
XSPIM tutorial
Compiled from http://www-courses.cs.uiuc.edu/~cs232/assignments/mp0/mp0.html

Writing an assembly program

1. Open your favorite text editor and type the following:

 # comments are delimited by hash marks

 .data
 silly_str: .asciiz "My first MIPS program\n"

 .text
 main:
 li $v0, 4 # load the value "4" into register $v0
 la $a0, silly_str # load the address of "silly_str" into register $a0
 syscall # perform the "print_string" system call ($v0 = 4)
 jr $ra # return to the calling procedure
The above program has two parts. First is the data segment, tagged with the .data
directive. The data segment is used to allocate storage and initialize global variables. The
above program allocates a single variable silly_str. The .asciiz directive indicates
that this variable is an ASCII string that should be terminated with a zero (that's what the
z means). This statement will cause the assembler to allocate 23 bytes of space (one for
each character and one more for a terminating zero) for the variable and load it with the
ASCII values for the characters, followed by a zero.

Second is the text segment, indicated by the .text directive. This is where we put the
instructions we want the processor to execute. In the above program, there is a single
function, which is called main. The name main is special; it will be the first function of
our program that gets called. Our main function prints silly_str to the console and then
returns. This is accomplished in four instructions:

1. li is short for load immediate; that means put a constant into a register (in this
case the constant 4 in the register $v0).

2. la is short for load address; that means put an address into a register (in this
case the address of the string silly_str in the register $a0).

3. syscall is short for system call; SPIM provides a number of operating system
services that aren't really a part of MIPS assembly language, but are useful for
playing with little assembly programs. We indicate to SPIM which system call to
perform by putting a particular number in register $v0. System call number 4 is
print_string which interprets the contents of register $a0 as the address of a
null- terminated string (i.e., a string that ends with a zero) and copies the string to
the console.

4. jr is short for jump register; this instruction performs the return for us. As we
will see shortly, the piece of code that calls our main function puts a return
address into register $ra (the return address register). The jump register
command sets the processor's program counter (PC) to the contents of register
$ra, returning execution to the calling function.

2. Save the file as test.s. The .s extension is typically used for assembly files.

Start xspim

Because the wizards at EWS have magically put ~cs232/MachineType/bin in your path,
you should be able to run xspim by simply typing:

 xspim &
For simplicity, you should do this in the directory in which you've saved your assembly
file. If for some reason your path isn't set you can type the slightly more long winded:
~cs232/SunOS/bin/xspim & or ~cs232/Linux/bin/xspim &, depending on your
platform.

It is important to note that SPIM behaves slightly differently on the two platforms,
because x86 is little endian and Sun is big endian. We'll discuss this difference in class;
I'm merely pointing it out here so that you aren't surprised if things don't look exactly like
in the tutorial.

Loading and running a program

1. Click on the load button. That will bring up a dialog box.

2. Type in the name of the file (test.s) and then click the button labeled assembly file.
You'll see the contents of the the Text Segments and Data Segments window update
themselves.

3. Click the run button to run the program. It will pop up a window indicating the PC to
begin execution (0x00400000) and the assembly file to execute test.s. SPIM should fill
in these fields correctly and you will only need to click ok. If you typed in the program
correctly, the SPIM console should pop up and print the message My first MIPS
program. You might have noticed that some of the register values at the top of the main
xspim window changed also. We'll now look closer at what SPIM is doing.

Stepping through the program

SPIM provides a number of features to support debugging that you will find useful while
developing your assembly programs. The two most important are stepping and
breakpoints. Stepping allows you to look at the effect of your program instruction by
instruction. Breakpoints allow you to stop the execution just before a particular
instruction is executed.

To run the test program again, you need to return the machine back to its initial state.
This can be done with the reload button:

1. Click the reload button and drag down to select assembly file. The PC register (in
the upper left corner) should have reverted back to 0x00400000.

The first line in the Text Segments window should also be highlighted. Each line in the
text segment window describes one instruction; the four fields (from left to right) are: the
instruction address, the binary representation of the instruction, the machine instruction,
and the assembly code statement that was translated into the instruction. The last two
columns differ in two ways: 1) register names ($sp) have been translated into register
numbers ($29), and 2) some assembly instructions (e.g., li) don't actually exist on the
hardware so must be translated into instructions that the machine implements (e.g., ori).
The first instruction is highlighted because it is at the address currently held in the
program counter (PC) register, and, thus, is the next instruction to be executed.

The first 9 instructions (0x00400000-0x00400020) shown in the Text Segments
window don't actually come from your assembly program. The test.s code begins at
address 0x00400024.

2. Click on the step button. A window will pop up. Again, we will accept the default
parameters (single instruction stepping and our test.s program).

3. Click on the step button in the dialog window to execute the first instruction. This first
instruction is a lw or load word instruction that loads a value into register $4. What
value was loaded? ______________

This value was loaded from the top of the stack (a 0 offset from the stack pointer register
$sp). What is the contents of the $sp register? ___________

Looking at the window labeled Data Segments, you can confirm that the correct value
was read from memory:

4. Find the address under the word STACK. To the right of this address there are up to
four 32-bit data words; the leftmost one is at the address in brackets, each position to the
right adds 4 to the address. What value is stored at 4($sp)? __________________

Executing the first instruction also changed the contents of the PC register. What is the
new value of the PC? _________________

5. Click the step button (in the dialog) two more times so that instruction 0x0040000c is
highlighted. Instruction 0x00400008 is of type addiu or ADD Immediate Unsigned,
which means add a constant (in this case 4) to a register (R5) and put it in another register
(R6). What value is written into R6? __________________

Single stepping can become tedious quickly, so:

6. Set a breakpoint on address 0x00400010, by clicking the breakpoints button, typing
the address into the dialog box, and clicking add.

7. Click the continue button in the step dialog box to skip some of the scaffolding code.
When xspim stops, it pops up a dialog box; click on abort command to dismiss it. Also,

the Text Segments window is highlighting the instruction at which we set the break
point, which it has converted to break $1. SPIM's debugging support (like gdb or any
other debugger) implements breakpoints by converting instructions into illegal
instructions (in this case the binary representation 0x00000000); it stores the original
instruction elsewhere so that it is not lost. If you want SPIM to make the original
instruction visible again, you can turn off the breakpoint (click breakpoints, type the
address in the box, and click delete) before stepping to the next instruction. In any case,
single step to the jal instruction.

The jal or jump and link instruction is used to implement function calls. The jump
specifies an address (in this case 0x00400024) of the next instruction to be executed; this
address will be written to the PC register. In addition, a link operation is performed to
allow the called function to return to this function. This is accomplished by writing PC+4
to the return address ($ra) register. What value is written to register R31?

Finally, we made it to the code you typed in. In the text segment window, you can see
that SPIM converted the li instruction we used into an ori instruction. It stands for
(logical) OR immediate. The li instruction is one of the pseudo instructions. It isn't
really a MIPS machine instruction, but is provided to simplify assembly programming. If
we were to try to load a very large immediate, it would take multiple MIPS instructions
to compute the immediate. For a small immediate like 4, SPIM performs a logical OR of
the immediate with the $0 register (whose contents is always the value 0).

8. Step one instruction to verify that register R2 is written with the value 4.

Similarly, the la pseudo instruction is converted into the MIPS primitive lui or load
upper immediate. lui is used for setting the upper 16 bits of a register. It turns out that
SPIM places silly_str at address 0x10010000, the bottom 16 bits of which are all zeros.
As a result SPIM can write the address of silly_str into a register with a single
instruction that writes (4097 << 16) into R4. Looking at the Data Segments window, in
the DATA section, you can see address 0x10010000. The string in our assembly file has
been converted into ASCII and runs from address 0x10010000 to 0x10010016. Each
ASCII character is eight bits, so four are packed together into the 32-bit data words in the
data segment.

The next instruction is the syscall:

9. Step across that instruction and verify that the string is written to the console window.

The last instruction of our program performs the return. The $ra register should still
contain the value placed there by the jal instruction. The jump register instruction will
copy the contents of the $ra register back to the PC register.

10. Step across the last instruction. Did anything happen to the $ra register's contents?

Modifying the program

1. Return to your text editor. Replace the contents of silly_str with your name. It
should look something like:

 silly_str: .asciiz "Joe User\n"
2. Save the file, and reload it using the reload button. Click on the reload button and
drag down until assembly file item is highlighted, then release the button.

You should see the contents of the Data Segments window change (as well as the re-
initializing of the register and the Text Segments window). Any breakpoints that were
set have been deleted.

3. Verify this by clicking on the breakpoints button and selecting the list option. In the
message window at the bottom of xspim's main window you should see the message:

 No breakpoints set
4. Run the program to see your name written into the console window.

