Authenticated Encryption in SSH: Provably Fixing the SSH Binary Packet Protocol

Written by: Mihir Bellare, Tadayoshi Kohno, Chanathip Namprempre
September 2002

Presented by: Khandys A. Polite
October 8, 2002

Introduction

- IETF – Internet Engineering Task Force
 - www.ietf.org
- Secure Shell (SSH) Protocol
 - Binary Packet Protocol
- Current SSH is insecure
- Propose several fixes
- Provable security
SSH Binary Packet Protocol

- Encrypts and authenticates messages between two parties involved in an SSH connection
- Client and server agree on:
 - Set of shared symmetric keys
 - Encryption scheme (CBC)
 - Message authentication scheme (HMAC)
- SSH authenticated encryption scheme

SSH Authenticated Encryption Scheme

1. Payload Message
2. Encode
3. Counter, Payload Length, PDL, Payload, Padding
4. Encrypt
5. Intermediate Ciphertext
6. MAC
7. MAC Tag
8. Ciphertext Packet
SSH Authenticated Decryption Scheme

Attacks

- CBC mode encryption with chained IVs is insecure (SSH-IPC)
- CBC mode with random IVs is “provably secure” against chosen-plaintext attacks (SSH-NPC)
 - Preserves privacy as long as a user does not use it to encrypt more than 2^{32} messages with any given key
- Natural fix to use randomized CBC mode instead of chained CBC mode
- Not secure enough
Attacks

- **Reaction Attack (SSH-NPC)**
 - Attacker intercepts ciphertexts sent by a party in the SSH connection
 - Attacker makes a guess about relationship between plaintexts corresponding to intercepted ciphertexts
 - Attacker uses this guess to create a new ciphertext and sends it to other party in SSH connection
 - If second party does not accept the new ciphertext, the connection will be terminated and the attacker will know that the guess was wrong

Attacks

- **Information Leakage, Replay, and Out-Of-Order Delivery Attacks**
 - If an SSH-NPC or SSH-IPC session is not rekeyed frequently enough, then the session will be vulnerable to these attacks because the counter will begin to repeat causing the following:
 - **Info Leakage**: information about the plaintext will be leaked through the MAC which is nothing more than the encoded payload message prepended with the counter
 - **Replay**: once the receiver has decrypted 2^{32} messages, an attacker will be able to convince the receiver to re-accept a previously received message
 - **Out-Of-Order Delivery**: once the sender has encrypted more than 2^{32} messages, an attacker will be able to modify the order in which the messages are decrypted
Provably Secure Fixes

- Assumption:
 - these fixes are not used to encrypt more than 2^{32} packets between rekeying
- These fixes will resist chosen-plaintext, chosen-ciphertext, forgery, replay, and out-of-order attacks
 - Randomized CBC mode encryption with random padding
 - CBC mode encryption with CTR generated IVs
 - CTR mode with stateful decryption

Provably Secure Fixes

- Randomized CBC mode with random padding (SSH-NPC)
 - Recall attack on SSH-NPC
 - Involved a newly created ciphertext that decrypts to an encoded packet previously encrypted by a user (if the attacker’s guess was right)
 - Require the random padding be chosen in a different way for each encryption
 - Require the random padding occupy at least one full block of the encoded packet
 - Why this works:
 - Attacker will not know what the random padding is and will not be able to forge a ciphertext that will decrypt to the previously encoded message
Questions? Comments? Suggestions?