Overview

♦ Security problems with 802.11
 – Not strong access control and authentication
♦ RSN-Robust Security Network
 – Long term security for 802.11
 – Recent IEEE 802.1X for
 • Access control
 • Authentication
 • Key management
Overview (Cont)

- Two security problems:
 - Session hijacking
 - Man-in-the-middle attack

- Result:
 - Combination of 802.11 and 802.1X
 - No sufficient level of security

The IEEE 802.11 Network

- Goal:
 - Wired equivalent wireless network
 - Wired equivalent Privacy (WEP)

- Two modes:

 - **ad-hoc** (Independent Basic Service Set)
 - **Infrastructure** (Basic Service Set)

C: Client AP: Access Point (central entity)
The IEEE 802.11 Network (Cont)

- Here only infrastructure mode security
 - Association = Wireless clients establish a relation with an Access Point (AP)
- States for complete association:
 - unauthenticated & unassociated
 - authenticated & unassociated
 - authenticated & associated
- Frames for the client transitions within the states:
 - Management frame
 - Data frame
- Authentication & access control methods
 - Open-system
 - Shared-key
 - MAC-address based access control list

The Classic 802.11 state machine

[Diagram showing the state machine with states and transitions]
802.1X Standard

♦ Provides an architectural method for authentications methods (i.e. certificate-based authentication, smartcards, one-time passwords)

♦ Provides port-based network access control for hybrid networking technologies (i.e. token ring, 802.3, 802.5 and 802.11 local area networks).

♦ Network port: an association between a station and an AP

Robust Security Network (RSN)

♦ Used by 802.1X to provide security
 – Authentication
 – Access control
 – Key management

♦ Provides mechanisms to restrict network connectivity at MAC layer to authorized entities

♦ Network connectivity through network port (association)
Robust Security Network (RSN)

- Three entities to provide security framework:
 - **Suppliant**
 - Entity desires to use a server offered by a port on **authenticator**
 - **Authenticator**(network port)
 - Switch, AP
 - Many ports for a single network which supplicant can authenticate the service
 - **Authentication server**
 - Supplicant authenticates via authenticator to authentication server
 - Central system
 - Directs authenticator to provide service after successful authentication

IEEE 802.1X Setup

The three different roles in IEEE 802.1X: Supplicant, Authenticator and the Authentication Server.
Extensible Authentication Protocol (EAP)

- Used by IEEE 802.1X standard
- permit a wide variety of authentication mechanisms
- challenge/response communication mechanism
- Message types
 - **EAP request**: sent to supplicant to indicate a challenge
 - **EAP Response**: supplicant reply message
 - **EAP Success**: to notify the supplicant for success
 - **EAP Failure**: to notify the supplicant for failure
EAP (Cont.)

♦ The protocol is
 – Extensible: any authentication mechanism can be encapsulated within EAP request/response messages

 – Gains flexibility by operating at a network layer rather than link layer
 • Can route messages to a centralized server rather than have each network port (AP) make the authentication decisions
 – Central service: An EAP server (RADIUS)

EAP (Cont.)

♦ Before the authentication succeeds, AP must permit EAP traffic. The models used for this:
 – Dual-port model
 • Uncontrolled port
 – Filters all network traffic
 – Allows only EAP packets to pass
 – Enables backward capability for clients incapable of supporting RSN
 • Controlled port
The EAP Over Lan (EAPOL)

♦ EAP Messages are themselves encapsulated
♦ EAPOL protocol
 – carries the packets between authenticator and supplicant
 – Provides EAP-encapsulation
 – Notifications
 • Session start
 • Session logoff
 – A key message provides a communication way to a higher layer (TLS) negotiated session key
♦ EAP & EAPOL protocol do not contain integrity and privacy protection

Remote Authentication Dial-in User Service (RADIUS)

♦ Used for the communication between authentication server and authenticator
♦ Carries EAP messages as an attribute
♦ Provides mechanism for
 – per-packet authenticity and
 – integrity verification
 between AP and RADIUS server
A complete 802.1X authentication session

![Diagram of 802.1X authentication session]

Goals of 802.11

- Access control and mutual authentication
- Flexibility
- Ubiquitous Security
- Strong Confidentiality
- Scalability
Goals of 802.1X (RSN Provides)

- Per packet authenticity & integrity between the RADIUS server and AP
- Scalability & Flexibility
- Access control
- One-way authentication

Attacks

- Man-In-Middle Attack
- Session Hijacking
Man-In-Middle Attack

- An attacker acts as an AP to supplicant and as client to the AP (authenticator)
- Absence of Mutual Authentication
- One way authentication of the supplicant to AP
- An attacker can get all network traffic from supplicant to pass through it.

Session Hijacking

- Lack of clear communication between RSN and 802.1X state machines and message authenticity. The messages are:
 - 1-2-3: Supplicant authenticates itself
 - 4: An attacker sends a 802.11 MAC disassociate management frame using AP’s MAC address that causes supplicant to get disassociated: RSN state Machine Unassociated while 802.11 state machine’s authenticator still authenticated
 - 5: Attacker gains network access using MAC address of authenticated supplicant because it’s state is still authenticated
Solutions

♦ Per-packet authenticity
 – Authenticity and integrity of EAPOL messages

♦ Peer-to-peer authentication
 – Symmetric authentication
 – Scalable Authentication