
 1

The Conquest File System: Better Performance
Through a Disk/Persistent-RAM Hybrid Design
AN-I ANDY WANG
Florida State University

GEOFF KUENNING
Harvey Mudd College

PETER REIHER, GERALD POPEK�
University of California, Los Angeles
__

Modern file systems assume the use of disk, a system-wide performance bottleneck for over a decade. Current
disk caching and RAM file systems either impose high overhead to access memory content or fail to provide
mechanisms to achieve data persistence across reboots.

The Conquest file system is based on the observation that memory is becoming inexpensive, which enables
all file system services to be delivered from memory, except providing large storage capacity. Unlike caching,
Conquest uses memory with battery backup as persistent storage, and provides specialized and separate data
paths to memory and disk. Therefore, the memory data path contains no disk-related complexity. The disk data
path consists of only optimizations for the specialized disk usage pattern.

Compared to a memory-based file system, Conquest incurs little performance overhead. Compared to
several disk-based file systems, Conquest achieves 1.3x to 19x faster memory performance, and 1.4x to 2.0x
faster performance when exercising both memory and disk.

Conquest realizes most of the benefits of persistent RAM at a fraction of the cost of a RAM-only solution.
Conquest also demonstrates that disk-related optimizations impose high overheads for accessing memory
content in a memory-rich environment.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management—Storage Hierarchies;
D.4.3 [Operating Systems]: File System Management—Access Methods and Directory Structures; D.4.8
[Operating Systems]: Performance—Measurements
General Terms: Design, Experimentation, Measurement, and Performance
Additional Key Words and Phrases: Persistent RAM, File Systems, Storage Management, and Performance
Measurement
__

1. INTRODUCTION

For over 25 years, disk has been the dominant storage medium for most file systems.
Although disk storage capacity is advancing at a rapid rate, the mechanical latency of
disk has improved only at 15% per year compared to the 50-percent-per-year speed
__
� Gerald Popek is also associated with United On-Line.
This research was supported by the National Science Foundation under Grant No. CCR-0098363.
Authors' addresses: An-I Andy Wang, Department of Computer Science, Florida State University, Tallahassee,
FL 32306; email: awang@cs.fsu.edu; Geoffrey Kuenning, Computer Science Department, Harvey Mudd
College, CA 91711; email: geoff@cs.hmc.edu; Peter Reiher and Gerald Popek, Computer Science
Department, University of California, Los Angeles, CA 90095; email: { reiher, popek}@cs.ucla.edu

ACM COPYRIGHT NOTICE. Copyright 2006 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

 2

improvements of memory and CPU. Within the past ten years, these differences in
access rates have widened the performance gap between disk and CPU from five orders
of magnitude to six orders of magnitude.

The Conquest disk/persistent-RAM hybrid file system addresses the performance
problem of disk. The key observation is that the cost of persistent RAM (e.g. battery-
backed DRAM) is declining rapidly, and the assumption of RAM as a scarce resource is
becoming less true for average users. Conquest explores these emerging memory-rich
environments and their effects on file system architecture and better performance.

Compared to disk-based file systems, Conquest achieves 1.3x to 19x faster memory
performance, and 1.4x to 2.0x faster performance when exercising both memory and
disk. The Conquest experience also teaches the following lessons: (1) Current operating
systems have a deep-rooted assumption of high-latency storage throughout the computing
stack, which is difficult to bypass or remove. (2) File systems designed for disks fail to
exploit the full potential of memory performance in a memory-rich environment. (3)
Separating the data paths to low-latency and high-latency storage and matching workload
characteristics to appropriate storage media can yield significant performance gains and
data path simplifications.

1.1 The Emergence of Persistent RAM

Researchers have long been seeking alternative storage media to overcome the
deficiencies of disks [Baker et al. 1992, Douglis et al. 1994, Miller et al. 2001].
Recently, persistent RAM has emerged as a good candidate.

Typically, persistent RAM can be classified into flash RAM and battery-backed
DRAM (BB-DRAM). Both forms of persistent RAM can deliver two to six orders of
magnitude faster access times than disks. Flash RAM is mostly used for mobile devices
because of its ability to retain information with very low power. However, flash memory
has a number of limitations: (1) each memory location of a flash RAM is limited in
terms of the number of times it can be written and erased, so that flash is not suitable for
update-intensive loads; (2) the erasure time is in the range of seconds [Cáceres et al.
1993]; and (3) the density of flash memory storage is low compared to DRAM, and its
physical size imposes limitations for deployment on general-purpose machines.

BB-DRAM can operate at the speed of DRAM for all operations and general
workloads, but it requires a constant supply of power for persistent storage. Fortunately,
this power can easily be supplied by an uninterruptible power supply (UPS) or on-board
rechargeable batteries [PC World 2005].

Although a RAM-only storage solution can simplify the file system and provide
improved performance, cost is still a concern. Fig. 1.1 shows that even with their
accelerated price decline after 1998,
flash RAM and BB-DRAM are
unlikely to match disks economically
in the short run.

However, when the cost of
various storage technologies is
compared to that of paper and film,
we can make an interesting
observation: historically, paper and
film costs have represented an
approximate barrier for market
penetration. For example, disks with
various geometries have gained wide
acceptance as they crossed this

1995 2005

100

Year

$/MB
(log)

2000

10-2

10-1

101

102

paper/film

3.5” HDD
2.5” HDD

1” HDD

Persistent RAM

Fig. 1.1: Average price of storage. The shaded area
shows the cost of paper and film storage as a comparison
[Grochowski and Halem 2003].

 3

barrier [Grochowski and Halem 2003]. (We do not attempt to explain the barrier in
physical or economic terms, and are not necessarily convinced that there is any
relationship between paper costs and memory costs; we simply observe that there is a
price point below which technologies tend to gain acceptance.) Currently, persistent
RAM is crossing this barrier and thus is becoming an affordable storage option. Also, we
are seeing high-end machines equipped with 4 to 10 GB of RAM that can potentially be
converted into persistent storage. Therefore, a transitional approach to improving file
systems is to combine the use of RAM and disk storage in an innovative way.

1.2 Conquest Approach

Conquest is a disk/persistent-RAM hybrid file system that delivers all file system services
from persistent RAM, with the single exception that high-capacity storage is still
provided by traditional disks. In essence, Conquest provides two specialized and
simplified data paths to persistent-RAM and disk storage: (1) Conquest stores all small
files and metadata (e.g. directories and file attributes) in RAM; and (2) disk holds only
the data content of remaining large files (with their metadata stored in persistent RAM).

By partitioning data in this fashion, Conquest performs all file system management on
memory-resident data structures, thereby minimizing disk accesses. Tailoring file-system
data structures and management to the physical characteristics of memory significantly
improves performance compared to disk-only designs. In addition, traversing the
memory data path incurs no disk-related overhead, and the disk data path consists of only
the processing costs for handling access patterns that are suitable for disk.

Another benefit of Conquest is its ability to provide a smooth and cost-effective
transition from disk-based to persistent-RAM-based storage. Unlike other memory file
systems [McKusick et al. 1990; Douglis et al. 1994; Wu and Zwaenepoel 1994],
Conquest allows persistent RAM to assume more file system responsibility as memory
prices decline. Thus, Conquest can achieve most of the benefits of persistent RAM
without the high cost of RAM-only solutions.

2. COMMON ALTERNATIVES

The memory-rich environment significantly departs from the conventional mindset of
RAM-scarce environments. Therefore, simple solutions derived from the old view fail to
take complete advantage of new possibilities. In many cases, extensions to these simple
methods can give results similar to that of the Conquest approach, but these extensions
add so much complexity that they are no longer attractive alternatives.

This section discusses these approaches and their limitations. Some do not provide
the expected performance gains, while others do not provide a complete solution to the
problem of storing arbitrary amounts of data persistently, reliably, and conveniently.
Rather than adding the complications necessary to fix these approaches, a better approach
is to begin the design with a clean slate.

Caching: The most popular and effective approach to improving disk access speed is
the disk buffer cache, which fulfills disk requests from memory whenever possible. As a
common approach, replacing least recently used (LRU) memory blocks with newly read
blocks from disk can keep the disk cache populated with recently and frequently
referenced disk content. Variants of this approach would seem to be an attractive
alternative to Conquest, since adding memory requires no changes to the operating
system. With a few changes to the cache replacement policy, it might even be possible
for the existing disk buffer cache to behave like Conquest, leaving only the data content
of large files on disk.

 4

However, as memory access is becoming the common case in memory-rich
environments, the data path of caching is still tailored for eventual disk accesses. Our
results show that even when all accesses are fulfilled by cache, the performance penalty
can be up to a factor of 3.5 (Section 7.2). Therefore, altering modern cache policy to
cache only small files and metadata, or buffering writes indefinitely, will not exploit the
full performance potential of memory.

RAM drives and RAM file systems: RAM drives are reserved memory that is
accessed through the device interface. RAM drives are attractive because they follow
existing file system semantics and interfaces, and a RAM device is formatted and
mounted just as if it were a disk. However, a RAM drive is still subject to all disk-related
management—such as caching. Therefore, a piece of data can be both stored in the RAM
drive and cached in the disk buffer cache, doubling the memory consumption and halving
the access bandwidth.

A RAM file system can be implemented as a kernel module, without the need for an
associated device. RAM file systems under Linux and BSD [McKusick et al. 1990] are
built on the top of various temporary caches in the virtual file system interface (VFS)
[Kleiman 1986], so memory consumed by the RAM file system can be dynamically
allocated as needed. By saving both data and metadata in various caches, RAM file
systems avoid the duplicate memory consumption of RAM drives and can be expected to
perform at the speed of disk caching. In practice, RAM file systems tend to perform even
faster due to the lack of metadata and data commits to disk (Section 7.1.2).

At first glance, RAM drives or RAM file systems appear to be ideal alternatives ready
to replace disks in memory-rich environments. However, neither provides persistence of
data across reboots. Although persistent RAM provides nonvolatility of memory content,
persistence also requires a protocol for storing and retrieving the information from the
persistent medium, so that both the file system and the memory manager know how to
resurrect information from the storage medium across reboots.

For RAM drives, a protocol exists for storing and retrieving the in-memory
information, but there is no protocol for states within the memory manager to survive
reboots. Isolating these states is nontrivial, given that the existing memory manager
makes no distinctions between persistent and temporary states. For RAM file systems,
since the memory manager is unaware of the data content stored under various VFS
caches, neither the file system nor the memory states can survive reboots without
significant modifications to the system.

Both RAM drives and RAM file systems also incur unnecessary disk-related
overhead. On RAM drives, existing file systems, tuned for disk, are installed on the
emulated drive despite the absence of the mechanical limitations of disks. For example,
access to RAM drives is done in blocks, and the file system will attempt to place files in
"cylinder groups", even though cylinders and block boundaries no longer exist.

Although RAM file systems have eliminated some of these disk-related complexities,
they rely on VFS and its generic storage access routines; built-in mechanisms such as
readahead and buffer-cache reflect the assumption that the underlying storage medium is
slower than memory, leading to lower performance.

In addition, both RAM drives and RAM file systems limit the size of the files to the
size of main memory. These restrictions have limited the use of RAM drives and RAM
file systems to caching and temporary file systems. To move to a general-purpose
persistent-RAM file system, we need a substantially new design.

Disk emulators: To speed up deployment without kernel modifications, some
manufacturers offer RAM-based disk emulators [BitMicro 2005]. These emulators
generally plug into a standard SCSI or similar I/O port and look exactly like a disk drive
to the CPU. Although they provide a convenient solution to those who need an instant

 5

speedup, and they do not suffer the persistence problem of RAM drives, they again are an
interim solution that does not address the underlying problem and does not take
advantage of the unique benefits of RAM. All of the drawbacks of RAM drives apply,
and in addition, the use of standardized I/O interfaces forces emulators to use inadequate
access methods and low-bandwidth cables, greatly limiting in the utility as anything other
than a stopgap measure.

Customized memory filing services within applications: Some storage-intensive
applications (e.g. databases) use their own in-memory filing services to avoid accessing
disks. By accessing files within a process’s address space, this approach can avoid the
performance penalties of kernel crossings and system calls, in addition to expensive disk
accesses. Also, since this approach involves no changes to the underlying kernel,
modified applications are more portable to other operating system platforms.

This approach has two major drawbacks. First, application designers need to
construct their own filing and memory services already offered at the operating system
level, not to mention the possible redundant efforts among similar applications. Second,
this approach requires the access to the source code for modifications, which is not
practical for legacy applications and programs whose source is unavailable.

Ad-hoc approaches: There are also less structured approaches to using existing tools
to exploit the abundance of RAM. Ad hoc approaches are attractive because they can
often avoid modifying the operating system. Also, the design, development, and
deployment cycle for ad hoc solutions can be significantly shorter than an approach that
involves complete redesign. For example, one could achieve persistence by manually
transferring files into a RAM file system at boot time and preserving them again before
shutdown. However, this method would require an end user to identify the set of files
that are active and small enough to fit into the memory. The user also needs to be aware
of whether doing so can yield enough benefit for the particular set of files.

Another option is to manage RAM space by using a background daemon to stage
files to a disk partition. However, this approach would require significant complexity to
maintain a single name space (as does Conquest), and to preserve the semantics of links
when moving files between storage media. Also, since RAM and disk are two separate
devices, the design must handle the semantics where one of the devices is not mounted.
A simple approach is to manage both RAM and disk file systems with the semantics of a
single file system; however, a single caching policy specified at the mount time cannot
satisfy both the RAM and disk file systems, since caching contributes little toward
accelerating RAM accesses and wastes memory resources. Separate caching policies
demand that a file be able to change caching status dynamically. As details of an ad hoc
approach grow, the resulting complexity is likely to match or exceed that of Conquest,
without achieving Conquest performance.

3. CONQUEST FILE SYSTEM DESIGN

Conquest’s design assumes the popular single-user desktop hardware environment
enhanced with 1 to 4 GB of persistent RAM. As of July 2005, we can add 2 GB of
battery-backed RAM to our desktop computers and deploy Conquest for around $300
[PC World 2005, Price Watch 2005]. Extending the Conquest design to other
environments, such as laptops and distributed systems, will be future work. This section
first presents the design overview of Conquest (Section 3.1), followed by a discussion of
various major design decisions (Section 3.2 and Sections 4 to 6).

 6

3.1 File System Design

Conquest stores small files and metadata in persistent RAM; disk holds only the data
content of large files. Section 3.2 will further discuss this storage delegation strategy.

An in-memory file is logically stored contiguously in persistent RAM. Disks store the
data content of large files with coarse granularity, thereby reducing management
overhead. For each large file, Conquest maintains a segment table in persistent RAM that
tracks segments of data on disk. On-disk allocation is done contiguously whenever
possible, and the data layout is similar to a variant of the Berkeley Fast File System (FFS)
[McKusick et al. 1984, Peacock et al. 1998].

For each directory, Conquest uses a dynamically allocated extensible hash table
[Fagin et al. 1979] to maintain metadata entries and retain the directory file pointer
semantics (Section 4.2.2). Hard links are trivially supported by hashing multiple names
to the same file metadata entry.

The RAM storage allocation reuses existing memory manager [Peterson and Norman
1977, Bonwick 1994] to avoid duplicate functionality. However, Conquest has its own
dedicated instances of the manager, each governing its own memory region and residing
persistently inside Conquest. Paging and swapping are disabled for Conquest memory,
but enabled for the non-Conquest memory region for backward compatibility.

Unlike caching, RAM drives, and RAM file systems, Conquest memory is the final
storage destination for small files and all metadata. A storage request can traverse the
critical path of Conquest’s main store without such disk-related complexity as data
duplication, migration, translation, synchronization, and associated management.
Conquest also supports files and file systems that exceed the size of physical RAM.

Since Conquest follows the VFS interface, it has not changed the model of access
controls, the memory protection mechanisms, or the resulting reliability model.
However, Conquest applies the technique of soft updates [McKusick and Ganger 1999]
and takes advantage of atomic memory operations to ensure the consistency of metadata.
Updates to data structures are ordered in such a way that in the worst case an interrupted
file system update degenerates into a memory leak, which can be garbage collected
periodically. (Note that the garbage-collection process is not required for the correctness
of the file system operations.) Conquest can either rely on backups or combine with Rio-
like memory-dump mechanisms [Ng and Chen 2001] to protect against battery failures.

3.2 Strategy for Delegating Storage Media

How to delegate the use of memory and disk is fundamental to the Conquest design, and
this decision has contributed most of the performance gain of Conquest. Conquest’s
strategy for using storage media is based on a variety of studies of user access patterns
and file size distributions. Recent studies [Douceur and Bolosky 1999, Vogels 1999;
Roselli et al. 2000; Evans and Kuenning 2002] independently confirm earlier
observations [Ousterhout et al. 1985, Baker et al. 1991, Bozman et al. 1991, Irlam 1993]:

• Most files are small, and they consume a small fraction of total disk storage.
• Most accesses are to small files.
• Most accesses are sequential.
• Most storage is consumed by large files, which are read most of the time. Large files

are also becoming larger over time as the popularity of multimedia files grows.

Although one could imagine many complex data-placement algorithms (including an
LRU-style migration of unused files to the disk), Conquest has taken advantage of the
above characteristics by using a size threshold to choose which files are candidates for

 7

���������	�

��
��
�����������

���	����	��������

���������	�
�����������

��
�

��	���������
�����	��

Buffer allocation management
Buffer garbage collection
Data caching
Metadata caching
Predictive readahead
Write behind
Cache replacement

Metadata allocation
Metadata placement
Metadata translation

Disk layout
Fragmentation management

Fig. 3.1: The conventional data path for disk-based file systems.

disk storage. Only the data content of files above the threshold is stored on disk; smaller
files are stored entirely in RAM. Metadata entries for both large and small files are
always stored in memory, even if the size of the directory exceeds the threshold. We
have experimented with 0-KB, 8-KB, 64-KB, 256-KB, and 1-MB thresholds, many of
which work well for various benchmark workloads (Section 7). By varying the threshold
from 64 KB to 1 MB, 96% to 99% of all files can be kept in RAM [Irlam 1993, Roselli et
al. 2000]. By increasing this threshold, Conquest can use more RAM storage as its price
declines. The current threshold was chosen somewhat arbitrarily; the future plan is to
leave this to system administrators or to dynamically control it with a user-level process.

The decision to use a threshold simplifies the code, yet does not waste an
unreasonable amount of memory since small files do not consume a large amount of total
space. An additional advantage of the size-based threshold is that all on-disk files are
large, which allows us to achieve significant simplifications in disk management. For
example, we can avoid adding complexity to handle fragmentation with "large" and
"small" disk blocks, as in FFS [McKusick et al. 1984]. Since we assume cheap and
abundant RAM, the advantages of using a threshold far outweigh the small amount of
space lost by storing rarely used small files in RAM.

The media delegation strategy for Conquest is not favorable for random seeks within
large files; random seeks on disk are two orders of magnitude slower than sequential disk
accesses. Conquest is not optimized for random seeks in large files that are frequently
observed in database applications. Conquest covers common loads such as sequential
accesses to large multimedia, archive, compressed data objects, and associative accesses
among the small data objects (e.g. hypermedia and dynamic linked libraries).

3.2.1 Files Stored in Persistent RAM

Small files and metadata benefit the most from being stored in persistent RAM, given
that they are more affected
by the disk latency. Fig.
3.1 shows the data path for
a conventional disk-based
file system. A typical
storage request begins by
going through the I/O
buffer management, which
includes mechanisms to
allocate, deallocate, and
garbage-collect I/O buffers.
The I/O buffer management
also abstracts away file
system functions such as
speculative memory-
management logic (e.g.
predictive readahead) and
the caching of data and
metadata.

If the I/O buffer in the
physical memory cannot fulfill the storage request, a file system has to locate the
requested content by going through the persistence support component, which keeps track
of the metadata and the data locations on disk. For a typical disk-based file system, the
persistence support needs to handle the allocation, deallocation, and placement of
metadata on disk, to translate the metadata between the runtime memory format and the

 8

on-disk, block-oriented, serialized format. The storage request must then to locate the
data by following the disk layout and consulting with the fragmentation manager to see if
the data content is stored in a sub-block. Finally, the disk scheduling system executes the
request, possibly after delaying it to optimize head motion.

Fig. 3.2 shows how our use of persistent RAM shortens the data path. For Conquest,
memory accesses interact with the memory allocation manager directly and bypass the
I/O buffer management. (Issues of reliability due to using memory for storage will be
addressed in Section 6.1.) Also, Conquest goes through a persistence support that
requires less processing than that in a conventional file system, since metadata is stored
in the runtime
representation, without
the need to translate into
the disk representation.
This simplification also
removes the mechanisms
needed to propagate the
metadata changes to disk
[McKusick et al. 1984,
Ganger et al. 2000, Seltzer
et al. 2000, McKusick
2002].

3.2.2 Large-File-Only Disk Storage

Since small files are stored in persistent RAM, the disk data path can avoid small-file-
related mechanisms, such as storing the content of small files in the metadata directly,
designing tailored trees to reduce the number of disk accesses before locating a small file,
reducing disk fragmentations, and applying other seek time and rotational latency
reduction methods [McKusick et al. 1984, Card et al. 1994, Namesys 2005].

With large-file-only disk storage, Conquest can use a coarser access granularity.
Sequential-access-mostly large files exhibit well-defined read-ahead semantics. Large
files are also read-mostly and incur little synchronization-related overhead. Combined
with large data transfers and the lack of disk arm movements, disks can deliver near-raw
bandwidth when accessing such files.

Fig. 3.3 shows the disk data path of Conquest. We did not alter the VFS API, for
reasons that will be addressed in Section 6.4. Therefore, a typical disk request still goes
through the I/O buffer management code under the VFS, with metadata caching still in
place. However, given that the speculative memory-management logic is controlled at
the file-system level, Conquest can exploit the access characteristics of sequentially
accessed large files and reduce the complexity of predictive readahead, write behind, and
cache replacement policies. Since Conquest’ s metadata are stored in memory, the disk
data path can bypass the persistence support found in conventional file systems. In
addition, Conquest stores only the data blocks of large files on disk. Disk management
does not need to handle fragmentation, or optimize layouts for small files.

For randomly accessed large files, the commonly used term “random” deserves
reexamination. In the literature, an access is commonly defined as random if it is not
sequential [Baker et al. 1991, Vogels 1999, Roselli et al. 2000]. This definition of
random access may be misleading. For example, in the MP3 format, the title of a file is
stored at the end of the file, and is usually accessed when the file is opened. But most
other references to the file are sequential from the beginning. For video files, there are a
relatively small number of scene changes that an end user is likely to access, but within
each scene video frames will be viewed in sequential order. For such files, access is not

���	����	��������

��	���������
�����	��

�����	�����
���
����

��� ��� ������������������	����

Metadata allocation
Memory manager encapsulation

Fig. 3.2: The Conquest memory data path. Conquest has bypassed the
I/O buffer and disk management. The persistence support under
Conquest consists of a simplified metadata allocation component and
mechanisms to encapsulate the memory manager.

 9

truly random but rather near sequential. With this observation, the metadata
representation for large files can be greatly simplified, as described in the next section.

Fig. 3.3: The Conquest disk data path. Conquest has removed persistence support and disk fragmentation
management. Conquest has also simplified many disk-related components (not in bold type font).

4. METADATA REPRESENTATION

The handling of file system metadata is critical, since this information is in the path of all
file accesses. This section first describes how metadata are typically represented in
legacy UNIX file systems, and then details how Conquest manages its metadata and data.

4.1 UNIX Metadata Representation

4.1.1 Metadata Representation of a UNIX File

The metadata for a UNIX file is represented with the legacy i-node data structure, whose
design reflects the deep-rooted assumption of disk storage [Thompson 1978]. Although
file systems have evolved through many generations, the original i-node design has
changed little in the past 30 years [McKusick et al. 1984, Card et al. 1994].

The i-node under ext2 contains 15 pointers used to track the locations of data blocks
on disk. The first 12 pointers point to the first 12 data blocks. After consuming all 12
pointers, the 13th pointer points to a single indirect block, which in turn contains pointers
to data blocks. The 14th pointer points to a double indirect block, which contains pointers
to single indirect blocks. The 15th pointer points to a triple indirect block, which contains
pointers to double indirect blocks.

This design allows small files to have fast access to data blocks, while infrequently
accessed large files use the slower mechanism of traversing the nested indirect blocks.
Block-based allocation avoids the need to manage external fragmentation, which can
prevent contiguous allocation of files even when space is available.

However, this design is limiting in several ways. First, optimizations for small file
accesses complicate the data path for accessing large files. Second, although block-based
allocation prevents external fragmentation, this design still needs to manage internal
fragmentation (with inexpensive disk storage, managing internal fragmentation is not so
much to reduce the wasted storage, as to improve the disk access bandwidth. Accessing
loosely packed data blocks from small files can reduce disk bandwidth significantly,

���������	�
�����������

���������	�

���	����	��������

��
��
�����������

��
�

�����	�����
���
����

��� ��� ������������������	����

!�	����� ���� ���� ���������

Buffer allocation management
Buffer garbage collection
Data caching
Metadata caching (not yet removed)
Predictive readahead
Write behind
Cache replacement

Disk layout

 10

since disk transfers are at block granularity even for a partially used block.) Third, a data
structure with full support for random accesses imposes unnecessary overhead and
complexity for the common case of sequential large-file accesses. Finally, the total
number of pointers provided by this data structure limits the size of the largest file.

4.1.2 Metadata Representation of a UNIX Directory

UNIX directories are represented as files, whose data blocks contain a list of directory
entries (names and i-node identification numbers) for files and directories residing
underneath. In most implementations, directory entries are stored in a variable length
format, so that files with shorter names consume less storage. For ext2, the size of a
directory shrinks only when the entire directory is removed. If a file is removed, its
directory entry is simply merged with the previous one by increasing its length.

The major advantage of this design is the reuse of the file abstraction to manipulate
directories. However, the frequent operation of file lookup (e.g., ls and dir) within a
directory generally requires linear searches.

4.2 Conquest Data and Metadata Representation

4.2.1 Metadata and Data Representations for In-memory Files

Conquest removes the nested indirect blocks from the commonly used i-node design. For
in-memory files, the data blocks are accessed through a uniform, single-level
dynamically allocated index array in which each pointer points to one block to achieve
logical contiguity.

Conquest does not use the v-node data structure provided by VFS to store metadata,
because the v-node is designed to accommodate different file systems with a wide variety
of attributes, and Conquest does not need many of the mechanisms, such as metadata
caching. Conquest’s file metadata consists of only the fields (53 bytes) needed to
conform to POSIX specifications.

To avoid extra metadata management, Conquest uses the memory addresses of
metadata as unique IDs. When allocating metadata, the existing memory manager is
invoked to allocate a memory region with the size of a file’s metadata. Since no two
Conquest i-nodes can have the same physical address, using the physical address as the
metadata ID assures unique IDs. In addition, an ID allows the corresponding metadata be
quickly located. The use of physical addresses is not that different from how a disk refers
to its physical block location, and virtual memory can still remap Conquest’s memory
content to convenient locations. The downside of this design is that we need to modify
the memory manager to anticipate that certain allocations will be relatively permanent.

For small in-memory write requests where the total allocation is unknown in
advance, Conquest allocates data blocks incrementally. The current implementation does
not return unused memory in the last block of a file, though we plan to add automatic
truncation as a future optimization. Conquest also supports “holes” within a file, since
they are commonly seen during compilation and other activities.

4.2.2 Directory Representation

The data structure design for directories needs to meet the following requirements: (1)
preserving legacy semantics of directories as files with file position pointers, (2) fast
sequential retrieval of directory entries for common traversal operations (e.g. ls or dir),
(3) fast random lookup (e.g. locating a file), and (4) management of hard links. To meet
these requirements, we used a variant of extensible hashing [Fagin et al. 1979] for our
directory representation. The directory structure is built with a hierarchy of hash tables,

 11

using file names as keys. Collisions are resolved by splitting (or doubling) hash indices
and unmasking an additional hash bit for each key. A path (e.g., /usr/bin) is resolved
by recursively hashing each name component of the path at each level of the hash table.

Extendible hashing preserves the ordering of hashed items when changing the table
size, and this property allows readdir() to walk through a directory correctly while
resizing a hash table (e.g. recursive deletions). Also, the use of hashing easily supports
hard links by allowing multiple names to hash to the same file metadata entry. In
addition, compared to ext2’s approach, hashing removes the need to compact directories
that live in multiple (possibly indirect) blocks.

One concern with using extensible hashing is wasted space due to unused hash
entries. However, we found that alternative compact hashing schemes would consume a
similar amount of space to preserve ordering during a resize operation.

4.2.3 Metadata and Data Representation for On-disk files

For the metadata of on-disk files, contiguous block segments of a file are tracked by a
dynamically allocated segment table stored in persistent RAM, so that the maximum file
size is limited only by physical storage. Locating a block involves sequentially finding a
segment containing the target block and adding an offset to the segment’s starting block
number. Disk storage is allocated contiguously whenever possible, in temporal order,
similar to the hot-spot allocater used in a variant of the FFS [Peacock et al. 1998].
Temporal order is chosen since it correlates with spatial locality in many workloads.

Although Conquest currently has a linear search structure for disk storage, its
simplicity and memory speed outweigh its algorithmic inefficiency, as demonstrated in
our performance evaluation (Section 7). Given that Conquest has coarse disk allocation
granularity, the segment table is likely to be small. As long as a file is not severely
segmented, this in-memory search is sufficiently fast compared to the cost of disk access.

Conquest’s design does not depend on any particular disk layout, so we can also
borrow approaches from both video-on-demand (VoD) servers and traditional file
systems research. For example, given its sequential-access nature, a large media file can
be striped across concentric disk zones, so disk scanning can serve concurrent accesses
more effectively [Chen and Thapar 1997]. Frequently accessed large files can be stored
near outer zones on disk platters for higher bandwidth. Spatial and temporal ordering can
be applied within each disk zone, at the granularity of an enlarged disk block.

Another example is to align allocated large-file data segments at disk track boundaries
[Schindler et al. 2002]. Empirical measurements of this approach have reported
improved disk access efficiency up to 50% for mid-sized requests (100 to 500 KB), a
management granularity that matches Conquest’ s large-file storage well.

With a variety of options available, the presumption is that after enlarging the disk
access granularity for large file accesses, disk transfer time will dominate access times.
Since most large files are accessed sequentially, I/O buffering and simple predictive
prefetching methods should still be able to deliver good read bandwidth.

5. CONQUEST PERSISTENCE SUPPORT

Since the metadata allocation of Conquest depends on a persistent association between
the metadata ID and its physical memory address, Conquest needs additional mechanisms
for the underlying memory manager to retain persistent states across reboots. Otherwise,
at boot time, the operating system will reinitialize the memory manager and erase all
information pertaining to prior allocations of Conquest metadata. While retaining
information in persistent RAM seems simple, the design for Conquest persistence also
needs to retain the legacy semantics of booting, where the content of volatile memory (or

 12

the content not pertaining to Conquest) must be properly reset. In this section, we discuss
the existing memory manager under Linux 2.4.2 and describe the Conquest design.

5.1 Memory Manager under Linux 2.4.2

The memory manager under Linux 2.4.2 is structured in three layers (Fig. 5.1). The layer
closest to the memory hardware is the page allocator, which tracks the allocation and
memory attributes of individual pages. Locating a free memory region involves linear
traversal of allocation bitmaps, structured in two levels. Therefore, as the memory size
increases, a linear-search-based page allocator becomes prohibitive.

The next layer is the zone allocator, which allocates memory zones for uses such as
direct memory access, high memory, and I/O buffering. Within each zone, the zone
allocator uses buddy allocation [Peterson and Norman 1977] to accelerate allocation of
memory pages, in powers-of-twos blocks. One natural problem arising from the buddy
allocation scheme is internal fragmentation within allocated pages, which leads to the
need for a higher-level slab allocator [Bonwick 1994].

The slab allocator provides an efficient means of allocating memory at sub-page
granularities and reducing internal memory fragmentation by allocating page at a time
and filing it with objects of a single type, initialized in bulk. For example, when
Conquest allocates an i-node for the first time, the slab allocator will allocate a full page
filled with initialized Conquest i-nodes, amortizing the allocation overhead.

5.2 Conquest’s Persistence Support

With the existing memory manager architecture, preserving persistent states across
reboots is difficult for two reasons: (1) Conquest’s persistence support needs to preserve
the mapping among three layers of memory management. For example, pages allocated
for the slab allocator may belong to different instances of a buddy allocator under
different zones. (2) Existing memory manager layers have no notion of persistence, so
temporary and persistent allocations are intermingled within three layers of complex data
structures. Therefore, the zone manager may decide to “borrow” persistent memory for
temporary uses and vice versa.

Conquest allocates its own memory zones, with each containing an instantiation of
the Linux memory manager (Fig. 5.1). Swapping and paging are disabled for Conquest
zones to reduce their associated overheads, but enabled for non-Conquest zones for
backward compatibility (i.e. for memory-intensive applications). Conquest zones also
map well to separate uses of BB-DRAM and volatile RAM.

Fig. 5.1: Conquest memory manager.

By reusing the existing Linux code base, Conquest can avoid building additional

components. Concerns for memory bugs and reliability are addressed in Section 6.1.

Page allocator

Slab allocator

Zone allocator

Conquest zone(s)

 13

The reuse of the existing memory manager also implies compliance with the existing
memory interface and leverage of all existing memory services. Conquest memory
regions can be allocated through kmalloc() calls with additional Conquest flags.
Memory fragmentation management is handled by the existing slab allocator design.

By having a separate instance of memory manager residing within the Conquest
memory zone that it governs, all pointers within those manager layers can be preserved
across reboots due to the following invariants: (1) Those pointers use physical memory
addresses that are unchanged across reboots, and (2) those pointers only point to physical
addresses within the governed memory zone. Both invariants can be trivially satisfied
and verified. The resulting encapsulation avoids complex serialization and logging code,
and the runtime data structures of the Conquest memory manager can survive across
reboots. The zone-based isolation also simplifies the semantics when Conquest is not
mounted. A system can use the remaining memory resources to operate without
Conquest-related overhead.

6. CONQUEST DEPLOYMENT CONSIDERATIONS

Although Conquest’s design overcomes the cost constraints of persistent RAM, the
practical deployment of Conquest also relies on the proper handling of storage reliability
(Section 6.1), memory depletion (Section 6.2), and system-wide data migration (Section
6.3). In addition, the Conquest implementation needs to minimize changes to the existing
kernel structure, so that resulting code is maintainable as the underlying kernel evolves.
Finally, Section 6.4 discusses the current implementation status.

6.1 Reliability

Storing persistent data in memory inevitably raises concerns of reliability and data
integrity. In general, disk storage is less vulnerable to corruption by software failures
because it is less likely to perform illegal operations through the rigid disk interface.
Main memory has a very simple load/store interface, which allows a greater risk of
corruption. A single wild kernel pointer could destroy many important files. However,
we have found that memory can be reliable enough as a persistent storage medium in the
sense that the use of common disk reliability techniques (e.g. backup) can provide a
similar level of protection against data loss and failures.

6.1.1 Comparison to Disk-Based File Systems

Although conventional file systems use disk as the primary persistent storage medium, a
significant portion of memory is used for caching data and metadata. The integrity of the
memory content of disk-based file systems is protected at multiple fronts: the VFS
interface, the access control mechanisms within the VFS, and the underlying memory
protection. For example, a misbehaving application owned by root can trespass the
VFS interface and the access control mechanisms, but will be trapped when making an
illegal access to a memory block. From this perspective, Conquest offers the same
reliability model as disk-based file systems, since Conquest does not alter any VFS
mechanisms that ensure the integrity of memory content.

At the kernel level, operating system crashes raise another threat to reliability.
However, the Rio file cache [Chen et al. 1996, Ng and Chen 2001] has demonstrated that
memory can serve as reliable storage by examining 650 induced operating system crashes
ranging from bit errors in the kernel stack to deleting branch instructions to C-level
allocation management errors. The researchers discovered that 1.1% of crashes corrupted
the data on disk, compared to 1.5% for memory corruptions. Assuming one system crash
every two months, one can expect to lose in-memory data (to the extent allowed by the

 14

memory protection mechanisms described above) about once a decade [Ng et al. 1996].
Rio can be used as a reliability measure to complement Conquest’s streamlining of the
memory data path, since the UPS or the on-board memory provides enough power (5
minutes to 12 hours [APC 2005, PC World 2005]) to stage the memory content to disk.

At the hardware level, modern disks have a mean time between failures (MTBF) of 1
million hours [Seagate 2003]. Two hardware components, the RAM and the battery
backup system, cause Conquest's MTBF to be different from that of a disk. Currently,
Conquest uses a UPS as the battery backup. The MTBF of a UPS is lower than that of
disks, but is still around 170,000 hours [Gibson and Patterson 1993, Liebert Cooperation
2005]. The MTBF of the RAM is comparable to disk [Micron 1997]. However, the
MTBF of Conquest is dominated by the characteristics of the complete computer system;
modern machines again have an MTBF of over 20,000 to 87,000 hours [Miles 2000, Dell
2002]. Thus, it can be seen that, at most, a machine using Conquest should lose data due
to hardware failures only once every few years. For common users, this level of
reliability is well within the acceptable range when standard backup procedures are used.
Also, for high-end servers, dual power supplies and UPS units are readily available.
When interconnected properly, redundancy of power supplies and UPS units can further
reduce the chance of single-point failures.

6.1.2 Soft Updates and Pointer-Switch Commits

In addition to a low memory corruption rate, Conquest also relies on other techniques
to enhance reliability. For example, Conquest applies the rules of soft updates
[McKusick and Ganger 1999] and uses pointer assignment to atomically commit updates:
(1) Never point to a structure before it has been initialized (e.g. an i-node must be
initialized before a directory entry references it). (2) Never reuse a resource before
nullifying all previous pointers to it (e.g. an i-node’s pointer to a data block must be
nullified before that block can be reallocated for a new i-node). (3) Never reset the old
pointer to a live resource before the new pointer has been set (e.g. when renaming a file,
do not remove the old name for an i-node until after the new name has been written).

At worst, poorly timed failures cause memory leaks, which can be garbage-collected.
Since the memory-leaked objects are either updates that are not yet reflected in the file
system or removed objects that are not yet deallocated, the remaining file system is still
consistent, and its correctness is unaffected. Unlike fsck, the garbage collection can be
performed as needed for reclaiming storage, since it is not required to correct inconsistent
file system states. Also, this type of garbage-collection process is reported to be 15x
faster than fsck, as reported in [Ganger and Patt 1994].

Although Conquest can alternatively implement transactional semantics like
journaling file systems, soft updates and pointer commits are significantly more
lightweight, as observed in Section 7 and in the Solaris File System [Peacock et al. 1998],
while meeting the consistency and correctness requirements.

6.2 Memory Depletion

Memory depletion occurs when allocation for persistent memory storage fails, which is
equivalent to disk depletion in a conventional file system. Memory depletion can cause
programs or operating systems to fail, and graceful recoveries are not always possible. In
conventional systems, memory depletion is commonly handled by the virtual memory
subsystem; idle processes are temporarily swapped out to disk to free up memory. Disk
depletion is commonly handled by reserving extra disk storage, so that the processes of
reclaiming or rearranging disk storage can still create temporary files.

 15

Under Conquest, the design space for handling memory depletion ranges from
sophisticated data migration (e.g. LRU management), to simply complaining to the user
(as in PDAs). Data migration is appealing in the sense that the memory can provide the
illusion of storage bounded only by the disk size. However, from the Conquest
perspective, memory is abundant; migrating individual memory blocks introduces high
complexity and overhead, as demonstrated in our performance section (Section 7).

A coarser-grained approach would allow Conquest to adjust the large-file threshold
dynamically so smaller files migrate to disk when the memory was nearly depleted.
Although this approach allows Conquest to operate in a more memory-constrained
environment (e.g. laptops), a dynamic threshold can complicate the system in two ways.
First, large-file-only disk storage would have to handle smaller-than-expected files and
associated performance degradation. Bulk migration of data based on file sizes might
capture neither spatial nor temporal localities. One remedy would be to design a new
disk layout, so that different disk zones store files accessed or created at similar time
frames improve temporal locality. However, this design would reintroduce disk-related
complexity in the memory data path. Second, changing the large-file threshold would
lead to a sudden migration of files. While the intended effect of migration is to free up
memory space, it might need to be scheduled offline and designed as an infrequent or
incremental event to avoid visible performance degradation by end-users.

Currently, Conquest uses the simplest strategy of just reporting the depletion of
memory. This approach creates a firm boundary to prevent the disk code from handling
unreasonably small files. Conquest’s design also handles the more familiar disk-
depletion case, where freeing up storage requires an end user to archive infrequently used
data content (usually at the granularity of directories) to removable media.

With an abundance of memory, memory depletion can be handled in a similar way,
except that the same archiving operation has different semantics under Conquest. After
archiving a large-enough directory (that contained small-file data content greater than the
large-file threshold), the newly created archived file would be automatically transferred
from memory to disk due to Conquest’s media usage strategy, thereby freeing up memory
storage. (Of course, Conquest would need to reserve enough memory to handle the
scenario of memory depletion.) As future work, one could automate this migration
process at the user level, with the management at the coarse granularity of directories as
opposed to memory blocks. Also, an attempt to reference a migrated directory would
automatically cause the entire tree to be restored.

6.3 System-Wide Data Migration

Another deployment consideration is migrating Conquest across machines. System-wide
data migration is an infrequent event, which happens mostly during system upgrades and
system failure recovery. For system upgrades, storage content under Conquest can be
recursively copied through either the network or direct connections, which is not different
from disk-based file systems. Changes in storage interface standards, rapid growth in
memory and storage capacity, and warrantee issues often discourage end users from
reusing the old hardware. Should a user wish to reuse old hardware, a trivial utility
program can be used to dump Conquest’s memory region to disk and restore it on the
new machine. Conquest’s dependency on physical addressing is not different from disks’
physical addressing, which can be mapped.

If the system-wide data migration is triggered by system failures, we have two
options. One is to physically move on-board battery-backed memory and the hardware
drive to a new machine or a power source within 12 hours. The second is to use the
system backup to recover the data on a working machine, if the persistent RAM is based

 16

on a UPS. Again, this is no different from recovery methods for hard-disk-based
systems.

6.4 Conquest Implementation Status

Conquest is fully operational as a loadable kernel module under Linux 2.4.2, with
minor modifications to the Linux memory manager to support persistence. The current
implementation follows the VFS API, but Conquest needs to override generic file access
routines at times to provide both memory and on-disk accesses. For example, inside the
read routine, Conquest assumes that accessing memory is the common case, and disk
access is forwarded through a secondary data path.

Conquest does not disable caching of metadata under the VFS due to difficulties in
removing the deep-rooted assumption of high-latency storage and the pervasive use of
data and metadata caching. Routines within the VFS often use the caching data
structures as the standard internal representation for lookups and function parameters.
Tailoring a memory data path through the VFS is likely to involve redesigning the data
representation, the data paths, and the interfaces of internal calls within the VFS.
Conquest currently passes its metadata structure through VFS calls such as mknod,
unlink, and lookup. However, we altered the VFS so that the Conquest metadata, in
particular the file system root, are not destroyed at umount times.

Conquest is POSIX-compliant and supports both memory and on-disk storage.
Conquest currently uses a 1-MB static dividing line to separate small files from large
files, although other thresholds are also possible (Section 3.2). Large files are stored on
disk in 4-KB blocks to reuse the existing paging and protection code without alterations.
An optimization would be to enlarge the block size to 64 KB or 256 KB for better
performance. The Conquest 2.4.2 source code consists of ~6,000 lines of kernel code,
with garbage collection not yet implemented. Conquest has been used on daily basis for
the development of Conquest itself.

7. CONQUEST PERFORMANCE

We compared the performance of Conquest (under 0-KB, 64-KB, 256-KB, and 1-MB
thresholds, dividing files stored in memory and on disk) with that of both disk- and
memory-based file systems: ext2 [Card et al. 1994], reiserfs [Namesys 2003], SGI XFS
[Sweeney et al. 1996], and ramfs by Transmeta [Shankland 2001]. The choice of disk-
based file systems (ext2, reiserfs, and SGI XFS) is largely based on their common use for
various performance comparisons. Since both Conquest and ramfs are under the VFS
API and various OS legacy constraints, the use of ramfs aimed at approximating the
practical achievable bound for Conquest performance. Note that ramfs uses the page
cache and v-nodes of the VFS to store the file system content and metadata directly, and
provides no means of achieving data persistence after a system reboot.

We did not compare with flash-based file systems since flash-specific management
and the performance differences between flash and DRAM are orthogonal to the design
principles of Conquest. Also, most flash-based file systems are designed for embedded
devices, not for general desktop uses, and the performance of these systems is bounded
by the ramfs case. As a reference point, the performance of JFFS2, a flash-based file
system, is comparable to that of XFS and ReiserFS [Edel et al. 2004].

To conserve space, we omit the numbers for comparing Conquest with RAM drives
using disk-based file systems. The VFS caching generally matches the ext2 cached
performance for reads, but the write performance is halved while running on RAM
devices due to the copying through an additional layer of cache.

 17

Table 7.1 describes the experimental platform. Since it has 2 GB of physical RAM,
all disk-based file systems use caching extensively, and the performance numbers
presented reflect how well the various file systems can exploit memory hardware. In the
experiments, all file systems have the same amount of memory available as Conquest;
thus, we are comparing at constant cost.

Table 7.1: Experimental Platform.

 Experimental platform
Manufacturer model Dell PowerEdge 4400
Processor 1 GHz 32-bit Xeon Pentium
Processor bus 133 MHz
Memory 4x512 MB, Micron MT18LSDT6472G, SYNCH, 133 MHz, CL3, ECC
L2 cache 256 KB Advanced
Disk 73.4 GB, 10,000 RPM, Seagate ST173404LC
Disk partition for testing 6.1 GB partition starting at cylinder 7197 (8783 cylinders total)
I/O adaptor Adaptec AIC-7899 Ultra 160/m SCSI host Adaptor, BIOS v25306
UPS APC Smart-UPS 700
OS Linux 2.4.2

Table 7.2: File System Settings.

 File system settings
Conquest creation: default; mount: default
ext2fs (0.5b) creation: default; mount: default
tramsmeta ramfs creation: default; mount: default
reiserfs (3.6.25) creation: default; mount: -o notail
SGI XFS (1.0) creation: -l size=32768b

mount: -o logbufs=8, logbsize32768

Table 7.2 lists various file system settings. Reiserfs and SGI XFS were not created

and mounted with default settings because the default settings for those two file systems
assume memory as a scarce resource. Section 7.1.1 will detail those non-default options.

Although the most widely used benchmark in the file-system literature is the Andrew
File System Benchmark [Howard et al. 1988], that benchmark no longer stresses modern
file systems because its data set is too small. The chosen benchmarks for this study are
the Sprite LFS microbenchmarks [Rosenblum and Ousterhout 1991] with slight
modifications (Section 7.1.2), the PostMark macrobenchmark1 [Katcher 1997], and a
revised version of PostMark that will be described in Section 7.3. All results are
presented at a 90% confidence level. The details of individual benchmark experiments
will be discussed in corresponding subsections.

7.1 Sprite LFS Microbenchmarks

The Sprite LFS microbenchmarks measure the latency and throughput of various file
operations. The benchmark consists of two separate suites for small and large files.

7.1.1 Small-File Benchmark

The small-file benchmark measures the latency of file operations. Each run consists of
three separate phases—creating, reading, and unlinking—operating on 10,000 small files
(Fig. 7.1). We tested three file sizes—0 B, 1 B, and 1 KB. The 0-B experiment
compares the metadata performance of various file systems, since it does not exercise the
code path for shipping data; the 1-B experiment compares the overhead cost of data paths

1 As downloaded, Postmark v1.5 reported times only to a 1-second resolution. The benchmark was altered to
report timing data at the resolution of the system clock.

 18

for various file systems to access a single byte; and the 1-KB experiment compares the
combined performance (both metadata and data path) of various operations on average-
sized small files. For each file system, the performance numbers were collected over six
runs, but averaged over only the last five runs to avoid warm-up effects.

Conquest compared to ramfs: From the 0-B experiment (Fig. 7.1a), we can see that
Conquest’s metadata paths incur 29% overhead in file creation, 8% in reading, and 31%
in deletion. This discrepancy is caused by Conquest’ s need to maintain its own metadata
hashing data structures to support persistence, which is not provided by the ramfs. Also,
Conquest has not removed or disabled VFS caching for metadata for the reasons
mentioned in Section 6.4; therefore, VFS needs to go through an extra level of indirection
to access Conquest metadata at times, while ramfs can avoid this overhead because its
metadata are stored in the VFS cache directly.

Nevertheless, from the 1-B experiment (Fig. 7.1b), as soon as the data path is
exercised, the Conquest memory data path (with thresholds greater than 0 KB) starts to
show an 11% faster read transaction rate than ramfs. Even though ramfs was considered
to be a practical bound for the memory performance of file systems, Conquest is able to
improve the read performance because the critical path to the memory data contains no
generic disk-related code, such as readahead and checking for cache status.

Also, given that Conquest’s metadata handling is slower than that of ramfs, the benefit
of Conquest’ s memory data path is actually greater than 11%. As we move from 0-B to
1-B files, Conquest has comparatively better read performance than ramfs. With a
Conquest threshold of 0-B, no small files are stored in memory, so the 1-B and 1-KB files
exercise Conquest’s disk data path (Figures 7.1b and 7.1c), resulting in a noticeable
performance hit as described below.

Conquest compared to disk-based file systems: In the 0-B experiment (Fig. 7.1a),
Conquest demonstrates 53% and 16% speed improvements over ext2 for creation and
deletion, respectively, mostly attributable to not needing to commit metadata
synchronously to disk. For reads, Conquest and cached ext2 have similar performance
because both file systems have their own metadata management, in addition to the VFS
metadata caching.

For the 1-B and 1-KB experiments (Figures 7.1b and 7.1c), the Conquest memory
data path with nonzero thresholds demonstrates 15% faster read performance than cached
ext2, which uses the same generic disk access routines provided by VFS as ramfs.

For the 0-KB threshold, Conquest uses the disk data path for all files. Leaving aside
the duplicate efforts of managing metadata by Conquest and VFS, in-memory metadata
storage causes Conquest to be only marginally faster than ext2 because metadata is
heavily cached. Thus, we can conclude that the performance benefit of Conquest with
nonzero thresholds comes mostly from a streamlined memory data path.

Journaling file systems: The performance of SGI XFS and reiserfs is slower than
ext2 because of journaling overheads and their memory behaviors. Reiserfs achieved
even poorer performance with its default settings. Interestingly, reiserfs performs better
with the notail option, which disables certain disk optimizations for small files.

SGI XFS’s original default settings also produced poorer performance, since
journaling consumes the log buffer quite rapidly. With a larger buffer size for logging,
SGI XFS’s performance improved. The numbers for both reiserfs and SGI XFS suggest
that the overhead of journaling is very high.

Conquest with different file-size thresholds: As long as the tested file size is
smaller than or equal to a threshold, the performance reflects the memory data path of
Conquest. As long as the tested file size is greater than a threshold, the performance
reflects the disk data path of Conquest. The next subsection will further examine the
effects of crossing various threshold boundaries.

 19

� � � � �

� �

� � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� �
� �

� � � � � � � � � � � �
� � � � � � � � � � � �

� �
� �

� �
� �

� �
� �

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

� �

0 50 100 150 200 250

create

read

delete

thousands of ops / sec

� � � � �
SGI XFS

reiserfs� � � � �

� � � � � ext2fs
� � � � �
� � � � � ramfs

Conquest 1MB

Conquest 256KB

Conquest 64KB

Conquest 0KB

(a) 10,000 0B files.

� � � � �
� � � � �

� �
� �

� � �
� � �

� � � � � �

� �
� �

� � � � � � � � �
� � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� �

� �

� �
� �

� �
� �

� �
� �

0 50 100 150 200 250

create

read

delete

thousands of ops / sec

� � � �
� � � � SGI XFS
� � � �

reiserfs� � � �
� � � � ext2fs
� � � �

ramfs

Conquest 1MB

Conquest 256KB

Conquest 64KB

Conquest 0KB

(b) 10,000 1B files.

! !

" " "

#
#

$ $
$ $

% % % % % % % %
% % % % % % % %

& & & & & & & & & & & & & & &
& & & & & & & & & & & & & & &

' '

((

))

* *
* *

+ +
+ +

0 50 100 150 200 250

create

read

delete

thousands of ops / sec

, , , , ,
SGI XFS- - - - -

- - - - - reiserfs.
. ext2fs
/ / / / /
/ / / / / ramfs

Conquest 1MB

Conquest 256KB

Conquest 64KB

Conquest 0KB

(c) 10,000 1-KB Files.

Fig. 7.1: Transaction rate for the different phases of the Sprite LFS small-file benchmark, run on SGI XFS,
reiserfs, ext2, ramfs, and Conquest with different large-file thresholds. Each run of the benchmark creates,
reads, and unlinks 10,000 small files in separate phases. Each data point is averaged over five runs. In this and
subsequent figures, the 90% confidence bars are nearly invisible due to the narrow confidence intervals.

7.1.2 Modified Large-File Benchmark

Each run of the original large-file benchmark writes a large file sequentially, reads from
it sequentially, and then writes a new large file randomly, reads it randomly, and finally

 20

reads it sequentially. Data is fsynced to disk at the end of each write phase. The final
read phase was designed to measure the sequential read performance after randomly
appended writes in a log-structured file system [Rosenblum and Ousterhout 1991].

The benchmark was intended to measure disk performance. When directly applied to
measuring the memory performance of file systems, the benchmark revealed a number of
anomalies due to effects of memory and L2 caching. Therefore, the benchmark was
modified for the purpose of measuring Conquest, so that each phase of the benchmark
operates on a set of equal-sized files before executing the next phase. In addition, all
random accesses are block-aligned to reflect common application usage patterns.
Detailed reasons for these modifications and an explanation of the interactions between
memory and L2 caching are explained in [Wang et al. 2003].

To test the effect of a large-file threshold, we conducted two sets of experiments. For
the first set, each phase of the benchmark operated on 41 large files with the size equal to
a given threshold, stored in memory. Results were averaged over the numbers collected
from the last 40 files to avoid warm-up effects. To reset the memory states, the machine
was rebooted when switching file systems.

For each experiment, the file size was also increased by one block to see the
performance difference once files were switched from being stored in memory to stored
on-disk. To measure the performance of large on-disk files, each phase of the benchmark
was also performed on forty-one 100-MB files, with the first run discarded to avoid
warm-up effects.

The 100-MB large-file benchmark: The 100-MB large-file benchmark measures the
throughput of Conquest on-disk files (Fig. 7.2a). This experiment only compared
Conquest against disk-based file systems because the total size exercised by the
benchmark exceeds the capacity of ramfs. All file systems demonstrate similar
performance, showing that the additional memory data path of Conquest does not add
noticeable overhead when accessing the disk.

The 1-MB large-file benchmark: The 1-MB large-file benchmark measures the
throughput of Conquest’s memory files (Fig. 7.2b). Compared to ramfs, Conquest
achieves 7% higher bandwidth in both random and sequential writes and 14% higher
bandwidth in random and sequential reads. The ramfs comparison also demonstrates the
best achievable bounds for disk-based file systems. That is, all requests are served from
the memory; all updates are either delayed indefinitely or committed to memory; and disk
caching is bypassed to avoid extra copying and memory consumption. Compared to
disk-based file systems, Conquest demonstrates a 19x speed improvement in sequential
writes over ext2, 1.2x in sequential reads, 67x in random writes, and 1.2x in random
reads. SGI XFS and reiserfs perform either comparably to or slower than ext2.

These numbers lead to several interesting observations. First, once the disk content is
cached, the read performance differs little between existing disk-based file systems and
ramfs. Since the read performance for 1-MB files is dominated by transferring bytes
between the VFS data cache and user-level buffers, Conquest’ s faster read performance is
mostly attributable to bypassing the VFS I/O buffer management, as opposed to having
in-memory metadata management.

Second, random memory writes and reads are faster than corresponding sequential
accesses. The cause is cache hits: for 1-MB memory accesses with a 256-KB L2 cache
size, random accesses could have up to a 25% chance of reusing the L2 cache content,
disregarding the additional uses of L2 caching by the operating system and the
microbenchmark itself. However, sequential accesses are guaranteed to miss in such a
small cache [Wang et al. 2003].

Third, the performance difference between random and sequential writes is larger than
the performance difference for corresponding reads. The cause can be traced to the

 21

management semantics of L2 caching. Wang et al. [2003] explains the memory behavior
of the Sprite LFS large-file benchmark and subtleties in these benchmark numbers.

� �

� �
� �

� � � � � � � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �

� �

� �

� �

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

� � � � � � � � � �

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

� �

� � � � � � � � � � � � � � �

� �

0 5 10 15 20 25 30

sequential write

sequential read

random write

random read

sequential read

MB / sec

� � � � �
SGI XFS� � � � �

� � � � � reiserfs� � � � �
� � � � � ext2fs

Conquest 1MB

Conquest 256KB

Conquest 64KB

Conquest 0KB

(a) Modified Sprite LFS large-file benchmark for forty 100-MB files (stored on-disk under Conquest).

� � � �
� � � �

� �

� �
� �

� �
� �

� �

� � � �

� �
� �

� �
� �

� �

� �
� �

� � � �
� � � �

� �

� �

� �
� �

! !

" "
" "

#
#

$ $

% %

0 100 200 300 400 500 600 700

sequential write

sequential read

random write

random read

sequential read

MB / sec

& & & &
& & & & SGI XFS
' ' ' '
' ' ' ' reiserfs

((((
ext2fs))))

)))) ramfs

Conquest

(b) Modified Sprite LFS large-file benchmark for forty 1-MB files. The Conquest threshold is 1 MB, and these
files are stored in memory.

* * * * *
* * * * *

+ +

, ,
, ,

- -

. .
. .

/ / / /

0 0
0 0

1 1

2 2
2 2

3 3
3 3

4 4 4 4 4
4 4 4 4 4

5 5

6 6
6 6

7 7
7 7

8 8

9 9

: :
: :

; ;
; ;

< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <

= =
= =

0 100 200 300 400 500 600 700

sequential write

sequential read

random write

random read

sequential read

MB / sec

> > > > >
> > > > > SGI XFS
? ? ? ?

reiserfs@ @ @ @ @
@ @ @ @ @ ext2fsA A A A A
A A A A A ramfs

Conquest

 (c) Modified Sprite LFS large-file benchmark for forty 1.01MB files. The Conquest large-file threshold is 1
MB, and these files are stored on disk.

Fig. 7.2: Bandwidth for the different phases of the modified Sprite LFS large-file benchmarks, run over SGI
XFS, reiserfs, ext2, ramfs, and Conquest with different large-file thresholds. These experiments compare the
large-file performance of memory and on-disk files under Conquest.

 22

The 1.01-MB large-file benchmark: For a 1-MB threshold, the 1.01-MB large-file
benchmark shows the performance effects of switching a file from being stored in
memory to stored on-disk under Conquest (Fig. 7.2b). For large files, since the
overheads of metadata management and fragmentation management are negligible
compared to the time to transfer bytes, Conquest benefits mostly in data path
simplification, only matching the performance of cached ext2 on this test. However,
Conquest does show that the use of disjoint data paths for memory and disk imposes little
or no extra overhead for disk accesses.

Other large-file benchmarks and Conquest thresholds: Other benchmark numbers
with different large-file sizes and thresholds show similar trends and are omitted to save
space. For a 256-KB threshold, Conquest shows 6% to 13% faster performance over
ramfs for various reads and writes. As the threshold decreases to 64 KB, Conquest offers
only 3% to 9% performance benefits over ramfs, since the data path advantage of
Conquest over ramfs decreases as the cost of metadata manipulation starts to dominate.
Also, as soon as the file size exceeds the threshold, the performance of Conquest matches
that of a disk-based system with caching, regardless of the threshold setting. Thus, a user
can incrementally add more RAM under Conquest’s control and increases file size
threshold and take advantage of Conquest’s speed as the price of memory declines.

7.2 PostMark Macrobenchmark

The PostMark benchmark was designed to model the workload seen by Internet service
providers [Katcher 1997] simulating a combination of electronic mail, Usenet, and web-
based commerce transactions. PostMark creates a set of files whose sizes are chosen at
random, uniformly distributed over a file size range. The files are then subjected to
transactions consisting of a pairing of file creation or deletion with file read or append.
Each pair of transactions is chosen randomly, with a bias controlled by parameter
settings. A deletion operation removes a file from the active set. A read operation reads
a randomly selected file in its entirety. An append operation opens a random file, seeks
to the end of the file, and writes a random amount of data, without exceeding the
maximum file size.

Early PostMark experiments used 10,000 files with a size range of 512 bytes to 16
KB. One run of this configuration performs 200,000 transactions with equal probability
of creates and deletes, and a four times higher probability of performing reads than
appends. The transaction block size is 512 bytes. However, since this workload is far
smaller than the workload observed at any ISP today, we conducted experiments varying
the number of files from 5,000 to 25,000 to see the effects of scaling.

Since all files within the size range will be stored in memory under Conquest, this
benchmark did not exercise Conquest’s disk aspect. Also, since this configuration
specifies an average file set of only 250 MB, which fits in 2 GB of memory, this
benchmark compared the performance of Conquest against the performance of existing
cache and I/O buffering mechanisms under a realistic mix of file operations. Since the
existing experimental settings of Conquest use thresholds either above or below the file
size range of the PostMark workload, we also inserted a threshold setting of 8 KB to see
the effect of exercising both the memory and the disk components of Conquest.
However, this 8-KB threshold is by no means a practical setting, since the disk
component is designed to store much larger files to avoid the complexity and overhead of
handling small files.

The measurement machine was rebooted when switching file systems. A shell first
repeated six runs of the modified PostMark with the 5,000-file configuration, with the
numbers collected from the first run dropped to reduce warm-up effects. Then, the script
removed those 5,000 files, proceeded to the configuration of 10,000 files, and so on.

 23

Fig. 7.3 compares Conquest’ s transaction rates with the other file systems as the
number of files varies from 5,000 to 25,000. For thresholds above the file size range of
this workload, Conquest is marginally faster than ramfs because the data path dominates
the performance characteristics. For the same thresholds, Conquest achieves 1.3x to 3.5x
performance speedup compared to ext2. SGI XFS and reiserfs perform much slower than
ext2 due to journaling overheads.

To see the performance contribution of storing metadata in memory, Conquest with a
0-KB threshold matches the performance of ext2 for 5,000 files due to the dominant use
of the disk data path. However, as the number of files increases to 25,000, the in-
memory Conquest metadata structure allows Conquest to outperform cached ext2 by as
much as 79%. Although storing metadata in memory already produces a significant
performance improvement over disk caching, the data path benefit of Conquest actually
pushes the performance boundary three times as far, which even outperforms ramfs.

0

1

2

3

4

5

6

7

8

9

5000 10000 15000 20000 25000

files

thousands of ops /
sec

SGI XFS

reiserfs

ext2fs

ramfs

Conquest 1MB

Conquest 256KB

Conquest 64KB

Conquest 8KB

Conquest 0KB

Fig. 7.3: PostMark transaction rate for SGI XFS, reiserfs, ext2, ramfs, and Conquest with different large-file
thresholds, varying from 5,000 to 25,000 files. The results are averaged over five runs.

The 8-KB threshold setting of Conquest only shows comparable performance to cache
ext2 for 5,000 files. However, as the number of files increases to 25,000, this threshold
still allows Conquest achieve 2.1x speedup compared to ext2. Although the 8-KB
threshold allows Conquest to store 50% of files on disk, Conquest does not achieve a
performance at the midway between the 64-KB+ thresholds and the 0-KB threshold,
since those 50% on-disk files are larger and constitutes 75% of bytes.

Conquest’s ability to outperform disk caching in this memory-resident workload leads
to two conclusions. First, while a memory-only workload may seem to be an unfair
comparison for disk-based file systems, the trend of increasing memory size actually
makes it a common case. Second, since file system designers do not emphasize the
memory-performance aspect of a file system as much as disk performance, disk-caching
designs fail to fully take advantage of memory bandwidth. The overhead due to caching-
related management can lead to overall performance that is several times worse than
Conquest.

To examine the effects of individual operations in the benchmark, Fig. 7.4 presents
the performance for only the file-creation operations. Similar lessons can be drawn for
file-deletion operations; therefore, its graph is omitted. Fig. 7.4 shows the performance
of the various file systems, both when each operation is performed without interference,
and when the tested operation is mixed with others.

As one can see, when measured without other types of operations, the file-creation
rate shows little degradation for all systems as the number of files increases (Fig. 7.4a).

 24

When mixed with other types of file transactions (Fig. 7.4b), the file-creation rate
degrades drastically for all file systems tested. Since the performance trend for mixed
file creation (Fig. 7.4b) is similar to the trend for the throughput (Fig. 7.5) and transaction
rate (Fig. 7.3), one can again see that the effect of Conquest’s streamlined data paths (or
read and write operations) has contributed more to outperforming disk caching than has
in-memory metadata handling. Even though PostMark is known to be metadata-
intensive, the read and write throughput still dominates the performance behaviors.

0

2

4

6

8

10

12

14

5000 10000 15000 20000 25000

files

thousands of
ops / sec

SGI XFS

reiserfs

ext2fs

ramfs

Conquest 1MB

Conquest 256KB

Conquest 64KB

Conquest 8KB

Conquest 0KB

(a) PostMark file-creation rate, without the interference of other operations.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5000 10000 15000 20000 25000

files

thousands of
ops / sec

SGI XFS

reiserfs

ext2fs

ramfs

Conquest 1MB

Conquest 256KB

Conquest 64KB

Conquest 8KB

Conquest 0KB

(b) PostMark file-creation rate, mixed with other operations.

Fig. 7.4: PostMark file-creation performance for SGI XFS, reiserfs, ext2, ramfs, and Conquest with different
large-file thresholds, varying from 5,000 to 25,000 files. The results are averaged over five runs.

For the pure file-creation numbers (Fig. 7.4a), Conquest with 64-KB, 256-KB, and 1-

MB thresholds is about 7% slower than ramfs because Conquest has not disabled the VFS
metadata caching for the reasons mentioned in Section 6.4. With 8-KB and 0-KB
thresholds where Conquest uses the disk data path, Conquest is about 17% slower than
ramfs, but still 6% to 21% faster than cached ext2. When mixed with other types of file
transactions, various systems start to create files at rates according the trend of
transaction rates, since the PostMark numbers are largely dominated by the performance
of reads and writes (Fig. 7.4b).

It is interesting to see that SGI XFS has a faster file-creation rate than reiserfs without
mixed traffic, but a slower rate with mixed traffic (except in the 5000-file test). This

 25

result demonstrates that optimizing individual operations in isolation does not necessarily
yield better performance when they are mixed, especially when other operations
dominate the performance characteristics.

The confidence intervals tend to be larger with fewer files (Fig. 7.4b) due to the lower
accuracy when averaging over shorter elapsed times. Also, the confidence intervals are
large at times for disk-based file systems. For SGI XFS, file creations may interact with
the journaling mechanisms that use the disk heavily (Fig. 7.4a). For ext2, file deletion
interacts with recent asynchronously buffered writes.

In terms of the throughput (Fig. 7.5), although the overall performance trend matches
the trend for the transaction rate (Fig. 7.3), Fig. 7.5 shows a significant throughput loss
when compared to the microbenchmark numbers (Fig. 7.2b). This discrepancy could be
caused by a combination of factors, including the mixture of creation and deletion
operations, a larger number of files and total file size, and the interaction of the
benchmark footprint with the L2 caching management. Since this performance loss is not
specific to Conquest, a detailed investigation will be conducted in future work.

0

20

40

60

80

100

120

5000 10000 15000 20000 25000

files

MB / sec

SGI XFS

reiserfs

ext2fs

ramfs

Conquest 1MB

Conquest 256KB

Conquest 64KB

Conquest 8KB

Conquest 0KB

Fig. 7.5: PostMark throughput for SGI XFS, reiserfs, ext2, ramfs, and Conquest with different large-file
thresholds, varying from 5,000 to 25,000 files. The results are averaged over five runs.

7.3 Modified Postmark Benchmark

We also modified the PostMark benchmark to exercise both the memory and disk
components of Conquest. The modified PostMark benchmark generates a percentage of
files in a large-file category, with file sizes uniformly distributed between 2 MB and 5
MB. The mean of this size range is twice the mean video request size observed in a
proxy traffic workload study [Mahanti et al. 2000], giving a more conservative picture of
Conquest’s performance when both the memory and disk component are exercised. This
setting is reflective of the growing number of multimedia files and their emerging file
size distribution [Evans and Kuenning 2002]. The setting also anticipates continuance of
the trend for large files to grow over time [Douceur and Bolosky 1999; Vogels 1999;
Roselli et al. 2000; Evans and Kuenning 2002]. The remaining files were uniformly
distributed between 512 bytes and 16 KB. The total number of files was fixed at 10,000,
and the percentage of large files varied from 0.0 to 10.0 (0 GB to 3.5 GB). Since the file
set exceeds the storage capacity of ramfs, ramfs could not be included in the results.

Fig. 7.6 compares the transaction rate of SGI XFS, reiserfs, ext2, and Conquest with
various large-file thresholds. Fig. 7.6a shows how the measured transaction rates of the
four file systems vary as the percentage of large files increases. Because the scale of this
graph obscures important detail at the right-hand side, Fig. 7.6b shows the performance

 26

ratio of Conquest with a 1-MB threshold compared to various file systems and Conquest
threshold settings.

0

1000

2000

3000

4000

5000

6000

0 2 4 6 8 10

percentage of large files

ops / sec

SGI XFS

reiserfs

ext2fs

Conquest 1MB

Conquest 256KB

Conquest 64KB

Conquest 8KB

Conquest 0KB

(a) The full-scale graph.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10

percentage of large files

Conquest 1MB
speed up factor

Conquest 1MB / SGI
XFS

Conquest 1MB /
reiserfs

Conquest 1MB / ext2fs

Conquest 1MB /
Conquest 256KB

Conquest 1MB /
Conquest 64KB

Conquest 1MB /
Conquest 8KB

Conquest 1MB /
Conquest 0KB

(b) Conquest speedup curves for the full graph.

Fig. 7.6: Modified PostMark transaction rate for SGI XFS, reiserfs, ext2, and Conquest with different large-file
thresholds, with varying percentages of large (on-disk Conquest) files ranging from 0.0 to 10.0 percent.

Conquest demonstrates 1.3x to 3.1x faster transfer rates than ext2 (Fig. 7.6b). The

shape of the Conquest speedup curve over ext2 reflects the rapid degradation of ext2
performance with the injection of disk traffic. As more disk traffic is injected, we start to
see a relatively steady performance ratio, as data path bandwidth effect dominates the
performance effect. At steady state, Conquest shows a 1.8x faster transaction rate than
ext2, 1.4x faster than SGI XFS, and 2.0x faster than reiserfs.

In terms of various large-file thresholds, it is interesting to note that the performance
ratios of Conquest with different thresholds are relatively constant, suggesting that (1) the
data-path bandwidth effect dominates the Conquest performance landscape even with no
large files, and (2) the handling of small files does not penalize the performance of large
files. At steady state, Conquest’ s 1-MB threshold is 29% faster than the 0-KB threshold,
18% faster than the 8-KB threshold, and comparable to the 64-KB and 256-KB
thresholds because the file size ranges of the modified PostMark do not have files
between 16 KB and 2 MB.

Both SGI XFS and reiserfs show significantly slower memory performance (left side
of Fig. 7.6a). However, as the file set exceeds the memory size, SGI XFS starts to

 27

outperform ext2 and reiserfs (Fig. 7.6b). Clearly, different file systems are optimized for
different workloads.

8. RELATED WORK

Caching in volatile RAM has inspired Conquest to a large extent, and the relative
strengths and weaknesses of caching have already been discussed in Section 2. The idea
of combining memory-based and disk-based storage service can be traced back to main-
memory databases. Researchers then began to use persistent RAM in the file systems
arena. PDA operating systems represented a major step, providing both memory and file
system services in persistent RAM; however, Conquest assumes an abundance of
persistent RAM, which is scarce on those handheld devices. The design philosophy of
Conquest is also supported by existing systems that share similar characteristics.

Main-memory databases: The database community has a long-established history of
main-memory database systems (MMDBs). An early survey paper reveals key
architectural implications of abundant RAM [DeWitt et al. 1984, Garcia-Molina and
Salem 1992]. One file-system-related observation is that since memory is much faster
than disk, each transaction is completed within a shorter time; therefore, the probability
of locking contention is smaller. A larger locking granularity in a MMDB can reduce the
locking overhead [Lehman and Carey 1987] and the complexity of the system. A
reduced probability of waiting for locks also translates into fewer context switches and
resulting cache flushes, further improving the overall system performance.

Garcia-Molina and Salem [1987] also discussed several early main-memory
databases. For example, IMS/VS Fast Path [Gawlick and Kinkade 1985] delivers
frequently used database items from an MMDB and infrequently used items from a disk-
resident database (DRDB). The two databases are designed with separate access
mechanisms. Instead of making duplicate copies of data as in multi-level caching,
IMS/VS Fast Path occasionally migrates data from one persistent medium to another
based on access patterns. Similar to Conquest, IMS/VS Fast Path relies on battery
backing, frequent system backup, and uninterruptible power supplies for reliability.
MARS [Eich 1987], HALO [Garcia-Molina and Salem 1987], TPK [Li and Naughton
1988], and other early MMDBs rely on data mirroring, background logging, or dual
processing to achieve reliability.

Unfortunately, techniques developed by the main-memory databases are not directly
applicable to operating systems. Databases are optimized for database access patterns,
not generalized file system access patterns. Their storage system is commonly accessed
through the query interface as opposed to the VFS interface. The Conquest design is
unique in offering a transition for delivering file system services from main memory in a
practical and cost-effective way.

File-system applications of persistent RAM: One early proposed use of persistent
RAM was to hold write buffers [Baker et al. 1992]. Since the data would be buffered in
persistent memory, the interval between synchronizations to the disk could be
lengthened. Although disk activity would be reduced significantly, this approach does
not eliminate data duplication, migration, synchronization, and fresh loading of the buffer
when the disk content is first accessed.

Write anywhere data layout (WAFL) [Hitz et al. 1994] shares a certain similarity with
Conquest, since both WAFL and Conquest achieve file system consistency at all times.
WAFL advocates the collocation of metadata and data on disk, so metadata writes are
piggybacked with data writes to avoid disk accesses. Written data are not used
immediately, until the system advances atomically to the next snapshot. Atomicity is
achieved through journaling, with the logs stored in persistent RAM. WAFL can recover
from a system failure by replaying the logs. If the persistent RAM fails, the disk still

 28

retains a consistent snapshot, which is taken every 10 seconds. Since WAFL runs only in
an NFS appliance, it is difficult to compare its performance to Conquest, although since
WAFL does not focus on streamlining the memory data path, it is unlikely to outperform
Conquest.

A plethora of flash-memory-based file systems has emerged to replace disks on small
mobile-computing devices [Wu and Zwaenepoel 1994, Kawaguichi et al. 1995, Niijima
1995, Torelli 1995, Woodhouse 2001, Gal and Toledo 2005]. The low-power
requirements of these devices make flash memory an attractive choice; however, flash
memory has limited numbers of erase-write cycles and slow (second-range) time for
storage reclamation. These characteristics cause new kinds of performance problems.

Quantum has proposed using battery-backed DRAM for logging, metadata updates,
transactions, and caching for disk arrays, database, and multimedia servers [Quantum
2003]. They do not plan to use BB-DRAM as the primary storage device, however.
Instead, they access the BB-DRAM devices as if they were mechanical disks via the
SCSI interface, with the same software infrastructures to handle disks. From a marketing
point of view, Quantum has shortened the development process by making BB-DRAM
plug-and-play, but from the engineering point of view, those BB-DRAM devices are far
from achieving their full performance potential.

The Rio file cache [Chen et al. 1996, Ng and Chen 2001] combines UPS, volatile
memory, and a modified write-back scheme to achieve the reliability of a write-through
file cache and the performance of a pure write-back file cache (with no reliability-
induced writes to disk). The resiliency offered by Rio complements Conquest well.
While Conquest uses main store as the final storage destination, Rio’s BIOS safe sync
mechanism provides high assurance for a system to: (1) transfer control to the sync
routine during a crash, and (2) write the data content of memory to disk. Rio’s reliability
mechanisms try to avoid any dependency on underlying kernel mechanisms to minimize
the effect of kernel crashes on the proper operations of Rio. For example, Rio removes
dependencies on the virtual memory system by switching the processor to use physical
addresses. Also, Rio removes dependencies on the kernel device drivers by using the
BIOS interface to disk.

The HeRMES project [Miller et al. 2001] takes advantage of a form of persistent
RAM that is still under development as of this writing—Magnetic RAM (MRAM)
[Boeve et al. 1999]. HeRMES uses MRAM primarily to store the file metadata to reduce
a large component of existing disk traffic, and also to buffer writes to lengthen the time
frame for committing modified data. HeRMES also assumes that persistent RAM will
remain a relatively scarce resource for the foreseeable future, especially for large file
systems. As our performance results show, many significant Conquest performance
gains are not due to improvements in metadata handling, and HeRMES limits its use of
persistent memory to metadata.

PDA operating systems: The two leading PDAs on the market are PalmOS and
Windows CE devices. Both systems deliver memory and file system services via BB-
DRAM, but their designs are more concerned with fitting the operating systems into the
memory-constrained environment than with exploiting an abundance of persistent RAM.

To use limited BB-DRAM on handhelds, both the PalmPilot and Windows CE make
many design simplifications. Palm has designed a commodity system with a few
essential core services. For Palm OS 5 [Palm 2000], the execution environment does not
provide a process abstraction; instead, a single program executes at a time. Palm OS
hardwires partitions of memory space for purposes such as low memory globals, the
dynamic heap, and the storage heap. The low memory is used for various OS
subsystems. The dynamic heap stores global data for the operating system, applications,
and various other purposes, and the storage heap provides persistent storage. The data

 29

storage granularity is a contiguous chunk of memory of 1 to 64 KB, managed by an
internal database engine. For large files, an alternative API can support files of arbitrary
sizes, and file-based operations are buffered. The reliability model of PalmPilot mainly
relies on battery backing and data synchronization (i.e. backup) to a desktop machine.

Unlike Palm OS, Windows CE tries to miniaturize the full operating system
environment to the scale of a PDA, with full support for multiple processes and threads
for execution. Windows CE 3.0 [Microsoft 2003] uses a variety of techniques to simplify
memory management and to reduce memory overhead. File operations are provided,
with memory-mapping mechanisms available to avoid copying. Windows CE can mount
external file systems, but they are limited to the size of the memory on the handheld
device, and the maximum file size is limited to 32 MB.

Neither PDA design is suitable for general deployment on desktop computers. The
PalmPilot lacks a full-featured execution model, and efficient methods for accessing large
data objects are limited. Windows CE is not designed for desktop-scale deployment, and
many management functions are simplified by requiring the end users to specify them
explicitly (e.g. the boundary between the program memory and the permanent storage).

IBM AS/400: IBM AS/400 servers provide the appearance of storing all files in
memory. This uniform view of storage access is accomplished by the extensive use of
virtual memory. However, underneath the hood of AS/400, the conventional role of
memory as the cache for disk content still applies, and disks are still the persistent storage
medium for files [IBM 2003].

Slice: Conquest’s approach of separating data paths based on the file sizes and
metadata can also be found in distributed storage systems. The Slice file service
[Anderson et al. 2000] is an example. Each client’s request stream is partitioned into
three functional request classes: (1) high-volume I/O to large files, (2) I/O on small files,
and (3) operations on the name space or file attributes. Based on the request type and
arguments, a front-end µproxy switches to redirect requests to a selected server
responsible for handling a given class of requests. Directory servers provide naming
services through distributed hashing and load balancing. Small-file servers are
specialized for fragmentation management so they can provide both efficient storage and
high bandwidth. Bulk I/O operations route directly to an array of storage nodes, which
provide block-level access to raw storage objects.

9. FUTURE WORK

Conquest is now operational, but we can further improve its performance and usability in
a number of ways. One previously mentioned area is finding a better disk layout for
large data blocks (Section 4.2.3).

High-speed in-memory storage also opens up additional possibilities for operating
systems. Conquest provides a simple and efficient way for kernel-level code to access a
general storage service, which is conventionally either avoided entirely or achieved
through the use of more limited buffering mechanisms. One major area of application for
this capability would be system monitoring and lightweight logging, but there are
numerous other possibilities.

In terms of research, so far we have aggressively removed many disk-related
complexities from the in-memory critical path without questioning exactly how much
each disk optimization adversely affects file system performance. One area of research is
to break down these performance costs, so designers can improve the memory
performance for disk-based file systems.

Memory under Conquest is a shared resource among execution, storage, and
buffering for disk access. Finding the “sweet spot” for optimal system performance will
require both modeling and empirical investigation. In addition, after reducing the roles of

 30

disk storage, Conquest exhibits different system-wide performance characteristics, and
the implications can be subtle. For example, the conventional wisdom of mixing CPU-
and IO-bound jobs may no longer be a suitable scheduling policy. We are currently
experimenting with a wider variation of workloads to investigate a fuller range of
Conquest behavior.

10. CONCLUSIONS

This paper presents Conquest, a fully operational file system that integrates persistent
RAM with disk storage to provide significantly improved performance compared to other
approaches, such as RAM disks or enlarged buffer caches. Conquest demonstrates a 1.4x
to 2.0x speedup compared to popular disk-based file systems for both in-memory
workloads and workloads that must exercise the disk.

The benefits of Conquest arise from rethinking basic file system design assumptions.
Conquest explores the implications of a memory-rich environment, challenges the
commonly perceived performance bound of LRU disk caching, and questions layer-based
optimizations by proposing separate cut-through data paths. By revisiting individual
decision points in a new context and designing from the ground up, we evolved Conquest
into two simpler data paths that surpass the performance accomplished by many layers of
legacy optimizations.

The experience of designing and implementing Conquest offers several major lessons:

• The handling of disk characteristics permeates file system design even at levels

above the device layer. For example, the default VFS routines contain readahead and
buffer-cache mechanisms that add high and unnecessary overheads to low-latency
main store. Because of the need to bypass these mechanisms, building Conquest was
much more difficult than we initially expected. For example, certain internal storage
routines anticipate data structures associated with disk handling. Reusing these
routines either involves constructing memory-specific access routines from scratch, or
finding ways to invoke them with memory-based data structures.

• File systems that are optimized for disk are not suitable for an environment where
memory is abundant. For example, ext2, reiserfs, and SGI XFS do not exploit the
speed of RAM as well as anticipated. Disk-related optimizations impose high
overheads on in-memory accesses.

• Matching the physical characteristics of media to storage objects provides
opportunities for faster performance and considerable simplification for each
medium-specific data path. Conquest applies this principle of specialization: leaving
only the data content of large files on disk leads to simpler and cleaner management
for both memory and disk storage. This observation may seem obvious, but good
results are not achieved automatically. For example, should the L2 cache footprint of
two specialized data paths exceed the size of a single generic data path, the resulting
performance can go in either direction, depending on the size of the physical cache.

• Access to cached data in traditional file systems incurs performance costs due to
commingled disk-related code. Removing disk-related complexity for in-memory
storage under Conquest therefore yields unexpected benefits even for cache accesses.
In particular, one surprising result was Conquest’ s ability to outperform ramfs by 7%
to 14% in bandwidth under microbenchmarks, despite the fact that storage data paths
in ramfs are already heavily optimized.

• It is much more difficult to use RAM to improve disk performance than it might
appear at first. Simple approaches such as increasing the buffer-cache size or

 31

installing simple RAM-disk drivers do not generate a full-featured, high-performance
solution.

Conquest demonstrates how this process of rethinking underlying assumptions can

lead to significant performance benefits and architectural simplifications. This
experience suggests that radical changes in the hardware, applications, and user
expectations of the past decade should also lead us to reflect on future file system design
and other aspects of operating system design.

ACKNOWLEDGEMENTS

We would like to thank Michael Gorlick and Richard Guy for reviewing an early
presentation of the Conquest performance results and offering useful insights. In
addition, we want to thank Mark Yarvis, Scott Michel, and Janice Wheeler for
commenting on earlier drafts of this paper. This work was supported by the National
Science Foundation under Grant No. CCR-0098363.

REFERENCES

APC. 2005. SMART-UPS. http://www.apc.com.
ANDERSON, D., CHASE, J., AND VAHDAT, A. 2000. Interposed Request Routing for Scalable Network

Storage. Proceedings of the 4th Symposium on Operating System Design and Implementation. San Diego,
CA.

BAKER, M.G., HARTMAN, J.H., KUPFER, M.D., SHIRRIFF, K.W., AND OUSTERHOUT, J.K. 1991.
Measurements of a Distributed File System. Proceedings of the 13th Symposium on Operating Systems
Principles. Pacific Grove, CA.

BAKER, M., ASAMI, S., DEPRIT, E., OUSTERHOUT, J., AND SELTZER, M. 1992. Non-Volatile Memory
for Fast, Reliable File Systems. Proceedings of the 5th International Conference on Architectural Support
for Programming Languages and Operating Systems. Boston, MA.

BITMICRO. 2005. High-End Solid State Disk. http://www.bitmicro.com/products_edisk_25_scsin.php.
BOEVE, H., BRUYNSERAEDE, C., DAS, J., DESSEIN, K., BORGHS, G., DE BOECK, J., SOUSA, R.,

MELO, L., AND FREITAS, P. 1999. Technology Assessment for the Implementation of Magnetoresistive
Elements with Semiconductor Components in Magnetic Random Access Memory (MRAM) Architectures.
IEEE Transactions on Magnetics 35, 5, 2820-2825.

BOLOSKY, W.J., FITZGERALD, R.P., AND DOUCEUR, J.R. 1997. Distributed Schedule Management in the
Tiger Video Fileserver. Proceedings of the 16th ACM Symposium on Operating Systems Principles. Saint-
Malo, France.

BONWICK, J. 1994. The Slab Allocator: An Object-Caching Kernel Memory Allocator. Proceedings of
USENIX Summer 1994 Technical Conference. Boston, MA.

BOZMAN, G.P., GHANNAD, H.H., AND WEINBERGER, E.D. 1991. A Trace-Driven Study of CMS File
References. IBM Journal of Research and Development 35, 5-6, 815-828.

CÁCERES, R., DOUGLIS, F., LI, K., AND MARSH, B. 1993. Operating System Implications of Solid-State
Mobile Computers. Technical Report MITL-TR-56-93, Matsushita Information Technology Laboratory,
United States.

CARD, R., TS’O, T., AND TWEEDIE, S. 1994. Design and Implementation of the Second Extended
Filesystem. Proceedings of the First Dutch International Symposium on Linux, ISBN 90-367-0385-9.

CHEN, P.M., NG, W.T., CHANDRA, S., AYCOCK, C., RAJAMANI, G., AND LOWELL, D. 1996. The Rio
File Cache: Surviving Operating System Crashes. Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems. Cambridge, MA.

CHEN, S. AND THAPAR, M. 1997. A Novel Video Layout Strategy for Near-Video-on-Demand Servers.
Technical Report HPL-97-52. Hewlett-Packard Laboratories.

DELL. 2002. Determining the Availability and Reliability of Storage Configurations.
http://www1.us.dell.com/content/topics/global.aspx/power/en/ps3q02_shetty?c=us&l=en&s=corp. Google
keywords: Dell, reliability, MTBF, hours.

DEWITT, D.J., KATZ, R.H., OLKEN, F., SHAPIRO, L.D., STONEBRAKER, M., WOOD, D.A. 1984.
Implementation Techniques for Main Memory Database Systems. Proceedings of ACM SIGMOD Int.
Conference on Management of Data.

DOUCEUR, J.R. AND BOLOSKY, W.J. 1999. A Large-Scale Study of File-System Contents. Proceedings of
the ACM Sigmetrics '99 International Conference on Measurement and Modeling of Computer Systems.
Atlanta, GA.

 32

DOUGLIS, F., CÁCERES, R., KAASHOEK, F., LI, K., MARSH, B., AND TAUBER, J.A. 1994. Storage
Alternatives for Mobile Computers. Proceedings of the 1st Symposium on Operating Systems Design and
Implementation. Monterey, CA.

EDEL, N.K., TUTEJA, D., MILLER, M.L., BRANDT, S.A. 2004. MRAMFS: A Compressing File System for
Non-Volatile RAM. Proceedings of the 12th IEEE/ACM International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems, Volendam, Netherlands.

EICH, M.H. 1987. A Classification and Comparison of Main Memory Database Recovery Techniques.
Proceedings of the 3rd International Conference on Data Engineering. Los Angeles, CA.

EVANS, K.M. AND KUENNING, G.K. 2002. A Study of Irregularities in File-Size Distributions. Proceedings
of the 2002 International Symposium on Performance Evaluation of Computer and Telecommunication
Systems. San Diego, CA.

FAGIN, R., NIEVERGELT, J., PIPPENGER, N., AND STRONG, H.R. 1979. Extensible Hashing—A Fast
Access Method for Dynamic Files, ACM Transactions on Database Systems 4, 3, 315-344.

GAL, E. AND TOLEDO, S. 2005. A Transactional Flash File System for Microcontrollers. Proceedings of
the 2005 USENIX Annual Technical Conference, Anaheim, CA.

GANGER, G.R. AND PATT, Y.N. 1994. Metadata Update Performance in File Systems. Proceedings of the
USENIX 1994 Symposium on Operating Systems Design and Implementation.

GANGER, G.R., MCKUSICK, M.K., SOULES, C.A.N., AND PATT, Y.N. 2000. Soft Updates: A Solution to
the Metadata Update Problem in File Systems. ACM Transactions on Computer Systems 18, 2, 127-153.

GARCIA-MOLINA, H., AND SALEM, K. 1987. High Performance Transaction Processing with Memory
Resident Data. Proceedings of the 2nd International Workshop on High Performance Transaction Systems.
Pacific Grove, CA.

GARCIA-MOLINA, H., AND SALEM, K. 1992. Main Memory Database Systems: An Overview. IEEE
Transactions on Knowledge and Data Engineering 4, 6, 509-516.

GAWLICK, D. AND KINKADE, D. 1985. Varieties of Concurrency Control in MIS/VS Fast Path. IEEE
Database Engineering 8, 2, 3-10.

GIBSON, G.A. AND PATTERSON, D.A. 1993. Designing Disk Arrays for High Data Reliability. Journal of
Parallel and Distributed Computing 17, 1-2, 4-27.

GROCHOWSKI, E., AND HALEM R.D. 2003. Technological Impact of Magnetic Hard Disk Drives on
Storage Systems, IBM Systems Journal, 42(2),
http://www.research.ibm.com/journal/sj/422/grochowski.html.

HITZ, D., LAU, J., MALCOLM, M. File System Design for an NFS File Server Appliance. Proceedings of the
USENIX Winter 1994 Technical Conference, San Francisco, CA.

HOWARD, J., KAZAR, M., MENEES, S., NICHOLS, D., SATYANARAYANAN, M., SIDEBOTHAM, R.,
AND WEST, M. 1988. Scale and Performance in a Distributed File System, ACM Transactions on
Computer Systems 6, 1, 51-81.

IBM. 2003. IBM iSeries Storage Overview. http://www-
1.ibm.com/servers/eserver/iseries/hardware/storage/overview.html.

IRLAM, G. 1993. UNIX File Size Survey—1993, http://www.base.com/gordoni/ufs93.html.
KATCHER, J. 1997. PostMark: A New File System Benchmark. Technical Report TR3022. Network

Appliance Inc.
KAWAGUICHI, A., NISHIOKA, S., AND MOTODA, H. 1995. A Flash-Memory-Based File System.

Proceedings of USENIX Winter 1995 Technical Conference. New Orleans, LA.
KEREKES, Z. 2005. Charting the Rise of the Solid State Disk Market.

http://www.storagesearch.com/chartingtheriseofssds.html.
KLEIMAN, SR. 1986. Vnodes: An Architecture for Multiple File System Types in Sun UNIX. Proceedings

of the 1986 Summer USENIX Conference. Atlanta, GA.
LEHMAN, T.J. AND CAREY, M.J. 1987. A Recovery Algorithm for a High-Performance Memory-Resident

Database System. Proceedings of ACM SIGMOD Conference. San Francisco, CA.
LI, K. AND NAUGHTON, J.F. 1988. Multiprocessor Main Memory Transaction Processing. Proceedings of

International Symposium on Databases in Parallel and Distributed Systems. Austin, TX.
LIEBERT COOPERATION. 2005. Field MTBF Numbers: What Do They Really Mean?

http://www.liebert.com/support/whitepapers/documents/techmtbf.asp.
MAHANTI, A., WILLIAMSON, C., AND EAGER, D. 2000. Traffic Analysis of a Web Proxy Caching

Hierarchy. IEEE Network Magazine: Special Issue on Web Performance 14, 3, 16-23.
MCKUSICK, M.K., JOY, W.N., LEFFLER, S.J., AND FABRY, R.S. 1984. A Fast File System for UNIX.

ACM Transactions on Computer Systems 2, 3, 181-197.
MCKUSICK, M.K., KARELS, M.J., AND BOSTIC, K. 1990. A Pageable Memory Based Filesystem.

Proceedings of Summer USENIX Conference. Anaheim, CA.
MCKUSICK, M.K. AND GANGER G.R. 1991. Soft Updates: A Technique for Eliminating Most

Synchronous Writes in the Fast Filesystem. Proceedings of the 1999 USENIX Annual Technical
Conference.

MCKUSICK, M.K. 2002. Running “ fsck” in the Background. Proceedings of BSDCon 2002. San Francisco,
CA.

 33

MICRON. 1997. Module Mean Time Between Failures (MTBF). Technical Note TN-04-45.
http://download.micron.com/pdf/technotes/DT45.pdf (go to micron.com, and search for MTBF).

MICROSOFT. 2003. Microsoft Windows CE 3.0: Files, Databases, and Persistent Storage. MSDN Online
Library. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dncenet/html/systemmemorymgmtwince.asp.

MILES J.B. 2000. Thin clients. Government Computer News, 6(11).
http://appserv.gcn.com/state/vol6_no11/guide/893-1.html.

MILLER, E.L., BRANDT, S.A., AND LONG, D.D.E. 2001. HerMES: High-Performance Reliable MRAM-
Enabled Storage. Proceedings of the 8th IEEE Workshop on Hot Topics in Operating Systems. Schloss
Elmau, Germany.

NAMESYS. 2005. http://www.namesys.com.
NG, N.T., AYCOCK, C.M., RAJAMANI, G., AND CHEN, P.M. 1996. Comparing Disk and Memory’s

Resistance to Operating System Crashes. Proceedings of the 1996 International Symposium on Software
Reliability Engineering. Hong Kong, China.

NG, N.T. AND CHEN, P.M. 2001. The Design and Verification of the Rio File Cache. IEEE Transactions on
Computers 50, 4, 322-337.

NIIJIMA, H. 1995. Design of a Solid-State File Using Flash EEPROM. IBM Journal of Research and
Development 39, 5, 531-546.

OUSTERHOUT, J.K., DA COSTA, H., HARRISON, D., KUNZE, A., KUPFER, M., AND THOMPSON, J.G.
1985. A Trace Driven Analysis of the UNIX 4.2 BSD File Systems. Proceedings of the 10th ACM
Symposium on Operating Systems Principles, Orcas Island, WA, 15-24.

PALM. 2004. Introduction to Palm OS Memory Use. Palm OS Programmer’s Companion Volume I.
http://www.palmos.com/dev/support/docs/palmos/PalmOSCompanion/Memory.html.

PC WORLD. 2005. IRam Speeds Windows XP Startup. PC World,
http://www.pcworld.com/news/article/0,aid,121105,00.asp.

PEACOCK, J.K., KAMARAJU, A. AND AGRAWAL, S. Fast Consistency Checking for the Solaris File
System. Proceedings of the 1998 USENIX Annual Technical Conference, New Orleans, LA.

PETERSON, J.L. AND NORMAN, T.A. 1997. Buddy Systems. Communications of the ACM 20, 6, 421-431.
PRICE WATCH. 2005. Memory - System. http://www.pricewatch.com.
QUANTUM. 2003. Achieving Real-Time Multimedia Performance with Multistream Solid-State Disk,

http://uk.builder.com/whitepapers/0,39026692,60018746p-39000844q,00.htm.
RIEDEL, E. 1998. A Performance Study of Sequential I/O on Windows NT 4. Proceedings of the 2nd USENIX

Windows NT Symposium. Seattle, WA.
ROSELLI, D., LORCH, J.R., AND ANDERSON, T.E. 2000. A Comparison of File System Workloads.

Proceedings of the 2000 USENIX Annual Technical Conference. San Diego, CA.
ROSENBLUM, M. AND OUSTERHOUT, J. 1991. The Design and Implementation of a Log-Structured File

System. Proceedings of the 13th ACM Symposium on Operating Systems Principles. Pacific Grove, CA.
SCHINDLER, J., GRIFFIN, J.L., LUMB, C.R., AND GANGER, G.R. 2002. Track-Aligned Extents: Matching

Access Patterns to Disk Drive Characteristics. Proceedings of the USENIX File and Storage Technologies
Conference. Monterey, CA.

SEAGATE. 2003. Cheetah 10K.6 Reliability, Performance, and Low Ownership Cost. http://www.seagate.com
(click on products, disc datasheets, disc datasheets, cheetah 10K.6).

SELTZER, M.I., GANGER, G.R., MCKUSICK, M.K., SMITH, K.A., SOULES, C.A.N., AND STEIN, C.A.
2000. Journaling Versus Soft Updates: Asynchronous Meta-Data Protection in File Systems. Proceedings
of 2000 USENIX Annual Technical Conference. San Diego, CA.

SHANKLAND, S. 2001. Transmeta Taking Linux Gadgets Mobile. CNET News.com,
http://news.com.com/2100-1001-254020.html?legacy=cnet.

SWEENEY, A., DOUCETTE, D., HU, W., ANDERSON, C., NISHIMOTO, M., AND PECK, G. 1996.
Scalability in the XFS File System. Proceedings of the USENIX 1996 Annual Technical Conference. San
Digeo, CA.

THOMPSON, K. 1978. UNIX Implementation. Bell System Technical Journal 57, 6, 1931-1946.
TORELLI, P. 1995. The Microsoft Flash File System. Dr. Dobb’s Journal, February, 63-70.
VOGELS, W. 1999. File System Usage in Windows NT 4.0. Proceedings of 17th Symposium on Operating

Systems Principles. Kiawah Island, SC.
WANG, A.I.A, KUENNING, G.H., REIHER P., AND POPEK, G. 2003. The Effects of Memory-Rich

Environments on File System Microbenchmarks. Proceedings of the 2003 International Symposium on
Performance Evaluation of Computer and Telecommunication Systems. Montreal, Canada.

WOODHOUSE, D. 2001. JFFS: The Journaling Flash File System. http://sources.redhat.com/jffs2/jffs2-
html/.

WU, M. AND ZWAENEPOEL, W. 1994. eNVy: A Non-Volatile, Main Memory Storage System.
Proceedings of the 6th Conference on Architectural Support for Programming Languages and Operating
Systems. San Jose, CA.

