Confidential Channels

Using encryption for network security

What is encryption?

- Encryption is used to achieve confidentiality
- Alice and Bob, wish to communicate secretly.
- Curious Carl wants to listen into their private chat.

As root, try: tcpdump -A -s0
Ciphers

• Ciphers operate to “garble” their input to make it unintelligible. The output of a cipher (ciphertext) does not bear any clear relation to the input (clear-text or plaintext).
 – The earliest recorded example of the use of a cipher is by Julius Caesar to his generals: He would shift each letter to the third letter following it in the alphabet.
 • Example: Attack now → Dwwdfn qrz

Assumptions about cipher design

• The adversary knows the cipher algorithm.
• To achieve secrecy, ciphers use keys.
• A key is an auxiliary input to the algorithm that must be kept private.
 – Only the key value is private. It is assumed that the enemy knows how keys are generated.
Example: Vigenere cipher

\[K = \text{VECTOR} = (21,4,2,19,14,17) \]

\[
\begin{array}{cccccccccccccc}
 W & E & W & I & L & L & M & E & E & T & A & T & M & I & D & N & I & G & H & T \\
 \downarrow & \downarrow \\
 R & I & Y & B & Z & C & H & I & G & M & O & K & H & M & F & G & W & X & C & X \\
\end{array}
\]

Breaking the Vigenere Cipher

- The probability distribution of characters

![Histogram showing the probability distribution of characters for breaking the Vigenere Cipher]
Looking at the example again

\[K = \text{VECTOR} = (21, 4, 2, 19, 14, 17) \]

Index of coincidence

\[c_i = \# \text{ of occurrences of the } i\text{-th character} \]

\[c = \sum_i c_i \quad p_i = c_i / c, \]

\[p_i = \text{frequency of the } i\text{-th character} \]

\[IC = \sum_{i=0\ldots25} p_i^2 \quad IC \text{ for random text } \simeq 0.038 \]

\[IC \text{ for typical English } \simeq 0.065 \]
Choosing a cipher

- Ciphers are vulnerable to many known analysis techniques, and one must count on new attacks being discovered.

- General advice:
 - Avoid proprietary commercial ciphers whose design has not been publicly scrutinized. Do not develop your own if good alternatives exist: Adopt standards.

General encryption schemes
Symmetric vs. Asymmetric

• If the encryption and decryption keys are equal*, the scheme is said to be **symmetric**
• If the encryption and decryption keys differ, and moreover the decryption key cannot be computed from knowledge of the algorithm and encryption key, the scheme is **asymmetric**

Security of ciphers

From the Vigenere cipher to the Vernam one-time pad
Attacks on Encryption Schemes

- Types:
 - Passive:
 - Ciphertext only
 - Known-plaintext
 - Active:
 - Chosen plaintext (CPA)
 - Adaptive CPA
 - Chosen-ciphertext (CCA1)
 - Adaptive CCA (CCA2)

- Outcomes:
 - Total Break (key recovery)
 - Recovery of plaintext
 - Distinguishability between two alternative encrypted texts
 - Most stringent security: IND-CCA2

Perfect cipher

- If the Vigenere cipher has key at least as long as the plaintext, is chosen at random, and used only once:
 - The scheme is called the **Vernam One-Time Pad**
 - It is provably unbreakable, even if the adversary has infinite computational power

- Reasoning: Given some ciphertext, any message of the same size would encrypt to the observed ciphertext under some key.
Perfect secrecy

- Shannon proved that the only cipher that is secure against an all-powerful adversary
 - Has key length equal to, or larger than the message
 - The key is random
 - Used only once
 - As inefficient as the Vernam one-time pad

Modern ciphers

- Operates on binary plaintext
- Uses binary keys of fixed length
- Different types of ciphers:
 - Public key/asymmetric ciphers
 - Symmetric ciphers
 - Stream ciphers (RC4, A5/x, Helix, SEAL)
 - Block ciphers (Triple-DES, Blowfish, AES)
Modern ciphers (continues)

• Two basic operations
 – Substitution: Substitutes a code symbol (for instance bit octets) for another.
 • Example: shifts (Vegenere cipher), xor
 – Permutation: Transposes or re-orders the symbols present in the code

• Both steps are needed for security