1. Let $R$ be the relation defined below. Determine which properties, reflexive, irreflexive, symmetric, antisymmetric, transitive, the relation satisfies. Prove each answer.

(a) $R$ is the relation on a set of all people given by two people $a$ and $b$ are such that $(a, b) \in R$ if and only if $a$ and $b$ are enrolled in the same course at FSU.

reflexive: Yes. Each person is in the same class with themselves.
irreflexive: No. See the previous.
symmetric: Yes, if $a$ and $b$ are enrolled in the same course, then $b$ and $a$ are enrolled in the same course.
antisymmetric: No. Choose any two different people enrolled in this course. This provides a counterexample.
transitive: No. Person $a$ and $b$ may be enrolled in one course, and person $c$ may be enrolled in a course with $b$, but different from the first course. This situation provides a counterexample.

(b) $R$ is the relation on $\{a, b, c\}$, $R = \{(a, b), (b, a), (b, b), (c, c)\}$

reflexive: No. $(a, a)$ is not in $R$.
irreflexive: No. $(b, b)$ is in $R$.
symmetric: Yes. For each pair $(x, y) \in R$ you can check that the pair $(y, x) \in R$.
antisymmetric: No. $(a, b), (b, a) \in R$ and $a \neq b$.
transitive: No. $(a, b), (b, a) \in R$, but $(a, a) \not\in R$.

(c) $R$ is the relation on the set of positive integers given by $mRn$ if and only if $\gcd(m, n) > 1$.

reflexive: No. $\gcd(1, 1) = 1 \neq 1$, so $(1, 1) \not\in R$.
irreflexive: No. $\gcd(2, 2) = 2 > 1$, so $(2, 2) \in R$.
symmetric: Yes. $\gcd(m, n) = \gcd(n, m)$, so if $\gcd(m, n) > 1$ then $\gcd(n, m) > 1$.

antisymmetric: No. $\gcd(4, 2) = \gcd(2, 4) = 2 > 1$ so $(2, 4), (4, 2) \in R$.
But $2 \neq 4$.
transitive: No. $\gcd(2, 6) = 2 > 1$ and $\gcd(6, 3) = 3 > 1$, so $(2, 6), (6, 3) \in R$. But $\gcd(2, 3) = 1 \neq 1$ so $(2, 3) \not\in R$.

(d) $R$ is the relation on the set of positive real numbers given by $xRy$ if and only if $x/y$ is a rational number.

reflexive: Yes. For every positive real number $x$, $x/x = 1$ which is rational. So $(x, x) \in R$ for every $x \in \mathbb{R}^+$.
irreflexive: No. See previous.
symmetric: Yes. Since the reciprocal of a rational number is rational we have $x/y \in \mathbb{Q}$ implies $y/x \in \mathbb{Q}$. Thus $(x, y) \in R$ implies $(y, x) \in R$. 

1
2. Let \( R \)

(a) The relation does not satisfy any of the properties.

(b) \( \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \)

(a) The relation does not satisfy any of the properties.
4. Let $A$ be a set and let $R$ and $S$ be relations on $A$. If $R$ and $S$ satisfy the property given, does the relation given have to satisfy the same property? Prove or disprove each answer.

(a) $R \cup S$ is reflexive: Let $a \in A$. Since $R$ is reflexive, $(a, a) \in R$. Thus $(a, a) \in R \cup S$ which shows $R \cup S$ is reflexive.

(b) $R^{-1}$ is reflexive. Let $a \in A$. Since $R$ is reflexive, $(a, a) \in R$. Thus $(a, a)$ is also in $R$ since reversing the order of the elements in this ordered pair gives you the same ordered pair back.

(c) Let $(x, y) \in t(R)$. Recall $t(R) = \bigcup_{k=1}^{\infty} R^k$, so $(x, y) \in R^k$ for some integer $k$. We claim $R^k$ is symmetric for all positive integers $k$. If this is true, then we have $(y, x) \in R^k \subseteq t(R)$ which proves $t(R)$ is symmetric.

Now we show $R^k$ is symmetric if $R$ is by induction on $k$.

**Basis:** $R^1 = R$. Since $R$ is symmetric, this is clear.

**Induction Step:** Let $k$ be a positive integer and assume $R^k$ is symmetric.

Prove $R^{k+1}$ is symmetric. Let $(a, b) \in R^{k+1} = R \circ R^k$. Then there is a $c \in A$ such that $(a, c) \in R^k$ and $(c, b) \in R$. Since $R$ and $R^k$ are
symmetric, \((c,a) \in R^k \) and \((b,c) \in R\). Thus \((b,a) \in R^k \circ R = R^{k+1}\).

Therefore \(R^{k+1}\) is symmetric.

d) \(R \circ S\) is not necessarily symmetric: Consider the case where \(A = \{a,b,c\}, R = \{(a,b), (b,a)\}\), and \(S = \{(b,c), (c,b)\}\). Then \((c,a) \in R \circ S\), but \((a,c) \not\in R \circ S\).

e) \(R \oplus S\) is not necessarily antisymmetric: Let \(A = \{a,b\}\). The relations \(R = \{(a,b)\}\) and \(S = \{(b,a)\}\) are antisymmetric, but \(R \oplus S = \{(a,b), (b,a)\}\) is not antisymmetric. (to disprove the property must hold true, a counter example is sufficient. An example does not prove a property must hold for all possible relations.)

(f) \(R^n\) for any positive integer \(n\) is not necessarily antisymmetric: Let \(A = \{a,b,c,d\}\) and let \(R = \{(a,b), (b,c), (c,d), (d,a)\}\). Then \(R\) is antisymmetric (vacuously). \(R^2 = \{(a,c), (c,a), (b,d), (d,b)\}\) which is not antisymmetric.

g) \(r(R)\) is transitive: Let \((x, y), (y, z) \in r(R) = \Delta \cup R\). Then \(x = y\) or \(y = z\) or \((x, y), (y, z) \in R\). If \(x = y\) then \((x, z) = (y, z) \in r(R)\). If \(y = z\) then \((x, y) = (x, z) \in r(R)\). If \((x, y), (y, z) \in R\) then \((x, z) \in R \subseteq r(R)\) since \(R\) is transitive. This shows \(r(R)\) is transitive.

(h) \(R^{-1}\) is transitive: Let \(a, b, c \in A\) be such that \((a,b), (b,c) \in R^{-1}\). Then \((b,a), (c,b) \in R\). Since \(R\) is transitive, \((c,a) \in R\). Thus \((a,c) \in R^{-1}\) which shows \(R^{-1}\) is transitive if \(R\) is.

(i) \(R - S\) is not an equivalence relation: Since both \(R\) and \(S\) are reflexive, they both contain \(\Delta = \{(a,a) \mid a \in A\}\), so \(R - S\) does not contain \(\Delta\) and so is not reflexive.

(j) \(R^n\) for any positive integer \(n\) is an equivalence relation: Proof by induction on \(n\).

**Basis:** \(R^1\) is an equivalence relation by our original assumption.

**Induction Hypothesis:** Let \(n\) be a positive integer and assume \(R^n\) is an equivalence relation.

**Induction Step:** Prove \(R^{n+1}\) is an equivalence relation.

**Reflexive:** Let \(a \in A\). Since \(R\) and \(R^n\) are reflexive, \((a,a) \in R\) and \((a,a) \in R^n\). Thus \((a,a) \in R^{n+1} = R^n \circ R\).

**Symmetric:** Let \(a, b \in A\) be such that \((a,b) \in R^{n+1} = R^n \circ R\). Then there is a \(t \in A\) such that \((a,t) \in R\) and \((t,b) \in R^n\). Now, since both \(R\) and \(R^n\) are symmetric, \((t,a) \in R\) and \((b,t) \in R^n\). Thus \((b,a) \in R \circ R^n = R^{n+1}\).

**Transitive:** Let \(a, b, c \in A\) be such that \((a,b), (b,c) \in R^{n+1} = R^n \circ R\). Then there are \(s, t \in A\) such that \((a,s), (b,t) \in R\) and \((s,b), (t,c) \in R^n\). Since \(R\) is transitive, \(R^n \subseteq R\), so \((s,b) \in R\). Since \(R\) is transitive and \((a,s), (s,b), (b,t) \in R\), we get \((a,t) \in R\). Thus since \((a,t) \in R\) and \((t,c) \in R^n\) we find \((a,c) \in R^n \circ R = R^{n+1}\).

(k) \(R \circ S\) is not necessarily a partial order. This is not necessarily antisymmetric, nor transitive. Counterexample: Define \(R\) on the set of integers by \(\leq\) and define \(S\) on the set of integers by \(\geq\). Then \(R \circ S\) is not antisymmetric.

7. True or false, prove or disprove: If $R$ and $S$ are relations on $A$, then
   (a) True: $(R \cap S) \cup \Delta = (R \cup \Delta) \cap (S \cup \Delta)$, where $\Delta = \{(a,a) | a \in A\}$.
   (b) False: $\Delta \not\subseteq r(R) - r(S)$ since $\Delta \subseteq r(S)$.
   (c) True: $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$, so $(R \cup S) \cup (R \cup S)^{-1} = (R \cup R^{-1}) \cup (S \cup S^{-1})$.
   (d) False: $s(R \circ S) = (R \circ S) \cup (R \circ S)^{-1} = (R \circ S) \cup (S^{-1} \circ R^{-1})$ which is not necessarily equal to $s(R) \circ s(S) = (R \cup R^{-1}) \circ (S \cup S^{-1})$. For example, $A = \{a, b\}$, and $R = S = \{(a, b)\}$. Then $R \circ S = \emptyset$, so $r(R \circ S) = \emptyset$. On the other hand, $r(R) = r(S) = \{(a, b), (b, a)\}$, so $s(R) \circ s(S) = \{(b, b), (a, a)\}$.
   (e) False: $\cup_{n=1}^{\infty}(R \cup S)^n$ is not necessarily equal to $(\cup_{n=1}^{\infty}R^n) \cup (\cup_{n=1}^{\infty}S^n)$.
   For example, $A = \{a, b, c\}$, $R = \{(a, b)\}$, and $S = \{(b, c)\}$. Then $t(R \cup S) = \{(a, b), (b, c), (a, c)\}$ while $t(R) \cup t(S) = \{(a, b), (b, c)\}$.
   (f) False: $\cup_{n=1}^{\infty}(R \circ S)^n$ is not necessarily equal to $(\cup_{n=1}^{\infty}R^n) \circ (\cup_{n=1}^{\infty}S^n)$. This is easier to see if you write out the union using ellipses.

8. Let $R$ be the relation on the set of all integers given by $nRm$ if and only if $nm < 0$.
   (a) $(m, n) \in r(R)$ if and only if $nm < 0$ or $m = n$.
   (b) $(m, n) \in s(R)$ if and only if $nm < 0$.
   (c) $(m, n) \in t(R)$ if and only if $m \neq 0$ and $n \neq 0$. (there are other equivalent ways to define this set)

9. Which of the following relations are equivalence relations. For the relations that are equivalence relations find the equivalence classes. For the ones that are not equivalence relations name the property(ies) that fails.
   (a) The relation $R$ on the set of Computer Science majors at FSU where $aRb$ if $a$ and $b$ are currently enrolled in the same course.
This relation is not necessarily transitive, so not an equivalence relation.

(b) The relation $R$ on the set of integers where $(m, n) \in R$ if and only if $mn \equiv 2 \pmod{2}$.
No: Not reflexive nor transitive.

(c) The relation $R$ on the set of ordered pairs of integers where $(a, b)R(c, d)$ iff $a = c$ or $b = d$.
No: Not transitive.

(d) Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = \lceil x \rceil$. Define the relation $R$ on $\mathbb{R}$ by $(x, y) \in R$ if and only if $f(x) = f(y)$.
Yes: Equivalence classes are of the form $(n, n + 1]$ where $n \in \mathbb{Z}$.

(e) The relation $R$ on the set of all subsets of $\{1, 2, 3, 4\}$ where $SRT$ means $S \subseteq T$.
No: Not symmetric.

(f) The relation $R$ on the set of positive integers where $(m, n) \in R$ if and only if $\gcd(m, n) = \max\{m, n\}$.
Yes. The equivalence class of a vertex $v$ consists of all the vertices (including $v$) in the same component as $v$.

- **Proof.**
  - **Reflexive:** Let $(a, b) \in \mathbb{Z}^+ \times \mathbb{Z}^+$. Since $ab = ba$, we have $(a, b)R(a, b)$.
  - **Symmetric:** Let $(a, b)R(c, d)$. Then $ad = bc$. But this implies $cb = da$ so $(c, d)R(a, b)$.
  - **Transitive:** Let $(a, b)R(c, d)$ and $(c, d)R(e, f)$. Then $ad = bc$ and $cf = de$.
  
  If we take the first equation and multiply through by $f$ we get $adf = bcf$.
  
  Then using the second equation we substitute for $cf$ to get $adf = bde$.
  
  Thus $d(af - be) = 0$. Since the integers are all positive we know $d \neq 0$ and so $af = be$. Therefore $(a, b)R(e, f)$.

10. Let $R$ be the relation on the set of ordered pairs of positive integers such that $(a, b)R(c, d)$ if and only if $ad = bc$.

(a) Prove $R$ is an equivalence relation.

- **Proof.**
  - **Reflexive:** Let $(a, b) \in \mathbb{Z}^+ \times \mathbb{Z}^+$. Since $ab = ba$, we have $(a, b)R(a, b)$.
  - **Symmetric:** Let $(a, b)R(c, d)$. Then $ad = bc$. But this implies $cb = da$ so $(c, d)R(a, b)$.
  - **Transitive:** Let $(a, b)R(c, d)$ and $(c, d)R(e, f)$. Then $ad = bc$ and $cf = de$.
  
  If we take the first equation and multiply through by $f$ we get $adf = bcf$.
  
  Then using the second equation we substitute for $cf$ to get $adf = bde$.
  
  Thus $d(af - be) = 0$. Since the integers are all positive we know $d \neq 0$ and so $af = be$. Therefore $(a, b)R(e, f)$.

(b) Find the equivalence class of $(a, b)$ where $(a, b) \in \mathbb{Z}^+ \times \mathbb{Z}^+$:

\[ [(a, b)] = \{(c, d) | ad = bc \} = \{(c, d) | \text{the rational numbers } a/b \text{ and } c/d \text{ are equal} \} \]

11. This is example 1 in Module 1.3 Equivalence Relations

12. Suppose $A = \{2, 4, 5, 6, 7, 10, 18, 20, 24, 25\}$ and $R$ is the partial order relation $(x, y) \in R$ iff $x \mid y$.

(a) Draw the Hasse diagram for the relation.
(b) Find all minimal elements.
2, 5, and 7
(c) Find all maximal elements.
7, 18, 24, 20, and 25
(d) Find all upper bounds for \{6\}.
6, 18, and 24
(e) Find all lower bounds for \{6\}.
6 and 2
(f) Find the least upper bound for \{6\}.
6
(g) Find the greatest lower bound for \{6\}.
6
(h) Find the least element.
none
(i) Find the greatest element.
none
(j) Is this a lattice?
no

13. Suppose \( A = \{2, 3, 4, 5\} \) has the usual “less than or equal” order on integers. Find each of the following for the case where \( R \) is the lexicographic partial order relation on \( A \times A \) and where \( R \) is the product partial order relation on \( A \times A \).

**Lexicographic Order:**
(a) Draw the Hasse diagram for the relation.
(b) Find all minimal elements.
   (2, 2)
(c) Find all maximal elements.
   (5, 5)
(d) Find all upper bounds for \{(2, 3), (3, 2)\}.
   (3, 2), (3, 3), (3, 4), (3, 5), (4, 2), (4, 3), (4, 4), (4, 5), (5, 2), (5, 3), (5, 4), (5, 5)
(e) Find all lower bounds for \{(2, 3), (3, 2)\}.
   (2, 3), (2, 2)
(f) Find the least upper bound for \{(2, 3), (3, 2)\}.
   (3, 2)
(g) Find the greatest lower bound for \{(2, 3), (3, 2)\}.
   (2, 3)
(h) Find the least element.
   (2, 2)
(i) Find the greatest element.
   (5, 5)
(j) Is this a lattice?
   Yes.

**Product Order:**  (a) Draw the Hasse diagram for the relation.
(b) Find all minimal elements.
(2, 2)

(c) Find all maximal elements.
(5, 5)

(d) Find all upper bounds for \{(2, 3), (3, 2)\}.
(3, 3), (3, 4), (3, 5), (4, 3), (4, 4), (4, 5), (5, 3), (5, 4), (5, 5)

(e) Find all lower bounds for \{(2, 3), (3, 2)\}.
(2, 2)

(f) Find the least upper bound for \{(2, 3), (3, 2)\}.
(3, 3)

(g) Find the greatest lower bound for \{(2, 3), (3, 2)\}.
(2, 2)

(h) Find the least element.
(2, 2)

(i) Find the greatest element.
(5, 5)

(j) Is this a lattice?
Yes

14. Carefully prove the following relations are partial orders.

(a) Recall the product order: Let \((A_1, \preceq_1)\) and \((A_2, \preceq_2)\) be posets. Define the relation \(\preceq\) on \(A_1 \times A_2\) by \((a_1, a_2) \preceq (b_1, b_2)\) if and only if \(a_1 \preceq_1 b_1\) and \(a_2 \preceq_2 b_2\). Prove the product order is a partial order.

Proof.  Reflexive: Let \((a, b) \in A_1 \times A_2\). Since \(\preceq_1\) and \(\preceq_2\) are partial order, 
\(a \preceq_1 a\) and \(b \preceq_2 b\). Therefore \((a, b) \preceq (a, b)\).

Antisymmetric: Let \((a_1, a_2), (b_1, b_2) \in A_1 \times A_2\) and assume \((a_1, a_2) \preceq (b_1, b_2)\) and \((b_1, b_2) \preceq (a_1, a_2)\). Then \(a_1 \preceq_1 b_1\), \(a_2 \preceq_2 b_2\), \(b_1 \preceq_2 a_1\), and
15. Suppose $R$ is a relation on $A$. Using composition is associative and mathematical induction, prove that $R^n \circ R = R \circ R^n$.

**Basis:** $R^1 \circ R = R \circ R = R \circ R^1$ is clear.
**Induction Step:** Let $k \in \mathbb{Z}^+$ and assume $R^k \circ R = R \circ R^k$. Prove $R^{k+1} \circ R = R \circ R^{k+1}$.

$R^{k+1} \circ R = (R^k \circ R) \circ R$ by the definition of $R^{k+1}$

$= (R \circ R^k) \circ R$ by the induction hypothesis

$= R \circ (R^k \circ R)$ since composition is associative

$= R \circ R^{k+1}$ by the definition of $R^{k+1}$.

16. This is Theorem 1 on page 479 in the text.

17. Suppose $(A, \preceq)$ is a poset such that every nonempty subset of $A$ has a least element.

Let $x, y \in A$. Then $\{x, y\}$ has a least element which must be $x$ or $y$. Thus $x \preceq y$ or $y \preceq x$.

18. This is Theorem 2 in *Module 1.4 Partial Orderings*. 