Security of WEP
(Wired Equivalent Privacy)

• The goal of WEP: to provide an equivalent level of privacy as is ordinarily present in an unsecured wired LAN by encrypting transmitted data.

• WEP was never intended to be an end-to-end security solution.

WEP Protocol Review

1. \(P = \langle M, \text{checksum}(M) \rangle \)
2. \(C = P \oplus \text{RC4}(v,k) \)
3. Transmit \((v, C)\)
Risks of Keystream Reuse

- Encrypting two messages under the same IV and key (keystream reuse) can reveal information about both messages

\[C_1 \text{ xOR } C_2 = (P_1 \text{ xOR } \text{RC4(IV,k)}) \text{ xOR } (P_2 \text{ xOR } \text{RC4(IV,k)}) = P_1 \text{ xOR } P_2 \]

- If the plaintext for one message is known, it is easy to derive the other message
- Traffic analysis can lead to discovery of plaintext

Risks of Keystream Reuse (cont)

- To prevent these attacks, WEP uses a per-packet IV (initialization vector)

- This still does not prevent Keystream Reuse attacks
 - k rarely changes (most networks use 1 key for all hosts), IV reuse will occur (only 24 bits), therefore some of the keystreams will be reused (1500 byte packets, 5Mbps, less than 12 hours)
 - Since IV’s are public, an attacker can easily detect a reused keystream
Message Integrity

- WEP uses an integrity checksum field, implemented as a **CRC-32 checksum**, to ensure packets do not get modified in transit.

- CRC checksum designed to detect random errors in a message and is NOT resilient against malicious attacks.

Message Integrity (cont)

- **Message Modification**
 - It is possible to make modifications to the original message **without** fear of detection.

Original Cyphertext: \(C = \text{RC4}(v,k) \text{ xOR } < M, c(M) > \)

\[
C' = C \text{ xOR } < \text{delta}, c(\text{delta}) > \\
= \text{RC4}(v,k) \text{ xOR } < M, c(M) > \text{ xOR } < \text{delta}, c(\text{delta}) > \\
= \text{RC4}(v,k) \text{ xOR } < M \text{ xOR } \text{delta}, c(M) \text{ xOR } c(\text{delta}) > \\
= \text{RC4}(v,k) \text{ xOR } < M', c(M \text{ xOR } \text{delta}) > \\
= \text{RC4}(v,k) \text{ xOR } < M', c(M') > \\
\]

Note: The WEP checksum is a linear function of the message.

i.e., \(c(\text{a xOR b}) = c(\text{a}) \text{ xOR } c(\text{b}) \)
Message Decryption

• IP redirection
 – Will work if access point acts as a gateway to the Internet.
 – Attacker can use previously described technique of message modification to change the destination of an encrypted packet to a machine controlled by the attacker.

Message Decryption (cont)
Conclusions

- WEP does not provide strong link-level security however it may accomplish it’s goal
- In order to secure a wireless network, WEP must be supplemented with additional higher level security mechanisms such as access control, authentication, virtual private networks, firewalls…