COP 4531
Complexity & Analysis of Data Structures & Algorithms

Overview of Graphs
Breadth First Search, and Depth First Search

Thanks to several people who contributed to these slides including Piyush Kumar and S-H Poon (BFS detailed example) and the text authors.
Outline

• What are Graphs?
• Terminology
• Representation (Adjacency matrices and Linked lists)
• Searching
 - Breadth First Search (BFS)
 - Depth First Search (DFS)
Graphs

- A graph \(G = (V,E) \) is composed of:
 - \(V \): set of vertices
 - \(E \subseteq V \times V \): set of edges connecting the vertices

- An edge \(e = (u,v) \) is an ordered or unordered pair of vertices
 - Directed graphs ordered: \((u, v)\)
 - Edge incident from or leaves \(u \)
 - Edge incident to or enters \(v \)
 - Undirected graphs unordered: \(\{u, v\} \)
Graphs with edge weights

- The initial graph definition defines whether an edge exists or not.
- Often we want to associate a weight \(w(e) \) to the edge:
 \[
 w: E \rightarrow \mathbb{R}
 \]
- The weight can represent distance, time, etc.
Directed graphs

source

sink

(b) Graph2 is a directed graph.

V(Graph2) = {1, 3, 5, 7, 9, 11}
E(Graph2) = {{1, 3}, (3, 1), (5, 7), (5, 9), (9, 11), (9, 9), (11, 1)}
An undirected graph
A more complicated undirected graph
Some Graph Applications

<table>
<thead>
<tr>
<th>Graph</th>
<th>Nodes</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersections</td>
<td>highways</td>
</tr>
<tr>
<td>communication</td>
<td>computers</td>
<td>fiber optic cables</td>
</tr>
<tr>
<td>World Wide Web</td>
<td>web pages</td>
<td>hyperlinks</td>
</tr>
<tr>
<td>social</td>
<td>people</td>
<td>relationships</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey</td>
</tr>
<tr>
<td>software systems</td>
<td>functions</td>
<td>function calls</td>
</tr>
<tr>
<td>scheduling</td>
<td>tasks</td>
<td>precedence constraints</td>
</tr>
<tr>
<td>circuits</td>
<td>gates</td>
<td>wires</td>
</tr>
</tbody>
</table>
Terminology

- **a is adjacent to b iff** \((a,b) \in E\).
- **degree** \((a) =\) number of adjacent vertices (Self loop counted twice)
- **Self Loop**: \((a,a)\)
- **Could also define parallel edges**:
 - \(E = \{ \ldots(a,b), (a,b)\ldots\}\) is a multiset
• A Simple Graph is a graph with no self loops or parallel edges.
• Incidence: v is incident to e if v is an end vertex of e.
Degree of a vertex

- The number of edges incident on the vertex in an undirected graph
- For directed graphs we have out-degree and in-degree (edges leaving or entering the vertex). The degree is in-degree + out-degree
- Isolated vertex has degree 0
- Max degree vertex, min degree vertex
Example

- Max Degree = 4. Isolated vertices = 1.
- $|V| = 8$, $|E| = 8$

 Sum of degrees = 16 =

 $2|E| = \sum_{v \in V} \text{degree (v)}$
- Handshaking theorem
QUESTION

• How many edges are there in a graph with 100 vertices each of degree 4?
QUESTION

• How many edges are there in a graph with 100 vertices each of degree 4?
 - Total degree sum = 400 = 2 |E|
 - 200 edges by the handshaking theorem.
Handshaking Corollary

The number of vertices with odd degree is always even.

Proof: Let V_1 and V_2 be the set of vertices of even and odd degrees, respectively (Hence $V_1 \cap V_2 = \emptyset$, and $V_1 \cup V_2 = V$).

- Now we know that
 \[2|E| = \sum_{v \in V} \text{degree}(v) = \sum_{v \in V_1} \text{degree}(v) + \sum_{v \in V_2} \text{degree}(v)\]

- Since degree(v) is odd for all $v \in V_2$, $|V_2|$ must be even.
Representation

• Two ways
 - Adjacency List
 • (as a linked list for each node in the graph to represent the edges)
 - Adjacency Matrix
 • (as a boolean matrix)
Representing Graphs

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Adjacent Vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2, 3, 4</td>
</tr>
<tr>
<td>2</td>
<td>1, 4</td>
</tr>
<tr>
<td>3</td>
<td>1, 4</td>
</tr>
<tr>
<td>4</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial Vertex</th>
<th>Terminal Vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>
adjacency list

1
2
3
4

2
1
4
3
4
2
3
adjacency matrix

\[
\begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\end{pmatrix}
, \quad
\begin{pmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
\end{pmatrix}
, \quad
\begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\end{pmatrix}
\]
Another example (directed graph)

1. Adjacency Matrix

2. Adjacency List
Another example
(undirected graph)
AL Vs AM

- AL: Takes $O(|V| + |E|)$ space
- AM: Takes $O(|V|^*|V|)$ space

Question: How much time does it take to find out if (v_i,v_j) belongs to E?

- AM?
- AL?
AL Vs AM

- AL: Takes $O(|V| + |E|)$ space
- AM: Takes $O(|V|^*|V|)$ space
- Question: How much time does it take to find out if (v_i, v_j) belongs to E?
 - AM : $O(1)$
 - AL : $O(|V|)$ in the worst case.
Connectivity

• s-t connectivity problem. Given two node s and t, is there a path between s and t?

• s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

• Applications.
 - Maze traversal.
 - Kevin Bacon number / Erdos number
 - Fewest number of hops in a communication network.
 - Friendster.
BFS/DFS

• Breadth-first search (BFS) and depth-first search (DFS) are two distinct orders in which to visit the vertices and edges of a graph.
• BFS: radiates out from a root to visit vertices in order of their distance from the root. Thus closer nodes get visited first.
Breadth first search

- Question: Given G in AM form, how do we say if there is a path between nodes a and b?

- Note: Using AM or AL its easy to answer if there is an edge (a,b) in the graph, but not path questions. This is one of the reasons to learn BFS/DFS.
BFS

- A Breadth-First Search (BFS) traverses a connected component of a graph, and in doing so defines a spanning tree.
Algorithm \(BFS(s)\)

Input: \(s\) is the source vertex

Output: Mark all vertices that can be visited from \(s\).

1. for each vertex \(v\)
2. \hspace{1cm} do \(\text{flag}[v] := \text{false};\)
3. \(Q = \text{empty queue};\)
4. \(\text{flag}[s] := \text{true};\)
5. \(\text{enqueue}(Q, s);\)
6. while \(Q\) is not empty
7. \hspace{1cm} do \(v := \text{dequeue}(Q);\)
8. \hspace{1cm} for each \(w\) adjacent to \(v\)
9. \hspace{2cm} do if \(\text{flag}[w] = \text{false}\)
10. \hspace{3cm} then \(\text{flag}[w] := \text{true};\)
11. \hspace{3cm} \text{enqueue}(Q, w)\)
Example

\[Q = \{ \} \]

Initialize \(Q \) to be empty
Example

\[Q = \{ 2 \} \]

Place source 2 on the queue.
Example

Q = \{2\} \rightarrow \{8, 1, 4\}

Dequeue 2.
Place all unvisited neighbors of 2 on the queue
Example

Q = \{ 8, 1, 4 \} \rightarrow \{ 1, 4, 0, 9 \}

Dequeue 8.
-- Place all unvisited neighbors of 8 on the queue.
-- Notice that 2 is not placed on the queue again, it has been visited!
Example

\[Q = \{ 1, 4, 0, 9 \} \rightarrow \{ 4, 0, 9, 3, 7 \} \]

Dequeue 1.
-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven’t been visited yet.
Example

\(Q = \{ 4, 0, 9, 3, 7 \} \rightarrow \{ 0, 9, 3, 7 \} \)

Dequeue 4.
-- 4 has no unvisited neighbors!
Example

Q = \{ 0, 9, 3, 7 \} \rightarrow \{ 9, 3, 7 \}

Dequeue 0.
-- 0 has no unvisited neighbors!
Example

\[Q = \{ 9, 3, 7 \} \rightarrow \{ 3, 7 \} \]

Deque 9.
-- 9 has no unvisited neighbors!
Example

Q = \{ 3, 7 \} \rightarrow \{ 7, 5 \}

Dequeue 3.
-- place neighbor 5 on the queue.
Example

\[Q = \{7, 5\} \rightarrow \{5, 6\} \]

Deque 7.
-- place neighbor 6 on the queue.
Example

\[Q = \{5, 6\} \rightarrow \{6\} \]

Deque 5.
-- no unvisited neighbors of 5.
Example

Adjacency List

Visited Table (T/F)

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Q = { 6 } → { }

Dequeue 6.
-- no unvisited neighbors of 6.
Example

Q = { } STOP!!! Q is empty!!!

What did we discover?

Look at “visited” tables.

There exist a path from source vertex 2 to all vertices in the graph!
Time Complexity of BFS
(Using adjacency list)

- Assume adjacency list
 - $n =$ number of vertices $m =$ number of edges

Algorithm $BFS(s)$

Input: s is the source vertex

Output: Mark all vertices that can be visited from s.

1. for each vertex v
2. do $\text{flag}[v] := \text{false};$
3. $Q =$ empty queue;
4. $\text{flag}[s] := \text{true};$
5. $\text{enqueue}(Q, s);$
6. while Q is not empty
7. do $v := \text{dequeue}(Q);$
 No more than n vertices are ever put on the queue.
8. for each w adjacent to v
9. do if $\text{flag}[w] =$ false
10. then $\text{flag}[w] := \text{true};$
11. $\text{enqueue}(Q, w)$

How many adjacent nodes will we ever visit. This is related to the number of edges. How many edges are there?

$$\sum_{\text{vertex } v \in V} \text{deg}(v) = 2m^*$$

*Note: this is not per iteration of the while loop. This is the sum over all the while loops!
Time Complexity of BFS
(Using adjacency matrix)

- Assume adjacency matrix
 - \(n = \) number of vertices \(m = \) number of edges

Algorithm \(BFS(s) \)

Input: \(s \) is the source vertex
Output: Mark all vertices that can be visited from \(s \).

1. for each vertex \(v \)
2. do \(flag[v] := \) false;
3. \(Q = \) empty queue;
4. \(flag[s] := \) true;
5. \(enqueue(Q, s) \);
6. while \(Q \) is not empty
7. do \(v := dequeue(Q) \);
8. for each \(w \) adjacent to \(v \)
9. do if \(flag[w] = \) false
10. then \(flag[w] := \) true;
11. \(enqueue(Q, w) \)

\(O(n^2) \)

So, adjacency matrix is not good for BFS!!!

No more than \(n \) vertices are ever put on the queue. \(O(n) \)

Using an adjacency matrix. To find the neighbors we have to visit all elements in the row of \(v \). That takes constant time \(O(n) \)!
Path Recording

• BFS only tells us if a path exists from source s, to other vertices v.
 - It doesn’t tell us the path!
 - We need to modify the algorithm to record the path.

• Not difficult
 - Use an additional predecessor array $\text{pred}[0..n-1]$
 - $\text{Pred}[w] = v$
 • Means that vertex w was visited by v
BFS + Path Finding

Algorithm \(BFS(s) \)
1. for each vertex \(v \)
2. \(\text{do } \) \(flag(v) \) := false;
3. \(\text{pred}[v] := -1; \)
4. \(Q = \text{empty queue;} \)
5. \(flag[s] := \text{true;} \)
6. \(\text{enqueue}(Q, s); \)
7. \(\text{while } Q \text{ is not empty} \)
8. \(\text{do } v := \text{dequeue}(Q); \)
9. \(\text{for each } w \text{ adjacent to } v \)
10. \(\text{do if } flag[w] = \text{false} \)
11. \(\text{then } flag[w] := \text{true}; \)
12. \(\text{pred}[w] := v; \)
13. \(\text{enqueue}(Q, w) \)

Set \(\text{pred}[v] \) to -1 (let -1 means no path to any vertex)

Record who visited \(w \)
Adjacency List

Visited Table (T/F)

Q = {} Initialize Q to be empty

Initialize visited table (all empty F)

Initialize Pred to -1
Example

Adjacency List

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>8</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td></td>
<td>0</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visited Table (T/F)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td></td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
</tr>
</tbody>
</table>

Flag that 2 has been visited.

\[Q = \{ 2 \} \]

Place source 2 on the queue.
Example

Dequeue 2.
Place all unvisited neighbors of 2 on the queue

\[Q = \{2\} \rightarrow \{8, 1, 4\} \]

Mark neighbors as visited.

Record in Pred who was visited by 2.
Example

Adjacency List

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Visit Table (T/F)

Q = \{ 8, 1, 4 \} → \{ 1, 4, 0, 9 \}

Dequeue 8.
-- Place all unvisited neighbors of 8 on the queue.
-- Notice that 2 is not placed on the queue again, it has been visited!
Example

Q = \{ 1, 4, 0, 9 \} \rightarrow \{ 4, 0, 9, 3, 7 \}

Dequeue 1.
-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven’t been visited yet.
Example

\[Q = \{ 4, 0, 9, 3, 7 \} \rightarrow \{ 0, 9, 3, 7 \} \]

Dequeue 4.
-- 4 has no unvisited neighbors!
Example

Q = \{ 0, 9, 3, 7 \} \rightarrow \{ 9, 3, 7 \}

Dequeue 0.
-- 0 has no unvisited neighbors!
Example

Q = \{ 9, 3, 7 \} \rightarrow \{ 3, 7 \}

Dequeue 9.
-- 9 has no unvisited neighbors!
Example

\[Q = \{ 3, 7 \} \rightarrow \{ 7, 5 \} \]

Dequeue 3.
-- place neighbor 5 on the queue.
Example

\[Q = \{7, 5\} \rightarrow \{5, 6\} \]

Deque 7.
-- place neighbor 6 on the queue.

Mark new visited Vertex 6.

Record in Pred who was visited by 7.
Example

\[Q = \{5, 6\} \rightarrow \{6\} \]

Dequeue 5.
-- no unvisited neighbors of 5.
Example

Q = \{ 6 \} → \{ \}

Deque 6.
-- no unvisited neighbors of 6.
Example

Adjacency List

```
0: 8
1: 3 7 9 2
2: 8 1 4
3: 4 5 1
4: 2 3
5: 3 6
6: 7 5
7: 1 6
8: 2 0 9
9: 1 8
```

Visited Table (T/F)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
</tr>
</tbody>
</table>

Pred

```
5 8
```

Neighbors

```
2
-
7
1
2
3
7
1
2
8
```

Q = \{ \}
STOP!!! Q is empty!!!

Pred now stores the path!
Pred array represents paths

Try some examples.
P
Path(0) ->
Path(6) ->
Path(1) ->

Algorithm $Path(w)$
1. if $pred[w] \neq -1$
2. then
3. $Path(pred[w])$
4. output w
BFS tree

• We often draw the BFS paths as a m-ary tree, where s is the root.

Question: What would a “level” order traversal tell you?
Can also keep track of the distance from the source

• Assumption: if an edge \((u, v)\) exists, then distance is 1 from \(u\) to \(v\)

• In the next example code, each vertex initially has a color (white). When it is enqueued, color is set to gray. When it is dequeued color is set to black.
BFS(G, s)

for each vertex $u \in G, V - \{s\}$
 $u.color = \text{white}; u.d = \infty; \quad u.\pi = \text{nil}$

$s.color = \text{gray}; s.d = 0; s.\pi = \text{nil}, Q = \emptyset; \text{Enqueue}(Q, s)$

while $Q \neq \emptyset$
 $u = \text{Dequeue}(Q)$
 for each $v \in G.\text{Adj}[u]$
 if $v.color == \text{white}$
 $v.color = \text{gray}$
 $v.d = u.d + 1$
 $v.\pi = u$
 $\text{Enqueue}(Q, v)$

$u.color = \text{black}$
BFS

- Breadth first search is a basis for many algorithms including spanning trees and single source shortest path
- Next, we will explore depth first search and applications
Another example BFS
Depth First Search

• Recall that in breadth first search, the discovery of nodes proceeds as a wavefront hitting all nodes 1 distance from the source, then 2, etc.

• In depth first search we instead search deeper into the graph whenever possible
 - dfs explores the edges out of the most recently discovered vertex first
 - dfs creates a forest of trees that are reachable from the tree roots
The DFS algorithm

• Input: \(G = (V, E) \)
 - directed or undirected.
 - No source vertex is assigned

• Output: 2 timestamps for each vertex
 - \(v.d \) = discovery time
 - \(v.f \) = finishing time

• Explore every edge
 - start from different vertices as needed
 - as soon as a vertex is discovered, explore from it
 - keep track of a predecessor tree by keeping track of a predecessor function \(v.\pi \) for each node

• As algorithm progresses vertex colors represent
 - white: undiscovered node
 - gray: discovered node but not finished exploring
 - black: finished exploring from this node
DFS pseudocode

DFS(G)
for each vertex \(u \in G.V \)
 \(u.\text{color} = \text{white}; \ u.\pi = \text{nil}; \)
\(\text{time} = 0 \)
for each vertex \(u \in G.V \)
 if \(u.\text{color} == \text{white} \)
 DFS-visit(G, u)

DFS-visit(G, u)
\(\text{time} = \text{time} + 1; \ u.d = \text{time}; \ u.\text{color} = \text{gray} \)
for each \(v \in G.\text{Adj}[u] \)
 if \(v.\text{color} == \text{white} \)
 \(v.\pi = u \);
 DFS-visit(G, v)
\(u.\text{color} = \text{black}; \ \text{time} = \text{time} + 1; \ u.f = \text{time} \)
Example DFS