1. State the last (or, one but last) definition given in class for secure encryption.

Answer.

An encryption scheme is perfectly secret if,

(a) for every probability distribution over M, for every message $m \in M$ and every ciphertext $c \in C$ we have: $Pr[M = m|C = c] = Pr[M = m]$.

(b) for every probability distribution over M, for every message $m \in M$ and every ciphertext $c \in C$ we have: $Pr[C = c|M = m] = Pr[C = c]$.

(c) for every probability distribution over M, for every $m_0, m_1 \in M$ and every $c \in C$ we have: $Pr[C = c|M = m_0] = Pr[C = c|M = m_1]$.

Here we only consider distributions that assign non-zero probabilities to all $m \in M, \ c \in C$.

Alternatively, the encryption scheme $\Pi = (Gen, Enc, Dec)$ is perfectly secret if for every PPT adversary A it holds that: $Pr[PrivK^{eav}(A, \Pi) = 1] = 0.5$.

2. The One-time Pad is used for encryption.

Let $m, m' \in M$ be distinct messages, $k \in K$ be a key (all binary strings of length ℓ). It is proposed to use the same key k to encrypt both m and m'. (At the end of WWII, the Soviet Union ran out of keypads and started re-using earlier ones).

If this were allowed then:

Show that the One-time Pad is not a secure encryption scheme according to the definition you gave above.

(Assume that the adversary uses a ciphertext only attack)

Answer.

Let $c = k \oplus m, \ c' = k \oplus m'$.

Then $c \oplus c' = k \oplus m \oplus k \oplus m' = (k \oplus k) \oplus (m \oplus m') = m \oplus m'$.

So the adversary can derive a function $(m \oplus m')$ of the plaintexts m, m' by combining the ciphertexts c, c'.

Therefore the encryption scheme is not secure.