Visualization for CPAL-ES Encoding

John Marshall

17 March 2003

Attack on SRP

S A I B T

Malicious Intermediate Node

17 March 2003
Attack on SRP

\[S \rightarrow A \rightarrow I \rightarrow B \rightarrow T \]

- Source: S
- Target: T
- Q_{req}
- Q_{ip}
- MAC
- S, A

17 March 2003
Attack on SRP

$S \rightarrow A \rightarrow I \rightarrow B \rightarrow T$

I does not append IP-address

<table>
<thead>
<tr>
<th>Source: S</th>
<th>Target: T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{req}</td>
<td></td>
</tr>
<tr>
<td>Q_{ID}</td>
<td></td>
</tr>
<tr>
<td>MAC</td>
<td></td>
</tr>
<tr>
<td>S,A</td>
<td></td>
</tr>
</tbody>
</table>

17 March 2003
Attack on SRP

- **target** validates Q_{seq} and MAC
- accepts route request packet
- issues route reply packet
Attack on SRP

Again, I does not append IP-address
Attack on SRP

- Check Q_{seq} and Q_{ID} for legitimacy
- Compute and compare MAC using reverse of accumulated route
- Route reply packet accepted
Solution Detecting the Attack

- Detects and mitigates node misbehavior
- *bloodhound*

bloodhound

- Node should never receive packet identical to one it sent
- *bloodhound* listens in to overhear identical packets
I does not append IP-address, so I broadcasts **identical** packet.