The Emerald IDS
Tysen Leckie – Security Group

System Overview

Emerald = Event Monitoring Enabling Responses to Anomalous Live Disturbances

"An environment for anomaly and misuse detection and subsequent analysis of the behavior of systems and networks".

Created By:
Peter G. Neumann and Phillip A. Porras.
Computer Science Laboratory
SRI International, Menlo Park CA

Detection Methods

- **Anomaly Detection** - Recognition of deviations from expected normal behavior.
- **Misuse Detection** - Involves the detection of various types of misuse.

Concepts

- Targets both external and internal threats that attempt to misuse the system.
- Combines signature-based and statistical analysis components with a resolver that interprets the analysis results.
- A recursive framework for gathering data from the distributed monitors to provide a global detection and response capability that can counter attacks occurring across an entire network.
- Real-time detection of patterns in network operations to detect malicious activity, and responds to this activity through automated countermeasures.

Main Components

- **Monitors** - Provides dynamic localized real-time analysis of infrastructure (e.g., routers or gateways) and services (privileged subsystems with network interfaces).
- Interacts passively (reading activity logs or network packets) or actively (via probing that supplements normal event gathering).
- Produces analytical results, then disseminates these results asynchronously to other client monitors.
- Well-defined interface for sharing and receiving event data and results.
- Signature analysis and statistical profile-based anomaly detection on a target event stream.
- Each monitor includes an instance of the resolver.

Analysis Units

- **Profiler Engines** - Statistical profile-based anomaly detection given a generalized event stream of an analysis target.
- **Signature Engines** - Requires minimal state-management and employs a rule-coding scheme to provide a distributed signature-analysis model.
- **Resolver** - Coordinator of the monitor’s external reporting system and implements the response policy.

Hierarchically Layered Approach

- **Service Analysis** - Misuse of individual components and network services within the boundary of a single domain.
- **Domain Wide Analysis** - Misuse visible across multiple services and components.
- **Enterprise Wide Analysis** - Coordinated misuse across multiple domains.
Emerald Monitor Architecture

Main Components

- **Statistical Signal Analysis Subsystem**
 - Employs a variant of the P-BEST (Production-Based Expert System Tool).
 - A rule set to detect known "problem activity" occurring on the analysis target.
 - Tracks subject activity via one of four types of statistical measures:
 - Categorical (e.g., discrete types).
 - Continuous (e.g., numerical quantities).
 - Traffic intensity (e.g., volume over time).
 - Event distribution (e.g., a meta-measure of other measures).
 - Results are forwarded to the monitor's resolver.

- **Service Monitors**
 - Independently distributed to analyze the activity of multiple network services (e.g., FTP, SMTP, HTTP) or network elements (router, firewall).
 - Resource objects are developed for each analysis target (e.g., an FTP resource object for FTP monitoring, and a BSM resource object for BSM Solaris kernel analysis).
 - Information correlated by a service monitor can be disseminated to other EMERALD monitors through a subscription-based communication scheme.

- **Event Stream**
 - May be derived from a variety of sources including audit data, network datagrams, SNMP traffic, application logs, and analysis results from other intrusion-detection instrumentation.
 - Stream is parsed, filtered, and formatted by the target-specific event-collection methods provided within the resource object definition.
 - Event records are then forwarded to the monitor's analysis engine(s) for processing.

Trends in Alarm Sequences

- **Indicates a more Global Threat.**
 - Commonality Detection - search for common alarm indicators produced across independent event analyses (multiple monitors).
 - Multiperspective Reinforcement - Independently analyze the same target from multiple perspectives (e.g., an analysis of a Web server's audit logs in conjunction with Web network traffic).
 - Alarm Interrelationships - Model an interrelationship (cause and effect) between the occurrence of alarms across independent analysis targets. An alarm regarding activity observed on one host or domain may give rise to a warning indicator for a different threat against a second host or domain.
 - Sequential Trends - Seek to detect patterns in alarms raised within or across domains.