extra delay if the target is misaligned. The SC100
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Figure 3.1. Example of a Misaligned Target Instruction

fetches instructions in sets of four words that are aligned on eight byte boundaries. The

target of a transfer of control is considered misaligned when the target instruction is both in

a different fetch set from the transfer of control and spans more than one fetch set, as shown

in Figure 3.1. In this situation, the processor stalls for an additional cycle after the transfer

of control [31].

In addition, there are no pipeline interlocks in this machine. It is the compiler’s

responsibility to insert no-op instructions to delay a subsequent instruction that uses the

result of a preceding instruction when the result is not available in the pipeline. Finally,

the SC100 architecture does not provide hardware support for floating-point data types, nor

does it provide divide functionality for integer types [31]. These operations are implemented

by calling library functions.

11



CHAPTER 4

RETARGETING VPO TO THE STARCORE

SC100

VISTA’s optimization engine is based on VPO, the very portable optimizer [39, 40]. In

order to determine the effectiveness of improving the WCET for applications on an embedded

processor, the VPO compiler was ported to the StarCore SC100 processor. There are three

components in the VPO compiler system: the front end, the code expander, and the backend,

which are shown in Figure 4.1. VPO uses a very simple front end that translates the source

code into intermediate code operations and performs no optimizations. A code expander

is then used to translate these intermediate operations into a sequence of instructions

represented by register transfer lists (RTLs). The code expander also does not perform

any optimizations. The backend performs all optimizations on RTLs based on machine

descriptions and generates the optimized assembly.

RTL is a low-level, machine- and language-independent representation that encodes

machine-specific instructions. The comprehensive use of RTLs in VPO has several important

consequences. Because there is a single representation, VPO offers the possibility of applying

analyzes and optimizations repeatedly and in an arbitrary order. Therefore, it provides

opportunities to tune the performance by reordering the optimization phases. In addition,

the use of RTLs allows VPO to be largely machine-independent, yet efficiently handle

machine-specific aspects such as register allocation, instruction scheduling, memory latencies,

multiple condition code registers, etc. VPO, in effect, improves object code. Machine-specific

optimization is important because it is a viable approach for realizing high-level language

compilers that produce code that effectively balances target-specific constraints such as code

density, power consumption, and execution speed.

Since the general form of RTLs is machine-independent, it is relatively easy to retarget

VPO to a new machine, which is the reason why the VPO compiler is called the Very Portable

12



machine

description

Program
Source

optimized
assembly

code

lcc

optimizer

backend

frontend

Intermediate
Code

lcc file

cex file

simple
RTLs

Expander

Code

Figure 4.1. Overview of the VPO Compiler

Optimizer. Retargetability is key for embedded microprocessors where chip manufacturers

provide many different variants of the same base architecture and some chips are custom

designed for a particular application.

VPO often can be easily extended to handle new architectural features as they appear.

Extensibility is also important for embedded chips where cost, performance, and power

consumption considerations often mandate development of specialized features centered

around a core architecture. The final property of VPO is that its analysis phases (e.g.

data-flow analysis, control-flow analysis, etc.) were designed so that information is easily

extracted and updated. This property makes writing new optimizations easier since data-flow

and control-flow information can be collected by the analyzers.

Although all the three parts of the VPO compiler (shown in Figure 4.1) had to be modified

to retarget the compiler for the SC100 processor, most of the retargeting effort was on the

code expander and the backend. lcc is the compiler’s front end [32], which translates C

preprocessed source code into an lcc file containing machine-independent operations. The

lcc file is fed into the code expander to produce the cex file, which contains the instructions
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represented by RTLs. The backend (optimizer) takes the cex file, performs optimizations,

and generates the assembly file.

The procedure/function calling convention on this machine has a special feature. In most

of the cases, the first two arguments are passed in registers, while the rest of the arguments

are passed on a stack. However, functions with a variable number of arguments (varidatic

functions) pass the last fixed argument and all subsequent variable arguments (varidatic

arguments) on the stack. For example, if a varidatic function printf() has two arguments,

then the first one is a fixed argument and the second one is a varidatic argument. Based on

this rule, both arguments have to be passed on the stack. For another example, if a varidatic

function scanf() has three arguments, then the first two arguments are fixed arguments

and the third one is varidatic. The first argument has to be passed in a register and the

remaining two arguments are passed on the stack. The lcc frontend had to be modified to

indicate in the lcc file whether a function is a varidatic function and which arguments are

fixed or varidatic.

The code expander should generate legal RTLs for the target machine. Since each machine

has a different instruction set, the code expander has to be modified for each new architecture.

The SC100 uses different types of registers to store data and address values, while most

machines use the same type of registers for both. In addition, an SC100 conditional transfer

of control consists of two instructions: a comparison instruction and a branch instruction.

Different types of comparisons are encoded in the comparison instruction. Whether the

second instruction jumps to the new target depends on the result (true/false) of the previous

comparison instruction. The SC100 also has different mechanisms to handle multiply and

division operations, parameter passing, etc. Furthermore, the data section in the assembly

is generated in the code expander. The format of this section had to be made compatible

with the SC100 data section specifications.

The backend of VPO consists of a machine-dependent part and a machine-independent

part. In the machine-dependent part, the following tasks had to be performed to retarget it

to the SC100.

• Change the machine description.

• Modify the calling convention for the SC100.
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• Modify machine-dependent subroutines.

• Translate RTLs into SC100 assembly syntax.

VPO uses a syntax-directed translation tool called YACC to translate RTLs into assembly

[41]. All legal RTLs for a machine are written as rules and are collectively called the machine

description. Each YACC rule may be associated with an action to emit assembly code.

Compiler optimizations, such as instruction selection, also need these rules to determine

whether an RTL is legal or illegal for a particular machine. Even if the syntax of an RTL

is legal, that RTL may not be a legal instruction. For example, ADD #u5, Dn is a SC100

instruction, where #u5 represents a 5-bit unsigned value and Dn represents a data register.

A legal RTL for this instruction is d[0]=d[0]+31; while d[0]=d[0]+32; is illegal for the

SC100 since the constant should be less than or equal to the largest 5-bit unsigned value for

this instruction. Therefore, semantic checks for these instructions had to be added to the

backend.

A calling convention defines how one procedure calls another. The calling convention

varies for each machine. Information needed by a single activation of a procedure is managed

by using a contiguous block of storage called an activation record or a frame. An SC100

activation record consists of local variables, temporaries, saved-registers, incoming/outgoing

arguments and the return address. Figure 4.2 shows the stack frame layout for the SC100 [31].

At the entry point of a function, the stack pointer SP is increased by the size of the frame. At

the exit point of the function, the SP is decreased back by the size of the frame. All the local

variables are addressed by the SP minus an offset. The size of the frame is the summation of

the space needed by incoming arguments, local variables, temporaries, saved registers, the

return address, and outgoing arguments. If the function is not a leaf function, the outgoing

arguments that cannot fit into registers are located in the space for outgoing arguments. If

the function calls multiple functions, the size for outgoing arguments is determined by the

callee function that needs the most space. The space for incoming arguments is used for

storing the incoming arguments passed in registers. The incoming arguments passed on the

stack are accessed by going to the caller function’s frame. If non-scratch registers (d6, d7,

r6 or r7) are used in this function, these registers have to be saved and restored at the entry

and exit of the function.
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Unlike most pipelined processors, the SC100 does not stall an instruction when the values

on which it depends are not available. Since there are no pipeline interlocks, the last compiler

optimization phase inserts no-op instructions to delay a subsequent instruction that uses the

result of a preceding instruction when the result is not available in the pipeline.

The code size of each SC100 instruction may vary. The instruction type, the number

of registered referenced, and the constant used can affect the size of an instruction. The

VPO compiler was modified to enable it to statically calculate the code size of a program

by inspecting these aspects of each instruction. This size information is used by the timing

analyzer to detect the branch target misalignment delay. It is also used to measure the

change on code size after applying optimizations in these experiments.
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CHAPTER 5

RETARGETING THE TIMING ANALYZER TO

THE SC100 PROCESSOR

The WCET of an application is obtained by a timing analyzer. This chapter summaries

the timing analyzer [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] developed by FSU

and how it was retargeted to the SC100 processor. Figure 5.1 depicts the organization of

the framework that was used by the authors in the past to make WCET predictions. The

compiler provides the instruction and the control flow information. The path analysis is

performed by the timing analyzer at the machine code level to calculate the execution time

for each path in order to find the WC path.

This path analysis approach for predicting WCET involves the following steps:

• architecture modeling (pipeline and cache)

• detecting the maximum number of iterations of each loop

Dependent
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Cache

Simulator

Cache
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Source
Files
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User

Analyzer
Timing
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Control Flow
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Figure 5.1. An Overview of the Existing Process to Obtain WCET Predictions
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• detecting all possible paths and identifying infeasible paths

• analyzing each path to predict its WCET

• calculating the WCET for each loop and function

• predicting the WCET for the whole program based on a timing tree

An instruction’s execution time can vary greatly depending on whether that instruction

causes a cache hit or a cache miss. The timing analyzer starts performing WC cache

analysis [12]. A static cache simulator uses the control-flow information to give a caching

categorization for each instruction and data memory reference in the program. The timing

analyzer then integrates the cache analysis with pipeline analysis [13]. Structural and data

hazard pipeline information for each instruction is needed to calculate the execution time

for a sequence of instructions. Cache misses and pipeline stalls are detected when inspecting

each path. Note that WCET prediction for many embedded machines is simpler since they

often have a simple pipeline structure and a memory hierarchy consisting of ROM and RAM

(no caches).

Besides addressing architectural features, the timing analyzer also automatically calcu-

lates control-flow constraints to tighten the WCET [18]. One type of constraint is determin-

ing the maximum number of iterations associated with each loop, including nonrectangular

loops where the number of iterations of an inner loop depends on the value of an outer loop

variable [19]. Another type of constraint is branch constraints [24]. The timing analyzer

uses these constraints to detect infeasible paths through the code and the frequency of

how often a given path can be executed. The timing analyzer uses the control-flow and

constraint information, caching categorizations, and machine-dependent information (e.g.

characteristics of the pipeline) to make its timing predictions. The WCET for a loop is

calculated by repeatedly detecting the WCET path until a fixed point is reached where the

caching behavior remains the same. The WCET of the whole program is calculated in a

bottom up fashion by following a timing tree, where the WCET for an inner loop (or called

function) is calculated before determining the WCET for an outer loop (or calling function).

Each function is treated as a loop with a single iteration. The WCET information for an

inner loop (or called function) is used when it is encountered in an outer-level path.
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Sometimes the control flow within a loop has too many paths. For example, if there

are 20 if statements inside a loop, there are up to 220 paths, which is not practical for

path analysis to evaluate within a reasonable time. The timing analyzer was modified to

partition the control flow of complex loops and functions into sections that are limited to

a predefined number of paths. The timing tree is also updated to include each section as a

direct descendant to the loop or function containing the section[17].

The architectural features of a machine, such as pipelining and caches, affect the WCET

prediction of an application. The timing analyzer was retargeted to the SC100 processor,

a DSP, to demonstrate that the WCET could be predicted for an embedded machine. It

is difficult to produce cycle-accurate simulations for a general-purpose processor due to the

complexity of its memory hierarchy and its interaction with an operating system that can

cause execution times to vary. Fortunately, unlike most general-purpose processors, the

SC100 does not have a memory hierarchy (no caches or virtual memory system). This

simplifies the timing analysis for the SC100 since each instruction could be fetched in a

single cycle if it is within one fetch set.

There are several modifications to support timing analysis of applications compiled for the

SC100 processor. First, the machine-dependent information (see Figure 5.1) was modified

to indicate how instructions proceed through the SC100 pipeline. Most SC100 instructions

take one cycle to execute. However, some instructions require extra cycles in the pipeline.

For instance, if an instruction uses an indexed or displacement memory addressing mode,

it requires one additional cycle since the address has to be calculated from an arithmetic

expression. Second, the timing analyzer was updated to treat all cache accesses as hits since

instructions and data on the SC100 can in general be accessed in a single cycle from both

ROM and RAM, respectively. Thus, the static cache simulation step shown in Figure 5.1 is

now bypassed for the SC100. Third, the timing analyzer was modified to address the penalty

for transfers of control. When calculating the WCET of a path, it has to be determined if

each conditional branch in the path is taken or not since non-taken branches do not have

this penalty. When there is an transfer-of-control penalty, the timing analyzer calculates the

number of clock cycles for the penalty, which depends on the instruction type and whether

there is an extra cycle due to a target misalignment penalty. Therefore, the size of each

instruction is needed to detect when the target misalignment penalty will occur.
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Figure 5.2. Example: Branch Penalty Affects the Worst-Case Path

In addition, we were able to obtain a simulator for the SC100 from StarCore [33]. Many

embedded processor simulators, in contrast to general-purpose processor simulators, can

very closely estimate the actual number of cycles required for an application’s execution.

The SC100 simulator can simulate SC100 executables and report an estimated number of

execution cycles for a program. This simulator is used to verify the accuracy of the WCET

timing analyzer. This simulator, which can report the size of each instruction as well, is also

used to verify the instruction sizes obtained from the compiler.

The transfer of control and branch target alignment penalties for SC100 can lead to

nonintuitive WCET results. For instance, consider the flow graph in Figure 5.2. A superficial

inspection would lead one to believe that the path 1 → 2 → 3 is the WCET path through

the graph. However, if the taken branch penalty in the path 1 → 3 outweighs the cost

of executing the instructions in block 2, then 1 → 3 would be the WCET path. Simply

measuring the execution time is not safe since it is very difficult to manually determine the

WC paths and the input data that will cause the execution of these paths. This simple

example illustrates the importance of using a timing analyzer to calculate the WCET.
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CHAPTER 6

OVERALL FRAMEWORK OF THE RESEARCH

The research framework is built upon an interactive compilation system called VISTA [3,

4]. The development of VISTA was the topic of my master’s thesis. VISTA was retargeted

to the SC100 architecture and integrated it with the SC100 timing analyzer, which provides

the WCET path information to the compiler to perform the WC compiler optimizations.

Figure 6.1 shows an overview of the infrastructure used for this research. Note that Figure 5.1

only shows the timing analysis component in Figure 6.1. The SC100 compiler takes the

source code and generates the assembly and the timing information. The timing information

is fed into the timing analyzer to get the WC path information. The compiler performs

the compiler optimizations to reduce WCET and the user can see transformations to the

program graphically at the machine code level. The compiler automatically invokes the

timing analyzer to update the WC path information, which is used to guide the next

optimization. The graphical user interface in the viewer helps the user to see the progress on

the improvement of WCET of an application, and it also was useful for debugging problems

when developing the compiler optimization algorithms.

When the WCET is needed for a benchmark, VPO generates a timing information file

for the benchmark and invokes the timing analyzer. The timing analyzer uses the timing

information file as input to predict the WCET. Each instruction in the assembly has a

counterpart in the timing information file where the instruction type and the registers set

and used are presented. The timing analyzer needs this information to detect pipeline

hazards and find the worst-case paths. The timing information file for the SC100 also

contains the size information for each instruction, which is needed by the timing analyzer

to detect the branch target mis-alignment penalties. In addition, the timing information file

contains the control-flow information, such as the branches and loop, for the program. Many
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modifications to the SC100 VPO compiler were required to produce the timing information

file for timing analysis.

The timing analyzer takes the timing information file and produces the WCET path

information into another output file. VPO then reads the output file to get WCET

information. WCET path optimizations need to be driven by the WCET path information

obtained from the timing analyzer. The output file from the timing analyzer includes all the

information about the timing tree. The information contains:

1. all the timing nodes (loops or functions)

2. parents/children relationship information for these nodes

3. function where each node is located

4. all paths in each node and their WCETs

5. all the basic blocks along each path
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The timing analyzer calculates the WCET for all paths within each loop and the outer

level of a function. A loop path consists of basic blocks and each loop path starts with the

entry block (header) in the loop and is terminated by a block that has a transition back to

the entry block (back edge) and/or outside the loop. A function path starts with the entry

block to the function and is terminated by a block containing a return. If a path enters a

nested loop, then the entire nested loop is considered a single node along that path. The

WCET for each path is calculated by the timing analyzer. This WC path information is

used to guide the optimizations.

The compiler has the ability to reverse previously applied transformations. VPO compiler

optimizes one function at a time. When the transformations need to be reversed, the current

function and all its data structures are discarded and re-initialized. A fresh instance of the

function is then read from the input file. The optimizations are re-applied up to a certain

point. Therefore, the transformation information is saved to a file to prepare for the reverse.

When the timing analyzer measures the WCET after one path optimization, transformations

are reversed to the point before or after this path optimization is applied, depending whether

or not the path optimization is retained.
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CHAPTER 7

BENCHMARKS

Table 7.1 shows the benchmarks and applications used in these experiments for this disser-

tation. These programs include a subset of the DSPStone fixed-point kernel benchmarks and

other benchmarks used in previous studies by various groups (FSU, SNU, Uppsala) working

on WCET timing analysis. Many DSP applications have been historically optimized in

assembly code by hand to ensure high performance [2]. In contrast, all of the results in this

section are from code that was automatically generated by VISTA. The only DSPStone

fixed-point kernel benchmarks not included are those that could not be automatically

processed by the timing analyzer. In particular, the number of iterations for loops in

some benchmarks could not be statically determined by the compiler. While the research

framework allows a user to interactively supply this information, such programs are excluded

to facilitate automating the experiments. Note that the DSPStone fixed-point kernel

benchmarks are usually small and do not have conditional constructs, such as if statements.

Other benchmarks shown in Table 7.1 were selected since they do have conditional constructs,

which means they have more than one path and the WCET and ACET input data may not

be the same.

All input and output were accomplished by reading from and writing to global variables,

respectively, to avoid having to estimate the WCET of performing actual I/O. If the input

data for the original benchmark was from a file, then the benchmark was modified so that a

global array is initialized with constants. Likewise, output is written to a global array.

In order to verify the accuracy of the worst-case timing analyzer, the SC100 simulator

from StarCore is used to obtain the execution time driven by the WC input data. If

the benchmark has more than one path, the WC input data for the simulator has to be

meticulously determined since the WC paths were often difficult to detect manually due to

control-flow penalties.
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Table 7.1. Benchmarks Used in the Experiments

Category Program Description

convolution performs a convolution filter
complex update performs a single mac operation on complex values
dot product computes the product of two vectors
fir performs a finite impulse response filter
fir2dim performs a finite impulse response filter on a 2D image

DSPStone iir biquad one section performs an infinite impulse response filter on one section
iir biquad N sections performs an infinite impulse response filter on multiple sections
lms least mean square adaptive filter
matrix computes matrix product of two 10x10 matrices
matrix 1x3 computes the matrix product of 3x3 and 3x1 matrices
n complex updates performs a mac operation on an array of complex values
n real updates performs a mac operation on an array of data
real update performs a single mac operation

Small bubblesort performs a bubble sort on 500 elements
findmax finds the maximum element in a 1000 element array
keysearch performs a linear search involving 4 nested loops for 625 elements
summidall sums the middle half and all elements of a 1000 integer vector
summinmax sums the minimum and maximum of the corresponding elements

of two 1000 integer vectors
Other sumnegpos sums the negative, positive, and all elements of a 1000 integer

vector
sumoddeven sums the odd and even elements of a 1000 integer vector
sumposclr sums positive values from two 1000 element arrays and sets

negative values to zero
sym tests if a 50x50 matrix is symmetric
unweight converts an adjacency 100x100 matrix of a weighted graph to an

unweighted graph

bitcnt five different methods to do bit-count
diskrep train communication network to control low-level hardware

equipments
Larger fft 128 point complex FFT

fire fire encoder
sha secure hash algorithm
stringsearch Pratt-Boyer-Moore string search
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Table 7.2 shows the baseline of the experiments. The measurements are taken after all

conventional optimizations have been applied. These benchmarks are classified into two

categories: small and larger Benchmarks. The small benchmarks have either only one path

(DSPStone benchmarks) or simple enough control-flow where the WC input data can likely

be manually detected (small non-DSPStone benchmarks). The larger benchmarks have

complicated control-flow where it is difficult to obtain the WC input data.

Table 7.2 also shows the instruction code size and the lines of source code for these

benchmarks. The instruction code size of the larger benchmarks is no less than 250 bytes

while the code size is under 200 bytes for the small non-DSPStone benchmarks. Although

the code size of some of the DSPStone benchmarks is larger than 200 bytes, they are classified

as small benchmarks since they have a single path.

The observed ACET is obtained from the simulator when random input data is used and

the observed WCET is obtained from the SC100 simulator when WC input data is used.

For DSPStone benchmarks, the observed ACET and the observed WCET are equal since

there is only one path. For the larger benchmarks, the observed WCET is replaced with

the observed ACET since it is very difficult to obtain the WC input data. The observed

ACET and the observed WCET are different for most small non-DSPStone benchmarks in

Table 7.2. The observed ACET and the observed WCET are very close for some of these

benchmarks, while some are quiet different. The observed ACET of bubblesort is somewhat

smaller than the observed WCET since with random data there is not an exchange for each

comparison. Thus, the WC path is not taken each time. The observed ACET and the

observed WCET are equal for summinmax since the two paths through summinmax have

the same execution time. Therefore, the changes of paths driven by random input data do

not affect the execution time. The observed ACET of sym is much smaller the observed

WCET since the random input data makes the loops inside this benchmark break much

earlier than with WC input data.

The predicted WCET is obtained from the timing analyzer. The WCET Ratio is the

predicted WCET divided by the observed WCET. The predicted WCET should be larger

than or equal to the observed WCET since the predicted WCET is the upper bound for

the execution time and it should never be underestimated. The predicted WCET from the

timing analyzer should be close to the execution time obtained from the simulator if the
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WC input data is used in the simulation. However, the WC input data is too difficult to

manually detect for the larger benchmarks. Therefore, the WCET from the timing analyzer

may be much larger than the execution time obtained from the simulator for these larger

benchmarks. This does not necessarily imply that the timing analyzer is inaccurate, but

rather that the input data is not causing the execution of the WC paths. The WCET ratios

show that these predictions are reasonably close for the small programs, but much larger on

average than the observed cycles for the larger benchmarks.
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Table 7.2. The Baseline Code Size, Observed Cycles, and WCET

Code Size Lines of Observed Observed Predicted WCET
Category Benchmarks (bytes) source ACET WCET WCET Ratio

convolution 87 71 635 635 642 1.011
complex update 169 80 152 152 157 1.033
dot product 80 79 118 118 127 1.076
fir 149 85 1,082 1,082 1,087 1.005
fir2dim 370 149 5,518 5,518 5,756 1.043
iir biquad one section 150 88 122 122 128 1.049

DSPStone iir biquad N sections 219 119 1,054 1,054 1,070 1.015
lms 237 160 1,502 1,502 1,513 1.007
matrix 216 134 37,012 37,012 37,364 1.010
matrix 1x3 89 77 262 262 279 1.065
n complex updates 294 92 2,993 2,933 2,938 1.002
n real updates 153 73 1,570 1,570 1,577 1.004

Small real update 68 68 79 79 85 1.076
bubblesort 125 93 5,086,184 7,365,289 7,616,299 1.034
findmax 58 21 19,991 19,997 20,002 1.000
keysearch 189 537 11,247 31,164 31,768 1.019
summidall 56 23 19,511 19,513 19,520 1.000

Other summinmax 62 47 23,011 23,011 23,017 1.000
sumnegpos 45 20 18,032 20,010 20,015 1.000
sumoddeven 78 51 14,783 22,025 23,032 1.046
sumposclr 81 35 28,469 31,013 31,018 1.000
sym 97 40 107 55,343 55,497 1.003
unweight 79 23 340,577 350,507 350,814 1.001

small average 137 94 244,085 347,387 358,422 1.022

bitcnt 355 170 40,416 40,416 58,620 1.450
diskrep 379 500 10,028 10,028 12,661 1.263

Larger fft 647 220 76,505 76,505 76,654 1.002
fire 250 109 8,900 8,900 10,211 1.147
sha 909 253 691,047 691,047 769,495 1.114
stringsearch 343 237 148, 849 148,849 195,991 1.317

larger average 481 248 162,624 162,624 187,272 1.215

overall average 309 171 203,354 255,006 272,847 1.119
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CHAPTER 8

TUNING THE WCET BY SEARCHING FOR

EFFECTIVE OPTIMIZATION SEQUENCES

In this chapter, an approach for reducing the WCET of an application by using an

interactive compilation system called VISTA [3, 4] to find a sequence of compiler optimization

phases that best reduces WCET is presented [5]. VISTA allows users to develop embedded

system applications in a high level language and still be able to tune the WCET of an

application. One feature of VISTA is that it can automatically obtain WCET performance

feedback information, which can be used by both the application developer and the compiler

to make phase ordering decisions. In addition, this system allows a user to invoke a

genetic algorithm that automatically searches for an effective optimization phase sequence

for each function that best reduces the WCET. VISTA applies a sequence of optimization

phases on the current function and measures the WCET using the timing analyzer. The

transformations applied are then reversed. In this way, additional sequences of optimization

phases can be evaluated. The best sequence of optimization phases encountered is then

reapplied after the genetic algorithm completes.

The remainder of this chapter has the following organization. Prior research on

visualization of the compilation process, interactive compilation systems, and searching for

effective optimization sequences is first summarized. Our interactive compilation system

supporting selecting an optimization sequence to reduce the WCET is then described.

Finally, the challenges and the experimental results to perform the search are given.

8.1 Prior Work on Visualization of the Compilation Process and
Interactive Compilation

There exist systems that are used for simple visualization of the compilation process.

The UW Illustrated Compiler [35], also known as icomp, has been used in undergraduate
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compiler classes to illustrate the compilation process. The XVPODB system [36] [37] has

been used to illustrate low-level code transformations in the VPO compiler system [38].

XVPODB has also been used when teaching compiler classes and to help ease the process

of re-targeting the compiler to a new machine or diagnosing problems when developing new

code transformations.

Other researchers have developed systems that provide interactive compilation support.

These systems include the pat toolkit [42], the parafrase-2 environment [43], the e/sp

system [44], a visualization system developed at the University of Pittsburgh [45], and the

SUIF explorer [46]. These systems provide support by illustrating the possible dependencies

that may prevent parallelizing transformations. A user can inspect these dependencies and

assist the compilation system by indicating if a dependency can be removed. In contrast,

VISTA does not specifically deal with parallelizing transformations, but instead supports

low-level transformations and user-specified changes, which are needed for tuning embedded

applications in general.

A few low-level interactive compilation systems have also been developed. One system,

which is coincidentally also called VISTA (Visual Interface for Scheduling Transformations

and Analysis), allows a user to verify dependencies during instruction scheduling that may

prevent the exploitation of instruction level parallelism in a processor [47]. Selective ordering

of different optimization phases does not appear to be an option in their system. The system

that most resembles the current work is called VSSC (Visual Simple-SUIF Compiler) [48]. It

allows optimization phases to be selected at various points during the compilation process.

It also allows optimizations to be reversed, but unlike the current compiler, only at the

level of complete optimization phases as opposed to individual transformations within each

phase. Our VISTA system [3, 4] supports user-specified changes and performance feedback

information, which does not appear to be available in these systems. Furthermore, all of

these other systems are not integrated with a WCET timing analyzer. They are instead

designed to improve ACET.
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8.2 Prior Work on Searching for Effective Optimization
Sequences

There has been prior work on aggressive compilation techniques to improve performance.

Superoptimizers have been developed that use an exhaustive search to find a better in-

struction sequence. This instruction reordering search technique can be used for instruction

selection [49] or to eliminate branches [50]. Selecting the best combination of optimizations

by turning on or off optimization flags, as opposed to varying the order of optimizations, has

also been investigated [51].

Iterative techniques using performance feedback information after each compilation have

been applied to determine good optimization parameters (e.g., blocking sizes) for specific

programs or library routines [52, 53, 54, 55]. Since the search space for the optimization

parameters is too large, two steps were used to find an effective location in the search space.

The first step used a coarse grid to find an area where the best performance appears to be

located. A better location is found in the second step by using a fine grid around this area.

SALTO is a framework for tuning embedded applications on low-level codes [56]. It enables

the building of profiling, tracing and optimization tools. For example, the feedback on the

execution time of the loop body is used as a guide for applying specific loop transformations,

such as loop unrolling and loop fusion. These iterative algorithms searching for optimization

parameters work well when the search space is smooth and points near each other in the

space do not typically result in significant difference in performance. If the search space is

not smooth, this search algorithm would not work well.

Genetic algorithms are search algorithms that are used to probe a non-contiguous

(non-smooth) search space. A system using a genetic algorithm to better parallelize loop

nests has been developed and evaluated [57]. A low-level compilation system developed at

Rice University uses a genetic algorithm to reduce code size by finding efficient optimization

phase sequences [58]. In the Rice experiments, they also studied other search techniques in

an attempt to find a quality solution in less time [59].

VISTA also provides support for automatically using performance information to select

an effective optimization sequence using a genetic algorithm. The performance criteria

in previous experiments were static code size and the number of dynamic instructions

executed [4]. In this work, VISTA has been integrated with a timing analyzer, and the WCET
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Figure 8.1. WCET VISTA Snapshot

and/or code size are used as the performance criteria in the genetic algorithm [5]. Besides

applying the genetic algorithm to the phase ordering problem, genetic algorithms have also

been used in the context of timing analysis for empirically estimating the WCET, where

mutations on the input resulted in different execution times (objective function) [60, 61, 62].

8.3 Our Approach

Figure 8.1 shows a snapshot of the viewer when tuning an application for the SC100. The

right side of the window displays the state of the current function as a control-flow graph with

RTLs representing instructions. The user also has the option to display the instructions in

assembly. The left side shows the history of the different optimization phases that have been

performed in the session. Note that not only is the number of transformations associated

with each optimization phase depicted, but also WCET and code size improvements are

shown in the figure. The WCET and code size improvements corresponding to each phase

are the percentages of the WCET and code size after performing this phase compared with

the WCET and code size before performing any compiler optimizations. Thus, a user can

easily gauge the progress that has been made at tuning the current function. In addition, a

genetic algorithm can be used to tune the WCET automatically.
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A genetic algorithm is basically a search algorithm designed to mimic the process of

natural selection and evolution in nature. Genetic algorithms have long been used to

search for solutions in a space that is too large to be exhaustively evaluated. Traditional

compilers usually apply a fixed sequence of optimization phases for all programs. However,

the best sequence may be different for each function and the search space for finding an

better sequence is too large. Therefore, genetic algorithms have been used in the past to

search for effective optimization sequences to improve speed, space, or a combination of both

factors for the programs being compiled [4, 58]. A chromosome, consisting of a sequence of

genes, represents a sequence of optimization phases. Each gene in a chromosome represents

an optimization phase. Each sequence of phases has to be evaluated based on a fitness

value to determine whether it should be discarded or kept in the next generation. The

crossover and mutation operations of the chromosomes in the candidate pool will generate

new chromosomes.

In the current work, WCET and code size are used as a measurement of performance.

To obtain the fitness value for a chromosome, the WCET and the code size of a program

are measured after the optimization phases corresponding to the chromosome are applied.

Changes to the program made by these optimization phases are then discarded and the

program returns to the original state. Alternative sequences can be applied and evaluated

in this way. The best sequence found by the algorithm would be applied again to obtain the

version with the best fitness value.

Figure 8.2 shows the different options that VISTA provides the user to control the search.

The experiments (described in Section 8.5) use the biased sampling search, which applies a

genetic algorithm in an attempt to find the most effective sequence within a limited number

of generations since in many cases the search space is too large to be exhaustively evaluated

[63]. The sequence length is the total number of phases (genes) applied in each sequence

(chromosome). A population is the set of solutions (sequences) that are under consideration.

The number of generations indicates how many sets of populations are to be evaluated. The

population size and the number of generations limit the total number of sequences evaluated.

VISTA also allows the user to choose WCET and code size weight factors, where the relative

improvement of each is used to determine the overall fitness.
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Figure 8.2. Selecting Options to Search for Sequences

Figure 8.3. Window Showing the Search Status

Performing these searches can be time consuming since thousands of potential optimiza-

tion sequences may need to be evaluated. Thus, VISTA provides a window showing the

current status of the search. Figure 8.3 shows a snapshot of the status of the search. The

percentage of sequences completed along with the best sequence and its effect on performance

are displayed. The user can terminate the search at any point and accept the best sequence

found so far.
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8.4 Challenges to Obtaining the WCET in VISTA

There are challenges that have to be overcome to obtain the WCET in VISTA. Some

required optimization phases have to be performed before measuring the WCET. The phase

sequence selected by users may not contain these required phases. In addition, the number

of iterations of all the loops have to be known in order to automatically measure the WCET.

The compiler can detect the number of iterations automatically if the loop is bounded and

five optimization phases, register assignment, register allocation, instruction selection, loop

strength reduction and fix entry exit, have been done. Without performing these five phases,

the timing analyzer cannot measure the WCET because the number of loop iterations is

unknown to the compiler. Furthermore, the WCET of the whole program is calculated in

a bottom up process by following a timing analysis tree, where each node in the tree is a

loop or a function. Each function is treated as a loop with a single iteration and the WCET

of a loop is not calculated until the WCETs of all its immediate child loops are known.

However, VPO optimizes one function at a time in the order of the position of the function

in the source file. As a result, when VPO starts to optimize one function, it may not have

encountered all the functions called by this function and the WCETs for these functions are

unknown. Without the WCETs for all the functions called by this function, the WCET of

this function cannot be calculated.

For these reasons, three passes in VPO are used to reduce the WCET. The first pass

performs the five required phases so that the number of iterations for each loop can be

obtained. The compiler then reverses all the five phases. The second pass processes all the

functions in the program, applying only the required phases (register assignment, fix entry

exit, and add no-ops), generating the information file needed by the timing analyzer, and

obtaining the initial WCETs before applying any optimizations for every function. These

required phases performed by the second pass are also reversed. Finally, the third pass is

used to tune the WCET. For each particular function, the number of loop iterations for the

current function and the WCET for all the rest of the functions are available at this time.

So after each optimization phase, the timing analyzer can measure the new WCET for the

current function within the context of the initial WCETs of all other functions being known.
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From a user’s perspective, the first two passes can be considered as one pass. Therefore,

there are only two passes visible to the users. The first pass obtains the loop information and

the initial WCET. The second pass performs optimizations to reduce the WCET. In the first

pass, both performing the required transformations and reversing these transformations are

handled automatically. In the second pass, if the user does not select the required phases,

then the compiler automatically performs these transformations before taking measurements.

The timing analyzer and the VPO compiler are separate processes. When the compiler

needs to measure the WCET, it generates the timing information file. The compiler then

invokes the timing analyzer, which takes the timing information file as input. The timing

analyzer performs timing analysis and saves the results into another file. The compiler opens

the output file of the timing analyzer and obtains the WCET.

When a user selects a sequence of phases to improve the WCET, the compiler will

automatically invoke the timing analyzer after each phase to get the improvement in WCET

for each step. Thus, the user can see the percentage improvement in WCET after each

phase (see Figure 8.1). When the user selects the genetic algorithm to automatically search

for the best sequence, the timing analyzer is only invoked after applying each optimization

sequence, instead of after each phase. Thus, the genetic algorithm obtains the WCET for

each sequence. Only when reapplying the best sequence found after completing the genetic

algorithm is the timing analyzer invoked after each phase.

8.5 Experiments

This section describes the results of a set of experiments to illustrate the effectiveness

of improving the WCET by using VISTA’s biased sampling search, which uses a genetic

algorithm to find efficient sequences of optimization phases. Tuning for ACET or WCET may

result in similar code, particularly when there are few paths through a program. However,

tuning for WCET can be performed faster since the timing analyzer is used to evaluate

each sequence. Depending on the number of generations, thousands of optimization phase

sequences may be required to search for the best sequence of optimization phases. The

analysis time required for the timing analyzer is proportional to the number of unique paths

at each loop and function level in the program. In contrast, obtaining a dynamic measure
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for the SC100 would require invoking the simulator, which is much slower. Tuning for ACET

typically takes much longer since the execution time of the SC100 simulator is proportional to

the number of instructions executed. The average time required to tune the WCET of most

programs in the experiments was less than 15 minutes, as shown in Table 8.1, and this would

have taken several hours if simulation had been used. Note that the baseline compilation

time in the table is longer than the regular VPO compilation time since the compiler has to

invoke the timing analyzer at the end of the compilation to obtain the baseline WCET.

Table 8.2 shows each of the candidate code-improving phases used in the experiments

when tuning each function with the genetic algorithm. Each phase consists of one or more

transformations. In addition, register assignment, which is a compulsory phase that assigns

pseudo registers to hardware registers, has to be performed. VISTA implicitly performs

register assignment before the first code-improving phase in a sequence that requires it.

After applying the last code-improving phase in a sequence, another compulsory phase, fix

entry/exit, which inserts instructions at the entry and exit of the function to manage the

activation record on the run-time stack, is performed. Finally, additional code-improving

phases after each sequence, such as instruction scheduling, is also performed. For the SC100

another compulsory phase is required to insert no-ops when pipeline hazards need to be

addressed.

The genetic algorithm searches are accomplished in the following manner. The sequence

(chromosome) length is set to be 1.25 times the number of phases that successfully applied

one or more transformations by the batch compiler for the function. This number of phases

is a reasonable limit and gives the compiler an opportunity to successfully apply more

phases than what the batch compiler could accomplish. Note that this length is much

less than the number of phases attempted during the batch compilation. The population

size (fixed number of sequences or chromosomes) is set to twenty and each of these initial

sequences is randomly initialized with candidate optimization phases. When searching for

the best sequence for each function, 200 generations are performed. The sequences in the

population are sorted by a fitness value based on the WCET produced by the timing analyzer

and/or code size. At each generation (time step) the worst sequence is removed and three

others from the lower (poorer performing) half of the population are chosen to be removed

at random. Each of the removed sequences are replaced by randomly selecting a pair of
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Table 8.1. The Compilation Time of the Benchmarks
Compilation Time

Category Benchmarks baseline(min) GA(min) Ratio

convolution 0.28 1.60 5.65
complex update 0.43 2.32 5.35
dot product 0.28 1.42 5.00
fir 0.33 2.13 6.40
fir2dim 0.57 8.87 15.65
iir biquad one section 0.32 1.78 5.63

DSPStone iir biquad N sections 0.67 12.98 19.48
lms 0.42 3.75 9.00
matrix 0.43 6.75 15.58
matrix 1x3 0.23 2.10 9.00
n complex updates 0.63 7.03 11.11
n real updates 0.35 1.90 5.43

Small real update 0.27 1.37 5.13
bubblesort 0.55 6.60 12.00
findmax 0.23 1.60 6.86
keysearch 0.37 10.93 29.82
summidall 0.27 2.62 9.81

Other summinmax 0.25 4.13 16.53
sumnegpos 0.25 1.55 6.20
sumoddeven 0.28 5.82 20.53
sumposclr 0.32 6.48 20.47
sym 0.30 6.75 22.50
unweight 0.25 2.03 8.13

small average 0.36 4.46 11.79

bitcnt 0.90 6.45 7.17
diskrep 0.70 33.60 48.00

Larger fft 1.90 221.62 116.64
fire 0.33 7.50 22.50
sha 2.65 60.00 22.64
stringsearch 1.18 18.12 15.31

larger average 1.28 57.88 38.71

overall average 0.55 15.51 17.36
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Table 8.2. Candidate Optimization Phases in the Genetic Algorithm Experiments
Optimization Phase Description

branch chaining Replaces a branch or jump target with the target of the last jump in
a jump chain.

common subexpr elim Eliminates fully redundant calculations, which also includes constant
and copy propagation.

remove unreachable Removes basic blocks that cannot be reached from the entry block of
code the function.

remove useless blocks Removes empty blocks from the control-flow graph.

dead assignment elim Removes assignments when the assigned value is never used.

block reordering Removes a jump by reordering basic blocks when the target of the
jump has only a single predecessor.

minimize loop jumps Removes a jump associated with a loop by duplicating a portion of
the loop.

register allocation Replaces references to a variable within a specific live range with
a register.

loop transformations Performs loop-invariant code motion, recurrence elimination, loop
strength reduction, and induction variable elimination on each loop
ordered by loop nesting level. Each of these transformations can also
be individually selected by the user.

merge basic blocks Merges two consecutive basic blocks a and b when a is only followed
by b and b is only preceded by a.

evaluation order Reorders RTLs in an attempt to use fewer registers.
determination

strength reduction Replaces an expensive instruction with one or more cheaper ones.

reverse jumps Eliminates an unconditional jump by reversing a conditional branch
when it branches over the jump.

instruction selection Combine instructions together and perform constant folding when
the combined effect is a legal instruction.

remove useless jumps Removes jumps and branches whose target is the following block.

the remaining sequences from the upper half of the population and performing a crossover

(mating) operation to create a pair of new sequences. The crossover operation combines

the lower half of one sequence with the upper half of the other sequence and vice versa to

create two new sequences. Fifteen sequences are then changed (mutated) by considering

each optimization phase (gene) in the sequence. Mutation of each optimization phase in the

sequences occurs with a probability of 10% and 5% for the lower and upper halves of the

population, respectively. When an optimization phase is mutated, it is randomly replaced

with another phase. The four sequences subjected to crossover and the best performing
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sequence are not mutated. Finally, if identical sequences are found in the same population,

then the redundant sequences are replaced with ones that are randomly generated. The

characteristics of this genetic algorithm search are very similar to those used in past studies

[4] [58], except the objective function now is minimizing the WCET.

Table 8.3 shows the WCET prediction results and the WCET reduction by using the

genetic algorithm for the benchmarks. While each function was tuned separately, the WCET

value shown in the table is for the whole program. The batch sequence results are those that

are obtained from the sequence of applied phases by using VPO’s default batch optimizer.

The batch compiler iteratively applies optimization phases until there are no additional

improvements. Thus, the batch compiler provides a much more aggressive baseline than a

compiler that always uses a fixed length of phases. In Table 8.3, the observed cycles for batch

sequence were obtained from running the compiled programs with WC input data through

the SC100 simulator. The WCET cycles for the batch sequence are the WCET predictions

obtained from the timing analyzer. The ratio column for the batch sequence in Table 8.3

is the result of the WCET cycles divided by the observed cycles. The ratios for the best

sequence from GA results in Table 8.3 are similar, but the code being measured was after

the best sequence found by the genetic algorithm being applied. The GA to batch ratio shows

the ratio of WCET cycles after applying the genetic algorithm to the WCET cycles from

the code produced by the batch sequence of optimization phases. Some applications, like

fft, had significant improvements. The applications with larger functions tend to have more

successfully applied phases, which can often lead to larger improvements when searching

for an effective optimization sequence. The average number of generations to find the most

effective sequence was 51 out of the 200 generations attempted. The larger the number of

generations performed, the better the chance to find a more effective sequence of phases. For

each function, 200 generations were performed since the search could be accomplished in a

reasonable time for most benchmarks.

While there are some aberrations due the randomness of using a genetic algorithm, most

of the benchmarks have improved WCETs. The WCET cycles on average decrease by 4.8%

for the Small benchmarks and by 5.7% for the Larger benchmarks. For all the benchmarks,

there is 5.2% reduction on average for WCET. This illustrates the benefit of using a genetic

algorithm to search for effective optimization sequences to improve WCET.
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Table 8.3. WCET Prediction Results and Reduction in WCET Using the Genetic Algorithm

Batch Sequence Best Sequence from GA GA to
Observed WCET Observed WCET Batch

Category Program Cycles Cycles Ratio Cycles Cycles Ratio Ratio

convolution 635 642 1.011 603 610 1.012 0.950

complex update 152 157 1.033 150 154 1.027 0.981

dot product 118 127 1.076 107 115 1.075 0.906

D fir 1,082 1,087 1.005 986 991 1.005 0.912

S fir2dim 5,518 5,756 1.043 5,241 5,472 1.044 0.951

P iir biquad one section 122 128 1.049 122 128 1.049 1.000

S iir biquad N sections 1,054 1,070 1.015 881 897 1.018 0.838

t lms 1,502 1,513 1.007 1,406 1,417 1.008 0.937

o matrix 37,012 37,364 1.010 35,223 35,568 1.010 0.952

n matrix 1x3 262 279 1.065 252 267 1.060 0.957

e n complex updates 2,933 2,938 1.002 2,885 2,891 1.002 0.984

n real updates 1,570 1,577 1.004 1,426 1,433 1.005 0.909

Small real update 79 85 1.076 73 77 1.055 0.906

bubblesort 7,365,289 7,616,299 1.034 7,119,775 7,339,847 1.031 0.964

findmax 19,997 20,002 1.000 19,996 20,001 1.000 1.000

keysearch 31,164 31,768 1.019 30,666 31,272 1.020 0.984

O summidall 19,513 19,520 1.000 18,516 18,521 1.000 0.949

t summinmax 23,011 23,017 1.000 23,009 23,015 1.000 1.000

h sumnegpos 20,010 20,015 1.000 19,013 19,018 1.000 0.950

e sumoddeven 22,025 23,032 1.046 22,028 22,052 1.001 0.957

r sumposclrneg 31,013 31,018 1.000 30,011 30,017 1.000 0.968

sym 55,343 55,497 1.003 54,118 54,272 1.003 0.978

unweight 350,507 350,814 1.001 340,308 340,714 1.001 0.971

small average 347,387 358,422 1.022 335,948 345,598 1.018 0.952

bitcnt 40,416 58,620 1.450 38,416 53,420 1.391 0.911

diskrep 10,028 12,661 1.263 10,068 12,589 1.250 0.994

fft 76,505 76,664 1.002 60,858 61,311 1.007 0.800

Larger fire 8,900 10,211 1.147 8,900 10,211 1.147 1.000

sha 691,047 769,495 1.114 675,049 751,205 1.113 0.976

stringsearch 148,849 195,991 1.317 147,154 191,597 1.302 0.978

larger average 162,624 187,272 1.215 156,741 180,056 1.202 0.943

average 255,006 272,847 1.119 246,344 262,827 1.110 0.948
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Table 8.4. Effect on ACET When Optimizing for WCET
Batch Sequence Best Sequence from GA GA to Batch

Category Program ACET Cycles ACET Cycles Ratio

convolution 635 603 0.950

complex update 152 150 0.987

dot product 118 107 0.907

D fir 1,082 986 0.911

S fir2dim 5,518 5,241 0.950

P iir biquad one section 122 122 1.000

S iir biquad N sections 1,054 881 0.836

t lms 1,502 1,406 0.936

o matrix 37,012 35,223 0.952

n matrix 1x3 262 252 0.962

e n complex updates 2,933 2,885 0.984

n real updates 1,570 1,426 0.908

Small real update 79 73 0.924

bubblesort 5,086,184 4,969,307 0.977

findmax 19,991 19,990 1.000

keysearch 11,247 11,079 0.985

O summidall 19,511 18,514 0.949

t summinmax 23,011 23,009 1.000

h sumnegpos 18,032 17,035 0.945

e sumoddeven 14,783 14,785 1.000

r sumposclrneg 28,496 27,467 0.965

sym 107 104 0.972

unweight 340,577 330,378 0.970

small average 244,085 239,305 0.955

bitcnt 40,416 38,416 0.951

diskrep 10,028 10,068 1.004

fft 76,505 60,858 0.795

Larger fire 8,900 8,900 1.000

sha 691,047 675,049 0.977

stringsearch 148,849 147,154 0.989

larger average 162,624 156,741 0.953

average 203,354 197,523 0.954
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The effect on ACET by performing WCET reduction is shown in Table 8.4. The ACET

cycles are obtained from the simulator when random numbers are used as the input data.

The ACET in Table 8.4 is equal to the WCET in Table 8.3 for DSPstone benchmarks

since there is only one path in these benchmarks. In addition, it is very difficult to obtain

the WC input data for the larger benchmarks, so the same random numbers are used as

the input data for these larger benchmarks in both Table 8.3 and Table 8.4. Therefore,

only small other non-DSPStone benchmarks have different observed ACET and observed

WCET. Compared with the batch sequence, the best sequence to improve WCET found by

the genetic algorithm reduces the average ACET for these benchmarks as well. Although

the average benefit to ACET (4.5%) is almost the same as the benefit to WCET (4.8%), the

ACET of a benchmark can increase when tuning for WCET. For instance, the ACET for

sumoddeven gets slightly worse. The random input data for this benchmark makes the loop

break earlier than WC input data and each path is randomly selected to be executed. This

happens to increase the ACET of this benchmark slightly.

In addition to improving WCET, it would be interesting to see the improvement in code

size. Table 8.5 shows the results obtained for each benchmark by applying the genetic

algorithm when changing the fitness criteria. For each benchmark, three different searches

were performed based on WCET only (optimizing for WCET), code size only (optimizing

for space), and both (50% for each factor). For each type of search, the effects on both

WCET and code size are shown. The results that are supposed to improve according to the

specified fitness criteria used are shown in boldface. For these results, the genetic algorithm

was able to typically find a sequence for each function that either achieves the same result

or obtains an improved result as compared to the batch compilation. When the fitness value

is WCET only, the overall average WCET is reduced by 5.2% and the overall average code

size decreases by 2.2%. When the fitness value is code size only, the overall average code

size decreases by 7.1%, but the overall average WCET increases by 4.9%. When the fitness

value is both, the overall average WCET is reduced by 3.5% and the overall average code

size decreases by 5.1%. The results when optimizing for both WCET and code size showed

that the system is able to achieve a benefit simultaneously on both WCET and code size.
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Table 8.5. Comparison of Three Different Fitness Values for the Genetic Algorithm
optimizing for WCET Only Code Size Only both

Category effect on WCET Size WCET Size WCET Size Avg Both

convolution 0.950 0.977 0.950 0.977 0.950 0.977 0.964

complex update 0.981 0.970 1.268 0.964 0.987 0.941 0.964

D dot product 0.906 0.925 0.906 0.925 0.906 0.925 0.915

S fir 0.912 0.980 1.201 0.933 0.913 0.953 0.933

P fir2dim 0.951 0.976 0.949 0.941 0.951 0.976 0.963

S iir biquad one section 1.000 0.993 1.000 0.993 1.000 0.993 0.997

t iir biquad N sections 0.838 0.982 1.000 1.000 1.247 1.005 1.126

o lms 0.937 0.975 0.937 0.970 0.849 0.954 0.901

n matrix 0.952 0.995 1.048 0.995 0.968 0.968 0.968

e matrix 1x3 0.957 0.843 0.957 0.843 0.957 0.843 0.900

n complex updates 0.984 0.986 1.027 0.966 0.984 0.986 0.985

Small n real updates 0.909 0.967 0.909 0.967 0.909 0.967 0.938

real update 0.906 0.941 1.035 1.015 0.953 1.015 0.984

bubblesort 0.964 0.936 1.033 0.904 0.984 0.912 0.948

findmax 1.000 0.879 1.000 0.879 1.000 0.983 0.991

O keysearch 0.984 1.143 1.362 0.672 1.000 1.058 1.029

t summidall 0.949 1.018 1.000 1.000 1.000 1.071 1.036

h summinmax 1.000 0.968 1.434 0.855 1.000 0.871 0.935

e sumnegpos 0.950 1.133 1.300 1.067 1.000 1.000 1.000

r sumoddeven 0.957 1.115 1.001 0.974 0.979 1.013 0.996

sumposclr 0.968 0.889 1.258 0.877 1.258 0.877 1.067

sym 0.978 0.918 1.000 0.979 1.000 0.969 0.985

unweight 0.971 0.899 0.971 0.899 0.971 0.899 0.935

small average 0.952 0.974 1.067 0.939 0.990 0.963 0.976

bitcnt 0.911 1.045 0.945 0.986 0.940 0.989 0.965

diskrep 0.994 0.929 1.055 0.786 1.005 0.818 0.912

fft 0.800 0.972 0.852 0.910 0.774 0.924 0.849

Larger fire 1.000 1.000 1.002 0.996 1.002 0.996 0.999

sha 0.976 0.989 1.324 0.903 0.938 0.939 0.939

stringsearch 0.978 0.948 1.005 0.915 0.984 0.933 0.959

larger average 0.943 0.980 1.031 0.916 0.941 0.933 0.937

overall average 0.948 0.977 1.049 0.928 0.965 0.948 0.957

44



8.6 Conclusions

There are several contributions that have been presented in this chapter. First, it has

been demonstrated that it is possible to integrate a timing analyzer with a compiler and

that these WCET predictions can be used by the application developer and the compiler to

make phase ordering decisions. Displaying the improvement in WCET during the tuning

process allows a developer to interactively tune an embedded application based on WCET

feedback. Therefore, the developer can easily gauge the progress that has been made. To the

best of our knowledge, this is the first compiler that interacts with a timing analyzer to use

WCET predictions during the compilation of applications. Second, it has been shown that

WCET predictions can be used as a fitness criteria by a genetic algorithm that finds effective

optimization sequences to improve the WCET of applications on an embedded processor.

One advantage of using WCET as a fitness criteria is that the searches for an effective

sequence are much faster. The development environment for many embedded systems is

different than the target environment. Thus, simulators are used when testing an embedded

application. Executing the timing analyzer typically requires a small fraction of the time that

would be required to simulate the execution of the application. Finally, experimental results

indicate that both WCET and code size improvements can be simultaneously obtained when

the fitness value of the genetic algorithm addresses both factors. Both of these criteria

are important factors when tuning applications for an embedded processor. Note that

the estimated WCET can be reduced even though the programs may be too complex to

accurately determine the WC input data.
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CHAPTER 9

WCET CODE POSITIONING

One type of compiler optimization is to reorder or position the basic blocks within a

function. The benefits of such a transformation include improving instruction cache locality

and reducing misfetch penalties. In recent years instruction cache performance has become

less of a concern as instruction caches have increased in size. In addition, many embedded

processors have no instruction cache and an embedded application is instead often placed in

ROM. However, some processors still incur a pipeline delay associated with each transfer of

control. Such delays are more common for embedded machines where branch prediction and

target buffers may not exist in order to reduce the complexity of the processor. Compiler

writers attempt to reduce these delays by reordering the basic blocks to minimize the number

of unconditional jumps and taken branches that occur. The optimization phase that performs

this transformation in a compiler is typically referred to as a code positioning or branch

alignment optimization. Existing code positioning algorithms weight the directed edges

(transitions) between the nodes (basic blocks) of a control-flow graph (CFG) by the number

of times the edge was traversed at run-time. In general, these algorithms order basic blocks

by attempting to make the most frequently traversed edges contiguous in memory, which

can remove the transfer-of-control penalty. The goal of traditional code positioning is to

improve the ACET, the typical execution time for a program.

The approach discussed in this chapter is to improve the WCET of an application by

applying a WCET code positioning algorithm that searches for the best layout of the code

in memory for WCET [6]. Traditional code positioning algorithms are not guaranteed to

reduce the WCET of an application since the most frequently executed edges in a program

may not be contained in the WC paths. Even if WCET path information were used to drive

the code positioning algorithm, a change in the positioning may result in a different path

becoming the WC path in a loop or a function. For example, a typical CFG for an if-then-else
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statement is shown in Figure 9.1 with two paths, 1 → 2 → 4 and 1 → 3 → 4. Before code

positioning (Figure 9.1(a)), assume that the path 1 → 3 → 4 is the worst-case path. After

block 3 is moved physically in memory next to block 1 to remove the branch penalty from

block 1 to block 3 (Figure 9.1(b)), path 1 → 2 → 4 may become the new worst-case path

since there is a new transfer-of-control penalty from block 1 to block 2. Therefore, a change

in the positioning may result in a different path becoming the WC path in a loop or a

function. In fact, the new WC path in Figure 9.1(b) may have a higher WCET than the

original WC in Figure 9.1(a). In contrast, the frequencies of the edges based on profile data,

which are used in traditional code positioning, does not change regardless of how the basic

blocks are ordered. Thus, WCET code positioning is inherently a more challenging problem

than ACET code positioning.

begin

1

2

3

4

end

begin

1

3

4

end

2

(a) before code positioning (b) after code positioning

Figure 9.1. Code Positioning for an if-then-else Statement

The remainder of this chapter has the following organization. Prior research on code

positioning is first summarized. The WCET code position algorithm is then described and

an example is used to illustrate the algorithm. WCET target alignment after code positioning

is also discussed. Finally, the experimental results to perform the code positioning and target

alignment are given.
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9.1 Prior Work on Code Positioning

There have been several code positioning (basic block reordering) approaches that have

been developed. Pettis and Hansen [64] used execution profile data to position the code

in memory. Profile data was used to count the execution frequency for each edge in the

CFG. The nodes in the CFG linked by the edges (transitions) with the highest frequency

were identified as chains and were positioned contiguously to improve instruction cache

performance. Other algorithms have been developed with the primary goal of reducing the

number of dynamic transfers of control (e.g. unconditional jumps and taken branches) and

the associated pipeline penalty on specific processors. McFarling and Hennessy [65] described

a number of code positioning methods to reduce branch misprediction and instruction fetch

penalties. Calder and Grunwald [66] proposed an improved code positioning algorithm using

a cost model to evaluate the cost of different basic block orderings. They assigned different

cost values for different types of transfer-of-control penalties so that they can attempt to

select the ordering of basic blocks with the minimal cost. All of these approaches use profile

information to obtain a weight for each directed edge between nodes of a CFG by counting

the number of times the edge was traversed at run-time. Typical input data instead of WC

input data is used in profiling. Thus, these approaches attempt to improve the ACET. In

contrast, our code positioning algorithm improves the WCET based on the WCET path

information from the timing analyzer.

ACET code positioning techniques rely only on edge frequencies. These frequencies do

not change regardless of how the code is positioned. These techniques do not have to perform

path analysis. WCET code positioning has to perform path analysis. Since the WCET path

may change after changing the positioning, WCET code positioning is more complex than

ACET code positioning.

9.2 WCET Code Positioning

Code positioning is essentially an attempt to find the most efficient permutation of the

order of basic blocks in a function. Exhaustive approaches are not typically feasible except

when the number of blocks is small since there are n! possible permutations, where n is the
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number of basic blocks in the function. Thus, most approaches use a greedy algorithm to

avoid excessive increases in compilation time.

The WCET code positioning algorithm selects edges between blocks to be contiguous in

an attempt to minimize the WCET. A directed edge connecting two basic blocks is contiguous

if the source block is immediately followed by the target block in memory. Making two blocks

contiguous can eliminate the transfer-of-control penalty for the transition. However, not all

edges can be contiguous. Consider the portion of a control-flow graph shown in Figure 9.2.

If edge b (shown as a solid line) is selected to be contiguous, then no other edges to the

same target can be contiguous. For example, edge a can no longer be contiguous since its

source block 4 cannot be positioned immediately before its target block 2. Likewise, only a

single edge among the set that share the same source block can be contiguous. For instance,

selecting edge b to be contiguous will make edge c noncontiguous since the target block 3

cannot be positioned immediately after source block 1.

cba

2 3

14

Figure 9.2. Selecting an Edge to Be Contiguous

WCET code positioning needs to be driven by WCET path information. The compiler

obtains the WCET and the basic block list for each path in the function from the timing

analyzer. If the timing analyzer calculates the WCET path information on the original posi-

tioned code, then changing the order of the basic blocks may result in unanticipated increases

in the WCET for other paths since previously contiguous edges may become noncontiguous.

It was decided instead to treat the basic blocks as being initially unpositioned. Thus, the code

is actually modified so that all transitions between blocks are accomplished using a transfer

of control and will result in a transfer of control penalty. This means an unconditional jump

is added after each basic block that does not already end with an unconditional transfer of

control.
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The basic idea of this WCET code positioning algorithm is to find the edge that

contributes the most to the WCET, which is called the worst-case edge, and make the two

basic blocks linked by that edge contiguous to reduce the execution time along the worst-case

path. This operation may result in a new worst-case path, so the algorithm positions one

edge at a time and re-calculates the new WCET of each path to guide the selection of the next

edge to reduce the WCET. At each step, the algorithm attempts to choose the worst-case

edge among all the edges along the worst-case paths. Eliminating the transition penalty at

the chosen edge will reduce the execution time along the worst-case path and will reduce the

execution times along other paths containing this edge as well. However, making one edge

contiguous will make other edges noncontiguous.

There are a few terms that need to be defined before the WCET code positioning

algorithm can be presented. Edges are denoted as being contiguous, noncontiguous, or

unpositioned. A contiguous edge has its source block immediately positioned before its target

block in memory. In contrast, a noncontiguous edge does not. An unpositioned edge means

that it has not yet been determined if it will be contiguous or noncontiguous. The upper

bound WCET (UB-WCET) of a path indicates the WCET when all current unpositioned

edges are assumed to be noncontiguous. The lower bound WCET (LB-WCET) of a path

indicates the WCET when all current unpositioned edges are assumed to be contiguous. By

selecting an edge to be contiguous, the UB-WCET of the paths containing the edge will

decrease and the LB-WCET of some other paths will increase since some unpositioned edges

become non-contiguous. The weighted WCET for a path is the WCET for a single iteration

of a path multiplied by the possible number of iterations that path will be executed. Paths

are also classified as contributing or noncontributing to the WCET. A path is considered

noncontributing when its UB-WCET is less than the LB-WCET of another path within

the same loop (or outermost level of a function). Noncontributing paths cannot affect the

WCET. The WCET code positioning algorithm is described in Figure 9.3.

At this point target misalignment penalties are not assessed by the timing analyzer since

WCET target alignment, described in Chapter 3, is performed after WCET code positioning.

The algorithm selects one unpositioned edge at a time to make contiguous. An edge is selected

by first examining the paths that most affect the WCET. Thus, paths are weighted by the

maximum number of times that they can be executed in the function to ensure its effect on
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WHILE (all the edges in current function have not been positioned){

FOR (all the paths in the current function) {

calculate weighted Upper-Bound WCET (UB_WCET), and weighted

Lower-Bound WCET (LB_WCET) for each path;

}

sort the paths ( p1, p2, ..., pi ) in descending order based on

contributing, weighted Upper-Bound WCET (UB_WCET), and weighted

Lower-Bound WCET (LB_WCET).

choose the first contributing path p with at least one

unpositioned edge in the sorted path list (p1, p2, ..., pi);

/* choose the best_edge in the path */

max = -1;

FOR (each unpositioned edge e in path p ){

n=0;

FOR (each path p in the sorted path list(p1,p2, ..., pi)){

IF (edge e is in path p)

n++;

ELSE

BREAK;

}

IF (n>max) {

max = n;

best_edge = e

}

}

mark best_edge as contiguous;

mark the edges that become non-contiguous;

remove a path from the path list if all its edges have been

positioned;

}

Figure 9.3. The Pseudocode for the WCET Code Positioning Algorithm
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the WCET is accurately represented. In fact, the number of iterations in which a path may

be executed can be restricted due to constraints on branches.

After selecting an edge to be contiguous (and possibly making one or more other edges

noncontiguous), the UB-WCET and LB-WCET of each path are recalculated. By making

two blocks contiguous, a useless jump inserted at the beginning of the algorithm will be

removed or a taken branch may become a non-taken branch between the two contiguous

blocks. At the same time, the branch condition may be reversed to reflect the change. The

UB-WCET will decrease step by step since more and more edges are made contiguous while

the LB-WCET will increase since more and more unpositioned edges become noncontiguous.

The algorithm continues until all edges have been positioned. At the end of the algorithm,

the LB-WCET and UB-WCET should be the same for every path.

Consider the source code in the Figure 9.4, which is a contrived example to illustrate the

algorithm. Figure 9.5 shows the corresponding control flow that is generated by the compiler.

While the control flow in the figure is represented at the source code level to simplify its

presentation, the analysis is performed by the compiler at the assembly instruction level

after compiler optimizations are applied to allow more accurate timing predictions. Note

that some branches in Figure 9.5 have conditions that are reversed from the source code

to depict the branch conditions that are represented at the assembly instruction level.

Several unconditional jumps, represented in Figure 9.5 as goto statements underneath

dashed lines, have been inserted to make all transitions between basic blocks result in a

transfer of control penalty. The unconditional jumps in blocks 3 and 6 were already present.

Conditional branches are represented as if statements in Figure 9.5. The jumps (shown

as goto statements) immediately following each conditional branch are actually placed

in separate basic blocks within the compiler’s representation, but are shown in the same

block as the corresponding branch in the figure to simplify the presentation of the example.

The transitions (directed edges) between nodes are labeled so they can be referenced later.

Figure 9.6 shows the paths through the control flow graph. Paths A-D represent paths

within the loop. Path E represents the outer level path, where the loop is considered a single

node within that path. Backedges (directed edges back to the entry point of the loop) are

considered to be part of the paths within the loop since these edges can be traversed on

all loop iterations, except for the last one. Likewise, the exit edges (directed edges leaving
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for (i = 0; i < 1000; ++i) {

if (a[i] < 0)

a[i] = 0 ;

else {

a[i] = a[i]+1;

sumalla += a[i];

}

if (b[i] < 0)

b[i] = 0 ;

else {

b[i] = b[i]+1;

sumallb += b[i];

b[i] = a[i]-1;

}

}

Figure 9.4. An Example to Illustrate the Algorithm

the loop) are considered part of the outer paths containing the loop since an exit edge is

executed at most once each time the loop is entered.

Table 9.1 shows how WCET code positioning is accomplished for the example shown in

Figures 9.5 and 9.6. At each step the status for each edge and the current UB-WCET and

LB-WCET for each path calculated from the timing analyzer are shown. Initially all edges

are unpositioned, as shown in step 0. For each step an edge is selected to be contiguous and

one or more edges become noncontiguous. Thus, after each step one or more paths have

their UB-WCET reduced and one or more paths have their LB-WCET increased. At the

first step, the algorithm selects edge j to be contiguous since it reduces the UB-WCET of all

four paths in the loop. This selection also causes edges a and k to become noncontiguous,

which results in only a small increase for the LB-WCET of the entire function (path E) since

these edges are outside the loop. In the second step, edge i is selected since it is part of path

D, which contains the greatest current UB-WCET. The algorithm chooses edge i instead of

another edge in path D since edge i is also part of path B, which contains the second greatest

WCET at that point. Since path B and path D share edge i, the UB-WCET of the two paths

decreases by 3 cycles. By making edge i contiguous, edge h becomes noncontiguous. Both
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Path A and Path C contain the noncontiguous edge h, so the LB-WCET of both paths A

and C increases by 3 cycles. Edge g is selected to be contiguous in the third step since that

is also part of path D, which still contains the greatest UB-WCET. The UB-WCET of both

path B and path D decreases because edge g is a part of both paths. The LB-WCET of both

path A and path C increases because edge f becomes noncontiguous while both path A and

path C contain edge f. Edge e becomes contiguous in the fourth step since it is part of path

C, which currently contains the greatest UB-WCET. And edge c is the only unpositioned

edge along path C. At this point path D’s UB-WCET becomes 29, which is less than the

goto 6;

goto 8;

goto 9;

... i=0;

a[i] = 0;

goto 5;

a[i] += 1;

sumalla += a[i];

b[i] = 0;

goto 8;

b[i] += 1;

sumallb += b[i];

b[i] = a[i] − 1;

i++;

if (i < 1000) goto 2;

... return;

goto 5;

c

j

g

9

8

7

6

5

4

3

2

1

if (a[i]>=0) goto 4;

if (b[i]>=0) goto 7;

goto 2;

goto 3;

k

i

h

f

e

d

b

a

Figure 9.5. Control Flow Graph of Code in the Example
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Path C:
jhfec

86542

Path D:
jigec

87542

Path E:

2

9loop

Path A:
jhfdb

86532

Path B:
jigdb

8753

ka
1

Figure 9.6. Paths of the Example in Figure 9.5

Table 9.1. Code Positioning Steps in the Example
S WCETs of Paths Shown in Figure 9.6
t Status of Edges UB-WCET LB-WCET
p a b c d e f g h i j k A B C D E A B C D E

0 u u u u u u u u u u u 36 40 37 41 37,020 21 25 22 26 22,018
1 n u u u u u u u u c n 33 37 34 38 34,024 21 25 22 26 22,024
2 n u u u u u u n c c n 33 34 34 35 31,024 24 25 25 26 22,024
3 n u u u u n c n c c n 33 31 34 32 30,024 27 25 28 26 24,024
4 n u u n c n c n c c n 33 31 31 29 29,024 30 28 28 26 26,024
5 n c n n c n c n c c n 30 28 31 29 27,024 30 28 31 29 27,024

u = unpositioned, c = contiguous, n = noncontiguous

LB-WCET of 30 for path A. Thus, path D is now noncontributing. During the fifth step

edge b is selected since it is part of path A, which contains the current greatest UB-WCET.

At this point all of the edges have been positioned and the UB-WCET and LB-WCET for

each path are now identical. The original positioning shown in Figure 9.5, but without the

extra jumps inserted to make all transitions noncontiguous, has a WCET of 31,018 or about

14.8% greater than after WCET code positioning.

While the edges have been positioned according to the selections shown in Table 9.1, the

final positioning of the basic blocks still has to be performed. The list of contiguous edges

in the order in which they were selected are 8 → 2, 7 → 8, 5 → 7, 4 → 5, and 2 → 3. Six

of the nine blocks are positioned in the order 4 → 5 → 7 → 8 → 2 → 3 by connecting
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these edges by their common nodes. The remaining blocks, which are 1, 6, and 9, can be

placed either before or after this contiguous set of blocks. In general, there may be several

contiguous sets of blocks in a function and these sets can be placed in an arbitrary order.

The entry block of the function is always designated as the first block in the final positioning

to simplify the generation of the assembly code by the compiler and the processing by the

timing analyzer. Note that the entry block can never be the target of an edge in the control

flow due to prologue code for the function being generated in this block. The process of the

code positioning for the example is summarized in Figure 9.7, where the contiguous edges

have thicker transitions and the steps are identified in which the edges are positioned.

1

2

3 4

5

6

9

7

Step 1

Step 2

Step 3

Step 4

Step 5

b c

d e

f g

h i

k

j

8

a

Step 2

Step 4

Step 5

Step 1

Step 1

Step 3

Figure 9.7. The Steps to Make Edges Contiguous

Figure 9.8 shows the final positioning of the code after applying the WCET code

positioning algorithm. By contrasting the code in Figure 9.5 with the final positioning in

Figure 9.8, one can observe that performing the final positioning sometimes requires reversing

branch conditions, changing target labels of branches, labeling blocks that are now targets of
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branches or jumps, inserting new unconditional jumps, and deleting other jumps. All of the

loop paths A-D required three transfers of control prior to WCET code positioning. After

WCET code positioning paths A and C each require three transfers of control and paths B

and D each require only one. Note that paths B and D had higher UB-WCETs before the

edges were positioned.

goto 8;

b[i] = 0;

if (i >= 1000) goto 9;

i++;

b[i] = a[i] − 1;

sumallb += b[i];

b[i] += 1;

sumalla += a[i];

a[i] += 1;

goto 2;

... i=0;

goto 5;

a[i] = 0;

1

4

5

7

if (b[i]<0) goto 6;

8

2if (a[i]>=0) goto 4;

3

6

9

h

d

c

... return;

f

a

k

b

j

i

g

e

Figure 9.8. The Example in Figure 9.5 after WCET Positioning

The portion of the greedy algorithm (shown in Figure 9.3) that most affects the analysis

time is the computation performed by the timing analyzer, which is invoked each time an

edge is selected to become contiguous. Given that there are n basic blocks in a function,

there can be at most n-1 contiguous edges and sometimes there are less. For instance, only

five edges were selected to be contiguous instead of n-1 or eight edges for the example shown
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transfer of

control

target

instruction

fetch set n fetch set n+1 fetch set n+2
no−op

Figure 9.9. Aligning a Target Instruction

in Table 9.1 and Figure 9.8. Thus, the timing analyzer is invoked at most n-1 times for each

function, which is much less than the n! invocations that would be required if every possible

basic block ordering permutation was checked.

Code positioning is performed after all other optimizations that can affect the instructions

generated for a function. This includes inserting instructions to manage the activation record

on the run time stack and instruction scheduling. The compiler can invoke the timing

analyzer at each step of the code positioning since all required transformations have been

performed on the code. After code positioning, the branch target misalignment optimization

is performed.

9.3 WCET Target Alignment

After the basic blocks have been positioned within a function, WCET target alignment

is performed to further reduce the extra transfer of control penalties due to misaligned

targets (ref. Chapter 3). No-ops are added before the target instruction to make the target

instruction fit into one fetch set. Figure 9.9 shows an example where the target instruction is

in a single fetch set after adding a no-op instruction to force this misaligned target instruction

to not span the fetch set boundary (compared to Figure 3.1).

WCET target alignment attempts to minimize the number of target misalignment

penalties in the following manner. First, in order to find the right place to add no-op

instructions, the function is partitioned into relocatable sets of basic blocks. The first block

in a relocatable set is not fallen into from a predecessor block and the last block ends with an

unconditional transfer of control, such as an unconditional jump or a return. A relocatable

set of blocks can be moved without requiring the insertion of additional instructions. For
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instance, the code in Figure 9.8 after WCET positioning has four relocatable sets of blocks,

which are {1}, {4,5,7,8,2,3}, {6}, and {9}. In contrast, the original flow graph of blocks in

Figure 9.5 has three relocatable sets, which are {1,2,3}, {4,5,6}, and {7,8,9}. After WCET

code positioning, the relocatable sets of blocks are aligned one set at a time from the top

of the function to the bottom of the function by inserting no-ops before relocatable sets.

Since each instruction has to be aligned on a word boundary (2 bytes) and each fetch set

consists of 4 words, there are four different possible positionings for each relocatable set. The

different alignments are accomplished by inserting 0, 1, 2, or 3 no-ops before the beginning

of the relocatable set, where each no-op instruction is one word in size. The locations where

no-ops can be inserted before each relocatable set of blocks is illustrated in Figure 9.10. Note

that these no-ops instructions are not reachable in the control flow and are never executed.

The timing analyzer is invoked four times to determine the best number of inserted no-ops

(from 0 to 3) for each relocatable set of blocks based upon the WCET of the function. Thus,

the timing analyzer is invoked 4(m-1) times for each function, where m is the number of

relocatable sets of blocks to be aligned. The best number of no-ops with the lowest WCET

for the function is chosen for each relocatable set. In the case that the WCET is the same

for two or more options, the option with the fewest no-ops is selected. To help support this

analysis, an option was added to the timing analyzer to only assess misalignment penalties

within a range of blocks. Therefore, when the best number of no-ops is determined for

a relocatable set at the top of the function, the effect of these no-ops on the remaining

relocatable sets not yet aligned is not considered since these relocatable sets at the bottom

of the function will be aligned later anyway.

A more aggressive approach could be attempted by trying all permutations of ordering

relocatable sets of blocks in addition to inserting no-ops. This approach could potentially

reduce the number of no-ops inserted. However, the code size increase is small and the

current approach is quite efficient.

9.4 Results

This section describes the results of a set of experiments to illustrate the effectiveness

of improving the WCET by using WCET code positioning and WCET target alignment.
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Table 9.2 shows the benchmarks and applications used to test these WCET reduction

algorithms. Note that the code positioning algorithm is based upon the worst-case path

information, while most DSPStone benchmarks do not have conditional constructs, such as if

statements, which means they have only one path. Therefore, the DSPStone benchmarks are

not used for the experiments on WCET code positioning. Other benchmarks were selected

since they do have conditional constructs, which means the WCET and ACET input data

may not be the same.

In Table 9.2, the base compilation time is the time without performing code positioning,

while the position compilation time is the time with WCET code positioning and WCET

target alignment. The time ratio indicates the compilation overhead of performing WCET

code positioning and target alignment. Most of this overhead is due to repeated calls to the

timing analyzer. While this overhead is reasonable, it could be significantly reduced if the

timing analyzer and the compiler were in the same executable and passed information via

noops?

noops?

... jump

... jump

second relocatable set

third relocatable set... return

first relocatable set

Figure 9.10. Inserting No-op Instructions Before Relocatable Set of Blocks
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Table 9.2. The Compilation Time of the Benchmarks
Compilation Time time

Category Benchmarks base(min) position(min) Ratio

bubblesort 0.23 0.37 1.609
findmax 0.97 0.97 1.000
keysearch 0.18 0.22 1.222
summidall 0.13 0.13 1.000

Small summinmax 0.13 0.17 1.308
sumnegpos 0.13 0.13 1.000
sumoddeven 0.15 0.17 1.133
sumposclr 0.15 0.20 1.333
sym 0.18 0.18 1.000
unweight 0.13 0.13 1.000

small
average 0.24 0.27 1.161

bitcnt 0.32 0.37 1.156
diskrep 0.22 0.50 2.273

Larger fft 0.28 0.70 2.500
fire 0.17 0.22 1.294
sha 0.42 0.87 2.425
stringsearch 0.40 0.97 1.125

larger
average 0.30 0.61 1.953

overall
average 0.26 0.39 1.458

arguments instead of files. Note that base compilation time in the table is slightly longer

than the regular VPO compilation time since the compiler has to invoke the timing analyzer

at the end of the compilation to obtain the baseline WCET.

Table 9.3 shows the effect on WCET after code positioning and target alignment. The

results before positioning indicate the measurements taken after all optimizations have been

applied except for WCET code positioning and WCET target alignment. The observed cycles

were obtained from running the compiled programs with WC input data through the SC100

simulator. The WCET cycles are the WCET predictions obtained from the timing analyzer.

The WCET ratios show that these predictions are reasonably close for Small programs, but

are much larger than the observed cycles for larger benchmarks. The observed cycles after
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Table 9.3. WCET Results after WCET Code Positioning and Target Alignment
Before Positioning After Positioning After Alignment

Program Observed WCET WCET WCET Positioning WCET Alignment
Cycles Cycles Ratio Cycles Ratio Cycles Ratio

bubblesort 7,365,282 7,616,292 1.034 7,614,792 1.000 7,490,043 0.983
findmax 19,997 20,002 1.000 19,009 0.950 19,009 0.950
keysearch 30,667 31,142 1.015 29,267 0.940 29,267 0.940
summidall 19,513 19,520 1.000 16,726 0.857 16,726 0.857
summinmax 23,009 23,015 1.000 21,021 0.913 20,021 0.870
sumnegpos 20,010 20,015 1.000 18,021 0.900 18,021 0.900
sumoddeven 22,025 23,032 1.046 18,035 0.783 16,546 0.718
sumposclrneg 31,013 31,018 1.000 27,024 0.871 27,024 0.871
sym 55,343 55,497 1.003 51,822 0.934 51,822 0.934
unweight 350,507 350,814 1.001 321,020 0.915 321,020 0.915

Small
average 793,737 819,035 1.010 813,674 0.906 800,950 0.894

bitcnt 39,616 55,620 1.404 52,420 0.942 52,321 0.941
diskrep 9,957 12,494 1.255 11,921 0.954 11,907 0.953
fft 73,766 73,834 1.001 73,776 0.999 73,778 0.999
fire 8,813 10,210 1.159 10,210 1.000 10,210 1.000
sha 691,045 769,493 1.114 769,461 1.000 759,179 0.987
stringsearch 147,508 194,509 1.319 186,358 0.958 186,304 0.958

larger
average 161,784 186,027 1.208 184,024 0.976 182,283 0.973

overall
average 556,754 581,657 1.084 577,555 0.932 569,950 0.924

WCET positioning or WCET alignment were not obtained since this would require new

WCET input data due to changes in the WCET paths.

The results after positioning indicate the measurements taken after the positioning algo-

rithm described in Section 9.2 is applied immediately following the preceding optimization

phases. The WCET cycles represent the new predicted WCET by the timing analyzer.

The positioning ratio indicates the ratio of the WCET cycles after positioning divided by

the WCET cycles before positioning. There was over a 9% average reduction in WCET for

small benchmarks by applying the WCET code positioning algorithm, while there was 6.8%

average reduction in WCET for all benchmarks. The results after alignment indicate the
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Table 9.4. ACET Results after WCET Code Positioning and Target Alignment
Baseline After Positioning After Alignment

Program ACET ACET Positioning ACET Alignment
Cycles Cycles Ratio Cycles Ratio

bubblesort 5,086,177 5,084,809 1.000 5,024,547 0.988
findmax 19,991 17,020 0.851 17,020 0.851
keysearch 11,067 10,399 0.940 10,399 0.940
summidall 19,511 16,721 0.857 16,721 0.857
summinmax 23,009 20,532 0.892 20,018 0.870
sumnegpos 18,032 15,042 0.834 15,042 0.834
sumoddeven 14,783 10,764 0.728 11,097 0.751
sumposclrneg 28,469 25,561 0.898 25,561 0.898
sym 107 107 1.000 107 1.000
unweight 340,577 311,088 0.913 311,088 0.913

Small
average 556,172 551,204 0.891 545,160 0.890

bitcnt 39,616 37,516 0.947 37,417 0.944
diskrep 9,957 9,486 0.953 9,568 0.961
fft 73,766 73,714 0.999 73,714 0.999
fire 8,813 8,813 1.000 8,813 1.000
sha 691,045 691,048 1.000 683,051 0.988
stringsearch 147,508 147,510 1.000 147,455 1.000

larger
average 161,784 161,348 0.983 160,003 0.982

overall
average 409,277 405,008 0.926 400,726 0.925

measurements that were obtained after the WCET target alignment algorithm in Section 9.3

is applied following WCET code positioning. The WCET cycles again represent the new

predicted WCET by the timing analyzer. The alignment ratio indicates the ratio of the

WCET cycles after alignment as compared to the WCET cycles before positioning. Three of

the ten Small benchmarks improved due to WCET target alignment, while three out of six

Larger benchmarks improved, which resulted in over an additional 0.8% average reduction

in WCET.

The effect on ACET after WCET code positioning is shown in Table 9.4. The ACET

cycles are obtained from the simulator when random numbers are used as the input data.
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The baseline ACET cycles are obtained before code positioning. The average ACET for

these benchmarks after code positioning is reduced by 7.4%. Although the goal of the target

alignment is also for WCET, it also reduces ACET by 0.1%. While some benchmarks get

similar ACET benefits as WCET benefits, such as benchmarks keysearch and summidall,

some other benchmarks have ACET benefits that are greater or less than the WCET

benefits. Since the code positioning algorithm reduces the execution time of the WC paths

while increasing the execution time of other paths, the ACET benefit after code positioning

depends on how frequently the WC paths are driven by the ACET input data. Furthermore,

if the blocks comprising the frequent path are a subset of the blocks comprising the WC

path, WCET code positioning may reduce the WCET while not increasing the execution

time of other paths. For instance, the difference in the execution time of the two paths in

the benchmark findmax is only 1 cycle. After code positioning, the execution time of the

original WC path is reduced by 3 cycles while the execution time of the other path stays the

same. Therefore, the other path becomes the new WC path. The WCET is reduced by only

1 cycle each iteration since the WC path changes. However, the ACET is obtained by using

random input data, which drives both paths. Since the execution time of one path is reduced

by 3 cycles and the baseline in cycles for ACET is smaller than the WCET baseline, the

ACET benefit is larger than the WCET benefit after code positioning for this benchmark.

While the results in Table 9.3 show a significant improvement in the predicted WCET,

it would be informative to know if better positionings than those obtained by the greedy

WCET code positioning algorithm are possible. The functions in these Small benchmarks

were small enough so that the WCET for every possible permutation of the basic block

ordering could be estimated. The number of possible orderings for each function is n!, where

n is the number of basic blocks, since each block can be represented at most once in the

ordering. Table 9.5 shows the results of performing an exhaustive search for the best WCET

code positioning for Small benchmarks, where the WCET is calculated for each possible

permutation. Unlike the measurements shown in Table 9.3, these WCET results exclude

target misprediction penalties. The WCET positioning algorithm does not take target

misprediction penalties into account when making positioning decisions since the WCET

target alignment optimization occurs after positioning. Thus, the WCETs in Table 9.5 are

in general slightly lower than the WCETs shown in Table 9.3.
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Table 9.5. The Code Positioning Algorithm Found the Best Layout for Small Benchmarks
Program Permuta- Minimum Greedy Default Maximum

tions WCET WCET Ratio WCET Ratio WCET Ratio

bubblesort 362,883 7,614,792 7,614,792 1.000 7,616,292 1.000 8,990,017 1.181
findmax 120 19,009 19,009 1.000 20,002 1.052 24,999 1.315
keysearch 39,916,801 29,237 29,237 1.000 31,112 1.064 59,574 2.038
summidall 5,040 16,726 16,726 1.000 18,520 1.107 28,722 1.717
summinmax 362,880 20,021 20,021 1.000 23,015 1.150 29,017 1.449
sumnegpos 5,040 18,021 18,021 1.000 20,015 1.111 28,017 1.555
sumoddeven 3,628,800 16,034 16,034 1.000 22,049 1.375 31,054 1.937
sumposclrn 362,880 27,024 27,024 1.000 31,018 1.148 37,020 1.370
sym 5041 51,822 51,822 1.000 55,497 1.071 62,979 1.215
unweight 40,320 321,020 321,020 1.000 350,714 1.092 471,316 1.468

average 4,925,214 814,121 814,121 1.000 818,823 1.117 976,272 1.524

The number of permutations varied depending upon the number of routines in the

benchmark and the number of basic blocks in each function. The minimum WCET

represents the lowest WCET found by performing the exhaustive search. The greedy WCET

is the WCET obtained by the greedy code positioning algorithm described in Figure 9.3.

The ratio is the WCET divided by minimum WCET. There are typically multiple code

positionings that result in an equal minimum WCET. The greedy WCET obtained by the

code positioning algorithm was always identical to the minimum WCET for each function

in each benchmark for the Small test suite. It appears that the greedy algorithm is very

effective at finding an efficient WCET code positioning. The default WCET represents the

WCET of the default code layout without WCET code positioning. On average the default

WCET is 11.7% worse than the minimum WCET. The maximum WCET represents the

highest WCET found during the exhaustive search. The results show that the maximum

WCET is 52.4% higher on average than the minimum WCET. While the default WCET is

relatively efficient compared to the maximum WCET, the greedy WCET still is a significant

improvement over just using the default code positioning.

Table 9.6 shows the number of possible permutations for the layout of each function

and the number of code layouts with the same minimal WCET found by performing these

exhaustive searchs. As shown in the table, there is more than one code layout with the same

minimal WCET for most of the functions. However, the number of layouts with the same
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Table 9.6. The Number of the Best Layouts with Minimal WCET for Small Benchmarks
Program Functions Permutations Best Layouts

bubblesort main 1 1
initialize 1 1
exchange 1 1
bubblesort 362,880 3

findmax main 120 12
keysearch main 1 1

foo 39,916,800 2
summidall main 5,040 12
summinmax main 362,880 96
sumnegpos main 5,040 24
sumoddeven main 3,628,800 48
sumposclrn main 362,880 48
sym main 1 1

is sysmetric 5,040 6
unweight main 40,320 48

average 2,979,320 20

minimal WCET is a very small percentage of the total number of possible permutations.

This shows that the greedy algorithm used is quite effective.

Invoking the timing analyzer n! times when performing an exhaustive search for each

function would require an excessive amount of time. Instead, the timing analyzer is initially

invoked once without assessing transfer of control penalties to obtain a base WCET time for

each path. For each permutation each path’s WCET is adjusted by adding the appropriate

transfer of control penalty to each noncontiguous edge. After finding the minimum WCET

permutation, the timing analyzer is invoked again for this permutation to verify that the

preliminary WCET prediction without using the timing analyzer was accurate. While this

approach is potentially less accurate, the results are obtained in a few hours. Invoking the

timing analyzer for each permutation would have taken significantly longer.

9.5 Conclusions

There are several contributions that have been presented in this chapter. First, a WCET

code positioning algorithm was developed, which is driven by WCET path information from

timing analysis, as opposed to ACET frequency data from profiling. The WCET code
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positioning is inherently more challenging than ACET code positioning since the WC paths

may change after updating the order of basic blocks. In contrast, the frequency of the

edges based on profile data, which is used in ACET code positioning, does not change

regardless of how the basic blocks are ordered. Second, experiments show the greedy WCET

code positioning algorithm obtains optimal results on the SC100 for the suite of programs

with a small number of basic blocks. Finally, WCET branch target alignment has also

been implemented and evaluated. The target alignment optimization reduces WCET due

to target misalignment penalties. Thus, it is shown that it is feasible to develop specific

compiler optimizations that are designed to improve WCET using WC path information as

opposed to improving ACET using frequency data. Code positioning determines the order of

the basic blocks, but, in general, it does not change the code size. Therefore, code positioning

is an appropriate compiler optimization to reduce the WCET for embedded systems since

the space for the code in embedded systems is also a limited resource.

67



CHAPTER 10

WCET PATH OPTIMIZATION

Traditional frequent path-based compiler optimizations are performed based upon the

path frequency information gathered from profiling to reduce ACET. In this chapter,

path-based optimizations applied on WC paths to reduce WCET are described [7]. The

WC paths within each loop and function are identified by the timing analyzer and the

paths are distinguished in the control flow using code duplication. In this way, traditional

path-based compiler optimizations, designed for reducing the execution time along the

frequently executed paths, can be adapted to reduce the execution time along the worst-case

paths. These path-based optimizations reduce the execution time at the expense of the

code size increase. Therefore, each path optimization is not committed unless it reduces the

WCET.

The remainder of this chapter has the following organization. Prior research on path

optimizations is first summarized. The compiler optimization techniques used in this chapter

are then described separately. An example is used to illustrate how these optimizations

enable other optimizations. Finally, the experimental results show that a WCET reduction

versus a code size increase.

10.1 Prior Work on Path Optimizations

There has been a significant amount of work over the past few of decades on developing

path optimizations to improve the performance of frequently executed paths. Each technique

involves detecting the frequently executed path, distinguishing the frequent path using code

duplication, and applying a variety of other code-improving transformations in an attempt

to improve the frequent path, often at the expense of less frequently executed paths and an

increase in code size.
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Much of this work was motivated by the goal of increasing the level of instruction-level

parallelism in processors that can simultaneously issue multiple instructions. Some of the

early work in this area involves a technique called trace scheduling, where long traces of

the frequent path are obtained via loop unrolling and the trace is compacted into VLIW

instructions [67]. A related technique that was developed later is called superblock formation

and scheduling [68]. This approach uses tail duplication to make a trace that has only a single

entry point, which makes trace compaction simpler and more effective, though this typically

comes at the expense of an additional increase in code size compared to trace scheduling.

Path optimizations have also been used to improve code for single issue processors.

This includes techniques to avoid the execution of unconditional jumps [69] and conditional

branches [70] and to perform partial dead code elimination and partial redundancy elimina-

tion [71].

10.2 WC Path Optimizations

The compiler is integrated with the timing analyzer to obtain the WC path information.

Therefore, traditional path optimizations used for frequent paths can be applied along the

WC paths. Several compiler optimization techniques used in this chapter are described in

this section.

10.2.1 WC Superblock Formation

A superblock is a sequence of basic blocks in the CFG where the control can only enter

at the top but there may be multiple exits. Each block within the superblock, except for

the entry block, can have at most one predecessor. Although superblock formation can

increase code size due to code duplication, it can also enable other optimizations to reduce

the execution time along the superblock.

Figure 10.1 illustrates the WC superblock formation process. Figure 10.1(a) depicts the

original control flow of a function. Assume that the timing analyzer indicates that the WC

path through the loop is 2→3→5→6→8. Note that the blocks and transitions along the

WC path are shown in bold font. WC superblock formation starts at the beginning of the

WC path and duplicates code from the point where other paths have an entry point (join
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block) into the WC path. In this example, block 5 is a join block. Figure 10.1(b) shows the

control flow after duplicating code along the WC path. The superblock consists of blocks 2,

3, 5’, 6’, 8’, which are shown in bold font. At this point there is only a single entry point

in the WC path, which is the loop header at block 2. Blocks 5’, 6’, and 8’ are duplicates of

blocks 5, 6, 8, respectively. Although block 5’ forks into block 6’ and block 7, there is no join

block along the WC path. To eliminate transfer of control penalties within the superblock,

the compiler makes the blocks within the WC path contiguous in memory, which eliminates

transfers of control within the superblock. After superblock formation, some blocks can be

merged. For instance, blocks 3 and 5’ and blocks 6’ and 8’ can both be merged into one

block. The compiler then attempts other code improving transformations that may exploit

the new control flow and afterwards invokes the timing analyzer to obtain the new WCET.
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Figure 10.1. Example Illustrating Superblock Formation

10.2.2 WC Path Duplication

Figure 10.2 shows the control-flow graph from Figure 10.1(b) after path duplication to

duplicate the WC path. The number of taken conditional branches, which result in a

transfer of control penalty on the SC100, could be reduced in the WC path within a loop
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by duplicating this path. For instance, regardless of how the nonexit path 2→3→5’→6’→8’

in Figure 10.1(b) is positioned, it would require at least one transfer of control since the

last transition is back to block 2. If path duplication duplicates the WC path once, then

one iteration of the worst-case path after duplication is equivalent to two iterations before

the duplication. Now the path 2→3→5→6’→8’→ 2’→3’→5”→6”→8”→2 in Figure 10.2

can potentially be traversed with only a single transfer of control. In contrast, at least two

transfers of control would be required before path duplication to execute the code that is

equivalent to this path. In addition, WC path duplication forms one superblock consisting

of code from two original loop iterations which can enhance the opportunities for other

optimizations.
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3
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Figure 10.2. WC Path Duplication of Graph in Figure 10.1(b)

WC path duplication presents interesting challenges for the timing analyzer and the

compiler since some acyclic paths, such as 2→...→8” in Figure 10.2, represent two iterations

of the original loop and others, such as 2→4→...→8, represent a single iteration. The

duplicated loop header, block 2’ in Figure 4, is annotated so that the timing analyzer counts

an extra iteration for any path containing it. The compiler was also modified to retain the
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original number of loop iterations before WC path duplication and count two original loop

iterations for each path containing the duplicated loop header.

10.2.3 WC Superblock Formation after Loop Unrolling

Loop unrolling reduces the loop overhead by duplicating the whole loop body. It is

different from path duplication, where only the WC path is duplicated. In this dissertation,

limited loop unrolling is performed followed by superblock formation and associated other

compiler optimizations to exploit the modified control flow. For this study, only the

innermost loops of a function are unrolled by a factor of two since the code size increase

should be limited. Some approaches that perform unrolling require a cleanup loop to handle

exits from the superblock and this cleanup loop can be unstructured. Such an approach was

not used since our timing analyzer requires that all loops be structured for the analysis and

this approach would result in a larger code size increase.

Figure 10.3(a) shows the control flow from Figure 10.1(a) after unrolling by a factor of

two when the original loop had an even number of iterations. Figure 10.3(b) shows how the

compiler uses a less conventional approach to perform loop unrolling by an unroll factor of

two and still not require an extra copy of the loop body when the original number of loop

iterations is a odd number. Each WC loop path (blocks and transitions) in these figures is

again depicted in bold. Note that the WC loop path in Figure 10.3(b) starts at block 2’, the

loop header, and ends at block 8. In both Figure 10.3(a) and Figure 10.3(b) the compare and

branch instructions in block 8 are eliminated, reducing both the ACET and WCET. However,

the approach in Figure 10.3(b) does not result in any merged blocks, such as blocks 8 and

2’ in Figure 10.3(a), which may result in fewer other compiler optimizations being enabled.

As illustrated in Figures 10.2 and 10.3, path duplication results in less code duplication than

loop unrolling. However, loop unrolling can results in a greater reduction in WCET than

path duplication. Superblock formation after loop unrolling results in a larger superblock

consisting of code from two iterations (Figure 10.3(c)). Other compiler optimizations can

potentially find more opportunities to reduce the execution time along the superblock.
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10.3 Enabling Other Optimizations

Superblock formation, path duplication, and loop unrolling may enable other compiler

optimizations. For instance, consider Figure 10.4(a), which shows the source code for a

program that finds the index of the element for the maximum value in an array and counts

the number of times that the index for the maximum element was updated. Figure 10.4(b)

shows the corresponding control flow after unrolling the loop by a factor of two so that the

loop overhead (compares and branches of the loop variable i) can be reduced. The WC

path (blocks and transitions) is depicted in bold. Note that loop unrolling and all other

optimizations are performed at a low level by the compiler backend to be able to assess the
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impact on both the WCET and code size. While the code in this figure is represented at

the source code level to simplify its presentation, the analysis is performed by the compiler

at the assembly instruction level after compiler optimizations have been applied to allow

more accurate timing predictions. The conditions have been reversed in the control flow to

represent the condition tested by a conditional branch at the assembly level.
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Figure 10.4. Illustrating WCET Superblock Formation and Associated Optimizations

The compiler obtains the WCET for each path in the function from the timing analyzer.

All basic blocks are initially marked unpositioned. This step is the exact same as the first

step of the code positioning described in Chapter 9.

Figure 10.4(c) enumerates the four different paths through the loop. Transfer of control

penalties are initially assessed between each basic block. Path A is the current WC path

in the loop because it contains the most instructions. However, when the array contains
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random values, path D would likely be the most frequent path executed since not finding a

new maximum is the most likely outcome of each iteration. In this example, the frequent

path and the WC path are different.

WC path optimizations are attempted on the WC path in the innermost loops of a

function or at the outer level if the function has no loops since the innermost loops and

functions without no loops are the leaves of the timing tree which contribute most of the

execution time. Once the WC path is identified, superblock formation is attempted on that

path. This means that code is duplicated so that the path is only entered at the head of

the loop. Consider Figure 10.4(d), where the superblock (2→3→4’→5’→ 6’) representing

path A now is only entered at block 2. Blocks 4’, 5’, and 6’ are duplicates of blocks 4, 5,

and 6, respectively. Note that there are still multiple exits from this superblock, but there

is only a single entry point. Distinguishing the WC path may also enable other compiler

optimizations. In Figure 10.4(d), blocks 3 and 4’ are merged together and blocks 5’ and 6’

are merged together. Removing joins (incoming transitions) from the WC path may also

enable some optimizations.

Path duplication is performed after superblock formation since superblock formation

eliminates the join transitions along the WC paths. Superblock formation also makes it

possible for an optimization called code sinking on instructions along the WC path to reduce

the WCET. When it is beneficial, coding sinking moves instructions inside a block downward

following the control-flow into its successor blocks. The instructions being pushed down can

sometimes be merged with instructions in the successor block along the worst-case path.

However, if a block has more than one successor, the moved instructions have to be duplicated

for each successor while it can potentially increase the code size. The two assignments in

block 3 of Figure 10.4(d) and the increment of i from block 4’ in Figure 10.4(d) are sunk

after the fallthrough transition of block 4’ into the top portion of block 5’ in Figure 10.4(e).

Likewise, these assignments have to be duplicated after the taken transition of block 4’

in the top portion of block 6”. Due to the high cost of SC100 transfers of control, code

duplication is performed until another transfer of control is encountered when code sinking

leads to assignments being removed off the WC path, as shown by the duplicated code in

the bottom portion of block 6”. This additional code duplication avoids introducing an
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extra unconditional jump at the end of block 6”, which decreases the WCET of the path

containing that block.

Initially it may appear that there is no benefit from performing code sinking. Fig-

ure 10.4(f) shows the updated code after performing dead assignment elimination, instruction

selection, and common subexpression elimination. The first assignment to m in block 5’ of

Figure 10.4(e) is now dead since its value is never used and this assignment is deleted in

Figure 10.4(f). Likewise, the multiple increments to the updates variable in block 5’/6’

of Figure 10.4(e) are combined into a single instruction in block 5’/6’ of Figure 10.4(f).

In addition, the two pair of increments of i in blocks 5’/6’ and in block 6” are combined

into single increments ”i += 2;”. Finally, the movement of the ”i++;” statement past the

assignment ”m = i;” statement in block 5’ causes the source of that statement to be modified

into ”m = i+1;”. Other optimizations are also re-applied that can exploit the superblock

control flow with its single entry point. These optimizations include constant propagation,

copy propagation, and strength reduction.

Some transformations, such as distinguishing the WC path through superblock formation

and code sinking, can increase the number of instructions in a function. Since these

optimizations are targeted for embedded systems, code size is not increased unless there is a

corresponding benefit gained from decreasing the WCET. As mentioned previously, VISTA

has the ability to discard previously applied transformations which can be used to roll back

transformations when the WCET is not reduced. The compiler invokes the timing analyzer to

obtain the WCET before and after applying each code size increasing transformation. If the

transformation does not decrease the WCET, then the state of the program representation

prior to the point when the transformation was applied is restored. Note that the timing

analyzer returns the WCET of the entire program. By checking the program’s entire WCET,

the compiler discards all code size increasing transformations where the WC path does not

contribute to the overall WCET, even though the transformation may decrease the WCET

of the loop or function in which the WC path resides. This ability to discard previously

applied transformations also allows the compiler to aggressively apply an optimization in

case the the resulting transformation will be beneficial.

A sequence of WC path optimizations are applied to transform the code after traditional

optimizations have completed, but before some required phases such as fix entry exit,
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instruction scheduling, and add noops. Fix entry exit inserts instructions at the entry and

exit of the function to manage the activation record on the run-time stack. Add noops puts a

noop between two dependent SC100 instructions when first instruction produces a result that

the second instruction cannot access when it is not being available in the pipelines due to no

pipeline interlocks. Since these path optimizations may increase the code size, they are not

committed unless the WCET is reduced. In order to make this decision, the WCET before

and after each path optimization has to be calculated. However, these required phases have

to be applied before the WCET can be obtained. Therefore, these required optimizations

have to be reversed and/or re-applied, depending on if the optimization reduced the WCET.

Superblock formation also makes it possible for coding sinking to reduce the WCET.

Coding sinking moves instructions inside a block downward following the control-flow into

the successor blocks. Since superblock formation eliminates the join transitions along the

WC path, the instructions being pushed down can be merged with instructions in the

successor block along the worst-case path. This would reduce the execution time along the

worst-case path. If a block has two successors, the moved instructions have to be duplicated

for each successor. So code sinking can potentially increase the code size. Much of the

WCET improvement that was previously obtained from WCET code positioning may now

be achieved by superblock formation and WC path duplication due to the resulting contiguous

layout of the blocks in the WC path.

10.4 Experimental Results

This section describes the results of a set of experiments to illustrate the effectiveness

of improving the WCET by using WCET path optimizations. All of the optimizations

described in the previous sections were implemented in the compiler and the measurements

were automatically obtained after applying these optimizations. Note that the DSPStone

benchmarks are not used for the experiments on WC path optimizations for the same reason

as WCET code positioning. The benchmark findmax contains the code similar to the example

shown in Figure 10.4. In the example in Figure 10.4, the initial value of i in the for loop is

0, so the loop has an even number of the loop iterations, which simplifies the example since

loop unrolling can use the approach shown in Figure 10.3(a). However, in the benchmark
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findmax, the initial value for i in the for loop is assigned to be 1 instead of 0 since the

first iteration of the loop is unnecessary. The loop has an odd number of iterations. Thus,

when applying loop unrolling for this benchmark, the compiler uses the approach shown in

Figure 10.3(b).

Two sets of experiments were performed to assess the effectiveness of applying WC path

optimizations. The first experiment invokes superblock formation along the worst-case path.

Path duplication is then performed to duplicate the superblock to reduce the number of

transfer of control along the worst-case path. The second experiment applies loop unrolling

on the innermost loop. Superblock formation is then performed to create a superblock along

the worst-case path. After each set of WC path optimizations, other optimizations, such as

code sinking, merging basic blocks, dead assignment elimination, and instruction selection,

are invoked to reduce the execution time along these worst-case paths. Finally, WCET code

positioning is invoked to further reduce the WCET in both experiments [6].

Table 10.1 shows the effect on WCET after performing superblock formation, WC path

duplication, and WCET code positioning. Note these WC path optimizations are applied

after all other conventional code-improving optimizations have been performed. For each

of these optimizations, the transformation was not retained when the WCET was not

improved. Thus, the code size was not increased unless the WCET was reduced. The

results after superblock formation were obtained by applying superblock formation followed

by a number of compiler optimizations to improve the code due to the simplified control

flow in the superblock. Only five of the ten Small benchmarks and five of the six Larger

benchmarks improved. There are several reasons why there is no improvement on WCET

after superblock formation. Sometimes, there are multiple paths in the benchmark that have

the same WCET. In these cases improving one path does not reduce the WCET since the

WCET for another path with the same WCET is not decreased. The WC path is also often

already positioned with only fall through transitions, which occurs when if-then statements

are used instead of if-then-else statements. There is no opportunity to change the layout in

this situation to reduce the number of transfer of control penalties in the WC path. Finally,

other optimizations often had no opportunity to be applied after superblock formation due

to the path containing code for only a single iteration of the loop.
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Table 10.1. WCET Results after Superblock Formation and WC Path Duplication

After Superblock Formation After WC Path Duplication After WCET Positioning
Program WCET Size Time WCET Size Time WCET Size Time

Cycles Ratio Ratio Ratio Cycles Ratio Ratio Ratio Cycles Ratio Ratio Ratio

bubblesort 7,491,544 0.984 1.009 1.40 7,245,535 0.951 1.557 2.40 7,241,047 0.951 1.557 5.47
findmax 20,002 1.000 1.000 1.29 20,002 1.000 1.000 2.14 18,010 0.900 1.655 5.43
keysearch 31,142 1.000 1.000 1.17 25,267 0.811 1.247 2.08 24,958 0.801 1.312 5.83
summidall 18,521 0.949 1.018 1.43 18,128 0.929 1.821 2.57 16,325 0.836 1.804 6.71
summinmax 23,015 1.000 1.000 1.33 23,015 1.000 1.000 2.33 20,021 0.870 1.067 5.22
sumnegpos 20,015 1.000 1.000 1.43 20,015 1.000 1.000 2.29 18,021 0.900 1.133 6.71
sumoddeven 16,547 0.718 1.051 1.63 16,547 0.718 1.410 2.38 16,546 0.718 1.013 4.50
sumposclr 30,019 0.968 1.420 1.27 30,019 0.968 1.951 2.18 26,024 0.839 2.222 6.09
sym 55,497 1.000 1.000 1.30 51,822 0.934 1.598 2.50 50,603 0.912 1.660 5.90
unweight 321,017 0.915 1.089 1.38 321,017 0.915 1.633 2.13 300,920 0.858 1.684 5.88

small
average 802,732 0.953 1.059 1.36 777,137 0.923 1.422 2.30 773,248 0.859 1.511 5.77

bitcnt 55,521 0.998 1.003 1.56 50,623 0.910 1.164 3.44 49,023 0.881 1.161 7.78
diskrep 12,492 1.000 1.000 1.75 12,492 1.000 1.000 3.38 11,905 0.953 1.021 17.44
fft 73,386 0.994 0.998 1.36 70,954 0.961 1.580 3.86 70,891 0.960 1.583 15.24
fire 9,679 0.948 1.105 1.67 9,539 0.934 1.765 4.00 9,395 0.920 1.789 15.33
sha 759,208 0.987 1.000 2.15 733,092 0.953 1.218 12.33 733,450 0.953 1.225 39.96
stringsearch 194,113 0.998 1.039 2.03 173,821 0.894 1.447 5.41 167,893 0.963 1.432 15.34

larger
average 184,067 0.987 1.024 1.75 175,087 0.942 1.362 5.40 173,760 0.922 1.369 18.51

overall
average 570,732 0.966 1.046 1.51 551,368 0.930 1.399 3.46 548,440 0.882 1.457 10.55

The results after WC path duplication shown in the middle portion of Table 10.1 were

obtained by performing superblock formation followed by WC path duplication. If the WCET

did not improve, the transformations are then discarded. In contrast to superblock formation

alone, WC path duplication after superblock formation was more successful at reducing the

WCET. First, assignments were often sunk across the duplicated loop header of the new

WC path and other optimizations could be applied on the transformed code. Second, there

was typically one less transfer of control after WC path duplication for every other original

iteration. Eliminating a transfer of control is almost always beneficial on the SC100.

The results after WCET positioning for the final column in Table 10.1 were obtained

by performing superblock formation, WC path duplication, and WCET code positioning.
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Table 10.2. ACET Results after Superblock Formation and WC Path Duplication
Default Superblock Formation Path Duplication Code Positioning

Program ACET ACET Ratio ACET Ratio ACET Ratio

bubblesort 5,086,177 5,025,915 0.988 4,891,925 0.962 4,889,039 0.961
findmax 19,991 19,991 1.000 19,991 1.000 17,006 0.851
keysearch 11,067 11,067 1.000 9,173 0.829 9,016 0.815
summidall 19,511 18,514 0.949 17,913 0.918 16,122 0.826
summinmax 23,009 23,009 1.000 23,009 1.000 20,018 0.870
sumnegpos 18,032 18,032 1.000 18,032 1.000 15,042 0.834
sumoddeven 14,783 11,098 0.751 11,098 0.751 11,097 0.751
sumposclr 28,469 27,255 0.957 26,416 0.928 24,795 0.871
sym 107 107 1.000 107 1.000 107 1.000
unweight 340,577 315,517 0.926 305,510 0.897 290,939 0.854

small
average 556,172 547,051 0.957 532,317 0.928 529,318 0.863

bitcnt 39,616 39,517 0.998 37,215 0.939 36,015 0.909
diskrep 9,957 9,955 1.000 9,955 1.000 9,566 0.961
fft 73,766 73,318 0.994 70,855 0.961 70,802 0.960
fire 8,813 8,280 0.940 8,151 0.925 8,067 0.915
sha 691,045 683,046 0.988 648,892 0.939 648,896 0.939
stringsearch 147,508 147,339 0.999 125,222 0.849 125,057 0.848

larger
average 161,784 160,243 0.986 150,048 0.935 149,734 0.922

overall
average 408,277 401,998 0.968 388,967 0.931 386,974 0.885

Sometimes superblock formation and/or WC path duplication did not improve the WCET,

but applying WCET code positioning in addition to these transformations resulted in an

improvement. The combination of applying all three optimizations was over 4% more

beneficial on average than applying WCET code positioning alone. While superblock

formation or WC path duplication did not always provide the best layout for the basic

blocks, WCET code positioning in the final stage usually results in a better layout with an

additional improvement.

The effect on ACET after applying superblock formation, path duplication, and code

positioning to improve WCET is shown in Table 10.2. After superblock formation, the

average ACET is reduced by 3.2%. After path duplication, the average ACET is reduced

by 6.9%. The average ACET of these benchmarks is also reduced after code positioning. It
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appears that WCET code positioning typically helped ACET in Table 9.4. The benefit to

WC paths will help ACET if the random input data drives the WC path. Sometimes, the

WC path optimization is not applied for some benchmarks shown in Table 10.2 if there is

no improvement on WCET. However, it also causes no improvement on ACET. Overall, the

improvement on ACET is comparable to the WCET improvement.

Table 10.3 shows experimental results for the second experiment. First, the effect on

WCET and code size after unrolling innermost loops by a factor of two is shown. Second,

the results after superblock formation (as depicted in Figure 10.3) are depicted. Finally, the

results after WCET code positioning are given. As expected, loop unrolling reduced WCET

for all benchmarks. If typical input data was available for these benchmarks, then comparable

benefits for ACET would be obtained. Six out of ten Small benchmarks and five out of

six Larger benchmarks improved after superblock formation was performed following loop

unrolling. Eliminating one of the loop branches after unrolling enabled other optimizations

to be applied after superblock formation. WCET code positioning also improved the overall

WCET for half of the benchmarks, beyond what could be accomplished by unrolling and

superblock formation alone. The results in Table 10.3 show that loop unrolling reduces

WCET more than WC path duplication.

While the WCET is reduced by applying WC path optimizations, there is an accompany-

ing substantial code size increase, as shown shown in Tables 10.1 and 10.3. One must keep in

mind that the benchmarks used in this study, like most timing analysis benchmarks, are quite

small. Thus, the duplicated blocks from applying superblock formation, WC path duplication,

and loop unrolling comprise a significant percentage of the total code size. Performing

these optimizations on larger applications should result in a smaller percentage code size

increase. As expected, loop unrolling followed by superblock formation results in a greater

code size increase than superblock formation followed by WC path duplication. The type of

WC path optimization that should be applied depends on the timing constraints and code

size limitation that should be met.

The time ratio columns in Tables 10.1 and 10.3 indicate the compilation overhead from

performing these optimizations. Most of this overhead is due to repeated calls to the timing

analyzer. There were several factors that resulted in longer compilation times compared to

those cited in a previous study [6]. First, the applied optimizations increased the number of
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Table 10.3. WCET Results after Loop Unrolling and Superblock Formation

After Loop Unrolling After Superblock Formation After Code Positioning
Program WCET Size Time WCET Size Time WCET Size Time

Cycles Ratio Ratio Ratio Cycles Ratio Ratio Ratio Cycles Ratio Ratio Ratio

bubblesort 7,242,043 0.951 1.313 1.00 7,118,791 0.935 1.774 2.20 7,115,798 0.934 1.765 5.33
findmax 18,006 0.900 1.379 1.14 16,014 0.801 1.983 3.00 16,014 0.801 1.983 5.57
keysearch 28,767 0.924 1.435 1.08 24,767 0.795 1.242 1.75 24,767 0.795 1.242 3.75
summidall 16,520 0.846 1.411 1.29 16,520 0.846 1.411 2.57 14,728 0.755 2.143 9.29
summinmax 21,015 0.913 1.533 1.56 21,015 0.913 1.533 4.67 19,021 0.826 1.600 11.89
sumnegpos 17,015 0.850 1.400 1.14 17,015 0.850 1.400 5.57 16,021 0.800 1.533 20.00
sumoddeven 20,052 0.871 1.500 1.88 17,048 0.740 1.782 4.88 15,548 0.675 1.782 10.25
sumposclr 29,018 0.936 1.642 4.82 28,019 0.903 2.765 5.73 27,024 0.871 2.802 15.55
sym 50,597 0.912 1.546 1.10 50,597 0.912 1.546 1.90 49,372 0.890 1.546 4.20
unweight 330,716 0.943 1.620 1.25 311,017 0.887 2.177 2.88 311,017 0.887 2.177 6.50

small
average 777,375 0.904 1.478 1.63 762,080 0.858 1.761 3.51 760,931 0.823 1.857 9.23

bitcnt 50,720 0.912 1.113 1.06 49,220 0.885 1.121 2.61 47,720 0.858 1.113 5.22
diskrep 12,096 0.968 1.242 2.38 12,094 0.968 1.242 11.75 11,713 0.937 1.258 29.69
fft 73,440 0.995 1.203 1.07 72,234 0.978 1.192 2.00 72,178 0.978 1.197 5.60
fire 9,890 0.969 1.255 1.22 9,199 0.901 1.696 4.00 9,184 0.900 1.704 19.78
sha 733,532 0.953 1.092 1.06 712,499 0.926 1.086 4.08 712,467 0.926 1.093 14.42
stringsearch 186,019 0.956 1.330 1.25 184,594 0.949 1.417 4.19 179,578 0.923 1.441 14.19

larger
average 177,616 0.959 1.206 1.34 173,307 0.935 1.293 4.77 172,140 0.920 1.301 14.81

overall
average 552,465 0.925 1.376 1.52 541,290 0.887 1.586 3.99 540,134 0.860 1.649 11.33

basic blocks and paths in the program, which increased the time needed for timing analysis

and required additional invocations of the timing analyzer for WCET code positioning.

Second, required phases (fixing the entry/exit of the function was performed to address

calling conventions and instruction scheduling to address the lack of pipeline interlocks)

before invoking the timing analyzer. In contrast, WCET code positioning is performed

after these phases. These required transformations was discarded after invoking the timing

analyzer by reading in the intermediate file and reapplying the transformations up to the

desired point in the compilation. The extra I/O to support this feature had a large impact on

compilation time. The ability to discard previously applied transformations is not a feature

that is available in most compilers. In contrast, WCET code positioning is performed after
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Table 10.4. ACET Results after Loop Unrolling and Superblock Formation
Default Loop Unrolling Superblock Formation Code Positioning

Program ACET ACET Ratio ACET Ratio ACET Ratio

bubblesort 5,086,177 4,721,255 0.928 4,703,142 0.925 4,699,933 0.924
findmax 19,991 17,498 0.875 16,005 0.801 16,005 0.801
keysearch 11,067 10,353 0.935 8,913 0.805 8,913 0.805
summidall 19,511 16,511 0.846 16,511 0.846 14,746 0.756
summinmax 23,009 20,509 0.891 20,509 0.891 19,018 0.827
sumnegpos 18,032 15,031 0.834 15,031 0.834 13,541 0.751
sumoddeven 14,783 13,442 0.909 11,431 0.773 10,426 0.705
sumposclr 28,469 25,969 0.912 25,636 0.900 24,544 0.862
sym 107 105 0.981 105 0.981 102 0.953
unweight 340,577 315,480 0.926 300,366 0.882 300,366 0.882

small
average 556,172 515,615 0.904 511,765 0.864 510,759 0.827

bitcnt 39,616 36,816 0.929 35,916 0.907 34,716 0.876
diskrep 9,957 9,527 0.957 9,525 0.957 9,358 0.940
fft 73,766 72,990 0.989 72,166 0.978 72,114 0.978
fire 8,813 8,413 0.955 7,796 0.885 7,785 0.883
sha 691,045 650,957 0.942 636,354 0.921 636,360 0.921
stringsearch 147,508 146,618 0.994 146,387 0.992 146,045 0.990

larger
average 161,784 154,220 0.961 151,357 0.940 151,063 0.931

overall
average 408,277 380,092 0.925 376,612 0.892 376,873 0.866

these required phases. Thus, there is no need to discard and re-apply transformations after

performing WCET code positioning.

The effect on ACET after WCET path optimization for the second experiment is shown

in Table 10.4. For the benchmarks in Table 10.4, loop unrolling reduces both ACET and

WCET since it duplicates all paths. WC superblock formation and WCET code positioning

reduce ACET when the input data causes the program to traverse the WC path. The average

ACET is reduced by 7.5% after loop unrolling, 10.8% after WC superblock formation, and

13.4% after WCET code positioning. As in the first experiment, the average benefit on ACET

is slightly less than the average benefit on WCET since WC paths are targeted during WC

path optimizations.
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As mentioned previously, a significant portion of the benefit from the WC path optimiza-

tions (superblock formation and WC path duplication) is obtained by the contiguous layout

of the WC path. One should note that the WC path optimizations presented in this chapter

are computationally much less expensive than WCET code positioning, which requires an

invocation of the timing analyzer after each time an edge is selected to be contiguous. Thus,

the WCET code positioning requires many more invocations of the timing analyzer when it

is performed. As shown in Tables 10.1 and 10.3, WCET code positioning has a much greater

impact on compilation time.

10.5 Conclusions

This chapter describes how the WCET of a program can be reduced by optimizing the

WC paths. Our compiler automatically uses feedback from the timing analyzer to detect

the WCET paths through a function. There are two contributions in this chapter. First,

traditional frequent path optimizations are applied to WC paths and improvements in the

WCET are obtained. Second, new optimizations are developed, such as WC path duplication

and loop unrolling for an odd number of iterations to improve WCET while minimizing code

growth.

Several other conventional optimizations are applied on the WC path to further reduce

its execution time. WCET code positioning is also performed at the final stage to further

reduce the WCET. Since path optimizations may increase the code size, it was critical to

obtain WCET feedback from the timing analyzer to ensure that each code size increasing

transformation improves the WCET before allowing it to be committed.

During the course of this research, we realized that path optimizations applied on the WC

path to reduce WCET will in general be less effective than reducing ACET when applied on

the frequent path. One path within a loop may be executed much more frequently than other

paths in the loop. In contrast, the WC path within a loop may require only slightly more

execution time than other paths. Performing optimizations on the WC path may quickly

lead to another path having the greatest WCET, which can limit the benefit that can be

obtained. However, reasonable WCET improvements can still be achieved by optimizing the

WC paths of an application.
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CHAPTER 11

FUTURE WORK

There are many areas of future research that can be investigated for WCET reduction.

These WCET optimizations described in this dissertation may be applied for different

architectures and a larger class of applications. In addition, the compilation time can be

improved and the tradeoff between WCET and code size could be evaluated.

These WCET compiler optimizations could be used to improve WCETs on other

processors. The genetic algorithm searching for optimization phase sequences and the WC

path optimizations may be applied for other processors. Besides improving WC performance

by reducing the transfers of control along the WC paths, the WCET code positioning

algorithm may be adapted to improve instruction cache performance along the WC path for

processors with caches. In addition, WC path optimizations could be applied for processors

that provide support instruction level parallelism.

The WCET compilation time can be further reduced. Longer compilation times may

be acceptable for embedded systems since developers may be willing to wait longer for

more efficient executables. However, people working in industry still want to reduce the

compilation time so they have more time to try more options while developing software

for embedded systems. Now the compiler and the timing analyzer are currently separate

processes and they exchange data via files. If the compiler and the timing analyzer could be

merged into one process, then it would speed up the compilation. In addition, the WCET

optimization algorithms may also be improved to speed up the compilation.

Currently, the WCET optimizations are applied on benchmarks with bounded loops since

the timing analyzer can give exact clock cycles for the WCET of these programs. If the timing

analyzer can produce a WCET with a symbolic number of loop iterations as the parameters,

then these optimizations can still be performed to reduce the WCET for programs whose

number of iterations cannot be statically determined by the compiler [34].
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The characteristics of the genetic algorithm search can be varied. It would be interesting

to see the effect on the WCET as one changes aspects of the genetic algorithm search, such

as the sequence length, population size, number of generations, etc.

Currently, the compiler performs WC path optimizations on all of the innermost loops

since they are considered to have the best impact on WCET for the smallest code size

duplication. The timing analyzer has the ability to identify the critical code portion of a

program. The compiler could concentrate on the code portion that has the most impact on

WCET, instead of always attempting optimizations on the innermost loop since some inner

loops may be in paths that will not affect on the WCET.

Path optimizations reduce the WCET at the expense of an increase in code size.

Currently, the compiler discards the code duplication if there is no improvement on WCET.

However, it sometimes commits a large code size increase for small reductions on WCET.

The compiler can be enhanced to automatically weight the code size increase and WCET

reduction to obtain the best choice. Alternatively, a user could specify the ratio of the code

size increase to the WCET decrease that he/she is willing to accept.
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CHAPTER 12

CONCLUSIONS

This dissertation has presented a compilation system, which is integrated with a timing

analyzer, to perform three different types of compiler optimizations to reduce WCET. First,

this system allows a user to invoke a genetic algorithm that automatically searches for an

effective optimization phase sequence for each function that best reduces the WCET. Second,

WCET code positioning is used to reorder or position the basic blocks within a function to

reduce WCET. Finally, path-based optimizations are applied on WC paths to reduce WCET.

This dissertation has made several contributions. To the best of our knowledge, this is the

first compiler that interacts with a timing analyzer during the compilation of applications.

It has been shown that WCET predictions can be used as a fitness criteria by a genetic

algorithm that finds effective optimization sequences to improve the WCET of applications

on an embedded processor. A WCET code positioning algorithm was developed, which is

driven by WCET path information from timing analysis, as opposed to ACET frequency

data from profiling. Experimental results show that the greedy WCET code positioning

algorithm obtains optimal results on the SC100 for the suite of programs with a small

number of basic blocks. In addition, it is the first time that path optimizations are applied

on WC paths and improvements in the WCET are obtained. Finally, we have shown that

these WC optimizations improve ACET on average.

This dissertation has presented the first general study on compiler optimization tech-

niques to reduce WCET. An improvement in the WCET of a task may enable an embedded

system to meet timing constraints that were previously infeasible. The WCET information

from the timing analyzer is used to guide the compiler optimizations. One advantage of

using WCET, instead of ACET from profiling, is that the timing analysis is much faster

than simulation, which is required to obtain profile data on many embedded development

environments. In addition, the process is entirely automatic, unlike profile driven optimiza-
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tions, which requires the user to provide typical input data. Finally, the different compiler

optimization techniques described in this dissertation have been shown to significantly reduce

WCET.
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