This homework will be collected in class on Thursday 1st November. On Wednesday 7th November, solutions will be reviewed and handed out.

1. We have seen that if language L is recursive then so is \overline{L}. This problem has to do with the closure properties of r.e. languages and recursive languages.

Tell whether (a) r.e. languages, and (b) recursive languages, are closed under the following operations:

- **union**
 - Suppose that the closure property refers to the languages $L_1 = L(M_1)$ and $L_2 = L(M_2)$. In the first case the closure is $L = L_1 \cup L_2$.
 - Consider the TM, M that accepts $w \in L$ iff, either M_1 or M_2 accepts w. Then $L = L(M)$, so L is r.e. Furthermore, if M_1, M_2 halt on all inputs, then so does M: so L is recursive if L_1, L_2 are recursive.

- **intersection**
 - Use same argument, only this time M accepts $w \in L = L_1 \cap L_2$ iff, both M_1 and M_2 accept w. Then $L = L(M)$, so L is r.e. Furthermore, if M_1, M_2 halt on all inputs, then so does M: so L is recursive if L_1, L_2 are recursive.

- **concatenation**
 - Here $w \in L$ iff $w = w_1 w_2$ with $w_1 \in L_1, w_2 \in L_2$. For this case consider a non-deterministic M which on input w guesses w_1, w_2 with $w = w_1 w_2$, and accepts w iff both $w_1 \in L_1$ and $w_2 \in L_2$.
 - Again $L = L(M)$, so L is r.e. Furthermore, if M_1, M_2 halt on all inputs, then so does M: so L is recursive if L_1, L_2 are recursive.

You may give informal but clear constructions to show closure.

2. Informally define multi-tape TMs that enumerate the following sets of integers (in the sense that starting with blank tapes they print out on their tapes $10^6 10^6 1 \ldots$, to represent the set i_1, i_2, \ldots).

- The set of perfect squares: $\{1, 4, 9, \ldots\}$.
 - Use a multi-tape TM. On input any string $\neq \varepsilon$; on the first tape list all the integers as: $0^1, 0^2, 0^3, \ldots$; for the second tape square these numbers, and list the squares: $0^1, 0^4, 0^9, \ldots$. For the output use “1” as a separator.
- The set of all primes: $\{2, 3, 5, \ldots\}$.
 - Again use a multi-tape TM, with the difference in this case that for the second tape, a non-deterministic subprocedure is used which tests the numbers p on the first tape for primality, by exhaustively checking all numbers x: $1 < x < p$, to see if they are divisors. If none are divisors, and only then, p is copied on the second tape.

3. **The halting problem**: given the pair (M, w), where M is a TM and $w \in \Sigma^*$ is a string, does M halt on input w?

Let L_h be the language of the halting problem. Show that L_h is r.e. but not recursive.

(Hint: The universal language L_u is r.e. but not recursive. Mimic the proof.)

L_h is r.e.: Consider a TM, \widehat{M} that on input (M, w) simulates M on input w. \widehat{M} halts iff M halts. Then $L(\widehat{M}) = L_h$.

L_h is not recursive: Reduce $\overline{L_d}$ to L_h (we know that $\overline{L_d} = \{w \in (0+1)^* \mid w = \langle M \rangle$ is accepted by $M\}$ is not recursive). For the reduction map w to (M, w) with $w = \langle M \rangle$. Then $w \in \overline{L_d}$ iff (M, w) in L_h.

1
4. Show that the following properties of r.e. sets are not decidable. Justify your answers.
 (a) \(L = \emptyset \).
 (b) \(L \) is recursive.
 (c) \(T \) is finite.

Hint: Apply Rice’s theorem for recursive sets.

Theorem 1. Any non-trivial property of r.e. sets is undecidable. (\(\mathcal{P} \) is a trivial property of r.e. sets if it is either empty or consists of all r.e. languages)

Property \(\mathcal{P} = \{\emptyset\} \) is not empty (\(\mathcal{P} \) is a singleton). Similarly for the other two. So in all three cases we have non-decidability.

5. Show that the following properties of r.e. sets are r.e. Justify your answers.
 (a) \(L \neq \emptyset \)
 (b) \(L \) contains at least 2 words.
 (c) \(L \) contains some fixed word \(w \).

Hint: Apply Rice’s theorem for r.e. sets.

Theorem 2. Let \(L_\mathcal{P} = \{L \mid L \text{ has property } \mathcal{P}\} \). Then \(L_\mathcal{P} \) is r.e. if and only if,

- If \(L \) has property \(\mathcal{P} \) and \(L \subseteq L' \) then \(L' \) has property \(\mathcal{P} \).
- If \(L \) is an infinite set of \(\mathcal{P} \) then there exists a finite subset \(L' \) of \(L \) that has property \(\mathcal{P} \).
- The set of finite languages with property \(\mathcal{P} \) is enumerable.

All three conditions of Rice’s theorem are satisfied for (a), (b) and (c).