Prof. Michael Mascagni

Applied and Computational Mathematics Division, Information Technology Laboratory
National Institute of Standards and Technology, Gaithersburg, MD 20899-8910 USA
AND
Department of Computer Science
Department of Mathematics
Department of Scientific Computing
Graduate Program in Molecular Biophysics
Florida State University, Tallahassee, FL 32306 USA

E-mail: mascagni@fsu.eduor mascagni@nist.gov
URL: http://www.cs.fsu.edu/~mascagni
Overview

Chi-Square Test
The Kolmogorov-Smirnov (K-S) Test

Empirical Tests
 Equidistribution Test (Frequency Test)
 Serial Test
 Gap Test
 Poker Test
 Coupon Collector’s Test
 Permutation Test
 Runs Test
 Maximum of t Test
 Collision Test
 Serial Correlation Test

The Spectral Test
Chi-Square Test

Eg. "Throwing 2 dice"

\(s \) : Value of the sum of the 2 dice.

\(p_s \) : Probability.

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/36</td>
<td>1/18</td>
<td>1/12</td>
<td>1/9</td>
<td>5/36</td>
<td>1/6</td>
<td>5/36</td>
<td>1/9</td>
<td>1/12</td>
<td>1/18</td>
<td>1/36</td>
</tr>
</tbody>
</table>

If we throw dice 144 times:

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed: (Y_s)</td>
<td>2</td>
<td>4</td>
<td>10</td>
<td>12</td>
<td>22</td>
<td>29</td>
<td>21</td>
<td>15</td>
<td>14</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Expected: (np_s)</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>20</td>
<td>16</td>
<td>12</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>
Chi-Square Test

Is a pair of dice loaded?
We can’t make a definite yes/no statement, but we can give a probabilistic answer. We can form the Chi-Square Statistic.

\[
\chi^2 = \sum_{1 \leq s \leq k} \frac{(Y_s - np_s)^2}{np_s}
\]

\[
= \frac{1}{n} \sum_{1 \leq s \leq k} \left(\frac{Y_s^2}{p_s} \right) - n
\]

\[\chi^2 = k - 1: \text{ degrees of freedom}\]

\[k: \text{ Number of categories}\]

\[n: \text{ Number of observances}\]
Table of Chi-Square Distribution

Entry in row χ^2 under column p is x, which means

“The quantity χ^2 will be less than or equal to x, with approximate probability p, if n is large enough.”

Example:

<table>
<thead>
<tr>
<th>Value of s</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 1, Y_s</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>13</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>11</td>
<td>13</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Experiment 2, Y_s</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>15</td>
<td>19</td>
<td>24</td>
<td>21</td>
<td>17</td>
<td>13</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

$\chi_1^2 = 29 \frac{59}{120}$

$\chi_2^2 = 1 \frac{11}{120}$
Testing Random Numbers

Chi-Square Test

Table of Chi-Square Distribution

\[\chi^2_1 = 29 \frac{59}{120} \quad \chi^2_2 = 1 \frac{11}{120} \]

Discussion:

\[\chi^2_1 \] is too high, \(\chi^2 \) 0.1% of the time.
\[\chi^2_2 \] is too low, \(\chi^2 \) 0.01% of the time.

Both represent \(x \) with a significant departure from randomness.

To use Chi-Square distribution table, \(n \) should be large.

How large should \(n \) be?

Rule of thumb:

\(n \) should be large enough to make each \(np_s \) be 5 or greater.
Chi-Square Test

1. Large number \(n \) of independent observations.
2. Count the number of observations on \(k \) categories.
3. Compute \(\chi^2 \).
4. Look up Chi-Square distribution table.

<table>
<thead>
<tr>
<th>(\chi^2)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<1%) or (\chi^2) >99%</td>
<td>reject</td>
</tr>
<tr>
<td>1%< (\chi^2) <5% or 95%< (\chi^2) <99%</td>
<td>suspect</td>
</tr>
<tr>
<td>5%< (\chi^2) <10% or 90%< (\chi^2) <95%</td>
<td>almost suspect</td>
</tr>
<tr>
<td>otherwise</td>
<td>accept</td>
</tr>
</tbody>
</table>
The Kolmogorov-Smirnov (K-S) Test

χ^2 Test : for discrete random data
K-S Test : for continuous random data

Def: $F(x) = P[X \leq x]$, cumulative distribution function (CDF) for r.v. X

n independent observations of X: X_1, X_2, \ldots, X_n

Def: Empirical CDF $F_n(x)$ based on the X_i's

$$F_n(x) = \frac{1}{n} \sum_{i=1}^{n} I_{[0,x)}(x_i)$$

where $I_{[0,x)}$ is the characteristic function of the interval $[0, x)$
The Kolmogorov-Smirnov Test

The K-S Test is based on $F(x) - F_n(x)$

$$K_n^+ = \sqrt{n} \max_{-\infty < x < +\infty} (F_n(x) - F(x))$$

maximum deviation when F_n is greater than F.

$$K_n^- = \sqrt{n} \max_{-\infty < x < +\infty} (F(x) - F_n(x))$$

maximum deviation when F_n is less than F.

$K_n = \max(K_n^+, K_n^-)$, table like Chi-Square to find the percentile, but unlike χ^2, the table fits any size of n.
Testing Random Numbers

The Kolmogorov-Smirnov (K-S) Test

The Kolmogorov - Smirnov Test

Simple procedure to obtain K_n^+, K_n^-, to test hypothesis that $X_i \sim F$

1. Obtain observations X_1, X_2, \ldots, X_n.
2. Rearrange (sort) into ascending order (with renumbering).

 \[X_1 \leq X_2 \leq \ldots \leq X_n \]

3. Calculate K_n^+, K_n^-

 \[K_n^+ = \sqrt{n} \max_{1 \leq j \leq n} \left(\frac{j}{n} - F(X_j) \right), \quad K_n^- = \sqrt{n} \max_{1 \leq j \leq n} \left(F(X_j) - \frac{j - 1}{n} \right) \]
The Kolmogorov-Smirnov Test

Dilemma: We need a large n to differentiate F_n and F. Large n will average out local random behavior.

Compromise: Consider a moderate size for n, say 1000. Make a fairly large number of K_{1000}^+ on different parts of the random sequence $K_{1000}^+(1), K_{1000}^+(2), \ldots, K_{1000}^+(r)$. Apply another KS Test. The distribution of K_n^+ is approximated.

$$F_\infty(x) = 1 - e^{-2x^2}$$

Significance: Detects both local and global random behavior.
Empirical Tests

Empirical Tests: 10 tests

Test of real number sequence

\[< U_n > = U_0, U_1, U_2 \ldots \]

Test of integer number sequence

\[< Y_n > = Y_0, Y_1, Y_2 \ldots \]

\[Y_n = \lfloor dU_n \rfloor \]

\[Y_n : \text{integers}[0, d - 1] \]
A. Equidistribution Test (Frequency Test)

Two ways:

1. Use χ^2 test

 d intervals

 Count the number of sequence $<Y_n> = Y_0, Y_1, Y_2, \ldots$ falling into each interval

 $k = d$

 $p_s = \frac{1}{d}$

2. Use KS Test

 Test $<U_n> = U_0, U_1, U_2, \ldots$

 $F(x) = x$ for $0 \leq x \leq 1$
B. Serial Test

- Pairs of successive numbers to be uniformly distributed.
- d^2 intervals are used.

\[k = d^2, \quad p_s = 1/d^2 \]

- Serial Test can be regarded as 2-D frequency test.
- Can be generalized to triples, quadruples, ...
C. Gap Test

Examine length of “gaps” between occurrences of \(U_j \in I = (\alpha, \beta) \), where \(0 \leq \alpha < \beta \leq 1 \), and \(p = \beta - \alpha \). A gap is the length \(r \) where Length of \(U_j, U_{j+1}, \ldots, U_{j+r} \) have \(U_j, U_{j+r} \in I \) and all the other are not. Algorithm:

1. Initialize: \(j \leftarrow -1, s \leftarrow 0 \)
2. \(r \leftarrow 0 \)
3. if \((\alpha \leq U_j \leq \beta) \), \(j \leftarrow j+1 \)
 else goto 5.
4. \(r \leftarrow r+1 \), goto 3.
5. record gap length.
 if \(r \geq t \), \(COUNT[t] \leftarrow COUNT[t]+1 \)
 else \(COUNT[r] \leftarrow COUNT[r]+1 \)
6. Repeat until \(n \) gaps are found.
C. Gap Test

\(\text{COUNT}[0], \text{COUNT}[1], \ldots, \text{COUNT}[t] \) should have the following probability:

- \(p_0 = p, p_1 = p(1 - p), p_2 = p(1 - p)^2, \ldots, p_{t-1} = p(1 - p)^{t-1}, p_t = p(1 - p)^t \)

Now, we can apply the \(\chi^2 \) test.

Special cases:

- \((\alpha, \beta) = (0, \frac{1}{2}) \leftarrow \text{runs above the mean} \)
- \((\alpha, \beta) = (\frac{1}{2}, 1) \leftarrow \text{runs below the mean} \)
D. Poker Test

Consider 5 successive integers \((Y_{sj}, Y_{sj+1}, Y_{sj+2}, Y_{sj+3}, Y_{sj+4})\)

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Example</th>
<th>Pattern</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>All different</td>
<td>abcde</td>
<td>Full house</td>
<td>aaabb</td>
</tr>
<tr>
<td>One Pair</td>
<td>aabcd</td>
<td>Four of a kind</td>
<td>aaaaab</td>
</tr>
<tr>
<td>Two Pairs</td>
<td>aabbc</td>
<td>Five of a kind</td>
<td>aaaaaa</td>
</tr>
<tr>
<td>Three of a kind</td>
<td>aaabc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simplify:

<table>
<thead>
<tr>
<th>5 different</th>
<th>all different</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 different</td>
<td>one pair</td>
</tr>
<tr>
<td>3 different</td>
<td>two pairs or three of a kind</td>
</tr>
<tr>
<td>2 different</td>
<td>full house or four of a kind</td>
</tr>
<tr>
<td>5 same numbers</td>
<td>five of a kind</td>
</tr>
</tbody>
</table>
D. Poker Test

Generalized:

n groups of k successive numbers \((k - \text{tuples})\) with r different values.

\[
pr = \frac{d(d - 1) \ldots (d - r + 1)}{d^k} \binom{k}{r}
\]

\(d = \text{number of categories}\)

Then, the \(\chi^2\) test can be applied.
Stirling Numbers of the Second Kind

- Notation: $S(n, k)$ or $\{\binom{n}{k}\}$
- Definition: counts the number of ways to partition a set of n labelled objects into k nonempty unlabelled subsets or
- Also counts the number of different equivalence relations with precisely k equivalence classes that can be defined on an n element set
- Obviously, $\{\binom{n}{n}\} = 1$ and for $n \geq 1$, $\{\binom{n}{1}\} = 1$: the only way to partition an ”n”-element set into ”n” parts is to put each element of the set into its own part, and the only way to partition a nonempty set into one part is to put all of the elements in the same part.
- They can be calculated using the following explicit formula:

$$\{\binom{n}{k}\} = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^n$$
E. Coupon Collector’s Test

In the sequence $\mathcal{Y}_0, \mathcal{Y}_1, \ldots$, the lengths of the segments $\mathcal{Y}_{j+1}, \mathcal{Y}_{j+2}, \ldots, \mathcal{Y}_{j+r}$ are collected to get a complete set of integers from 0 to $d-1$.

Algorithm:

1. Initialize $j \leftarrow -1$, $s \leftarrow 0$, $\text{COUNT}[r] \leftarrow 0$ for $d \leq r < t$.
2. $q \leftarrow r \leftarrow 0$, $\text{OCCURS}[k] \leftarrow 0$ for $0 \leq k < d$.
3. $r \leftarrow r+1$, $j \leftarrow j+1$
4. Complete Set? $\text{OCCURS}[\mathcal{Y}_j] \leftarrow 1$ and $q \leftarrow q+1$
 - if $q=d$, a complete set
 - if $q<d$, goto 3.
5. Record the length.
 - if $r \geq t$, $\text{COUNT}[t] \leftarrow \text{COUNT}[t]+1$
 - else $\text{COUNT}[r] \leftarrow \text{COUNT}[r]+1$
6. Repeat until n values are found.
E. Coupon Collector’s Test

Chi-Square Test can be applied to $\text{COUNT}[d], \text{COUNT}[d+1], \ldots, \text{COUNT}[t]$

\[
p_r = \frac{d!}{d^r} \binom{r-1}{d-1}, \quad d \leq r < t
\]

\[
p_t = 1 - \frac{d!}{d^{t-1}} \binom{t-1}{d}
\]
F. Permutation Test

A t-tuple \((U_{jt}, U_{jt+1}, \ldots, U_{jt+t-1})\) can have \(t!\) possible relative orderings.

For Example: \(t=3\)
There should be \(3! = 6\) categories

<table>
<thead>
<tr>
<th>1 < 2 < 3</th>
<th>2 < 1 < 3</th>
<th>2 < 3 < 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 < 3 < 2</td>
<td>3 < 1 < 2</td>
<td>3 < 2 < 1</td>
</tr>
</tbody>
</table>

\(k = t!\) \hspace{2cm} p_s = \frac{1}{t!}

We can apply \(\chi^2\) test now.
G. Run Test

Examine the length of monotone subsequences.
“Runs up”: increasing “Runs down”: decreasing
For Run i, the length of the run is $\text{COUNT}[i]$.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Note: χ^2 test cannot be directly applied because of lack of independence (each segment depends on previous segment).

Then, we need to calculate

$$\chi^2 = \frac{1}{n} \sum_{1 \leq i, j \leq 6} (\text{COUNT}[i] - nb_i)(\text{COUNT}[j] - nb_j) a_{ij}$$
G. Runs Test

\[
\begin{bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} \\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} & a_{46} \\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55} & a_{56} \\
a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & a_{66}
\end{bmatrix} =
\begin{bmatrix}
4529.4 & 9044.9 & 13568 & 18091 & 22615 & 27892 \\
9044.9 & 18097 & 27139 & 36187 & 45234 & 55789 \\
13568 & 27139 & 40721 & 54281 & 67852 & 83685 \\
10891 & 36187 & 54281 & 72414 & 90470 & 111580 \\
22615 & 45234 & 67852 & 90470 & 113262 & 139476 \\
27892 & 55789 & 83685 & 111580 & 139476 & 172860
\end{bmatrix}
\]

\[
\begin{bmatrix}
b_1 \\
b_2 \\
b_3 \\
b_4 \\
b_5 \\
b_6
\end{bmatrix} =
\begin{bmatrix}
1/6 \\
5/24 \\
11/120 \\
19/720 \\
29/5040 \\
1/890
\end{bmatrix}
\]

Then, \(\chi^2 \) should have the same \(\chi^2 \) distribution with degree 6.
Examine the maximum value of t uniform random variables.

Let $\chi^2_j = \max(U_{tj}, U_{tj+1}, \ldots, U_{tj+t-1}).$

The distribution is $F(x) = X^t$

Then, we can apply the Kolmogorov - Smirnov Test here.
I. Collision Test

Suppose we have m urns and n balls, $m \ll n$. Most of the balls will fall in an empty urn. If a ball falls in an urn that already has a ball, we call it a “collision”.

A generator passes the collision test only if it doesn’t induce too many or too few collisions.

Probability of c collisions occurring:

$$\frac{m(m-1)\ldots(m-n+c+1)}{m^n} \binom{n}{n-c}$$
J. Serial Correlation Test

Consider the observations \((U_0, U_1, \ldots, U_{n-1})\) and \((U_1, \ldots, U_{n-1}, U_0)\)
Test the correlation between these two tuples.
We compute:

\[
C = \frac{n(U_0 U_1 + U_1 U_2 + \ldots + U_{n-2} U_{n-1} + U_{n-1} U_0) - (U_0 + U_1 + \ldots + U_{n-1})^2}{n(U_0^2 + U_1^2 + \ldots + U_{n-1}^2) - (U_0 + U_1 + \ldots + U_{n-1})^2}
\]

A “good” \(C\) should be between \(\mu_n - 2\delta_n\) and \(\mu_n + 2\delta_n\).

\[
\mu_n = \frac{-1}{n-1}, \quad \delta_n = \frac{1}{n-1} \sqrt{\frac{n(n-3)}{n+1}}, \quad n > 2
\]
The Spectral Test

Idea underlying the test: *Congruential Generators generate random numbers in grids!*

In t-dimensional space, $\{(U_n, U_{n+1}, \ldots, U_{n+t-1})\}$

Compute the distance between lines (2D), planes (3D), parallel hyperplanes (>3D).

- $1/\nu_2$: Maximum distance between lines. Two dimensional accuracy.
- $1/\nu_3$: Maximum distance between planes. Three dimensional accuracy.
- $1/\nu_t$: Maximum distance between hyperplanes. t - dimensional accuracy.
The Spectral Test

Differentiate between truly random sequences and periodic sequences.

- Truly random sequences: accuracy remains same in all dimensions
- Periodic sequences: accuracy decreases as t increases

Spectral Test is by far the most powerful test.

- All “good” generators pass it.
- All known “bad” generators fail it.
Testing Random Numbers

The Spectral Test

Summary

1. Basic idea of empirical tests:
 The combination of random numbers is expected to conform to a specific distribution.
 1.1 Build the combination.
 1.2 Use χ^2 or KS test to test the deviation from the expected distribution.

2. We can perform an infinite number of tests.

3. We might be able to construct a test to “kill” a specific generator.
Other resources for RNG Testing

1. FFT, Metropolis, Wolfgang Tests (spectrum).
2. Diehard (http://www.stat.fsu.edu/pub/diehard)
3. SPRNG (implements most of the empirical tests and spectrum tests).
 http://sprng.cs.fsu.edu
4. TestU01