Cryptography
Introduction to Number Theory

Preview
• Integers
• Prime Numbers
• Modular Arithmetic
• Totient Function
• Euler's Theorem
• Fermat's Little Theorem
• Euclid's Algorithm

Introduction to Number Theory
• Integers
• Arithmetic
• Prime numbers
• Factoring
• GCD
• Modular arithmetic
Number Theory Essentials

- Prime Numbers
 - $a \in \mathbb{I}$ is prime iff
 - It's only factors are itself and 1
 - Equivalently, $\forall x \in \mathbb{I}, \gcd(x,a) = 1$
 - $a, b \in \mathbb{I}$ are relatively prime iff:
 - $\gcd(a,b) = 1$
- Fundamental theorem of arithmetic:
 - Every integer has a unique factorization that is a product of prime powers

Modular Arithmetic Systems

- Form: $(a \equiv b) \mod n$
- The Modulo partitions the integers into congruence classes
- The congruence class of an integer 'a' is the set of all integers congruent to 'a' modulo 'n'.
- $a \equiv b \mod n$ asserts that 'a' and 'b' are members of the same congruence class in modulo 'n'

Congruence Classes

- $(1 \equiv 6 \equiv 11) \mod 5$
- $\ldots \ldots 14 \ 9 \ 4 \ 1 \ 6 \ 11 \ \ldots \ldots$
- $\ldots \ldots 3 \ 2 \ 7 \ 12 \ \ldots \ldots$
Notation for Modular Arithmetic

- Form: \(a \equiv b \mod n \) congruent
 \(a = b \mod n \) equal

\(\equiv \) indicates that the integers \(a \) and \(b \) fall into the same congruence class modulo \(n \)

\(= \) means that integer \(a \) is the reminder of the division of integer \(b \) by integer \(n \), thus, \(a \) is the smallest (least) member of the congruence class.

The Integers Modulo \(n \)

- \(\forall a,b,n \in \mathbb{I}, a \equiv b \mod n \) iff \(n \cdot | (a-b) \)
 - \(28 \equiv 6 \mod 11: (28-6)/11 = 2 \in \mathbb{I} \)
 - \(219 \equiv 49 \mod 17: (219-49)/17 = 12 \in \mathbb{I} \)
 - If \(a \equiv b \mod n \) then \(b \equiv a \mod n \)
 - Transitivity holds

* \(N \) divides \((a-b) \)

A Few Properties of Modular Arithmetic

- \((a + b) \mod n = ((a \mod n) + (b \mod n)) \mod n \)
- \(((a \mod n) + (b \mod n)) \mod n = ((b \mod n) + (a \mod n)) \mod n \)
- \((a \times b) \mod n = ((a \mod n) \times (b \mod n)) \mod n \)
- \((a \times (b + c)) \mod n = (((a \times b) \mod n) + ((a \times c) \mod n)) \mod n \)
- \((a^{b^c}) \mod n = (a^{b \mod n})^{c \mod n} \mod n \)
- If \(a \equiv b \mod n \) then \(b \equiv a \mod n \)
 *
Prime Numbers and Modular Arithmetic
- Modular computations can be utilized to scramble data
- Cryptographic systems utilize large prime numbers to create the modulus

Fermat's Little Theorem
If for p, $a \in \mathbb{N}$, where p is prime and $1 < a < p$
\[a^p = a \pmod{p} \]
Equivalently, if p is prime and $1 < a < p$
\[a^{p-1} = 1 \pmod{p} \]

Fermat's Little Theorem
Proof by Example
\[a^{p-1} = 1 \pmod{p} \]
- Let $p = 11$, pick a's
 - 3: $3^{10} = 59049 \pmod{11} = 1$
 - 5: $5^{10} = 9765625 \pmod{11} = 1$
 - 7: $7^{10} = 282475249 \pmod{11} = 1$
 - 8: $8^{10} = 1073741824 \pmod{11} = 1$
Using FLT to Compute Large Modular Computations

- Compute: $3^{12} \mod 11$

 $(3^{10} \times 3^2) \mod 11$

 $(3^{10}) \mod 11 \times (3^2) \mod 11$

 $= 1 \times (3^2) \mod 11$

 $= 9$

Compute: $249^{122} \mod 31$

- Compute: $249^{122} \mod 31$

 $(249^{120} \times 249^2) \mod 31$

 $(249^{120}) \mod 31 \times (249^2) \mod 31$

 $= 1 \times (249^2) \mod 31$

 $= 62001$

Prime Number Challenges

1. Finding large prime numbers
2. Recognizing large numbers as prime
How Do We Get BIG Prime Numbers?

- Buy them
- Look them up
- Compute them

Finding Big Primes

- The probability of a randomly chosen number being prime is $1/\ln n$
- For a 100 digit number, the chance is about $1/230$
- Guess and check, should take 230 tries on the average
- How do we check? Primality testing.

Primality Testing:

- FLT says that:
 - "If p is prime, then $a^{p-1} \mod p = 1$
- If we don't know whether or not n is prime, what does the fact that $(a^{n-1} \mod n = 1)$ say about N?
A Number P is Probably Prime if: \(a^{p-1} = 1 \mod p \)

1. Select \(p \), a large number
2. Select \(a < p \)
3. Compute \(x = a^{p-1} \mod p \)
 a. If \(x \neq 1 \), \(p \) is not prime
 b. If it is one, \(p \) is probably prime

If \(a^{p-1} = 1 \mod p \), the chance that \(p \) is not prime is \(1/10^{13} \)

Large Exponents
- \(381^{1502} \)
- Thank goodness:
 - That our computations are \(\mod n \)
 - When \(n \) is prime
 - For FLT
- \(381^{1502} \mod 751 = 218 \)
Large Exponents & FLT

- 381^{1502} mod 751
 - $= 381^2 \times 381^{750} \times 381^{750}$
 - $= 381^2$ mod 751 \times 1 mod 751
 - $= 145161$ mod 751
 - $= 218$

Exponentiation with FLT

- $a^{p-1} \equiv 1 \mod p$
- $7^{13} \equiv x \mod 11$
- $7^{10} \mod 11 \times 7^3 \mod 11 \equiv x \mod 11$
- $1 \mod 11 \times 7^3 \mod 11 \equiv x \mod 11$
- $7^3 \mod 11 \equiv x \mod 11$
- $343 \mod 11 \equiv 2 \mod 11$

\mathbb{Z}_n^*

- $\mathbb{Z} = $ set of all integers
- $\mathbb{Z}_n = $ set of all integers mod n
- $\mathbb{Z}_n^* = $ set of integers in \mathbb{Z}_n (less than n) that are relatively prime to n ($\gcd(m,n) = 1$)
- $\mathbb{Z}_n^* = $ closed under multiplication
\(\phi(n) \)

- \(\phi(n) \) is the # of #s less than \(n \) that are relatively prime to \(n \)
- The function \(\phi(n) \) returns the cardinality of \(\mathbb{Z}_n^* \)
- \(\forall \ p \in \text{Primes}, \ \phi(p) = p - 1 \)

Deriving \(\phi(n) \)

- For Primes:
 - Product of 2 relatively prime #s
 - Product of \(n \) relatively prime #s
 - Generally (i.e. for all integers \(x \))

Deriving \(\phi(n) \)

- Primes:
 - \(\forall \ p \in \text{Primes}, \ \phi(p) = p - 1 \).
- Product of 2 relatively prime #s
 - if \(\gcd(m,n) = 1 \), then
 - \(\phi(mn) = \phi(m) \ast \phi(n) \)
 - 15 = 3*5 and
 - \(\phi(15) = 2*4 = 8 \), \{1,2,4,7,8,11,13,14\}
Deriving \(\phi(n) \)

- Product of \(n \) relatively prime numbers
 - if gcd \((a_1,a_2, \ldots a_n) = 1 \), then
 \[
 \phi(a_1a_2\ldots a_n)=\phi(a_1)*\phi(a_2)*\ldots\phi(a_n)
 \]
- \(30 = 2*3*5 \) and
- \(\phi(30)=1*2*4=8 \)
 \[Z_{30}^* = \{1,7,11,13,17,19,23,29\} \]

Tuesday

Modulo multiplication as an asymmetric key cipher

Modulo Multiplication as a Public Key Cipher

- a and b are inverses mod \(n \) iff:
 - \(a \times b \mod n = 1 \)
- Only numbers that are relatively prime to \(n \) have multiplicative inverses mod \(n \)
- Inverses mod \(n \) can be found using Euclid's algorithm.
- Can we use multiplicative inverses modulo \(n \) as public and private keys?
Modulo Multiplication as a Public Key Cipher

- e, d are multiplicative inverses mod n iff:
 - $ed \mod n = 1$
- If e and d are inverses then:
 - $m \times e \times d \mod n \equiv m \mod n$
- For example:
 - Select $e = 5$, $d = 6$, $n = 29$, so $ed = 1 \mod 29$
 - Encrypt 17: $17 \times 5 \mod 29 = 85 \mod 29 = 27$
 - Decrypt 27: $27 \times 6 \mod 29 = 162 \mod 29 = 17$

Exponentiation mod n As Public/Private Key Scramble

- Find e & d such that $m^{ed} \equiv m \mod n$
 - That is, find e's exponentive inverse
- $D[E[m,e], d] \equiv (m^e \mod n)^d \mod n \equiv m$
- Encryption: $E(m,e) \equiv m^e \mod n$
- Decryption: $D(c,d) \equiv c^d \mod n$
 - $\equiv (m^e \mod n)^d \mod n$
 - $\equiv m^{ed} \mod n$
 - $\equiv m \mod n$

RSA

- Rivest, Shamir, Adleman, 1978, MIT
- Variable key size, common to use 1024
- Generating RSA keys is based on finding multiplicative inverses of large numbers (modulo), which is not hard
- Generating RSA ciphertext is based on modulo exponentiation, which is not hard
- RSA's strength is based on difficulty of factoring large numbers, WHICH IS HARD
- There may be other trap doors in RSA, but none have been found yet.
The Foundation of RSA

- \(x^y \mod n = x \mod (y \mod \Phi(n)) \mod n \)
- If \(y \mod \Phi(n) = 1 \),
 - then for any \(x \), \(x^y \mod n = x \mod n \)
- If we can choose \(e \) and \(d \) such that
 - \(ed = y \mod \Phi(n) \)
- then we can encrypt by raising \(x \) to the \(e \)th power and decrypt by raising to the \(d \)th power.

RSA Example

1. Select two large primes, 2357 and 2551.
2. Multiply them to get \(n = 6012707 \)
3. Select \(e = 3674911 \), relatively prime to \(\Phi(n) = 600780 \)
4. \(d = 422191 \) is the multiplicative inverse of \(e \mod \Phi(n) \)
5. Encrypt \(m \) as, \(c = m^e \mod n \).
6. Decrypt \(c \) as, \(m = c^d \mod n \).

Why does finding \(d \) as the multiplicative inverse of \(e \mod \Phi(n) \), make \(d \) the exponent inverse of \(e \mod n \)?

The RSA Algorithm

1. Select two large primes, \(p, q \). Multiply them to get \(n \).
2. As your public key, select \(e \) relatively prime to \(\Phi(n) \).
3. As your private key, find \(d \) that is the multiplicative inverse of \(e \mod \Phi(n) \).
4. Encrypt \(m < n \) as, \(c = m^e \mod n \).
5. Decrypt \(c \) as, \(m = c^d \mod n \).

Why does finding \(d \) as the multiplicative inverse of \(e \mod \Phi(n) \), make \(d \) the exponent inverse of \(e \mod n \)?

Multiplicative inverses can be found using Euclid's algorithm.
Euler's Theorem
Test to see if two numbers are relatively prime

if \(\gcd(a,n) = 1, \ a^{\Phi(n)} \mod n = 1 \)

1. \((3,11)\): \(3^{10} \mod 11 = 59049 \mod 11 = 1\)
2. \((4,9)\): \(4^8 \mod 9 = 4096 \mod 9 = 1\)
3. \((5,18)\): \(5^8 \mod 18 = 15625 \mod 18 = 1\)
4. \((4,6)\): \(4^2 \mod 6 = 16 \mod 6 = 4\)

Finding a Multiplicative Inverse mod n
• Find \(y\) such that:
 – \(xy = 1 \mod n\)
• Why?
 – It is needed in RSA
• How?
 – Euclid's Algorithm

Integer Properties/Rules
• Denote the set of integers as \(I\)
• Division: For \(a,b,c \in I, a|b\) iff \(\exists c \ni b = a \cdot c\)
 • \(a|a\)
 • If \(a|b\) and \(b|c\), then \(a|c\)
 • If \(a|b\) and \(a|c\), then \(a|(bx+cy) \forall x, y \in I\)
 • If \(a|b\) and \(b|a\), then \(a = \pm b\)
 • \(c = \gcd(a,b)\) if \(c\) is the largest integer that divides both \(a\) and \(b\)
• Remainders: \(\forall a, b \in I, \exists q, r \in I: a = qb + r\) where \(r\) is the remainder of \(a/b\)
 • \(r = a \mod b\)
Finding a GCD

• If \((x \text{ divides } a)\) and \((x \text{ divides } b)\), then
 \(- x \text{ divides } a - b\)

• For example
 - \(x = 10, a = 90, b = 40\): 10 divides 50
 - \(x = 5, a = 35, b = 25\): 5 divides 10
 - \(x = 19, a = 95, b = 57\): 19 divides 38

Finding a GCD

For \(a > b\), \(\text{gcd}(a,b) = \text{gcd}\left(b, a \mod b\right)\)

\[\text{gcd}(95, 57) = \text{gcd}\left(57, 95 \mod 57\right)\]
\[= \text{gcd}(57, 38) = \text{gcd}\left(38, 57 \mod 38\right)\]
\[= \text{gcd}(38, 19) = \text{gcd}\left(19, 38 \mod 19\right)\]
\[= \text{gcd}(19, 0)\]
\[= \text{gcd}(95, 57) = 19\]

Relative Primality Test

• For \(a > b\), \(\text{gcd}(a,b) = \text{gcd}\left(b, a \mod b\right)\)

\[\text{gcd}(196, 87) = \text{gcd}\left(87, 196 \mod 87\right)\]
\[= \text{gcd}(87, 22) = \text{gcd}\left(22, 87 \mod 22\right)\]
\[= \text{gcd}(22, 21) = \text{gcd}\left(21, 22 \mod 21\right)\]
\[= \text{gcd}(21, 1)\]
\[= 196 \text{ and } 87 \text{ are relatively prime.}\]
Multiplicative Inverse mod n

- m must be relatively prime to n
- m is in \(Z_n \) iff there exists u, v such that:
 \[um + vn = 1 \mod n \]

 \[u7 + v17 = 1 \mod 17 \]

 by inspection, \(u = 5, v = -2 \)

Euclid's Algorithm

- Find the multiplicative inverse \(u \) of m mod n, where
 - \(u \) and m are relatively prime
 - i.e. find \(um = 1 \mod n \)
 - equivalently, \(um \) differs from a multiple of n by 1,
 - equivalently, there exists a \(v \) such that \(um + vn = 1 \)
 - \(\gcd(14,9) = 1, u = 2, v = -3: (2*14) + (-3*9) = 1 \)
 - \(\gcd(21,8) = 1, u = -3, v = 8: (-3*21) + (8*8) = 1 \)
 - computing \(\gcd(m,n) \) finds \(u \) and \(v \) provided \(\gcd(m,n) = 1 \)
 - Any \(x \) that divides m and n, also divides \(m - kn \) for \(kn < m \)
 - Repetitively replace \(<m,n> \) with \(<n,m \mod n> \)
 - When \(m \mod n = 0 \), n is the \(\gcd(M,N) \)

Facts for Finding a Multiplicative Inverse mod n

#1: \(\forall \ x,y \in I, \exists u,v \mid \gcd(x,y) = ux + vy \)

#2: \(\gcd(x,y) \mod n = (ux+vy) \mod n \)

#3: If \(x,y \) are relatively prime mod n, then \(\gcd(x,y) = 1 \mod n \)

#4: If \(x,y \) are relatively prime mod n, then \(\exists u,v \mid ux + vy = 1 \mod n \)
Multiplicative Inverse mod n

\[\gcd(m, n) = um + vn \text{ for all } m \text{ and } n \]
- \(\gcd(35, 50) \)
 by inspection:
 \[35u + 50v = 35(3) + 50(-2) = 105 - 100 = 5 \]
- \(\gcd(42, 56) \)
 \[um & vn \text{ differ by } 14 \text{ at a multiple of } 56 \]
 \[-56, 112 \quad u=3, \ v=-2 \]
 \[-42, 126 \]

Using Euclid to Find Inverses Mod N

find \(7^{\cdot} \mod 51 \), or find \(ux + vy = 1 \) or \(ux = 1 - vy \) where \(x = 7 \) and \(y = 51 \)

Opportunities for \(7u = 1 \mod 51 \) or \(7u = 1 - 51v \), occur at \([v]\) (multiples of 51) + 1 (52, 103, 154, 205, etc.)

So we look for one of these that 7 divides evenly and recognize 154.
\((7\cdot 22) + (-3 \cdot 51) = 1 \mod 51 \) or \((7\cdot 22) = 1 - (-3 \cdot 51) - 1 + (3\cdot 51) \)
Thus \(7 \cdot 22 = 154 = 1 \mod 51 \) and that \(7^{-1} = 22 \mod 51 \)

\[u = 8 \]
\[v = -1 \]
\[u = 15 \]
\[v = -2 \]
\[u = 22 \]

\[u = 3 \]

Paydirt

<table>
<thead>
<tr>
<th>(n)</th>
<th>(q_n)</th>
<th>(r_n)</th>
<th>(u_n)</th>
<th>(v_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td></td>
<td>323</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>(u_n = u_{n-2} - (q_{n-1} \cdot u_{n-1}))</td>
<td>18209</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>(v_n = v_{n-2} - (q_{n-1} \cdot v_{n-1}))</td>
<td>323</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>56</td>
<td>121</td>
<td>-56</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1-(2\cdot -56)</td>
<td>113-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{align*}
\begin{array}{cccc}
n & q_n & r_n & u_n \\
-2 & 323 & 1 & 0 \\
-1 & u_n &=& u_{n-2} - (q_n \times u_{n-1}) \\
0 & v_n &=& v_{n-2} - (q_n \times v_{n-1}) \\
1 & 56 & 121 & -56 \\
2 & 2 & 81 & 113 \\
3 & 1 & 40 & 169 \\
4 & & & \\
\end{array}
\end{align*}
\]

\[
\text{Compute the inverse of } 17 \text{ mod 71}
\]

\[
\begin{array}{cccc}
n & q_n & r_n & u_n \\
-2 & 17 & 1 & 0 \\
-1 & 71 & 0 & 1 \\
0 & 17 & 1 & 0 \\
1 & 4 & 3 & -4 \\
2 & & & \\
3 & & & \\
4 & & & \\
5 & & & \\
\end{array}
\]

Recall that
\[
u_n = u_{n-2} - (q_n \times u_{n-1})
\]
and
\[
v_n = v_{n-2} - (q_n \times v_{n-1})
\]
Compute the inverse of $17 \mod 71$

<table>
<thead>
<tr>
<th>n</th>
<th>qn</th>
<th>r n</th>
<th>un</th>
<th>vn</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>71</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>17</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>-4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
<td>21</td>
<td>-5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-25</td>
<td>6</td>
</tr>
</tbody>
</table>

For $n = 1$: $(-4*17) + (1*71) = -68 + 71 = 3$ (which is r_1)
For $n = 2$: $(21*17) + (-5*71) = 357 + 355 = 2$ (which is r_2)
For $n = 3$: $(-25*17) + (6*71) = -425 + 426 = 1$ (which is r_3)

Recall that $u_n = u_{n-2} - (q_n * u_{n-1})$ and $v_n = v_{n-2} - (q_n * v_{n-1})$

Negative Inverses, Mod N

find $7^{-1} \mod 51$, or find $ux + vy = 1$ or $ux = 1 - vy$ where $x = 7$ and $y = 51$

We may also consider places where $vy = 1 - ux$

$(4 \times 51) = (1 - (7 \times -29))$

$204 = (1 - (-203)) = 204$

$v = 3$

$u = 15$

$u = -29$

$u = -15$

$u = -8$

204 196 188 175 168 161 154 147 140 133 126 119 112 105 98 91 84 77 70 63 56 49 42 35 28 21 14 7 0

Negatives Modulo Numbers

- OK, so is -25 the answer?
- Yes but, $17^{-1} = -25 \mod 71$

$= (71 - 25) \mod 71$

$= 46 \mod 71$

which is a better answer
Questions?