Overview

- Why functional programming?
- Historical origins of functional programming
- Functional programming today
- Concepts of functional programming
- A crash course on programming in Scheme

Note: this set of notes covers Chapter 11 Sections 11.1 to 11.2. You are not required to study Sections 11.2.2, 11.2.4, and 11.2.5.

Why Functional Programming in This Course?

- A functional language will be used to illustrate a diversity of programming language concepts
- Functional programming languages are
 - Compiled and/or interpreted (Section 1.4)
 - Have simple syntax (Chapter 2)
 - Use garbage collection (Section 3.2.3) for memory management
 - Are statically scoped or dynamically scoped (Section 3.3)
 - Use higher-order functions and subroutine closures (Section 3.4.1)
 - Use first-class function values (Section 3.4.2)
 - Depend heavily on polymorphism (Section 3.5)
 - Employ recursion (Section 6.6) for repetitive execution
 - Programs have no side effects and all expressions are referentially transparent (Sections 6.1.2 and 6.3)

Why Functional Programming?

- Functional programming is a different programming paradigm
- Imperative programming languages are more widely used
 - Integrated software development environments for procedural and object oriented programming languages are "industrial strength"
- However, many (commercial) applications exist for functional programming:
 - Symbolic data manipulation
 - Natural language processing
 - Artificial intelligence
 - Algorithmic optimization of programs written in pure functional languages

Origin of Functional Programming

- Church’s thesis:
 - All models of computation are equally powerful and can compute any function
- Turing’s model of computation: Turing machine
 - Reading/writing of values on an infinite tape by a finite state machine
- Church’s model of computation: lambda calculus
 - This inspired functional programming as a concrete implementation of lambda calculus
- Computability theory
 - A program can be viewed as a constructive proof that some mathematical object with a desired property exists
 - A function is a mapping from inputs to output objects and computes output objects from appropriate inputs
 - For example, the proposition that every pair of nonnegative integers (the inputs) has a greatest common divisor (the output object) has a constructive proof implemented by Euclid’s algorithm written as a “function”

\[
\text{gcd}(a, b) = \begin{cases}
 a & \text{if } a = b \\
 \text{gcd}(a-b, b) & \text{if } b > a \\
 \text{gcd}(a, b-a) & \text{if } a > b
\end{cases}
\]
Functional Programming Today

- Attractive model of computation
 - Absence of side effects makes expressions referentially transparent: the value of an expression depends solely on the function return values in it and not on evaluation order and/or values of global variables
 - A function can always be counted on to return the same results with the same input parameters
 - Dangling and/or uninitialized pointer references do not occur
 - Easier to debug and maintain programs
- Significant improvements in theory and practice of functional programming have been made in recent years
 - Easier to write functional programs by using their imperative language features which are automatically translated to functional constructs (e.g. loops by recursion)
 - Improved efficiency
- Remaining obstacles to functional programming:
 - Social: most programmers are trained in imperative programming
 - Commercial: not many libraries, not very portable, and no integrated development environments for functional languages

Concepts of Functional Programming

- **Functional programming** defines the outputs of a program as mathematical function of the inputs with no notion of internal state (no side effects)
 - Example pure functional programming languages: Miranda, Haskell, and Sisal
- Non-pure functional programming languages include imperative features with side effects that affect global state (e.g. through destructive assignments to global variables)
 - Example: Lisp, Scheme, and ML
- Useful features are found in functional languages that are often missing in imperative languages:
 - First-class function values: the ability of functions to return newly constructed functions
 - Higher-order functions: functions that take other functions as input parameters or return functions
 - Polymorphism: the ability to write functions that operate on more than one type of data
 - Aggregate constructs for constructing structured objects: the ability to specify a structured object in-line, e.g. a complete list or record value
 - Garbage collection

Lisp

- **Lisp** (LISt Processing language) was the original functional language
- Lisp and dialects are still the most widely used
- Simple and elegant design of Lisp:
 - Homogeneity of programs and data: a Lisp program is a list and can be manipulated in Lisp as a list
 - Self-definition: a Lisp interpreter can be written in Lisp
 - Interactive: interaction with user through "read-eval-print" loop

A Crash Course on Scheme

- Scheme is a popular Lisp dialect
- Lisp and Scheme adopt Cambridge Polish notation for expressions:
 - An expression is an atom, e.g. a number, string, or identifier name
 - An expression is a list whose first element is the function name (or operator) followed by the arguments which are expressions:
 - \((\text{function} \ \text{arg}_1 \ \text{arg}_2 \ \text{arg}_3 \ \ldots)\)
 - The "Read-eval-print" loop provides user interaction: an expression is read, evaluated by evaluating the arguments first and then the function/operator is called after which the result is printed
 - Input: 9
 - Output: 9
 - Input:\((+ \ 3 \ 4)\)
 - Output: 7
 - Input:\((+ \ (* \ 2 \ 3) \ 1)\)
 - Output: 7
- User can load a program from a file with the `load` function
 - ```scheme
 (load "my_scheme_program")
  ```
  - The file name should use the `.scm` extension

Note: You can run the Scheme interpreter and try the examples in these notes by executing the `scheme` command. To exit Scheme, type `exit`. You can download an example Scheme program “Eliza”.
Scheme Data Structures

- The only data structures in Lisp and Scheme are **atoms** and **lists**
- **Atoms** are:
  - Numbers, e.g. 7
  - Strings, e.g. "abc"
  - Identifier names (variables), e.g. x
  - Boolean values true #t and false #f
  - Symbols which are quoted identifiers which will not be evaluated, e.g. 'y

- **Lists**:
  - To distinguish list data structures from expressions that are written as lists, a quote (') is used to quote the list:

  `(elt1 elt2 elt3 ...)  
  ▪ Input: '(3 4 5)  
  ▪ Output: (3 4 5)

- **Note**: the empty list () is also identical to false #f in Scheme

### Primitive List Operations

- **car** returns the **head** (first element) of a list
  - Input: (car '(2 3 4))  
  - Output: 2

- **cdr** (pronounced "couldeer") returns the **tail** of a list (list without the head)
  - Input: (cdr '(2 3 4))  
  - Output: (3 4)

- **cons** joins an element and a list to construct a new list
  - Input: (cons 2 '(3 4))  
  - Output: (2 3 4)

- **Examples**:
  - Input: (car '(2))  
  - Output: 2
  - Input: (car '())  
  - Output: Error
  - Input: (cdr '(a 6 (x y) "s"))  
  - Output: (a 6 (x y) "s")
  - Input: (cdr '(a (+ 3 4)))  
  - Output: (a (+ 3 4))
  - Input: '()  
  - Output: ()

### Type Checking

- The type of an expression is determined only at run-time
- Functions need to check the types of their arguments explicitly
- **Type predicate functions**:
  - (boolean? x) ; is x a Boolean?
  - (char? x) ; is x a character?
  - (string? x) ; is x a string?
  - (symbol? x) ; is x a symbol?
  - (number? x) ; is x a number?
  - (list? x) ; is x a list?
  - (pair? x) ; is x a non-empty list?
  - (null? x) ; is x an empty list?

### If-Then-Else

- **Special forms** resemble functions but have special evaluation rules
- A **conditional expression** in Scheme is written using the **if** special form:
  - (if (if condition (thenexpr) (elseexpr))
  - Input: (if #t 1 2)  
  - Output: 1
  - Input: (if #f 1 "a")  
  - Output: "a"
  - Input: (if (string? "s") (+ 1 2) 4))  
  - Output: 3
  - Input: (if (> 1 2) "yes" "no")  
  - Output: "no"

- A more general if-then-else can be written using the **cond** special form:
  - (cond (listofconditionvaluepairs)
  - where the condition value pairs is a list of **(cond value)** pairs and the condition of the last pair can be else to return a default value
  - Input: (cond ((< 1 2) 1) ((>= 1 2) 2))  
  - Output: 1
  - Input: (cond ((< 2 1) 1) ((= 2 1) 2) (else 3))  
  - Output: 3
Testing

- `eq?` tests whether its two arguments refer to the same object in memory
  - Input: `(eq? 'a 'a)`
  - Output: `#t`
  - Input: `(eq? '(a b) '(a b))`
  - Output: `#f` (false: the lists are not stored at the same location in memory!)
- `equal?` tests whether its arguments have the same structure
  - Input: `(equal? 'a 'a)`
  - Output: `#t`
  - Input: `(equal? '(a b) '(a b))`
  - Output: `#t`
- To test numerical values, use =, <>, =<, =>, even?, odd?, zero?
- `member` tests membership of an element in a list and returns the rest of the list that starts with the first occurrence of the element, or returns false
  - Input: `(member 'y '("s" x 3 y z))`
  - Output: `(y z)`
  - Input: `(member 'y '(x (3 y) z))`
  - Output: `()`

Lambda Abstraction

- A Scheme lambda abstraction is a nameless function specified with the lambda special form:
  
  ```scheme
 (lambda formalparameters functionbody)
  ```
  
  where the formal parameters are the function inputs and the function body is an expression that is the resulting value of the function

- Examples:
  - `(lambda (x) (* x x))` ; is a squaring function: \( x \mapsto x^2 \)
  - `(lambda (a b) (sqrt (+ (* a a) (* b b))))` ; is a function:
    
    \[
    (a b) \mapsto \sqrt{a^2 + b^2}
    \]

Lambda Application

- A lambda abstraction is applied by assigning the evaluated actual parameter(s) to the formal parameters and returning the evaluated function body

- The form of a function call in an expression is:
  
  ```scheme
 (function arg1 arg2 arg3 ...)
  ```

  where function can be a lambda abstraction

- Example:
  - Input: `((lambda (x) (* x x)) 3)`
  - Output: `9`
  - That is, \( x=3 \) in \( x \mapsto x^2 \) which evaluates to 9

Defining Global Functions in Scheme

- A function is globally defined using the define special form:
  
  ```scheme
 (define name function)
  ```

  - For example:
    
    ```scheme
 (define sqr
 (lambda (x) (* x x))
)
    ```

    defines function `sqr`
    - Input: `(sqr 3)`
    - Output: `9`
    - Input: `(sqr (sqr 3))`
    - Output: `81`

    ```scheme
 (define hypot
 (lambda (a b)
 (sqrt (+ (* a a) (* b b)))
)
)
    ```

    defines function `hypot`
    - Input: `(hypot 3 4)`
    - Output: `5`
Bindings

- An expression can have local name-value bindings defined with the `let` special form
  \[
  \text{(let listofnameandvaluepairs expression)}
  \]
  where `name and value pairs` is a list of pairs `(namevalue)` and expression is returned in which each name is replaced with its value in the list.
  - Input: `(let ((a 3) (b 4) (hypot a b)) )`
  - Output: 5
- A name can be bound to a function in `let`
  - Input: `(let ((sqr (lambda (x) (* x x))) (y 3)) (sqr y) )`
  - Output: 9

Recursive Bindings

- An expression can have local recursive function bindings defined with the `letrec` special form
  \[
  \text{(letrec listofnameandvaluepairs expression)}
  \]
  where `name and value pairs` is a list of pairs `(namevalue)` and expression is returned where each name is replaced with its value.
  - Input: `(letrec ((fact (lambda (n)
     (if (= n 1)
       1
       (* n (fact (- n 1)))
     )
   )
   )
   (fact 5) )`
  - Output: 120
- This allows the local factorial function `fact` to refer to itself

I/O and Sequencing

- `display` prints a value
  - Input: `(display "Hello World!")`
  - Output: "Hello World!"
- `read` returns a value from standard input
  - Input: `(read)`
  - Output: 5
- `newline` advances to a new line
  - Input: `(newline)`
- `begin` sequences a series of expressions (its value is the value of the last expression)
  - Example: `(begin (display "Hello World!") (newline) )`
  - Example: `(let ((x 1) (y (read)) (plus +)) (begin (display (plus x y)) (newline) ) )`

Loops

- `do` takes a list of name-init-update triples, a termination test with final value, and a loop body
  `do listotreiples condition body`
  - Example:
    `(do ((i 0 (+ i 1))) ((>= i 10) "done") (display i) (display i) (newline) )`
  - Since everything is an expression in Scheme, a loop must return a value which in this case is the string "done"
Higher-Order Functions

- A function is called a **higher-order function** (also called a *functional form*) if it takes a function as an argument or returns a newly constructed function as a result.
- Scheme has several built-in higher-order functions, for example:
  - **apply** takes a function and a list and applies the function with the elements of the list as arguments.
    - Input: `(apply '+ '(3 4))`
    - Output: 7
  - **Input:** `(apply (lambda (x) (* x x)) '(3))`
    - Output: 9
  - **map** takes a function and a list and returns a list after applying the function to each element of the list.
    - Input: `(map odd? '(1 2 3 4))`
    - Output: (#t () #t () #t)
    - Input: `(map (lambda (x) (* x x)) '(1 2 3 4))`
    - Output: (1 4 9 16)
- Here is a function that applies a function to an argument twice:
  - `(define twice (lambda (f n) (f (f n))))`
  - Input: `(twice sqrt 81)`
  - Output: 3

Non-Pure Constructs: Assignments

- Assignments are considered bad in functional programming because they can change the global state of the program and possibly influence function outcomes.
  - `set!` assigns to a variable a new value, for example:
    - `(define a 0)`
    - `(set! a 1) ; overwrite a with 1`
  - `(let ((a 0))...`; increment a by 1`)...
- `set-car!` overwrites the head of a list.
- `set-cdr!` overwrites the tail (rest) of a list.

Scheme Examples

- **Recursive factorial function:**
  ```scheme
 (define fact
 (lambda (n)
 (if (zero? n) 1 (* n (fact (- n 1)))))
)
  ```
- **Iterative factorial function:**
  ```scheme
 (define iterfact
 (lambda (n)
 (do ((i 1 (+ i 1))
 (f 1 (* f i))
 (> i n) f)
 ;; add value of head to sum of rest of list
)
)
  ```

Example Recursive Functions on Lists

- **Sum the elements of a list:**
  ```scheme
 (define sum
 (lambda (lst)
 (if (null? lst) 0
 (+ (car lst) (sum (cdr lst))))
)
)
  ```
- **Check if element is in list:**
  ```scheme
 (define in?
 (lambda (elt lst)
 (cond
 ((null? lst) #f ; if list is empty, return false
)
 ((= elt (car lst)) #t ; if element is the head, return true
)
 (else (in? elt (cdr lst))) ; keep searching rest of list
)
)
)
  ```

Examples of List Functions

- `(define fill
  (lambda (num elt)
    (cond
      ((= 0 num) '())
      (else (cons elt (fill (- num 1) elt))))
  )`
Examples of Higher-Order Functions

- Reduce a list by applying a binary operator to all elements (i.e. \( elt1 + elt2 + elt3 + \ldots \)):
  
  ```scheme
 (define reduce
 (lambda (op lst)
 (if (null? lst)
 (car lst)
 (op (car lst) (reduce op (cdr lst)))))
)
)

 Input: (reduce + '(1 2 3))
 Output: 6
  ```

- Filter elements of a list for which a condition (a predicate function) returns true:

  ```scheme
 (define filter
 (lambda (op lst)
 (cond
 ((null? lst) '())
 ((op (car lst)) (cons (car lst) (filter op (cdr lst))))
 (else (filter op (cdr lst))))
)
)

 Input: (filter odd? '(1 2 3 4 5))
 Output: (1 3 5)
  ```