Mobile Ad Hoc Networks and Secure Routing

John Marshall
marshall@cs.fsu.edu

13 February 2003

Introduction

- Ad hoc networks
- Routing
- Secure Routing Protocol (SRP)
- Attack on SRP
- Solution
- Theoretical basis for attacks
Mobile Ad Hoc NETworks

- MANET – “infrastructure-less”
- Transmission range
- Group coordination – routing

Ad Hoc Routing Protocol

- Route discovery
- Source-driven
- Intermediate nodes forward & accumulate path
Routing Example

Route request issued by Red to Brown

Security for MANETs

- Secure Routing Protocol (SRP)
- Goal – **guarantee** route to destination non-corrupted
SRP Assumptions

- Bi-directional communication
- Security Association (SA) between source and target, includes $K_{S,T}$
- Non-colluding nodes

SRP – Route request

- Issued by source
- Includes
 - Sequence number (Q_{seq})
 - Unique identifier (Q_{ID})
 - Message Authentication Code (MAC) using $K_{S,T}$
 - Route field
An Example of SRP

1. Route request

 - Route request
 - Compute MAC from Source, Target, Q_seq and Q_ID

2. Query propagation

 - Query propagation
 - Check Q_ID
 - Append IP-address
An Example of SRP

2. Query propagation

Route request receipt

- validate Q_{seq} and MAC
An Example of SRP

3. Route reply

- compute new MAC with route
- send response packet

Source: R
Target: Br
Q_{req}
Q_{ID}
MAC
Br,Bl
An Example of SRP

4. Reply validation

- check Q_{seq} and Q_{ID} for legitimacy
- compute and compare MAC using reverse of accumulated route
Result of SRP

- Authors claim the route is **guaranteed** to be successfully established and legitimate
- Weaknesses
 1. Intermediate nodes not forced to append address
 2. Destination cannot authenticate *route*

Attack on SRP

![Diagram of SRP attack](image)

- Malicious Intermediate Node
Attack on SRP

Source: R
Target: Br
\(Q_{req} \)
\(Q_{id} \)
MAC
R

Route

R \(\rightarrow \) Y \(\rightarrow \) M \(\rightarrow \) Bl \(\rightarrow \) Br
Attack on SRP

Source: R
Target: Br

\(Q_{req}\)
\(Q_{ID}\)
MAC
\(R, Y\)

\(M\) does not append IP-address

Attack on SRP

Source: R
Target: Br

\(Q_{req}\)
\(Q_{ID}\)
MAC
\(R, Y, BI\)
Attack on SRP

```
R   Y   M   Bl   Br
```

- **target** validates Q_{seq} and MAC
- accepts route request packet
- issues route reply packet

Attack on SRP

```
R   Y   M   Bl   Br
```

- **route** \{R, Y, Bl, Br\} part of MAC

Source: R
Target: Br
Q_{seq}
Q_{ID}
MAC
R, Y, Bl, Br

Source: R
Target: Br
Q_{seq}
Q_{ID}
MAC
Br
Again, M does not append IP-address
Attack on SRP

Source: R
Target: Br
\[Q_{seq} \]
\[Q_{ID} \]
\[MAC \]
\[Br, Bl, Y \]

- check \(Q_{seq} \) and \(Q_{ID} \) for legitimacy
- compute and compare \(MAC \) using reverse of accumulated route
- route reply packet accepted
Implications of Attack

- Source has erroneous route
- route depends on malicious node M
- M bears some level of control over route

Solution Detecting the Attack

- Detects and mitigates node misbehavior
- bloodhound
bloodhound

- Node should never receive packet identical to one it sent
- bloodhound listens in to overhear identical packets

Illustration of bloodhound

Source: R
Target: Br
Q_{eq}
Q_{ip}
MAC
R, Y
Illustration of *bloodhound*

M does not append IP-address, so M broadcasts identical packet.

Source: R

Target: Br

Q_{req}

Q_{ID}

MAC

R, Y

Finding Attacks

- Intuitive attacks
- BAN logic analysis
- Formal methods (CPAL-ES)