CIS 5371
Cryptography

Introduction to Number Theory
Preview

- Number Theory Essentials
- Congruence classes, Modular arithmetic
- Prime numbers challenges
- Fermat’s Little theorem
- The Totient function
- Euler's Theorem
- Quadratic residuocity
- Foundation of RSA
Number Theory Essentials

- Prime Numbers
 - A number $a \in I$ is a **prime** iff
 - *it's only factors are itself and 1*
 - Equivalently, $\forall x \in I$, $\gcd(x, a) = 1$
 - $a, b \in I$ are **relatively prime** iff:
 - $\gcd(a, b) = 1$

- Fundamental theorem of arithmetic:
 Every integer has a **unique** factorization that is a product of prime powers.
Congruence Classes: the integers modulo 5

\[1 \equiv 6 \equiv 11 \pmod{5} \]
Modular arithmetic

• Form: \(a \equiv b \mod n \)

• The modulo relation partitions the integers into congruence classes

• The congruence class of an integer 'a' is the set of all integers congruent to 'a' modulo 'n'.

• \(a \equiv b \mod n \) asserts that 'a' and 'b' are members of the same congruence class modulo 'n'.
The integers modulo n

- $\forall a,b,n \in I, a \equiv b \mod n$ iff $n \mid (a-b)$
 - $28 \equiv 6 \mod 11$: $(28-6)/11 = 2 \in I$
 - $219 \equiv 49 \mod 17$: $(219-49)/17 = 10 \in I$

- Symmetry:
 If $a \equiv b \mod n$ then $b \equiv a \mod n$

- Transitivity:
 If $a \equiv b \mod n$ and $b \equiv c \mod n$ then $a \equiv c \mod n$
Modular arithmetic: notation

Form: \[a \equiv b \mod n \] (congruence relation)
\[a = b \mod n \] (modulus operator)

\(\equiv \) indicates that the integers \(a \) and \(b \) fall into the same congruence class modulo \(n \)

\(= \) means that integer \(a \) is the reminder of the division of integer \(b \) by integer \(n \).

Example: \[14 \equiv 2 \mod 3 \] and \[2 = 14 \mod 3 \]
Modular arithmetic & cryptography

- Modular computations can be utilized to scramble data.
- Cryptographic systems utilize modular (or elliptic curve (EC)) arithmetic.
- Several cryptographic systems use prime modulus arithmetic.
Prime Number Challenges

1. Finding large prime numbers.
2. Recognizing large numbers as prime.
How Do We Find Large Prime Numbers?

- Look them up?
- Compute them?
- Do they REALLY have to be prime?
Finding large primes

- The probability of a randomly chosen number being prime is: $\frac{1}{\ln n}$
- For a 100 digit number, the chance is about $1/230$
- Guess and check, should take 230 tries on the average
- How do we check? Answer: Primality testing.
Fermat's Little Theorem

• For every prime number \(p \) and \(a \in \mathbb{I} \) with \(0 < a < p \) we have: \(a^p \equiv a \mod p \)

• Equivalently, if \(p \) is prime number and \(a \in \mathbb{I} \) with \(0 < a < p \) then: \(a^{p-1} \equiv 1 \mod p \)
Fermat's Little Theorem

\[a^{p-1} = 1 \mod p \]: examples

Let \(p = 5 \), pick values for \(a \):

- \(a = 2 \): \(2^4 = 16 \mod 5 = 1 \)
- \(a = 3 \): \(3^4 = 81 \mod 5 = 1 \)
- \(a = 4 \): \(4^4 = 256 \mod 5 = 1 \)
Fermat's Little Theorem

\[a^{p-1} = 1 \mod p \] : examples

- Let \(p = 11 \), pick values \(a \):
 - \(a=3 \): \(3^{10} = 59049 \mod 11 = 1 \)
 - \(a=5 \): \(5^{10} = 9765625 \mod 11 = 1 \)
 - \(a=7 \): \(7^{10} = 282475249 \mod 11 = 1 \)
 - \(a=8 \): \(8^{10} = 1073741824 \mod 11 = 1 \)
Fermat's Little Theorem

\[a^{p-1} = 1 \mod p \]: examples

- For \(a = 2 \), \(p \) cannot be 2, 4, 6, 8, etc.
- For \(a = 5 \), \(p \) cannot be 5, 10, 15, etc.
- Choosing \(p \) smaller than \(a \) produces unpredictable results.
- In general, if \(a^{p-1} = 1 \mod p \), for some random \(1 < a < p \), then \(p \) is a prime with high probability.
If \(a^{p-1} = 1 \mod p\) for \(1 < a < p\) then \(p\) is a prime with high probability

A primality test

1. Select \(p\), a large number
2. Select a random number \(a\): \(1 < a < p\)
3. Compute \(x = a^{p-1} \mod p\)
 a. If \(x \neq 1\), then \(p\) is not prime
 b. If \(x = 1\), then \(p\) is a prime with high probability
If $a^{p-1} = 1 \mod p$ for $1 < a < p$ then p is prime with high probability.

If $a^{p-1} = 1 \mod p$, then the probability that p is not a prime is $1/10^{13}$.
Exponentiations

\[381^{1502} \mod 751 = \]
\[= 381^2 \times 381^{750} \times 381^{750} \mod 751 \]
\[= 381^2 \mod 751 \times 1 \mod 751 \]
\[= 145161 \mod 751 \]
\[= 218 \]
Exponentiations

\[a^{p-1} \equiv 1 \mod p \]

- \(7^{13} \mod 11 \equiv x \)
- \(7^{10} \mod 11 \times 7^3 \mod 11 \equiv x \)
- \(1 \mod 11 \times 7^3 \mod 11 \equiv x \)
- \(7^3 \mod 11 \equiv x \)
- \(346 \mod 11 \equiv 5 \)
The totient function $\phi(n)$

- $\phi(n)$ is the number of positive integers less than n that are relatively prime to n
- The function $\phi(n)$ returns the cardinality of \mathbb{Z}_n^*
- \mathbb{Z}_n^* forms a group of order (cardinality) $\phi(n)$ with respect to multiplication
- Euler’s theorem: $\forall x \in \mathbb{Z}_n^* \text{ we have } x^{\phi(n)} = x$
- $\forall p \in \text{Primes}, \phi(p) = p - 1$
Deriving $\phi(n)$

- Primes: $\phi(p) = p-1$
- Product of 2 primes: $\phi(pq) = (p-1)(q-1)$
- General case (i.e. for all integers x) = ?
Deriving $\phi(n)$

Product of 2 relatively prime numbers

- if gcd $(m,n) = 1$, then: $\phi(mn) = \phi(m) \times \phi(n)$
- $15 = 3 \times 5$ and
- Example: $\phi(15) = 2 \times 4 = 8$
Deriving $\phi(n)$

- Product of n relatively prime numbers
 - if $\gcd(a_1,a_2, \ldots ,a_n) = 1$, then
 \[
 \phi(a_1a_2 \cdots a_n) = \phi(a_1)*\phi(a_2)*\cdots *\phi(a_n)
 \]

Example: $30 = 2*3*5$ and so $\phi(30)=1*2*4 = 8$.
Quadratic Residuosity

- An integer a is a quadratic residue with respect to n if:
 - a is relatively prime to n and
 - there exists an integer b such that: $a = b^2 \mod n$

- Quadratic Residues for $n = 7$: $\text{QR}(7) = \{1, 2, 4\}$
 - $a = 1$: $b = 1$ ($1^2 = 1 \mod 7$), 6, 8, 13, 15, 16, 20, 22, …
 - $a = 2$: $b = 3$ ($3^2 = 2 \mod 7$), 4, 10, 11, 17, 18, 24, 25, …
 - $a = 4$: $b = 5$, 9, 12, 19, 23, 26, …

- Notice that 2, 3, 5, and 6 are not QR mod 7.
- $\text{QR}(n)$ forms a group with respect to multiplication.
The Foundation of RSA

- \(x^y \mod n = x^{(y \mod \phi(n))} \mod n \)
- The proof of this follows from Euler's Theorem
- If \(y \mod \phi(n) = 1 \),
 then for any \(x : x^y \mod n = x \mod n \)
- If we can choose \(e \) and \(d \) such that \(ed = y \mod \phi(n) \)
 then we can encrypt by raising \(x \) to the \(e^{th} \) power
 and decrypt by raising to the \(d^{th} \) power.