The Secure Remote Password Protocol

Thomas Wu
Computer Science Department
Stanford University
Tjw@cs.Stanford.EDU

November 11, 1997

Quote of the day:

“ Well begun is half done. “

Aristotle, Politics

Purpose:

Presenting a new password authentication and key-exchange protocol that is suitable for:
- authenticating users and
- exchanging keys
- over an untrusted network

Categories of authentication methods:

Something that:
- The user is (voiceprint identification, retinal scanners)
- The user has (ID cards, smartcards)
- The user knows (password, PINs)
 - Direct password authentication (used in this paper)

Direct Password Authentication

- Client: No persistent stored information
- User's password: memorized quantity. Only secret that available to client software
- Network(C-S): vulnerable to both eavesdropping and deliberate tampering by the enemy.
- No trusted third party (key server or arbitrator). Only original two parties.

AKE (Asymmetric Key Exchange):

- New family of authentication protocols
- Generalized form for a third class of verifier-based protocols.
- Uses swapped-secret instead of traditional shared-secret.
- Do not use symmetric encryption.
Secure Remote Password (SRP):

- **Interpretation of AKE**
 - Simple, fast and highly secure
 - Uses Simplified MAC (Message Authentication Code) that is based on one-way hash functions. For verifying the session keys by two parties in a secure manner.
 - Resists dictionary attacks that mounted by passive or active network intruders.
 - Offers perfect forward secrecy (protects past session and passwords against the future compromises).
 - Stores user passwords stored in a form that not plaintext equivalent to the password (an attacker captures the password database cannot use it directly to compromise security and access to the host).
 - Combines the techniques of zero-knowledge proofs with asymmetric key exchange protocol.
 - Offers better performance than Augmented EKE (A-EKE, digital signatures) or B-SPEKE (secondary one-sided key exchange).

Mathematical notation of SRP

- **Mathematical notation of SRP**
 - \(n \): A large prime number (All computations are performed modulo \(n \))
 - \(g \): A primitive root modulo \(n \) (generator in \(GF(n) \))
 - \(s \): A random string (user's salt)
 - \(P \): The user's password
 - \(x \): A private key (derived from \(P \) and \(s \))
 - \(v \): The host's password verifier
 - \(u \): Random scrambling parameter, publicly revealed
 - \(K \): Session key
 - \(H() \): One-way hash function
 - \(a, b \): Ephemeral private keys, generated randomly, not publicly revealed
 - \(A, B \): Corresponding public keys
 - \(m, n \): Two quantities (strings) \(m \) and \(n \) concatenated
 - \(GF(n) \): Finite field (All computations are performed in a finite field).

Mathematical notation of SRP (cont.)

- **Mathematical notation of SRP (cont.)**
 - \(P(x) = g^x \): One way verifier-generating function.
 - \(Q(w, x) = w + ux \): Session key generation function.
 - \(S(w, x) = wx \): Session key generation function.
 - \(R(w, x) = uxu \): Mixing functions for private and public parameters.
 - \(Q(w, x) = w + ux \): Mixing functions for private and public parameters.
 - \(P(x) = g^x \): One way verifier-generating function.

SRP Protocol

Carol

1. C sends S her username.
2. S looks up C's password entry and fetches her salt \(s \). He sends \(s \) to C. C computes his long-term key \(k \) using \(s \) and her real password \(P \).
3. C sends the random number \(x \) computes her ephemeral public key \(A \) and sends it to S \(A = g^x \).
4. C and S compute the common exponential value \(S \) if C's password \(P \) entered in step-2 matches the one she used to generate \(s \); then both values of \(S \) will match.
5. Both sides hash the exponential \(S \) into a cryptographically strong session key.
6. C sends S \(M_1 \) as evidence that he has the correct key. C also computes \(M_2 \) and verifies that it matches the one that C sent.
7. S sends C \(M_2 \) as evidence that he has the correct key. C also verifies \(M_2 \) and accepts only if it matches S's value.
8. S sends C \(M_2 \) as evidence that he has the correct key. C also verifies \(M_2 \) and accepts only if it matches S's value.

Steve

1. C sends S her username.
2. S looks up C's password entry and fetches her salt \(s \). He sends \(s \) to C. C computes his long-term key \(k \) using \(s \) and her real password \(P \).
3. C sends the random number \(x \) computes her ephemeral public key \(A \) and sends it to S \(A = g^x \).
4. C and S compute the common exponential value \(S \) if C's password \(P \) entered in step-2 matches the one she used to generate \(s \); then both values of \(S \) will match.
5. Both sides hash the exponential \(S \) into a cryptographically strong session key.
6. C sends S \(M_1 \) as evidence that he has the correct key. C also computes \(M_2 \) and verifies that it matches the one that C sent.
7. S sends C \(M_2 \) as evidence that he has the correct key. C also verifies \(M_2 \) and accepts only if it matches S's value.
8. S sends C \(M_2 \) as evidence that he has the correct key. C also verifies \(M_2 \) and accepts only if it matches S's value.

Reduction to Diffie-Helman (DH)

- **Reduction to Diffie-Helman (DH)**
 - Mathematical notation of SRP protocol is similar to the DH problem.
 - The algorithm used to compromise the session key in SRP through a passive attack can be used to break a DH key exchange in polynomially-equivalent time.
 - This proof shows that SRP resists passive attack at least as well as DH protocol.
 - The algorithm can be:
 - Oracle \(Q \) that accepts the values \(A, B, u, g, n \), and \(x \) and computes session key \(S \).
 - \(S = g^{uxu} \)
 - \(Q(x, y, z, u, g, n) = g^{uxu} \)
 - It is difficult to compute \(g^x \) in \(GF(n) \) where \(g \) and \(x \) are given (as claimed in DH).
 - Therefore let \(u = g^x \), and \(x = (n-1)/2 \) DH oracle \(Q \) in terms of SRP oracle \(Q
 - \(Q(A, B, n) = Q(A, B, g^{(n-1)/2}, 2, g, n, (n-1)/2) \) and \(A = g^x, B = g^y \) then
 - \(Q(x, y, z, u, g, n) = g^{uxu} \)
Resistance to Denning-Sacco Attack

- An intruder captures the session key from an evasdropped session and uses it to gain ability to access the user directly or conduct a brute-force search against the user's password.
- A-EKE requires the user to send a message which is dependent on both long term private key and the session key. This message enables the Denning-Sacco attack.

Optimization of SRP

- Less message rounds (instead of 3 round messages, 2 with Optimized SRP and 1.5 with One-Way Optimized SRP)
- Less execution speed (fastest verified-based protocol)

Benefits of SRP:

An attacker,

- with neither user’s password nor the host’s password file, cannot mount a dictionary attack on the password
- captures the host’s password file, cannot directly compromise user-to-host authentication and gain access to the host without an expensive dictionary search.
- compromises the host, does not obtain the password from legitimate authentication attempt.
- captures the session key, cannot use it to mount a dictionary attack on the password
- captures the user’s password, cannot use it to compromise the session keys of past sessions.