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Abstract
A new generation of applications requires reduced power con-
sumption without sacrificing performance. Instruction pipelining
is commonly used to meet application performance requirements,
but some implementation aspects of pipelining are inefficient with
respect to energy usage. We propose static pipelining as a new
instruction set architecture to enable more efficient instruction
flow through the pipeline, which is accomplished by exposing the
pipeline structure to the compiler. While this approach simplifies
hardware pipeline requirements, significant modifications to the
compiler are required. This paper describes the code generation
and compiler optimizations we implemented to exploit the features
of this architecture. We show that we can achieve performance and
code size improvements despite a very low-level instruction repre-
sentation. We also demonstrate that static pipelining of instructions
reduces energy usage by simplifying hardware, avoiding many un-
necessary operations, and allowing the compiler to perform opti-
mizations that are not possible on traditional architectures.

1. Introduction
Energy expenditure is clearly a primary design constraint, espe-
cially for embedded processors where battery life is directly re-
lated to the usefulness of the product. As these devices become
more sophisticated, the execution performance requirements in-
crease. This trend has led to new generations of efficient processors
that seek the best solution to the often conflicting requirements of
low-energy design and high-performance execution. Many of the
micro-architectural techniques to improve performance were devel-
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oped when efficiency was not as important. For instance, specula-
tion is a direct tradeoff between power and performance, but many
other techniques are assumed to be efficient.

Instruction pipelining is one of the most common techniques for
improving performance of general-purpose processors. Pipelining
is generally considered very efficient when speculation costs and
scheduling complexity are minimized. While it is true that spec-
ulation, dynamic scheduling policies, and superscalar execution
have the largest impact on efficiency, even simple, in-order, scalar
pipelined architectures have inefficiencies that lead to less optimal
implementations of the processor architecture. For instance, haz-
ard detection and data forwarding not only require evaluation of
register dependencies each cycle of execution, but successful for-
warding does not prevent register file accesses to stale values, nor
does it eliminate unnecessary pipeline register writes of those stale
values, which are propagated for all instructions.

The goal of this paper is to restructure the organization of a
pipelined processor implementation in order to remove as many
redundant or unnecessary operations as possible. This goal is
achieved by making the pipelined structures architecturally visible
and relying on the compiler to optimize resource usage. While tech-
niques like VLIW [8] have concentrated on compile time instruc-
tion scheduling and hazard avoidance, we seek to bring pipeline
control further into the realm of compiler optimization. When
pipeline registers become architecturally visible, the compiler can
directly manage tasks like forwarding, branch prediction, and reg-
ister access. This mitigates some of the inefficiencies found in more
conventional designs, and provides new optimization opportunities
to improve the efficiency of the pipeline.

Figure 1 illustrates the basic idea of the static pipeline (SP) ap-
proach. With traditional pipelining, each instruction spends sev-
eral cycles in the pipeline. For example, the load instruction in
Figure 1(b) requires one cycle for each stage and remains in the
pipeline from cycles five through eight. Each instruction is fetched
and decoded and information about the instruction flows through
the pipeline, via pipeline registers, to control each portion of the
processor that takes a specific action during each cycle. The load
instruction shares the pipelined datapath with other instructions that
are placed into the pipeline in adjacent cycles.
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Figure 1. Traditionally Pipelined vs. Statically Pipelined Instructions

Figure 2. Classical Five-Stage Pipeline

Figure 1(c) illustrates how an SP processor operates. Opera-
tions associated with conventional instructions still require multi-
ple cycles to complete execution; however, the method used to en-
code how the operation is processed while executing differs. In SP
scheduled code, the execution of the load operation is not spec-
ified by a single instruction. Instead each SP instruction specifies
how all portions of the processor are controlled during the cycle
it is executed. Initially encoding any conventional instruction may
take as many SP instructions as the number of pipeline stages in a
conventional processor. While this approach may seem inefficient
in specifying the functionality of any single conventional instruc-
tion, the cost is offset by the fact that multiple SP effects can be
scheduled for the same SP instruction. The SP instruction set ar-
chitecture (ISA) results in more control given to the compiler to
optimize instruction flow through the processor, while simplifying
the hardware required to support hazard detection, data forwarding,
and control flow. By relying on the compiler to do low-level proces-
sor resource scheduling, it is possible to eliminate some structures
(e.g., the branch target buffer), avoid some repetitive computation
(e.g., sign extensions and branch target address calculations), and
greatly reduce accesses to both the register file and internal reg-
isters. This strategy results in improved energy efficiency through
simpler hardware, while providing new code optimization oppor-
tunities for achieving performance improvement. The cost of this
approach is the additional complexity of code generation and com-

piler optimizations targeting an SP architecture. The novelty of this
paper is not strictly in the SP architectural features or compiler op-
timizations when either is viewed in isolation, but also in the SP
ISA that enables the compiler to more finely control the processor
to produce a more energy efficient system.

This paper makes the following contributions. (1) We show that
the use of static pipelining can expose many new opportunities for
compiler optimizations to avoid redundant or unnecessary opera-
tions performed in conventional pipelines. (2) We establish that a
very low-level ISA can be used and still achieve performance and
code size improvements. (3) We demonstrate that static pipelining
can reduce energy usage by significantly decreasing the number of
register file accesses, internal register writes, branch predictions,
and branch target address calculations, as well as completely elim-
inating the need for a branch target buffer. In summary, we provide
a novel method for pipelining that exposes more control of pro-
cessor resources to the compiler to significantly improve energy
efficiency while obtaining counter-intuitive improvements in per-
formance and code size.

2. Architecture
In this section we discuss the SP architecture design including
both the micro-architecture and the instruction set. While static
pipelining refers to a class of architectures, we describe one design
in detail that is used as the basis for the remainder of this paper.



Figure 3. Datapath of a Statically Pipelined Processor

2.1 Micro-Architecture
The SP micro-architecture evaluated in this paper is designed to be
similar to a classical five-stage pipeline in terms of available hard-
ware and operation. The motivation for this design is to minimize
the required hardware resource differences between the classical
baseline design and our SP design in order to evaluate the benefits
of the SP technique.

Figure 2 depicts a classical five-stage pipeline. Instructions
spend one cycle in each stage of the pipeline, which are separated
by pipeline registers. Along with increased performance, pipelining
introduces a few inefficiencies into a processor. First of all is the
need to latch information between pipeline stages. All of the pos-
sible control signals and data values needed for an instruction are
passed through the pipeline registers to the stage that uses them.
For many instructions, much of this information is not used. For
example, the program counter (PC) is typically passed through the
pipeline for all instructions, but is only used for branches.

Pipelining also introduces branch and data hazards. Branch haz-
ards occur because the branch target address is unknown for multi-
ple cycles after fetching a branch. These hazards result in either a
pipeline flush for every taken branch, or the need for a branch pre-
diction buffer (BPB), branch target buffer (BTB), and delays when
branches are mis-predicted. Data hazards occur when the value pro-
duced by an earlier instruction is required before the pipeline has
written it back to the register file. Data hazards can be eliminated in
most cases with forwarding logic, which contributes to the energy
usage of the pipeline. In addition, if the value is only ever consumed
by instructions via forwarding paths, the value will be unnecessar-
ily written to the register file at the commit stage, wasting energy.
We performed preliminary experiments with SimpleScalar [1] run-
ning the MiBench benchmark suite [10] that indicate that 27.9%
of register file reads are unnecessary because the values will be re-
placed from forwarding. Additionally 11.1% of register file writes
are not needed due to their only consumer instructions getting the
values from forwarding instead. Additional inefficiencies found in
traditional pipelines include repeatedly calculating invariant branch

target addresses and adding an offset to a register to form a memory
address even when that offset is zero.

Figure 3 depicts one possible datapath of an SP processor. The
fetch portion of the processor is mostly unchanged from the con-
ventional processor. Instructions are fetched from the instruction
cache and branches are predicted by a BPB. One difference is that
there is no longer any need for a BTB. This structure is used to store
the target addresses of branches in conventional pipelines, avoiding
the need to wait for the target address calculation to begin fetching
the next instruction when that branch is predicted to be taken. In SP,
the branch target address calculation is decoupled from the transfer
of control (ToC), which eliminates the need for a BTB since the ad-
dress is available when the branch target is fetched. In addition, the
instruction prior to a ToC sets the PTB (prepare-to-branch) status
register to provide information about the ToC, which enables the
BPB to be only accessed for conditional branches.

There are more substantial differences in the processor after in-
structions are fetched. There is no need for pipeline registers be-
cause SP processors do not need to break instructions into multiple
stages. In their place are a number of architecturally visible inter-
nal registers. Unlike pipeline registers, these internal registers are
explicitly read and written by the instructions, and can hold their
values across multiple cycles.

There are ten internal registers in our SP design. The RS1 and
RS2 (register source) registers contain values read from the register
file. The LV (load value) register is assigned a value loaded from the
data cache. The SE (sign extend) register receives a sign-extended
immediate value. The OPER1 (ALU result) register is updated with
values calculated in the ALU. The OPER2 (FPU result) register
acquires results calculated in the FPU, which is used for multi-cycle
operations, and integer addition results. The TARG (target address)
register takes the result of adding the program counter (PC) and
the SE. The SEQ (sequential address) register gets the address of the
next sequential instruction at the time it is written. The CP1 and CP2
(copy) registers hold values copied from one of the other internal
registers.



Since these internal registers are small, can be placed near the
portion of the processor that accesses them, and are explicitly
accessed, each internal register is accessible at a lower energy
cost than the centralized register file. Note that while the pipeline
registers of the baseline processor are read and written every cycle,
the SP internal registers are only updated when needed. Because
these internal registers are exposed at the architectural level, a
new level of compiler optimizations can be exploited as we will
demonstrate in Section 3.

All of the internal registers are caller save (scratch) registers,
except for SEQ, CP1 and CP2. These three internal registers are
callee save because our optimizing compiler primarily uses them
to perform aggressive loop optimizations. If a loop has a function
call in it, the compiler would disallow the use of these registers for
this optimization were they caller save.

Because the internal registers are part of the machine state, they
must be saved and restored together with the register file upon
context switches and interrupts to allow for precise exceptions.
Thus, each internal register must be able to be stored to, and loaded
from, memory. Some of these registers have a direct path to/from
memory, while others must first be moved through a copy register
or the register file.

The integer and floating-point register files are merged into
a single 32 entry register file for the SP datapath as the ALU
operations are decoupled from accessing the register file. In the
SP datapath explicit support is shown for dealing with double-
precision values, which requires having extra components shown
in black for the RS1, RS2, and OPER2 internal registers.

Data hazards due to multi-cycle operations can easily be de-
tected without special logic to compare register numbers obtained
from instructions. If during a given cycle the OPER2 register is to
be used as a source and the FPU has not completed a multi-cycle
operation, then the current instruction is aborted and the instruction
will be reattempted on the next cycle. This process continues un-
til the FPU has completed the operation. Data cache misses can be
handled in a similar fashion for LV register reads.

An SP can be viewed as a two-stage processor with the two
stages being fetch and everything after fetch. As discussed in the
next subsection, SP instructions are already partially decoded as
compared to traditional instructions.

2.2 Instruction Set Architecture
The instruction set architecture (ISA) for an SP architecture is quite
different than the ISA for a conventional processor. Each instruc-
tion consists of a set of effects, each of which updates some portion
of the processor. The effects mostly correspond to what the base-
line classical five-stage pipeline can do in one cycle, which includes
one ALU operation, one FPU operation, one data cache access, two
register reads, one register write, and one sign extension. In addi-
tion, one copy can be made from an internal register to one of the
two copy registers and the next sequential instruction address can
be saved in the SEQ register. Lastly, the PTB status register can be
set to indicate that the next instruction is a ToC.

All of the effects specified in a single instruction are indepen-
dent and are performed in parallel. The values in the internal regis-
ters are read at the beginning of the cycle and written at the end of
the cycle. Note that except for the effects that solely read or write a
register file or data cache value, all of the effects operate solely on
the internal registers. This is analogous to how RISC architectures
only allow load or store instructions to reference memory locations.

Including all possible instruction-effect fields in an instruction
would require 77 bits for our design. More than doubling the size
of each instruction would have a very negative effect on code size,
as well as increasing the power to access the instruction cache,

which would negate much of the power benefit static pipelining
would otherwise achieve. Therefore we developed a compact, 32-
bit encoding for the instructions, which is shown in Figure 4.

Figure 4. Static Pipeline Instruction Formats

The encoding scheme is similar to that used by many VLIW
processors that use longer instruction formats. Each instruction is
capable of encoding a number of fields, with each field correspond-
ing to one SP effect. The 5-bit ID field is the template identifier,
which specifies how the remaining fields should be interpreted. The
size of this identifier dictates how many combinations of fields the
encoding supports. With a larger number of combinations, there
is more flexibility in scheduling, but the template identifier would
require more space and the decoding logic would be more compli-
cated. Frequently used effects, such as an ALU operation, should
be present in more combinations than less frequently used effects,
such as copying an internal register to a copy register. Each type of
field has to be present in at least one combination, or it would be
impossible to use it. Figure 4 also shows which types of fields can
be represented in the different size effects. Most of these fields also
have a representation to indicate that no effect associated with that
field is to be performed.

The templates are constructed such that each type of effect only
appears in at most two distinct places across all instructions, which
greatly simplifies the decoding logic. Depending on the timing
breakdown of the fetch and execute cycles, this logic can either
be at the end of fetch or split between the fetch and execute stage.
If necessary, then we can add a stage for decoding instructions,
which is discussed in more detail in Section 6. Note that, unlike a
conventional five-stage RISC architecture, register file reads occur
during the execute stage, so there is no need for a decode stage to
fetch values from the register file.

There are many possible ways to combine the available instruc-
tion effects into a set of templates for the encoding. In order to
choose a good set of templates, we compiled and simulated the
MiBench benchmark suite [10] with the ability to use any com-
bination of effects whether it could fit in 32 bits or not in order
to determine which combinations of instruction effects were com-
monly used together. We used this information to guide our choos-
ing of the templates. The 32 templates chosen are able to cover over
81.7% of the combinations used when no restrictions are in place.
The compiler makes use of the set of selected templates in order to
schedule legal combinations of effects in instructions.

3. Compilation
In this section, we will describe the compilation process in more
detail and show how example code can be compiled efficiently for
an SP processor. For an SP architecture, the compiler is responsible
for controlling each part of the datapath for every cycle, so effec-
tive compilation optimizations are necessary to achieve acceptable
performance and code size goals. Because the instruction set archi-
tecture for an SP processor is quite different from that of a RISC
architecture, many compilation strategies and optimizations have to
be reconsidered when applied to an SP.



3.1 Overview of the Compilation Process
We have ported the VPO compiler [2] to the SP processor. We be-
lieve the selection of the VPO compiler was a good choice as it uses
Register Transfer Lists (RTLs) for its intermediate representation,
which is at the level of machine instructions. A low level represen-
tation is needed for performing code improving transformations on
SP generated code.

Figure 5 shows the steps of our compilation process. First, C
code is input to the frontend, which consists of the LCC com-
piler [9] frontend combined with a middleware process that con-
verts LCC’s output format into the RTL format used by VPO.

Figure 5. Compilation Process

These RTLs are then input into a modified VPO MIPS back-
end, which performs many compiler optimizations including con-
trol flow optimizations, loop invariant code motion, register allo-
cation, and data flow optimizations. These optimizations are per-
formed before converting the instructions to those for the SP archi-
tecture because some of these optimizations are more difficult to
apply on the lower level instruction-pipeline representation, which
breaks many assumptions in a compiler backend. For instance, reg-
ister allocation is difficult to perform directly on SP instructions due
to the need to have either RS1 or RS2 available to load any registers
and that the address specifications and memory references are de-
coupled. Additionally this strategy allows us to concentrate on op-
timizations specific to the SP as all higher level (conventional) op-
timizations are already performed. Additional changes to the MIPS
backend include using a single register file for general-purpose and
floating-point values and changing some of the calling conventions.
A single register file is used since the SP instructions separate ac-
cessing the register file from the ALU and FPU operations.

The instructions are next broken down into SP instruction ef-
fects by the effect expander, which breaks the MIPS instructions
into instructions that are legal for the SP. This process works by ex-
panding each MIPS RTL into a sequence of SP RTLs with a single
effect per RTL that together perform the same computation.

Lastly, these instructions are fed into the SP compiler backend,
also based on VPO. This backend applies additional optimizations
and produces the final assembly code.

3.2 Example and More Detailed Discussion
In this section we describe an actual example of how code is
translated to SP instructions and more thoroughly optimized by our
compiler. This example illustrates that the role of the compiler is
greater for an SP architecture.

Figure 6(a) shows the C source code of a simple loop kernel to
add a value to every element of an array. The first step in compiling
this code for the SP is to generate the optimized MIPS code which
can be seen in Figure 6(b). Here r[9] is used as a pointer to the
current element of the array, r[6] holds the value of the loop-
invariant m variable, and r[5] has had the value a + 400 loaded
into it which will equal the last value assigned to r[9] in the loop.
There are no other obvious optimizations to this MIPS code that
can be applied without increasing the code size. Figure 6(c) shows
the requirements for processing each element of the array when
compiled for this MIPS code.

Figures 6(d) through 6(k) depict the actual compiler optimiza-
tions that are performed on the SP instructions for this example.
To better illustrate the changes associated with each optimization,
effects that are to be updated are shown in italics, effects that are to
be removed are displayed with lines through them, and effects that
were updated are shown in bold.

Effect Expansion The next step in the compilation process is
to expand the MIPS instructions into SP instructions. The result
of this step can be seen in Figure 6(d). Dashed lines separate
instruction effects corresponding to each of the MIPS instructions
in Figure 6(b). These instruction effects correspond to the pipeline
stages performed by a five-stage MIPS processor when executing
the given instruction. For example, for the add instruction, the
MIPS processor will first load the registers into internal registers,
next perform the addition, and then write the value back to the
register file. This expansion increases the loop from five MIPS
instructions to nineteen SP instructions. Note the PC is implicitly
incremented after each individual SP instruction, just as the PC is
incremented in a classical architecture. The offset to the branch
target (L2) represents a symbolic offset from the TARG assignment
and the exact offset is determined by the assembler.

Copy Propagation The first optimization is copy propagation,
which is an optimization that takes into account instruction effects
that copy a source to a destination and creates equivalence classes
among elements that have the same value. It then replaces uses of
any member of the equivalence class with the oldest member of
the class with the same or cheaper access cost where possible. This
optimization is applied three times. The values to be replaced are
depicted in italics in Figure 6(d) and the replaced values are shown
in bold in Figure 6(e). For instance, the use of RS1 is replaced with
a use of LV in the sixth instruction of the loop. Likewise, OPER2
replaces uses of RS1 and RS2.

Dead and Redundant Assignment Elimination The copy prop-
agation optimization is not useful on its own, but it is helpful in
that it enables other data flow optimizations, such as dead assign-
ment elimination. Dead assignments are those that write a value
into a register or memory location that is never used before being
overwritten. The instructions with solid lines through them in Fig-
ure 6(e) are assignments that are now dead. In the example, the
dead assignments to RS1 and RS2 are removed first, which causes
the two writes to the register file to become dead. The redundant as-
signment elimination optimization is also shown in the same figure.
Redundant assignments are those that assign a value to a register
that already has that value. Because the MIPS code reads a value
from a register every time it needs it, it is common to repeatedly
load the same value. When generating SP code, however, the com-
piler can simply retain a value in one of the internal registers. The
value of r[9] is assigned to RS1 three times without the values
changing in between in Figure 6(e), so the compiler removes the
last two of these assignments to RS1, which are shown with dashed
lines through them.

The resulting code after removing these dead and redundant as-
signments is displayed in Figure 6(f). Besides representing the SP
effects and their costs in the compiler, no other changes were re-
quired to perform copy propagation and dead and redundant as-
signment elimination, or common subexpression elimination on
SP instructions. In addition to removing seven instructions in the
loop, the compiler has completely eliminated the use of two regis-
ters (r[2] and r[3]) to hold intermediary values. In a traditional
pipeline, all data values circulate through the centralized regis-
ter file. By giving the compiler access to internal registers, static
pipelining can avoid accessing the register file in many cases.
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for (i=0; i<100; i++)

   a[i] += m;

r[6]=LV;

r[9]=     ;

r[6]=LV;

r[9]=OPER2;     OPER2

L2:

RS1=r[9];

LV=M[RS1];

r[3]=LV;

RS1=r[3];

RS2=r[6];

OPER2=  +RS2;

r[2]=OPER2;

RS1=r[9];

RS2=r[2];

M[RS1]=     ;

SE=4;

RS1=r[9];

OPER2=RS1+SE;

r[9]=OPER2;

SE=offset(L2);

TARG=PC+SE;

RS1=r[9];

RS2=r[5];

PC=     !RS2,TARG(L2);

      LV

       OPER2

   OPER2

(e) After Copy
Propagation

r[6]=LV;

r[9]=OPER2;

L2:

RS1=r[9];

LV=M[RS1];

RS2=r[6];

OPER2=LV+RS2;

M[RS1]=OPER2;

OPER2=RS1+SE;

r[9]=OPER2;

SE=offset(L2);

RS2=r[5];

PC=OPER2!RS2,TARG(L2);

SE=4;

TARG=PC+SE;

    =LV;

    =OPER2;

r[6]

r[9]

   =LV;

   =OPER2;

CP1

CP2

L2:

LV=M[   ];

OPER2=LV+   ;

SE=offset(L2);

TARG=PC+SE;

SE=4;

RS2=r[5];

PC=OPER2!RS2,TARG(L2);

    =OPER2;

OPER2=   +SE;

M[   ]=OPER2;

(g) After Loop−Invariant
Code Motion

r[9]

     RS1

  RS1

      RS1

         RS2

RS1=r[9];

RS2=r[6];

L2:

SE=offset(L2);

TARG=PC+SE;

SE=4;

Allocation
(h) After CP Register

     CP2LV=M[   ];

OPER2=LV+   ;         CP1

M[   ]=OPER2;  CP2

      CP2OPER2=   +SE;

   =OPER2;CP2

PC=OPER2!RS2,TARG(L2);

RS1=r[9];

RS2=r[6];

RS2=r[5];

CP2=OPER2;

CP1=LV;

SE=4;

PC=OPER2!RS2,    (L2);

L2:

OPER2=LV+CP1;

M[CP2]=OPER2;

CP2=OPER2;

LV=M[CP2];

OPER2=CP2+SE;

RS2=r[5];

             TARG

SE=offset(L2);

TARG=PC+SE;

CP1=LV;

CP2=OPER2;

SE=offset(L2);

TARG=PC+SE;

SE=4;

RS2=r[5];

SEQ=PC+1;

PC=OPER2!RS2,   (L2);

L2:

     =LV+CP1;

M[CP2]=     ;

CP2=OPER2;

LV=M[CP2];

OPER2=CP2+SE;

             SEQ

OPER2

       OPER2

and Loop−Invariant Code Motion
(i) After Dead Asg Elimination

SEQ Register

CP2=OPER2;     SEQ=PC+1;

CP1=LV;        SE=4;            RS2=r[5];

(k) After Dead Assignment Elimination and Effect Scheduling

L2:

LV=M[CP2];     OPER2=CP2+SE;

       OPER1

     =LV+CP1;OPER1          PTB=b:SEQ(L2);

M[CP2]=     ;  CP2=OPER2;       PC=OPER2!RS2,SEQ(L2);

Processing Each Array Element

(l) SP Requirements for

Assignment Elimination
(f) After Dead and Redundant

Processing Each Array Element

(c) MIPS Requirements for

(b) MIPS Code

(a) Source Code

(j) After Using

L2:

r[3]=M[r[9]+0];

r[2]=r[3]+r[6];

M[r[9]+0]=r[2];

r[9]=r[9]+4;

PC=r[9]!r[5],L2;

r[6]=         ;

     <address a>r[9]=           ;

     <value m>

L2:

RS1=r[9];

LV=M[RS1];

r[3]=  ;

RS2=r[6];

r[2]=     ;

RS1=r[9];

M[RS1]=   ;

SE=4;

RS1=r[9];

OPER2=RS1+SE;

r[9]=     ;

SE=offset(L2);

TARG=PC+SE;

   =r[9];

RS2=r[5];

PC=   !RS2,TARG(L2);

     LV

   =r[3];RS1

     OPER2

   =r[2];RS2

       RS2

     OPER2

RS1

   RS1

(d) Expanded Statically
Pipelined Instructions

      RS1OPER2=   +RS2;

Figure 6. Compilation Example

Loop-Invariant Code Motion The next optimization shown is
loop-invariant code motion, which moves loop-invariant values to
the preheader block preceding of the loop. The italic instructions
in Figure 6(f) are loop invariant and are hoisted out of the loop by
our compiler. Because the branch target address does not change,
the two instructions that calculate the address are first moved out
of the loop. Hoisting branch target address calculations out of a
loop required a new machine-specific optimization since the two
effects have to update the SE and TARG registers. At this point there
is only one remaining assignment to SE, so this sign extension
is also moved out of the loop. Figure 6(g) shows the result of
hoisting these instructions out of the loop, which improves both
performance and energy usage. With traditional architectures, these
computations are loop invariant, but cannot be moved out with
compiler optimizations due to the fact that these computations
cannot be decoupled from the instructions that use them.

CP Register Allocation Similar to allocating live ranges of scalar
variable references to registers, our SP backend assigns live ranges
of register file references to CP registers. In Figure 6(g) there are
live ranges of r[6] and r[9] that span both the preheader and the
loop. The compiler connects each live range of a register with the
live range of the RS register into which its value is loaded. The
compiler assigns an available CP register if the CP register is not
live in the connected live range. Figure 6(h) shows the assignments
to r[6] and r[9] replaced with CP1 and CP2, respectively. Like-
wise, the uses of RS1 and RS2 loaded from these registers are also
replaced. Note that internal register accesses, such as CP1, require
less energy than a register file access. At this point the loads from
r[6] and r[9] are dead assignments and are eliminated, as shown
in Figure 6(i). Thus, CP register allocation not only replaces regis-
ter file references with internal register references, but also reduces
the number of effects. Figures 6(h) and 6(i) also show that there is



only one remaining assignment to RS2 and the compiler hoists it
out of the loop by applying loop-invariant code motion.

The CP register allocation optimization requires careful heuris-
tics as there are only two CP registers available in our design. We
not only have to estimate the number of register load effects that
would be eliminated by allocating a live range, but also the number
of effects that cannot be eliminated in conflicting live ranges due
to allocating the current live range. In addition, there is a definitive
cost of using CP registers due to the need to save and restore these
callee-save registers and eliminating a register load effect does not
necessarily decrease the number of instructions after instruction
scheduling. Note that we initially implemented optimizations to
hoist register file references out of only the innermost loops of a
function by using CP registers. However, we found that we not only
missed opportunities for eliminating register file references outside
of these loops, but also did not make the best use of CP registers
within these loops by not using live range analysis.

SEQ Register The next optimization shown is using the SEQ
register to store the target address of the loop branch to eliminate
the calculation of the address. The instruction that saves the next
sequential address at the start of the loop is inserted, and the loop
branch is modified to jump to SEQ instead of TARG. The result after
this machine-dependent transformation can be seen in Figure 6(j).
The two instructions that calculate the value of TARG are then
removed by the dead assignment elimination optimization. The SEQ
optimization also allows a second branch target address calculation
to be hoisted out of a loop. Note that TARG(L2) or SEQ(L2) simply
indicate that the target address comes from the internal register and
the label in parentheses depicts that the target address is known to
the compiler.

Effect Scheduling The optimizations to this point have reduced
the original 19 instructions in the loop to only six. In order to fur-
ther reduce the number of instructions, we schedule multiple in-
struction effects together in parallel. Figure 6(k) shows the code
after scheduling is applied. The SP instruction scheduler must re-
spect structural hazards as well as dependencies between instruc-
tions. Because of the fact that the internal registers are used so
frequently, and each has a prescribed purpose, code compiled for
the SP architecture typically has far more anti-dependencies than
code for other machines. As a part of scheduling, we attempt to
rename some internal registers to avoid these anti-dependences. In
the figure the compiler renames the result of the first addition in
Figure 6(j) to use OPER1 instead of OPER2, as both registers can be
assigned an integer addition result.

Although not shown in this example, our scheduler also moves
instruction effects across basic blocks to obtain greater perfor-
mance improvements and code size reductions. We attempt to move
instruction effects into each of its predecessor blocks if there is an
available slot in an instruction and moving the effect does not vi-
olate any data dependencies, the effect cannot cause a fault (e.g.,
load or store), and the effect is not considered too expensive (e.g.,
multiply or divide).

Handling Branches The compiler also splits the branch effect
into two effects in Figure 6(k). First, the PTB status register is set
to specify the type and where the branch target address is to be
obtained. In the next instruction, the comparison is then performed
and the actual transfer of control takes place. As discussed in
Section 2, the presence of a branch is specified one instruction
ahead of time to avoid performing branch predictions on every
instruction. This strategy also completely eliminates the need for a
BTB as target addresses are calculated before transfers of control,
which are explicitly identified in the preceding instruction.

Resource Utilization Figure 6(l) shows the pipeline requirements
for each element of the array in the code produced by our SP com-

piler. The SP code has three instructions in the loop as compared
to five for the MIPS code. All accesses to the register file inside
the loop for the SP code have been eliminated. The SP code also
reduced the number of ALU operations by not adding zero when
calculating a memory address, and eliminated sign extensions and
branch target address calculations.

Immediate Transformation There are other optimizations that
our compiler performs that are not illustrated in Figure 6. One such
optimization is to transform large constants (immediates) to small
constants when possible. As shown in Figure 4, large constants re-
quire 17 bits in our encoding and are used to load a 16-bit value
into the low or high portion of the SE register. If a small constant
that fits in our 7-bit field can instead be used, then additional effects
may be placed in the instruction. Figure 7(a) shows a transforma-
tion that can sometimes accomplish this goal. Assume that const1
and const2 both require a large immediate field, but the difference
between the two constants can fit in the small immediate field. Like-
wise, assume that OPER2 and RS1 are not updated between the two
pairs of instructions shown in the figure. The compiler changes the
second pair of instructions to use the difference between the two
constants and replaces RS1 with OPER2. Figures 7(b) and 7(c) show
instructions in the prologue of a function to save register values af-
ter scheduling without and with applying this transformation. The
number of instructions is reduced from 11 to eight and four assign-
ments to SE are also eliminated due to the remaining differences
being identical.

SE=const1;
OPER2=RS1+SE;
...

SE=      ;   const2
OPER2=RS1+SE;

(a) General Tranformation

SE=const1;
OPER2=RS1+SE;
...

SE=             ;   const2−const1
      OPER2OPER2=     +SE;

SE=188;    RS1=r[29];      RS2=r[23];
SE=   ;    OPER2=RS1+SE;
           OPER2=RS1+SE;   M[OPER2]=SEQ;
SE=180;
SE=176;
           OPER2=RS1+SE;   M[OPER2]=CP2;

SE=168;
RS2=r[24];
RS2=r[25]; OPER2=RS1+SE;   M[OPER2]=RS2;
                           M[OPER2]=RS2; 

SE=172;

SE=  ;     OPER2=RS1+SE;
           OPER2=     +SE; M[OPER2]=SEQ;

           OPER2=     +SE; M[OPER2]=CP2;
           OPER2=     +SE; M[OPER2]=CP1;

RS2=r[24]; OPER2=     +SE; M[OPER2]=RS2;
RS2=r[25]; OPER2=     +SE; M[OPER2]=RS2;
                           M[OPER2]=RS2;

SE=188;    RS1=r[29];      RS2=r[23];

(c) Example with the Transformation

(b) Example without the Transformation

   −4
                 OPER2
                 OPER2
                 OPER2
                 OPER2
                 OPER2

   184

                           M[OPER2]=RS2;
           OPER2=RS1+SE;

           OPER2=RS1+SE;
                           M[OPER2]=CP1;

Figure 7. Avoiding the Use of Large Constants

The compiler also encodes branch displacements as constants
assigned to the SE register. These displacements can decrease dur-
ing the scheduling of effects. The compiler marks each branch dis-
placement effect that was initially scheduled into large immediate
fields and reschedules a basic block if it later finds that the effect
can be represented using a small immediate field. This process is
iteratively performed until no such occurrences are found.



Summary of Compiler Modifications The modifications to the
compiler were extensive and included expanding MIPS instructions
to SP instructions, representing SP instructions in the compiler
backend, loop-invariant code motion of register file reads using a
CP register, loop-invariant code motion of branch target address
calculations, use of the SEQ register to hold a branch target address,
allocating live ranges of register file references to CP registers,
transforming large immediates to small immediates, an internal
register renaming pass to eliminate false dependences, placement
of the PTB effect, scheduling of SP effects both within and across
basic blocks. Several of these optimizations had to ensure that each
transformation was legal before it could be committed due to the
restricted SP datapath.

4. Evaluation
This section presents an experimental evaluation of the SP archi-
tecture including a description of the experimental setup and results
for performance, code size, and an estimation of the energy savings
achieved by static pipelining.

4.1 Experimental Setup
We use 17 benchmarks shown in Table 1 from the MiBench bench-
mark suite [10], which is a representative set of embedded applica-
tions. We extended the GNU assembler to assemble SP instructions
and implemented a simulator based on the SimpleScalar in-order
MIPS [1]. In order to avoid having to compile all of the standard C
library and system code, we allow SP code to call functions com-
piled for the MIPS. A status bit is used to indicate whether it is a
MIPS or SP instruction. After fetching an instruction, the simulator
checks this bit and handles the instruction accordingly. On a mode
change, the simulator will also drain the pipeline.

Category Benchmarks
automotive bitcount, qsort, susan
consumer jpeg, tiff
network dijkstra, patricia
office ispell, stringsearch
security blowfish, rijndael, pgp, sha
telecom adpcm, CRC32, FFT, GSM

Table 1. Benchmarks Used

For all benchmarks, when compiled for the SP, over 90% of
the instructions executed are SP instructions, with the remaining
MIPS instructions coming from calls to standard library routines
such as printf. All cycles and register accesses are counted towards
the results whether they come from the MIPS library code or the
SP code. Were all the library code compiled for the SP as well, the
results would likely improve as we would not need to flush on a
mode change, and we would also have the energy saving benefits
applied to more of the code.

For the MIPS baseline, the programs were compiled with the
original VPO MIPS port with all optimizations enabled and run
through the same simulator, as it is also capable of simulating
MIPS code. We extended the simulator to include branch prediction
with a simple bimodal branch predictor with 256 two-bit saturating
counters, and a 256-entry branch target buffer. The branch target
buffer (BTB) is only used for MIPS code as it is not needed for the
SP. The simulator was also extended to include level one data and
instruction caches, which were configured to have 256 lines of 32
bytes each and are direct-mapped.

Each of the graphs in the following sections represent the ratio
between SP code to MIPS code. A ratio less than 1.0 means that
the SP has reduced the value, while a ratio over 1.0 means that the
SP has increased the value.

Each bar represents a different benchmark except for the aver-
ages. The ratios are averaged rather than the raw numbers to weight
each benchmark evenly rather than giving greater weight to those
that run longer. When a given benchmark had more than one simu-
lation associated with it (e.g., jpeg has both encode and decode), we
averaged the figures for all of its simulations and then used that fig-
ure for the benchmark to avoid weighing benchmarks with multiple
runs more heavily.

4.2 Results
Figure 8 shows the ratios for simulated execution cycles. Many of
the benchmarks in MiBench are dominated by fairly tight loops.
This means that the performance difference is largely determined
by how well the SP compiler does on these kernel loops. That is
the primary reason for the relatively large deviation among bench-
marks. For example, our compiler does quite well with the kernel
loops in dijkstra, qsort, sha, and stringsearch which leads to the
substantial speedups. On the other hand, adpcm, bitcount, and is-
pell have more control flow in their kernel loops, leading to exe-
cution time increases due to the previously mentioned restrictions
of scheduling effects across basic blocks. On average, the SP code
performed 7.9% better than the MIPS code. This figure also shows
that not enforcing the 32-bit instruction size restriction results in
6.5% fewer cycles as compared to using templates, as described
in Section 2.2. We describe in Section 6 how we may be able to
avoid some of this performance degradation from using templates
without significant increases in code size.
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Figure 8. Execution Cycles

Figure 9 shows the compiled code size ratios for the bench-
marks. The SP compiler produces code size that is 8.3% smaller
than the MIPS compiler on average. These performance and code
size improvements are counter-intuitive given that a lower level in-
struction format is used, but is due to eliminating many SP effects.

Table 2 summarizes the average (arithmetic mean) results from
the simulations. Because the SP is able to use values in internal reg-
isters directly, it is often able to bypass the centralized register file
as discussed in Section 3. For this reason, we are able to remove
74% of the register file reads. For the MIPS baseline pipeline, we
only count register reads when the instruction actually references
the register file, which is not the case for some pipeline implemen-
tations. Like register reads, the compiler is able to remove a sub-
stantial number of register file writes, 67% on average. As depicted
in the example in Section 3.2, some loops had nearly all of the reg-
ister accesses removed, such as rijndael and CRC32. Because the
register file is a fairly large structure that is frequently accessed,
these register access reductions should result in substantial energy
savings. For the MIPS programs, internal writes are the number of
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Figure 9. Code Size

Metric Average SP to MIPS Ratio
Execution Cycles 0.92
Code Size 0.92
Register File Reads 0.26
Register File Writes 0.33
Internal Writes 0.39
Branch Predictions 0.13
Target Calculations 0.59
BTB Accesses 0.00

Table 2. Summary of Results

writes to the pipeline registers. We evaluate each pipeline register
as a single element, even though the components of these registers
can be viewed separately, as shown in Figure 2. Because there are
four such registers, and they are written every cycle, this figure is
simply the number of cycles multiplied by four. For the SP, the in-
ternal writes refer to writes to the internal registers. Because the SP
code explicitly instructs the architecture when to write an internal
register, we are able to remove 61% of these writes, on average.
The SP specifies when a conditional branch will occur one cycle
ahead of time, which eliminates the need to predict branches except
when the instruction actually is a conditional branch. This results in
an 87% average decrease in the number of branch prediction buffer
accesses. Because the SP has the ability to avoid calculating branch
targets for innermost loops by saving the next sequential address at
the top of the loop, and by hoisting these invariant branch target ad-
dress calculations out of loops, we are able to substantially reduce
the number of branch target calculations by 39%. In summary, we
have significantly reduced the number of register file accesses, in-
ternal register accesses, branch predictions, and branch target ad-
dress calculations and have completely eliminated the BTB. At the
same time, we have also decreased both the number of execution
cycles and code size.

4.3 Processor Energy Estimation
This section presents an estimate of the processor energy savings
achieved by the SP approach. This estimate uses the simulated
counts of events such as register file accesses, branch predictions
and ALU operations along with estimates of how much power is
consumed by each event.

The SRAMs within the pipeline have been modelled using
CACTI [17]. Other components have been synthesized for a 65nm
process, then simulated at the netlist level to determine average
case activation power. We have normalized the power per compo-
nent to a 32-entry dual-ported register file read, because the power

per component are dependent on process technology and other
implementation dependent issues. The ratios between component
power are also somewhat dependent on process technology, how-
ever these differences should not have a qualitative impact on the
final estimates. The resulting total energy estimate is a linear com-
bination of the number of activations and the power attributions per
component. The relative power per activation we attribute to each
component is given in Table 3.

Component Relative Access Power
Level 1 Caches (8kB) 5.10
Branch Prediction Buffer 0.65
Branch Target Buffer 2.86
Register File Access 1.00
Arithmetic Logic Unit 4.11
Floating Point Unit 12.60
Internal Register Writes 0.10

Table 3. Pipeline Component Relative Power

Figure 10 shows the results of this analysis. On average, the
SP reduces energy usage by 27%. These savings comes primarily
from the reduction in register file accesses, branch prediction table
accesses, and the fact that we do not need a branch target buffer. Of
course these results are also affected by the relative running time of
the benchmark as that has a direct effect on instruction cache usage
and static power consumption.
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Figure 10. Estimated Energy Usage

While these estimates take into account the number of accesses
to the larger structures of the two pipelines the difference in control
logic and interconnect routing is not taken into account. The inter-
connect of the SP has more links than that of a classical five-stage
pipeline, which could negatively effect the power and performance.
The interconnect shown in Figure 3 has 69 links. Out of these, 16
links are used less than 1% of the time and could be removed with
low impact to the SP’s performance [12]. As discussed in Section 6,
we intend to more accurately estimate energy benefits by doing full
pipeline netlist simulations for both the MIPS and SP.

5. Related Work
This paper builds on previous work [6, 7] where the majority of
the presented optimizations had not been implemented and only
a couple of toy examples were evaluated by hand. We now have
implemented all of the presented optimizations and have automati-
cally evaluated the results on a large set of benchmark applications.
Our current paper also has a number of new compiler optimiza-
tions, an updated architecture, and a completely new instruction set
encoding, as described in Section 2.2.



SP instructions are most similar to horizontal microinstruc-
tions [20], however, there are significant differences. Firstly, the
effects in SP instructions specify how to pipeline traditional oper-
ations across multiple cycles. While horizontal micro-instructions
also specify computation at a low level, they do not expose pipelin-
ing at the architectural level. Also, in a micro-programmed pro-
cessor, each machine instruction causes the execution of micro-
instructions within a micro-routine stored in ROM. Furthermore,
compiler optimizations cannot be performed across these micro-
routines since this level is not generally exposed to the compiler.
It has been proposed to break floating-point operations into micro-
operations and optimize the resulting code [5]. However, this ap-
proach can result in a significant increase in code size. Static
pipelining also bears some resemblance to VLIW [8] in that the
compiler determines which operations are independent. However,
most VLIW instructions represent multiple RISC operations that
can be performed in parallel. In contrast, the SP approach encodes
individual instruction effects that can be issued in parallel, where
most of these effects correspond to an action taken by a single
pipeline stage of a traditional RISC instruction.

A prepare-to-branch (PTB) instruction has been previously pro-
posed [3]. However, the use of this feature has previously required
an entire instruction and thus may impact code size and perfor-
mance. In contrast, our PTB field only requires 3 bits as the target
address calculation is decoupled from both the PTB field and the
point of the transfer of control.

There have been other proposed architectures that also expose
much of the datapath to a compiler. One architecture that gives the
compiler direct control of the micro-architecture is the No Instruc-
tion Set Computer (NISC) [14]. Unlike other architectures, there is
no fixed ISA that bridges the compiler with the hardware. Instead,
the compiler generates control signals for the datapath directly. The
FlexCore processor [18] also exposes datapath elements at the ar-
chitectural level. The design features a flexible datapath with an
instruction decoder that is reconfigured dynamically at runtime.
The Transport-Triggered Architectures (TTAs) [4] are similar to
VLIWs in that there are a large number of parallel computations
specified in each instruction. TTAs, however, can move values di-
rectly to and from functional unit ports, to avoid the need for large,
multi-ported register files. Likewise, the TTA compiler was able
to perform copy propagation and dead assignment elimination on
register references. Thus, both the TTA and the SP avoid many
unnecessary register file accesses. However, the SP backend per-
forms many other optimizations that are not performed for the TTA
(and the NISC and FlexCore), while using fewer internal registers.
These additional optimizations include performing loop-invariant
code motion of register file accesses and target address calcula-
tions, allocating live ranges of registers to internal registers, using
a SEQ register to avoid target address calculations at the top of a
loop, and transforming large immediates to small immediates. The
NISC, FlexCore, and the initial TTA studies improve performance
at the expense of a significant increase in code size and were eval-
uated using tiny benchmarks. In contrast, static pipelining focuses
on improving energy usage while still obtaining performance and
code size improvements on the MiBench benchmark suite. An al-
ternative TTA design did achieve comparable code size and per-
formance compared to a RISC baseline, but required an intermix-
ture of 16-bit and 32-bit instructions and the use of internal register
queues, which increase the hardware complexity [11]. In addition,
the NISC, FlexCore, and TTA rely on delayed branches, where the
SP decouples the branch target address calculation from the branch
and uses a PTB field, completely eliminating the need for a BTB,
which is the most expensive part of branch prediction.

There have also been many studies that focused on increasing
the energy-efficiency of pipelines by avoiding unnecessary compu-

tations. One study presents many methods for reducing the power
consumption of register file accesses [19]. One method, bypass
skip, avoids reading operands from the register file when the re-
sult would come from forwarding anyway. Another method is read
caching, which is based on the observation that subsequent instruc-
tions will often read the same registers. Another technique that
avoids unnecessary register accesses is static strands [15], where
a strand is a sequence of instructions that has some number of in-
puts and only one output. The key idea is that if a strand is treated
as one instruction, then the intermediate results do not need to be
written to the register file. Strands are dispatched as a single in-
struction where they are executed on a multi-cycle ALU that cycles
its outputs back to its inputs. All of these techniques attempt to
make processors using traditional instruction sets more efficient.
An SP processor avoids all of these unnecessary register file ac-
cesses without the need for special hardware logic to detect these
opportunities, which can negate some of the energy savings.

6. Future Work
As discussed in Section 4, our current energy savings results are
only estimates. While our results were estimated conservatively,
and are still significant, it would increase the strength of this work
to have more accurate results. Our current estimates are based
on counting the number of times different events happen in the
micro-architecture and estimating the energy costs of each event.
This method does not allow us to take into account other changes
in energy usage such as the fact that we no longer need to do
forwarding and that hazard detection is much simpler. The SP
design also includes a number of multiplexers not found in the
traditional pipeline. In order to evaluate the changes in energy
usage and timing of these components, we plan to construct a netlist
implementation using VHDL. Because each portion of the datapath
is explicitly controlled, there is less complexity in the operation
of the micro-architecture. The logic for checking for hazards is
much simpler, forwarding does not take place, and values are not
implicitly copied through pipeline registers each cycle. Due to these
factors, SP hardware should have decreased area and cost compared
to equivalent traditionally pipelined hardware.

The software pipelining compiler optimization could be applied
to further improve the performance of SP code. This optimiza-
tion is a technique used to exploit instruction-level parallelism in
loops [16]. Loops whose iterations operate on independent values,
typically in arrays, provide opportunities for increased parallelism.
Software pipelining overlaps the execution of multiple iterations
and schedules instructions in order to allow the micro-architecture
to take advantage of this parallelism. Software pipelining would
have little benefit for the baseline MIPS, except when long latency
operations, such as multiply and divide, are used. However, for
an SP machine, software pipelining could be applied in order to
schedule many innermost loops more efficiently. Software pipelin-
ing, however, can also have a negative effect on code size.

We encode SP instructions in order to attain reasonable code
size, however this does have a negative impact on performance as
compared to using a larger instruction format. In order to address
these conflicting requirements, we could allow both 32-bit and 64-
bit instructions in different situations. Like the Thumb2 instruction
set that supports intermixing 16-bit and 32-bit instructions [13], we
could use 64-bit instructions where a higher number of effects can
be scheduled and 32-bit instructions elsewhere to retain most of the
code size benefits of the smaller instructions.

The design of a high performance, SP processor would likely
include more internal registers, along with more functional units,
and possibly more ports to the register file. This would mean that
the instructions would have additional different types of effects,



possibly leading to an issue with code size, though larger code sizes
are generally less of an issue with general-purpose processors than
with embedded ones.

7. Conclusions
Static pipelining is designed to explore the extreme of energy ef-
ficient architectural design. It utilizes a fairly radical and counter-
intuitive approach for representing instructions to provide greater
control of pipeline operation. The primary question about this de-
sign is if a compiler can generate code that is competitive with a
more conventional representation. The challenges in this research
included using a low-level representation that violated many as-
sumptions in a conventional compiler, ensuring that transforma-
tions resulted in legal instructions given the restricted datapath, and
in applying instruction scheduling to such a different target archi-
tecture. It was initially unclear how efficiently we could populate
pipeline resources around control-flow instructions and if it would
be possible to utilize a 32-bit format for SP instructions. Both of
these challenges were resolved in our compiler.

Our SP target architecture achieves on average better perfor-
mance and code size as compared to optimized code generated for
the analogous conventional (MIPS) processor architecture. In quite
a few cases, we were able to significantly improve performance,
and the overall performance was limited by slowdowns in some
benchmarks caused by idiosyncratic behavior that can be addressed
with future optimizations specific to SP code. Static pipelining
clearly provides a benefit from an energy perspective. By reduc-
ing accesses to pipeline (internal) registers, and eliminating unnec-
essary accesses to architectural and micro-architectural resources,
an average energy savings of 27% is achieved. The obtained results
show that it is useful to re-examine the boundary between hardware
and software to improve processor energy efficiency.
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