COP 4531
Complexity & Analysis of Data Structures & Algorithms

Lecture 18
Reductions and NP-completeness

Thanks to Kevin Wayne and the text authors who contributed to these slides
Classify Problems According to Computational Requirements

- Q. Which problems will we be able to solve in practice?
- A working definition: those with polynomial-time algorithms.

<table>
<thead>
<tr>
<th>Yes</th>
<th>Probably no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortest path</td>
<td>Longest path</td>
</tr>
<tr>
<td>Matching</td>
<td>3D-matching</td>
</tr>
<tr>
<td>Min cut</td>
<td>Max cut</td>
</tr>
<tr>
<td>2-SAT</td>
<td>3-SAT</td>
</tr>
<tr>
<td>Planar 4-color</td>
<td>Planar 3-color</td>
</tr>
<tr>
<td>Bipartite vertex cover</td>
<td>Vertex cover</td>
</tr>
<tr>
<td>Primality testing</td>
<td>Factoring</td>
</tr>
</tbody>
</table>
Classify Problems

• Classify problems according to those that can be solved in polynomial-time and those that cannot.

• Provably requires exponential-time.
 - Given a Turing machine, does it halt in at most k steps?
 - Given a board position in an n-by-n generalization of chess, can black guarantee a win?

• Cannot be solved at all: Given an arbitrary Turing machine T and an input x, Does T halt on x.

• Frustrating news. Huge number of fundamental problems have defied classification for decades.

• But, we can show that many of these fundamental problems are "computationally equivalent" and appear to be different manifestations of one really hard problem.
Polynomial-Time Reduction

• Suppose we could solve B in polynomial-time. What else could we solve in polynomial time?

• Reduction. Problem A polynomial reduces to problem B if arbitrary instances of problem A can be solved using:
 - Polynomial transform an instance \(a \) of A to a problem \(\beta \) of B
 - The answers are the same. The answer for \(a \) is “yes” if and only if the answer for \(\beta \) is “yes”

• Notation. \(A \leq_p B \).
Polynomial-Time Reduction

• Purpose. Classify problems according to relative difficulty.

• Design algorithms. If \(A \leq_p B \) and \(B \) can be solved in polynomial-time, then \(A \) can also be solved in polynomial time.

• Establish intractability. If \(A \leq_p B \) and \(A \) cannot be solved in polynomial-time, then \(B \) cannot be solved in polynomial time.

• Establish equivalence. If \(A \leq_p B \) and \(B \leq_p A \), we use notation \(A \equiv_p B \).

\[\text{up to cost of reduction} \]
Reduction By Simple Equivalence

Basic reduction strategies

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.
Independent Set

• INDEPENDENT SET: Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \geq k$, and for each edge at most one of its endpoints is in S?

• Ex. Is there an independent set of size ≥ 6? Yes.
• Ex. Is there an independent set of size ≥ 7? No.
Vertex Cover

- **VERTEX COVER:** Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge, at least one of its endpoints is in S?

- Ex. Is there a vertex cover of size ≤ 4? Yes.
- Ex. Is there a vertex cover of size ≤ 3? No.
Claim. \(\text{VERTEX-COVER} \equiv_p \text{INDEPENDENT-SET} \).

Pf. We show \(S \) is an independent set iff \(V - S \) is a vertex cover.
Claim. \textsc{INDEPENDENT-SET} \equiv_p \textsc{VERTEX-COVER} \\

Pf. We show S is an independent set iff $V - S$ is a vertex cover.

\implies
- Let S be any independent set.
- Consider an arbitrary edge (u, v).
- S independent $\implies u \notin S$ or $v \notin S \implies u \in V - S$ or $v \in V - S$.
- Thus, $V - S$ covers (u, v).

\iff
- Let $V - S$ be any vertex cover.
- Consider two nodes $u \in S$ and $v \in S$.
- Observe that $(u, v) \notin E$ since $V - S$ is a vertex cover.
- Thus, no two nodes in S are joined by an edge $\implies S$ independent set.
Reduction from Special Case to General Case

Basic reduction strategies:
- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.
Set Cover

- SET COVER: Given a set U of elements, a collection S_1, S_2, \ldots, S_m of subsets of U, and an integer k, does there exist a collection of $\leq k$ of these sets whose union is equal to U?

- Sample application.
 - m available pieces of software.
 - Set U of n capabilities that we would like our system to have.
 - The ith piece of software provides the set $S_i \subseteq U$ of capabilities.
 - Goal: achieve all n capabilities using fewest pieces of software.

- Ex:

<table>
<thead>
<tr>
<th>U = {1, 2, 3, 4, 5, 6, 7}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 2$</td>
</tr>
<tr>
<td>$S_1 = {3, 7}$</td>
</tr>
<tr>
<td>$S_2 = {3, 4, 5, 6}$</td>
</tr>
<tr>
<td>$S_3 = {1}$</td>
</tr>
<tr>
<td>$S_4 = {2, 4}$</td>
</tr>
<tr>
<td>$S_5 = {5}$</td>
</tr>
<tr>
<td>$S_6 = {1, 2, 6, 7}$</td>
</tr>
</tbody>
</table>
Vertex Cover Reduces to Set Cover

- Claim. VERTEX-COVER \leq_P SET-COVER.

- Pf. Given a VERTEX-COVER instance $G = (V, E)$, k, we construct a set cover instance whose size equals the size of the vertex cover instance.

- Construction.
 - Create SET-COVER instance:
 - $k = k$, $U = E$, $S_v = \{e \in E : e$ incident to v $\}$
 - Set-cover of size $\leq k$ iff vertex cover of size $\leq k$. □

Vertex Cover

$U = \{1, 2, 3, 4, 5, 6, 7\}$
$k = 2$

$S_a = \{3, 7\}$
$S_b = \{2, 4\}$
$S_c = \{3, 4, 5, 6\}$
$S_d = \{5\}$
$S_e = \{1\}$
$S_f = \{1, 2, 6, 7\}$
Reductions via "Gadgets"

Basic reduction strategies.

Reduction by simple equivalence.

Reduction from special case to general case.

Reduction via "gadgets."
Satisfiability

• Literal: A Boolean variable or its negation. \(x_i \) or \(\overline{x_i} \)

• Clause: A disjunction of literals. \(C_j = x_1 \lor \overline{x_2} \lor x_3 \)

• Conjunctive normal form: A propositional formula \(\Phi \) that is the conjunction of clauses. \(\Phi = C_1 \land C_2 \land C_3 \land C_4 \)

• SAT: Given CNF formula \(\Phi \), does it have a satisfying truth assignment?

• 3-SAT: SAT where each clause contains exactly 3 literals.

\[
\begin{align*}
\text{Ex:} & \quad (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3} \lor \overline{x_4}) \\
\text{Yes:} & \quad x_1 = \text{true}, \ x_2 = \text{true} \ x_3 = \text{false}.
\end{align*}
\]
3 Satisfiability Reduces to Independent Set

- **Claim.** 3-SAT \leq_p INDEPENDENT-SET.

- **Pf.** Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

- **Construction.**
 - G contains 3 vertices for each clause, one for each literal.
 - Connect 3 literals in a clause in a triangle.
 - Connect literal to each of its negations.

$$\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$$

$k = 3$
3 Satisfiability Reduces to Independent Set

- **Claim.** \(G \) contains independent set of size \(k = |\Phi| \) iff \(\Phi \) is satisfiable.

- **Pf.** \(\Rightarrow \) Let \(S \) be independent set of size \(k \).
 - \(S \) must contain exactly one vertex in each triangle.
 - Set these literals to true. — and any other variables in a consistent way
 - Truth assignment is consistent and all clauses are satisfied.

- **Pf** \(\Leftarrow \) Given satisfying assignment, select one true literal from each triangle. This is an independent set of size \(k \).

\[
\Phi = \overline{x_1} \lor x_2 \lor x_3 \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)
\]
Review

- Basic reduction strategies.
 - Simple equivalence: \(\text{INDEPENDENT-SET} \equiv_p \text{VERTEX-COVER} \).
 - Special case to general case: \(\text{VERTEX-COVER} \leq_p \text{SET-COVER} \).
 - Encoding with gadgets: \(3\text{-SAT} \leq_p \text{INDEPENDENT-SET} \).

- Transitivity. If \(X \leq_p Y \) and \(Y \leq_p Z \), then \(X \leq_p Z \).
- Pf idea. Compose the two algorithms.

- Ex: \(3\text{-SAT} \leq_p \text{INDEPENDENT-SET} \leq_p \text{VERTEX-COVER} \leq_p \text{SET-COVER} \).
Decision Problems vs. Optimization Problems

• Decision problem. Does there exist a vertex cover of size \(\leq k \)?

• Optimization problem. Find vertex cover of minimum cardinality.

• It is easy to see that decision problem \(\leq_p \) optimization version.
 - Solve optimization problem; compare solution with \(k \).
 - Since we will generally be interested in proving that a problem is hard, if we can show the decision problem is hard, then we know the corresponding optimization problem is also hard.

• Self-reducibility. Optimization problem \(\leq_p \) decision version.
 - Applies to all (NP-complete) problems we consider.
 - Further justifies our focus on decision problems.
Decision Problems

- Decision problem.
 - X is a set of strings.
 - Instance: string s.
 - Algorithm A solves problem X: $A(s) = \text{yes}$ iff $s \in X$.

- Polynomial time. Algorithm A runs in poly-time if for every string s, $A(s)$ terminates in at most $p(|s|)$ "steps", where $p(\cdot)$ is some polynomial.

- $PRIMES: X = \{2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, \ldots\}$
- Algorithm. [2002] $p(|s|) = |s|^8$.

\[\text{length of } s \]

Definition of P

- **P.** Decision problems for which there is a poly-time algorithm.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
<th>Algorithm</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>MULTIPLE</td>
<td>Is x a multiple of y?</td>
<td>Grade school division</td>
<td>51, 17</td>
<td>51, 16</td>
</tr>
<tr>
<td>RELPRIME</td>
<td>Are x and y relatively prime?</td>
<td>Euclid (300 BCE)</td>
<td>34, 39</td>
<td>34, 51</td>
</tr>
<tr>
<td>PRIMES</td>
<td>Is x prime?</td>
<td>AKS (2002)</td>
<td>53</td>
<td>51</td>
</tr>
<tr>
<td>EDIT-DISTANCE</td>
<td>Is the edit distance between x and y less than 5?</td>
<td>Dynamic programming</td>
<td>neither</td>
<td>acgggttttta</td>
</tr>
<tr>
<td>LSOLVE</td>
<td>Is there a vector x that satisfies $Ax = b$?</td>
<td>Gauss-Edmonds elimination</td>
<td>[0 1 1] , [4]</td>
<td>[1 0 0] , [1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[2 4 -2] , [2]</td>
<td>[1 1 1] , [1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[0 3 15] , [36]</td>
<td>[0 1 1] , [1]</td>
</tr>
</tbody>
</table>
• Certification algorithm intuition.
 - Certifier views things from "managerial" viewpoint.
 - Certifier doesn't determine whether $s \in X$ on its own; rather, it checks a proposed proof t that $s \in X$.

• Def. Algorithm $C(s, t)$ is a **certifier** for problem X if for every string s, $s \in X$ iff there exists a string t such that $C(s, t) = \text{yes}$.

 "certificate" or "witness"

• NP. Decision problems for which there exists a **poly-time** certifier.

 $C(s, t)$ is a poly-time algorithm and $|t| \leq p(|s|)$ for some polynomial $p(\cdot)$.

• Remark. NP stands for **nondeterministic** polynomial-time.
Certifiers and Certificates: Composite

- **COMPOSITES.** Given an integer s, is s composite?

- **Certificate.** A nontrivial factor t of s. Note that such a certificate exists iff s is composite. Moreover |t| ≤ |s|.

- **Certifier.**

```java
boolean C(s, t) {
    if (t ≤ 1 or t ≥ s)
        return false
    else if (s is a multiple of t)
        return true
    else
        return false
}
```

- **Instance.** s = 437,669.

- **Certificate.** t = 541 or 809.

 437,669 = 541 × 809

- **Conclusion.** COMPOSITES is in NP.
Certifiers and Certificates: 3-Satisfiability

- **SAT.** Given a CNF formula Φ, is there a satisfying assignment?

- **Certificate.** An assignment of truth values to the n boolean variables.

- **Certifier.** Check that each clause in Φ has at least one true literal.

- **Ex.**

 $$(\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3} \lor \overline{x_4})$$

 instance s

 $x_1 = 1, \ x_2 = 1, \ x_3 = 0, \ x_4 = 1$

- **Conclusion.** SAT is in NP. certificate \vdash
Certifiers and Certificates: Hamiltonian Cycle

- **HAM-CYCLE.** Given an undirected graph \(G = (V, E) \), does there exist a simple cycle \(C \) that visits every node?

- **Certificate.** A permutation of the \(n \) nodes.

- **Certifier.** Check that the permutation contains each node in \(V \) exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

- **Conclusion.** HAM-CYCLE is in NP.
P, NP, EXP

- **P.** Decision problems for which there is a **poly-time algorithm**.
- **EXP.** Decision problems for which there is an **exponential-time algorithm**.
- **NP.** Decision problems for which there is a **poly-time certifier**.

- **Claim.** \(P \subseteq NP \).
 - **Pf.** Consider any problem \(X \) in \(P \).
 - By definition, there exists a poly-time algorithm \(A(s) \) that solves \(X \).
 - Certificate: separate \(t \) not needed, certifier \(C(s, t) = A(s) \).

- **Claim.** \(NP \subseteq EXP \).
 - **Pf.** Consider any problem \(X \) in \(NP \).
 - By definition, there exists a poly-time certifier \(C(s, t) \) for \(X \).
 - To solve input \(s \), run \(C(s, t) \) on all strings \(t \) with \(|t| \leq p(|s|) \).
 - Return \(yes \), if \(C(s, t) \) returns \(yes \) for any of these.
The Main Question: P Versus NP

- Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
 - Is the decision problem as easy as the certification problem?
 - Clay $1 million prize.

- If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ...
- If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...

- Consensus opinion on P = NP? Probably no.
NP-Complete

- NP-complete. A problem Y in NP with the property that for every problem X in NP, $X \leq_p Y$. (Hardest problems in NP)

- **Theorem.** Suppose Y is an NP-complete problem. Then Y is solvable in poly-time iff $P = NP$.

 - **Pf.** \Leftarrow If $P = NP$ then Y can be solved in poly-time since Y is in NP.
 - **Pf.** \Rightarrow Suppose Y can be solved in poly-time.
 - Let X be any problem in NP. Since $X \leq_p Y$, we can solve X in poly-time. This implies $NP \subseteq P$.
 - We already know $P \subseteq NP$. Thus $P = NP$. □
Circuit Satisfiability

- **CIRCUIT-SAT.** Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1?

![Circuit Diagram]

- Yes: 1 0 1

![Output Diagram]
The "First" NP-Complete Problem

• Theorem. CIRCUIT-SAT is NP-complete.

• Pf. (sketch)
 - Any algorithm that takes a fixed number of bits \(n \) as input and produces a yes/no answer can be represented by such a circuit. Moreover, if algorithm takes poly-time, then circuit is of poly-size.

 sketchy part of proof; fixing the number of bits is important, and reflects basic distinction between algorithms and circuits

- Consider some problem \(X \) in NP. It has a poly-time certifier \(C(s, t) \).
 To determine whether \(s \) is in \(X \), need to know if there exists a certificate \(t \) of length \(p(|s|) \) such that \(C(s, t) = \text{yes} \).

- View \(C(s, t) \) as an algorithm on \(|s| + p(|s|) \) bits (input \(s \), certificate \(t \)) and convert it into a poly-size circuit \(K \).
 - first \(|s| \) bits are hard-coded with \(s \)
 - remaining \(p(|s|) \) bits represent bits of \(t \)

- Circuit \(K \) is satisfiable iff \(C(s, t) = \text{yes} \).
Example

- Ex. Construction below creates a circuit K whose inputs can be set so that K outputs true iff graph G has an independent set of size 2.

$G = (V, E), n = 3$

\[\binom{n}{2} \] hard-coded inputs (graph description) \hspace{1cm} n \text{ inputs (nodes in independent set)}

Example Construction below creates a circuit K whose inputs can be set so that K outputs true iff graph G has an independent set of size 2.
Establishing NP-Completeness

- Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

- Recipe to establish NP-completeness of problem Y.
 - Step 1. Show that Y is in NP.
 - Step 2. Choose an NP-complete problem X.
 - Step 3. Prove that $X \leq_p Y$.

- Justification. If X is an NP-complete problem, and Y is a problem in NP with the property that $X \leq_p Y$ then Y is NP-complete.

- Pf. Let W be any problem in NP. Then $W \leq_p X \leq_p Y$.
 - By transitivity, $W \leq_p Y$.
 - Hence Y is NP-complete. □
• Theorem. 3-SAT is NP-complete.

• Pf. Suffices to show that CIRCUIT-SAT \leq_p 3-SAT since 3-SAT is in NP.

• Hence we now have
 - 3-SAT \leq_p Independent Set \leq_p Vertex Cover \leq_p Set Cover
 - In our NP-Complete Bank
X problems?

 Couldn’t find a poly-time solution bossss 😞?
X problems?

Couldn’t find a poly-time solution boss because none exists.
X problems?

Couldn’t find a poly-time solution boss but neither could all these smart people...
NP-Completeness

- Observation. All problems below are NP-complete and polynomial reduce to one another!

Diagram:
- CIRCUIT-SAT
 - 3-SAT
 - 3-SAT reduces to INDEPENDENT SET
 - INDEPENDENT SET
 - VERTEX COVER
 - SET COVER
 - HAM-CYCLE
 - TSP
 - PLANAR 3-COLOR
 - SCHEDULING
 - GRAPH 3-COLOR
 - SUBSET-SUM

by definition of NP-completeness
Some NP-Complete Problems

- Six basic genres of NP-complete problems and paradigmatic examples.
 - Packing problems: SET-PACKING, INDEPENDENT SET.
 - Covering problems: SET-COVER, VERTEX-COVER.
 - Constraint satisfaction problems: SAT, 3-SAT.
 - Sequencing problems: HAMILTONIAN-CYCLE, TSP.
 - Partitioning problems: 3D-MATCHING, 3-COLOR.
 - Numerical problems: SUBSET-SUM, KNAPSACK.

- Practice. Most NP problems are either known to be in P or NP-complete.

- Notable exceptions. Factoring, graph isomorphism, Nash equilibrium.