1. • Use Kruskal’s algorithm to find a minimum-weight spanning tree when the weight 10 on edge (1, 3) of the graph discussed in class is changed to 25.
 Answer: MWST looks like Z.

• Use Kruskal’s algorithm to find a minimum-weight spanning tree when the weight 10 on edge (1, 3) of the graph discussed in class is changed to 16.
 Answer: MWST looks like |\|.

2. Define the following notions: \(P, NP, PSPACE, NPSPACE, NP-complete \),

\(P \) is the class of all languages accepted in polynomial time by a deterministic TM.

\(NP \) is the class of all languages accepted in polynomial time by a nondeterministic TM.

\(PSPACE \) is the class of all languages accepted by a polynomial space bounded TM.

\(NPSPACE \) is the class of all languages accepted by a polynomial space bounded TM.

\(L \) is \(NP \)-complete if

• \(L \in NP \),

• \(L \neq NP \Rightarrow L \leq_{\text{time}} L \).

Here \(\leq_{\text{time}} \) stands for polynomial time reducibility: that is \(L \leq_{\text{time}} L \) if there exists a polynomial time algorithm that maps instances of \(L \) into instances of \(L \) in such a way that: \(w \in L \iff f(w) \in L' \).

Show that,

• If \(L_1 \) is \(NP \)-complete and if there is a polynomial-time reduction \(L_1 \leq_{\text{time}} L_2 \), then \(L_2 \) is \(NP \)-complete.

Let \(L' \) be any language in \(NP \). Then by definition \(L \leq_{\text{time}} L_1 \). Then since \(L_1 \leq_{\text{time}} L_2 \), and since the composition of reductions is a reduction, \(L' \leq_{\text{time}} L_2 \).

• If some \(NP \)-complete language \(L \) is in \(P \), then \(P = NP \).

Let \(L' \) be any language in \(NP \). Then by definition \(L' \leq_{\text{time}} L \). Since \(L \in P \), there is a polynomial time algorithm that decides \(L \). The composition of a polynomial-time reduction and the polynomial time algorithm is a polynomial time algorithm. So \(L' \in P \).

3. **Closure properties for \(P \).** Show that \(P \) is closed under each of the following operations:

• Reversal.

Let \(L \in P \) and \(M \) be a deterministic TM with \(L = L(M) \) and time complexity \(n^k \). For any input \(w \), we can build a TM \(M' \) that produces the reversal \(w^\tau \). This machine is polynomially bounded: \(O(n^2) \) when \(|w| = n \). Then we input it to \(M \). The combined time complexity is: \(O(n^2 + n^k) \), which is polynomial time.

• Union.

Let \(L_1, L_2 \in P \) and \(M_1, M_2 \) be deterministic TMs with \(L_1 = L(M_1) \), \(L_2 = L(M_2) \) and time complexities \(n^{k_1}, n^{k_2} \). Then we can test if \(w \in L_1 \cup L_2 \) as follows: first test membership in \(L_1 \) and then test membership in \(L_2 \). The time complexity is \(n^{k_1} + n^{k_2} \), which is polynomial time. Thus \(L_1 \cup L_2 \in P \).

• Concatenation.

Let \(L_1, L_2 \in P \) and \(M_1, M_2 \) be deterministic TMs with \(L_1 = L(M_1), L_2 = L(M_2) \). Suppose we are given an input \(w = w_1 w_2 \cdots w_n \) of length \(n \) to check for membership in \(L_1 L_2 \). For each \(i = 0, 1, \ldots, n \) test if \(w_i \in L_1 \) AND \(w_{i+1} \cdots w_n \in L_2 \) \((w_0 = \varepsilon) \). If so accept, else reject. If the time complexities for \(L_1, L_2 \) are \(n^{k_1}, n^{k_2} \), then the overall cost is: \((n + 1)(n^{k_1} + n^{k_2}) \), which is polynomial time. Thus \(L_1 L_2 \in P \).

• Closure (star).

Let the input be \(w \) of length \(n \). It can be at most in \(L^n \), not more. So we check membership for \(L^0, L^1, \ldots, L^n \), i.e., in \(\bigcup_0^n L^i \). We know from above that \(L^2 = LL \) is in \(P \). So repeat the argument
to get that $L^3 = L^2 L, \ldots, L^n$ are in P. Then use the property that P is closed w.r. to unions. It follows that we can check membership of w in $\cup_{j}^{n} L^j$ in polynomial time.

- Complementation.
 Given a polynomial time deterministic TM M for L we can check membership in in L^c, by using the TM M' for which: M' accepts input w iff M' does not accepts input w. The run time is the same (the machines are deterministic).

4. Closure properties for NP. Show that NP is closed under each of the following operations:

- Reversal.
 The argument is essentially the same. First reverse (deterministically), then check membership.
 The composition is a nondeterministic procedure.

- Union.
 Identical argument.

- Concatenation.
 Similar argument. Here we can save some time by guessing nondeterministically the split. So the overall cost is: $x^{k_1} + x^{k_2}$.

- Closure (star). Similar argument: again there is some saving in time complexity, from the previous remark.

[We do not have NP closure for Complementation.]

5. Suppose that there is an NP-complete problem that has a deterministic solution that takes time $O(n^{\log_2(n)})$. What could you say about the running time of any problem in NP. Explain.

[Note that this function lies between the polynomials and the exponentials, and is in neither class of functions.]

Let L be an NP complete language that is in P and let L' be any language in NP.

A first approach: There must be a reduction $L' \leq_{\text{time}} L$ because $L \in NP$. Suppose this takes time n^k. Then solve the corresponding problem in L. This takes time $O(n^{\log_2(n)})$. Combine the two to get: $O(n^k + n^{\log_2(n)}) = O(n^{\log_2(n)})$. Problem: the reduction from L' to L may have increased the size of the input from n to m. So we should take $O(m^{\log_2(m)})$.

Second approach: Assume that the reduction is accomplished by a polynomial time TM. If the time complexity of this machine is n^k then the size of the input cannot have grown more than that, that is m is at most n^k. Now we get the correct complexity:

$$O(n^k + m^{\log_2(m)}) = O(n^k + n^{k \log_2(n^k)}) = O(n^{k \log_2(n^k)}) = O(n^{k^2\log_2(n)}) = O(n^{c\log_2(n)})$$

where $c = k^2$ is a constant.

[Note that this function lies between the polynomials and the exponentials, and is in neither class of functions.]