
PARAID: A Gear-Shifting Power-Aware RAID

Charles Weddle, Mathew Oldham, Jin Qian, An-I Andy Wang,
Florida State University,{weddle, oldham, qian, awang}@cs.fsu.edu

Peter Reiher, University of California, Los Angeles,reiher@cs.ucla.edu
Geoff Kuenning, Harvey Mudd College, geoff@cs.hmc.edu

Abstract

Reducing power consumption for server computers is
important, since increased energy usage causes in-
creased heat dissipation, greater cooling requirements,
reduced computational density, and higher operating
costs. For a typical data center, storage accounts for
27% of energy consumption. Conventional server-class
RAIDs cannot easily reduce power because loads are
balanced to use all disks even for light loads.

We have built the Power-Aware RAID (PARAID),
which reduces energy use of commodity server-class
disks without specialized hardware. PARAID uses a
skewed striping pattern to adapt to the system load by
varying the number of powered disks. By spinning
disks down during light loads, PARAID can reduce
power consumption, while still meeting performance
demands, by matching the number of powered disks to
the system load. Reliability is achieved by limiting disk
power cycles and using different RAID encoding
schemes. Based on our five-disk prototype, PARAID
uses up to 34% less power than conventional RAIDs,
while achieving similar performance and reliability.

1 Introduction

The disk remains a significant source of power usage in
modern systems. In Web servers, disks typically ac-
count for 24% of the power usage; in proxy servers,
77% [CARR03, HUAN03]. Storage devices can ac-
count for as much as 27% of the electricity cost in a
typical data center [ZHU04]. The energy spent to oper-
ate disks also has a cascading effect on other operating
costs. Greater energy consumption leads to more heat
dissipation, which in turn leads to greater cooling re-
quirements [MOOR05]. The combined effect also lim-
its the density of computer racks, which leads to more
space requirements and thus higher operating costs.

Data centers that use large amounts of energy tend
to rely on RAID to store much of their data, so improv-
ing the energy efficiency of RAID devices is a promis-
ing energy-reduction approach for such installations.
Achieving power savings on commodity server-class
disks is challenging for many reasons: (1) RAID per-
formance and reliability must be retained for a solution
to be an acceptable alternative. (2) To reduce power, a
server cannot rely on caching and powering off disks
during idle times because such opportunities are not as
frequent on servers [GURU03, CARR03, ZHU04]. (3)
Conventional RAID balances the load across all disks
in the array for maximized disk parallelism and per-
formance [PATT88], which means that all disks are

spinning even under a light load. To reduce power con-
sumption, we must create opportunities to power off
individual disks. (4) Many legacy reliability encoding
schemes rely on data and error-recovery blocks distrib-
uted among disks in constrained ways to avoid corre-
lated failures. A solution needs to retrofit legacy reli-
ability encoding schemes transparently. (5) Server-
class disks are not designed for frequent power cycles,
which reduce life expectancy significantly. Therefore,
a solution needs to use a limited number of power cy-
cles to achieve significant energy savings.

Some existing approaches use powered-down
RAIDs for archives [COLA02] and trade performance
for energy savings [PINH01]. Some studies have ex-
ploited special hardware such as multi-speed disks
[CARR03, LI04, ZHU05]. Although simulation studies
show promising energy savings, multi-speed disks are
still far from ubiquitous in large-scale deployments
[LI04, YAO06]. With the aid of nonvolatile RAM,
approaches that use existing server-class drives have
been recently made available [LI04, YAO06, PINH06],
but the RAID reliability encoding constraints limit the
number of spun-down drives (e.g. one for RAID-5).

We have designed, implemented, and measured the
Power-Aware RAID (PARAID), which is deployable
with commodity server-class disk drives, without spe-
cial hardware. PARAID introduces a skewed striping
pattern that allows RAID devices to use just enough
disks to meet the system load. PARAID can vary the
number of powered-on disks by gear-shifting or switch-
ing among sets of disks to reduce power consumption.
Compared to a conventional 5-disk RAID, PARAID
can reduce power consumption by up to 34%, while
maintaining comparable performance and reliability.
Moreover, PARAID reuses different RAID levels so
that the underlying RAID technology can evolve inde-
pendently.

 Beyond the power savings obtained by PARAID,
the process of creating a real energy measurement
framework produced some useful insights into the gen-
eral problem of measuring energy consumption and
savings. These insights are also discussed in this paper.

2 Observations

Over-provisioned resources under RAID: Load bal-
ancing allows a conventional RAID device to maximize
disk parallelism and performance, and ensures that no
disk becomes a bottleneck. This uniformity simplifies
data management and allows all disks to be accessed in
the same way. However, uniform striping is not favor-
able for energy savings. Load balancing significantly

reduces opportunities to power off disks because all
disks in the array need to be powered to serve a file,
even if a RAID receives relatively light loads, when
fewer powered disks would be sufficient.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

hours

GB/hour

Figure 2.1: UCLA Computer Science Department
web server activity from August 11 through August

14, 2006.

Cyclic fluctuating load: Many system loads dis-
play cyclic fluctuations [CHAS01]. Figure 2.1 shows
the web traffic gathered at the UCLA Computer Sci-
ence Department across one week. The load fluctua-
tions roughly follow daily cycles. Depending on the
types of traffic, different systems may exhibit different
fluctuation patterns, with varying ranges of light to
heavy loads [IYEN00].

We can exploit these patterns by varying the num-
ber of powered disks, while still meeting performance
needs and minimizing the number of power switches.
A few strategically timed power cycles can achieve
significant power savings.

Unused storage space: Storage capacity is out-
growing demand for many computing environments,
and various large-scale installations report only 30% to
60% storage allocation [ASAR05, GRAY05, LEVI06].
Researchers have been looking for creative ways to use
the free storage (e.g. trading off capacity for perform-
ance [YU00] and storing every version of file updates
[SANT99]).

Additionally, many companies purchase storage
with performance as the top criterion. Therefore, they
may need many disks for parallelism to aggregate
bandwidth, while the associated space is left largely
unused. Further, administrators tend to purchase more
space in advance to avoid frequent upgrades. Unused
storage can then be used opportunistically for data-
block replication to help reduce power consumption.

Performance versus energy optimizations: Per-
formance benefits are realized only when a system is
under a heavy load, and may not result in an immediate
monetary return. Energy savings, however, are avail-
able at once, and could, for example, be invested in
more computers. Also, unlike performance, which is
purchased in chunks as new machines are acquired,
energy savings can be invested immediately and com-
pounded over the lifetime of the computers. Therefore,
if a server usually operates below its peak load, opti-
mizing energy efficiency is attractive.

3 Power-Aware RAID

The main design issues for PARAID are how to skew
disk striping to allow opportunities for energy savings
and how to preserve performance and reliability.

3.1 Skewed Striping for Energy Savings

PARAID exploits unused storage to replicate and stripe
data blocks in a skewed fashion, so that disks can be
organized into hierarchical overlapping sets of RAIDs.
Each set contains a different number of disks, and can
serve all requests via either its data blocks or replicated
blocks. Each set is analogous to a gear in automobiles,
since different numbers of disks offer different levels of
parallelism and aggregate disk bandwidth.

The replicated blocks are soft states, in the sense
that they can be easily reproduced. Thus, as storage
demands rise, replicated blocks can be reclaimed by
reducing the number of gears. Unlike memory caches,
these soft states persist across reboots.

Figure 3.1.1 shows an example of replicated data
blocks persisting in soft states in the unused disk re-
gions. By organizing disks into gears, PARAID can
operate in different modes. When operating in gear 1,
with disks 1 and 2 powered, disks 3 and 4 can be pow-
ered off. As the load increases, PARAID up-shifts into
second gear by powering up the third disk.

By adjusting the number of gears and the number
of disks in each gear, PARAID provisions disk parallel-
ism and bandwidth so as to follow the fluctuating per-
formance demand curve closely through the day. By
creating opportunities to spin down disk drives,
PARAID conserves power.

Figure 3.1.1: Skewed striping of replicated blocks in

soft state, creating three RAID gears over four disks.

While more gears can match the performance demand
curve more closely, the number of gears is constrained
by the unused storage available and the need for update
propagation when switching gears. To minimize over-
head, the gear configuration also needs to consider the
number of gears and gear switches.

3.2 Preserving Peak Performance

PARAID matches the peak performance of conven-
tional RAIDs by preserving the original disk layouts
when operating at the highest gear. This constraint also

RAID

Soft
State

Gears
 1

 2
 3

1 2 3 4

allows PARAID to introduce minimal disturbances to
the data path when the highest gear is in use.

In low gears, since PARAID offers less parallel-
ism, the bandwidth offered is less than that of a conven-
tional RAID. Fortunately, the number of requests af-
fected by this performance degradation is significantly
smaller compared to those affected during peak hours.
Also, as bandwidth demand increases, PARAID will
up-shift the gear to increase disk parallelism.

PARAID also can potentially improve performance
in low-gear settings. As a gear downshifts, the transfer
of data to the soft state from disks about to be spun
down warms up the cache, thus reducing the effect of
seeking between blocks stored in different gears.

3.3 Retaining Reliability

To retain conventional RAID reliability, PARAID must
be able to tolerate disk failures. To accomplish this
goal, PARAID needs to supply the data redundancy of
conventional RAIDs and address the reduced life ex-
pectancy of server-class disks due to power cycles.

PARAID is designed to be a device layer sitting
between an arbitrary RAID device and its physical de-
vices. Thus, PARAID inherits the level of data redun-
dancy, striping granularity, and disk layout for the high-
est gear provided by that RAID. For example, a
PARAID device composed with a RAID-5 device
would still be able to rebuild a lost disk in the event of
disk failure. (The details of failure recovery will be
discussed in Section 4.4.)

Because PARAID power-cycles disks to save en-
ergy, it must also address a new reliability concern.
Power-cycling reduces the MTTF of a disk, which is
designed for an expected number of cycles during its
lifetime. For example, the disks used in this work have
a 20,000-power-cycle rating [FUJI05]. Every time a
disk is power-cycled, it comes closer to eventual fail-
ure.

PARAID limits the power cycling of the disks by
inducing a bimodal distribution of busy and idle disks.
The busier disks stay powered on, and the more idle
disks often stay off, leaving a set of middle-range disks
that are power-cycled more frequently. PARAID can
then prolong the MTTF of a PARAID device as a
whole by rotating the gear-membership role of the disks
and balancing their current number of power cycles.

Further, PARAID limits the power cycles for disks.
By rationing power cycles, PARAID can operate with
an eye to targeted life expectancy. For example, if the
disks have a five-year life expectancy due to the system
upgrade policy, and the disks are expected to tolerate
20,000 cycles, then each disk in the array cannot be
power cycled more than 10 times a day. Once any of
the disks has reached the rationed numbers of power
cycles for a given period, PARAID can operate at the
highest gear without energy savings. The power-saving
mode resumes at the next rationing period.

4 PARAID Components

PARAID has four major components—a block handler,
monitor, reliability manager, and disk manager (Figure
4.1)—responsible for handling block I/Os, replication,
gear shifting, update propagation, and reliability.

4.1 Disk Layout and Data Flow

PARAID is a new device layer in the conventional
software RAID multi-device driver. The block handler
under PARAID transparently remaps requests from a
conventional RAID device and forwards them to other
soft-state RAID devices or individual disk devices.

PARAID currently delegates RAID regions to store
replicated soft states for individual gears. The highest
gear reuses the original RAID level and disk layout to
preserve the peak performance. When the highest gear
is active, PARAID forwards requests and replies with
minimal disturbance to the data path.

Figure 4.1: PARAID system components.

However, the data and parity blocks of D disks cannot
be striped across fewer disks to achieve the same level
of redundancy. If we simply assigned the Dth block to
one of the still-powered disks, it would be possible for a
single drive to lose both a data block and a parity block
from the same stripe, while the block stored on the
powered-off disk might be out of date.

To provide reliability, the soft-state replicated
blocks stored in each gear use the same RAID level.
For example, consider a 5-disk RAID-5 (Table 4.1).
Gear 2 uses all 5 disks; gear 1 uses 4. When disk 5 is
spun down, its blocks must be stored on the remaining
4 disks. This is done by creating a 4-disk soft-state
RAID-5 partition; the data and parity blocks from disk
5 are stored in this partition as if they were normal data
blocks arriving directly from the application. If
necessary, the soft-state partition can be removed to
recover space whenever disk 5 is spinning.

The synchronization between disk 5 of gear 2 and
the blocks in gear 1 resembles the data flow of
RAID1+0. Disk 5 is "mirrored" using RAID-5 on gear
1, with synchronization performed during gear shifts.

File System

RAID

Block Handler

Monitor Soft RAID

Disk Mgr

Reliability

Disk Dev Driver

PARAID

By using the underlying RAID-5 code for disk layout
and parity handling, the PARAID code is drastically
simplified compared to trying to deal with those details
internally.

 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Gear 1 (1-4) 8 12 ((1-4),8,12)
RAID-5 16 20 (16,20,_) _

 1 2 3 4 (1-4)
Gear 2 5 6 7 (5-8) 8
RAID-5 9 10 (9-12) 11 12
 13 (13-16) 14 15 16
 (17-20) 17 18 19 20

Table 4.1: PARAID disk layout with one 4-disk
gear and one 5-disk gear, each running RAID-5.

Each table entry contains either a block number or
numbers enclosed with parentheses, denoting a par-
ity block. “_” means an empty block.

For all gears (including the case where all disks are
powered), if either a read or write request is sent to a
powered disk, the disk simply serves the request. If a
request is sent to a powered-off disk, then PARAID will
remap the request to a replicated block stored on a pow-
ered disk. A remapped update is later propagated to
neighboring gears during gear shifts.

The required unused storage depends on the RAID
level, the number of gears, and the number of disks in
each gear. For RAID-5, D > 3 disks, M gears with Gi
disks within the ith gear (1 < i < M, 3 < Gi < Gi+1 <
GM = D) the percentage storage consumption Si of the
total RAID for the ith gear can be solved with M equa-
tions:

() ()

=−=−

=

−−−
=

=

∑

∑

MiSGGGS

S

iiii

M

ij

j

M

i

i

..2,1

1

111

1
(1)

For a disk in the lowest gear (Figure 3.1.1, disk 1), the
sum of the percentage usage of disk space by each gear
must be one. Also, for a gear (Figure 3.1.1, gear 2) to
be able to shift to a lower gear (Figure 3.1.1, gear 1),
the lower gear must store all the content of the disk(s)
(Figure 3.1.1, disk 3) that are about to be spun down,
with their parity information created for the lower gear.

PARAID uses around (D – G1)/(D – 1) of the total
RAID-5 storage to store soft states. This estimate is
largely based on the number of disks in the lowest gear,
not the number of gears or the number of disks in in-
termediate gears, so the overhead of gear switching and
the time spent in each gear will determine optimal gear
configurations.

The target percentage of energy savings for an ac-
tive system (not specific to RAID-5) is described by
formula (2), where Pstandby is the power consumption for
a spun-down disk (more details are given in the per-
formance section), and Pactive/idle is the average power
consumption for either a busy disk or an idle disk, to
compute disk power savings for busy or idle loads.

Power savings increase with more disks, fewer
disks in the lowest gear, and a higher Pactive/Pstandby ratio.
Since spun-down disks still consume power, it is better
to install PARAID with large disks with unused space,
rather than buying more disks later.

()
idleactive

idleactivedbys

DP

PGPGD

/

/1tan1
1

+−
− (2)

For this paper, an up-shift means switching from a gear
with Gi disks to Gi+1 disks; a downshift, switching from
a gear with Gi disks to Gi-1 disks. A gear switch can be
either an up-shift or a downshift.

4.2 Update Propagation

When a powered-off disk misses a write request, it must
synchronize the stale data either when powered on or
just before the stale information is accessed. If there is
a lot of stale data, fully synchronizing a disk can be
slow. The on-demand approach updates stale data only
when it is accessed, allowing the gear shift to take place
much more swiftly, but the full-synchronization ap-
proach is simpler to build. The on-demand approach is
not applicable for downshifts, since PARAID needs to
finish the propagation before spinning down drives.

The disk manager captures outstanding writes to
powered-off disks. For full synchronization, the disk
manager reissues outstanding writes to the disk when it
is powered on, possibly rereading some data from repli-
cated soft states stored in the current gear.

For on-demand synchronization, the PARAID
block I/O handler uses a dirty-block list. If a referenced
dirty block is not cached, PARAID will retrieve the
block from the original gear and return it to the re-
questor. PARAID will then write that block to the tar-
get-gear disks, effectively piggybacking the synchroni-
zation step at access time.

The disk manager must track stale block locations
for synchronization. This list of dirty blocks is stored
on disk in case of system failure and in memory for fast
access.

A failed disk can stop the gear-shifting process.
Disks can also fail during synchronization. However,
the list of outstanding writes is maintained throughout
the disk failure and recovery process. Once the failed
disk recovers, the synchronization can resume.

The choice of on-demand or full synchronization
for up-shifting is configurable. On-demand allows
PARAID to be more responsive to sudden request
bursts, at the cost of tracking additional writes for un-
synchronized disks. The full-synchronization approach
may be preferable for few gear shifts and a read-
dominated workload, since the number of blocks to be
synchronized is small. The full synchronization method
is also available for manual maintenance, such as when
an administrator would need to have a consistent sys-
tem state before pulling out a disk.

4.3 Asymmetric Gear-Shifting Policies

The disk manager performs shifts between gears. The
PARAID monitor decides when a shift is needed, and
the disk manager then performs the actual power cy-
cles.

Switching to a higher gear is aggressive, so that the
PARAID device can respond quickly to a sharp and
sustained increase in workload. However, the algo-
rithm should be resilient to short bursts, or it will lead
to little energy savings. Downshifting needs to be done
conservatively, so that wild swings in system activity
will not (1) mislead the PARAID device into a gear that
cannot handle the requests, or (2) cause rapid oscilla-
tions between gears and significantly shorten the life
expectancy of disks.

Up-shifts: To decide when to up-shift, the monitor
must know whether the current gear has reached a pre-
determined utilization threshold, in terms of busy RAID
milliseconds within a time window. Interestingly, we
could not check the disk-busy status directly, since this
probe would spin up a powered-down disk. Instead, an
active RAID device is marked busy from the point
when a request enters the RAID queue to when the
completion callback function is invoked. Since multi-
ple RAID requests can overlap, should a request be
completed with an elapsed time of t milliseconds, we
mark the prior t milliseconds busy.

The threshold and time window are configurable,
and are set to 80% (based on prior studies [CARR03])
and 32 seconds (based on empirical experience). The
intent is that within the time it takes to spin up the disk
and propagate updates, the utilization threshold will not
reach 100%. The use of an online algorithm to set
thresholds automatically will be future work.

To track the system load, the monitor keeps a mov-
ing average of utilization 0 < U < 1 for each gear. The
purpose of averaging is to filter out short bursts of re-
quests that are frequently seen in real-world workloads.
The monitor also keeps a moving standard deviation S.
If the utilization plus its standard deviation exceeds the
threshold 0 < T < 1, an up-shift is performed.

TSU >+ (Up-shift condition)

The addition of standard deviation makes up-shift more
aggressive; however, since both the moving average
and the standard deviation lag behind the actual load,
the policy is more responsive to changes that lead to
sustained activities.

Downshifts: To decide when to downshift, the
utilization of the lower gear 0 < U’ < 1 needs to be
computed, with associated moving standard deviation
S’. If their sum is below the threshold T, the lower gear
can now handle the resulting load, with associated fluc-
tuations.

TSU <+ '' (Downshift condition)

A complication arises when each gear is stored in
RAID with parity blocks. Suppose gear 2 contains a 5-
disk RAID-5, and the 5

th
 disk is replicated in gear 1

with a 4-disk RAID-5. After a downshift (i.e. spinning
down the 5

th
 disk), a write disk request within PARAID

will have a 20% chance of accessing the spun-down
disk, resulting in a parity update for gear 2, and another
parity update for gear 1. Therefore, to compute the
downshift threshold, the monitor must track recent
write activity and inflate the percentage of write ac-
cesses Awrite to the to-be-spun-down disk(s) by a weight
W of 1.5x (specific to RAID-5, where writes to 1 data
block and 1 parity block can be increased to 1 data
block and 2 parity blocks). Otherwise, the lower gear
will be unable to handle the resulting load, and will
shift back up. Therefore, U’ is computed with the fol-
lowing formula:

 −
++= −−

−

W
G

GG

G

G
AA

G

G
UU

i

ii

i

i
writeread

i

i 11

1

'

4.4 Reliability

The reliability manager rations power cycles and ex-
changes the roles of gear memberships to prolong the
life expectancy of the entire PARAID. The reliability
manager is also responsible for recovering a PARAID
device upon disk failure. When PARAID fails at the
highest gear, the recovery is performed by the RAID of
the highest gear. When PARAID fails in other gears,
the recovery is first performed by the lowest gear con-
taining the failed disk, since the parity computed for
disks in that gear is sufficient to recover the soft states
stored on the failed disk. The recovered soft-state data
then is propagated to the next higher gear before recov-
ering that gear, and so on. In the worst case, the num-
ber of bytes needing to be recovered for a single drive
failure is the size of a single disk.

Although PARAID may take much longer to re-
cover in the worst case due to cascaded recoveries, the
average recovery time can be potentially reduced by
recovering only modified content in the intermediary
gears and frequent switching to the highest gears. To
illustrate, should a PARAID host read-only content,
recovery only involves switching to the highest gear
and performing the recovery with the underlying RAID
once, since no cascaded update propagations are
needed. With modified content, PARAID can selec-
tively recover only the modified stripes and stripes used
to recover modified stripes at intermediary gears and
propagate them to the highest gear, where a full recov-
ery is performed. Assuming that 2% of disk content is
modified per day [KUEN97], and PARAID switches to
the highest gear 10 times a day, lightweight cascaded
recovery is theoretically possible.

One might argue that PARAID can lengthen the
recovery time, and thus reduce the availability of
PARAID. On the other hand, PARAID reduces power
consumption, and the associated heat reduction can

extend drive life by about 1 percent per degree Celsius
[HERB06]. Therefore, the tradeoff requires further
studies, which is beyond the scope of this paper.

5 Implementation

PARAID was prototyped on Linux (2.6.5), which was
chosen for its open source and its software RAID mod-
ule. The block I/O handler, monitor, disk manager, and
reliability manager are built as kernel modules. A
PARAID User Administration Tool runs in user space
to help manage the PARAID devices. For reliability,
data blocks for all gears are protected by the same
RAID level. Although we have not implemented drive
rotations, our gear-shifting policies and the characteris-
tics of daily work cycles have limited the number of
disk power cycles quite well. We have not imple-
mented the mechanisms to recover only modified
stripes in intermediary gears to speed up cascaded re-
covery.

Linux uses the md (multiple device) device driver

module to build software RAIDs from multiple disks.
For the PARAID block handler implementation, we

changed the md driver to make it PARAID-aware. The

data path of the md driver is intercepted by the

PARAID device layer, so that requests from conven-
tional RAID are redirected to the block queues of
PARAID, which remaps and forwards requests to other
conventional RAID-device queues.

During initialization, the PARAID-aware md mod-

ule starts a daemon that provides heartbeats to the
PARAID device and calls the monitor periodically to
decide when to gear-shift. The disk manager controls
the power status of disks through the disk device I/O
control interface.

As an optimization, to limit the synchronization of
content of a powered-off disk only to updated content,
the disk manager keeps a per-disk red-black tree of ref-
erences to outstanding blocks to be updated. This tree
is changed whenever an update is made to a clean block
on a powered-off disk. The upkeep of this data struc-
ture is not CPU-intensive. Currently, the disk manager
synchronizes all modified blocks after bringing back
powered-off disks, by iterating through the tree for each
disk and reissuing all outstanding writes. For each
block to be synchronized, the disk manager reads the
block from the original gear, and then writes it to the
disks being brought back online. Once synchronization
is complete, the gear-shifting manager switches to the
new gear. Note that the red-black tree is only an opti-
mization. In the case of losing this tree, gear content
will be fully propagated. A new tree can be constructed
once PARAID gear switches to the highest gear.

Currently, PARAID serves requests from the cur-
rent gear until the target gear completes synchroniza-
tion, a conservative method chosen for implementation
ease and to assure that no block dependency is violated
through update ordering. In the future, we will explore

using back pointers [ABDE05] to allow the new gear to
be used during update propagation.

For the PARAID monitor, we currently use 32-
second time windows to compute moving averages of
disk utilization. The choice of this time window is
somewhat arbitrary, but it works well for our workloads
and can tolerate traffic bursts and dampen the rate of
power cycles. Further investigation of the gear-shifting
triggering conditions will be future work.

The mkraid tool, commonly used by Linux to

configure RAIDs, had to be changed to handle making
PARAID devices and insertion of entries in

/etc/raidtab. Additional raidtab parameters

had to be defined to be able to specify the gears.
PARAID contains 3,392 lines of modified code to

the Linux and Raidtools source code. Since the

PARAID logic is contained mostly in the Linux Soft-
ware RAID implementation, it should be portable to
future Linux kernel versions and software RAID im-
plementations in other operating systems. We inserted

four lines into raid0.c and raid5.c to set a flag to

forward the resulting I/O requests to PARAID.

6 Performance Evaluation

Since the study of energy-efficient approaches to
RAIDs is relatively recent, most prior work has been
done analytically or via simulations. Analytical meth-
ods provide a fundamental understanding of systems.
Simulation studies allow for the exploration of a vast
parameter space to understand system behaviors under
a wide range of scenarios. We chose implementation
and empirical measurements to see if we could over-
come unforeseen physical obstacles and conceptual
blind spots to bring us one step closer to a deployable
prototype. When we designed, implemented, and
evaluated PARAID, we discovered why an empirical
study is difficult for systems designed to save energy.

• Prototyping PARAID was the first barrier, since the
system had to be stable enough to withstand heavy
benchmarking workloads.

• Commercial machines are not designed for energy
measurements, so we had to rewire drives, power
supplies and probes for power measurements.

• The conceptual behaviors of a system are far from
close to its physical behaviors; therefore, we had to
adjust our design along the way.

• Most benchmarks and workload generators measure
the peak performance of a system at steady state,
which is not applicable for measuring energy savings,
for which we need to capture daily workload fluctua-
tions.

• For trace replays, since our physical system configu-
ration was largely fixed, we had to try to match dif-
ferent trace environments with our physical environ-
ments in terms of the memory size, traffic volume,
disk space consumption, and so on.

• Although many research trace replay tools are avail-
able, more sophisticated ones tend to involve kernel
hooks and specific environments. Incompatibility of
kernel versions prevented us from leveraging many
research tools.

• Finally, since it cannot be easily automated and
cheaply parallelized, measuring energy savings on a
server was very time-consuming.

Considering these challenges, we document our ex-
perimental settings to obtain our results. We demon-
strate the power savings and the performance character-
istics of PARAID by replaying a web trace (Section
6.1) and the Cello99 trace [HP06] (Section 7). The web
workload contains 98% reads and is representative of a
very large class of useful workloads. The Cello99
workload is I/O intensive, and consists of 42% writes.
We used the PostMark benchmark [KATC97] (Section
8) to demonstrate PARAID’s performance under peak
load. To demonstrate that PARAID can reuse different
RAID levels, PARAID was configured with RAID-0
for the Web workload, and RAID-5 for the Cello99
workload. The PostMark benchmark stresses the gear-
shifting overhead. All experiments were conducted five
times. Error curves were removed from graphs for clar-
ity. Generally, the standard deviations are within 5% of
the measured values, with the exceptions of latency and
bandwidth numbers, which tend to be highly variable.

6.1 Web Trace Replay Framework

The measurement framework consisted of a Windows
XP client and a Linux 2.6.5 server. The client per-
formed trace playback and lightweight gathering of
measurement results, and the server hosted a web server
running on a RAID storage device [FUJI06] (Table and
Figure 6.1.1). On the server, one disk was used for
bootstrapping, and five disks were used to experiment
with different RAIDs. The client and server were con-
nected directly by a CAT-6 crossover cable to avoid
interference from extraneous network traffic.

 Server Client

Processor Intel Xeon 2.8 Ghz Intel Pentium 4 2.8
Ghz

Memory 512 Mbytes 1 Gbytes
Network Gigabit Ethernet Gigabit Ethernet
Disks
[FUJI06]

Fujitsu MAP3367 36.7Gbytes
15K RPM SCSI Ultra 320
8MB on-disk cache
1 disk for booting
5 disks for RAID experiments
Power consumption:
 9.6 W (active)
 6.5 W idle (spinning)
 2.9 W standby (spun-down,
 empirically measured)

Seagate Barracuda
ST3160023AS 160
Gbytes 7200 RPM
SATA

Table 6.1.1: Hardware specifications.

To measure the power of the disks, we used an
Agilent 34970A digital multimeter. Each disk probe
was connected to the multimeter on a unique channel,

and the multimeter sent averaged data to the client once
per second per channel via a universal serial bus.

To measure the power of a disk, we inserted a 0.1-

Ω resistor in series in the power-supply line (Figure
6.1.2). The multimeter measured the voltage drop
across the resistor, Vr. The current I through the resis-
tor—which is also the current used by the disk—can be
calculated as Vr/R. Given the voltage drop across the
disk, Vd, its power consumption is then Vd times I.

Figure 6.1.1: The measurement framework.

In the measurement system, we removed each disk
from the server and introduced a resistor into its +12V
and +5V power lines. The +12V line supplied power to
the spindle motor; the +5V line provided power to the
disk electronics. The SCSI cable was connected di-
rectly to the motherboard, allowing the cable to main-
tain the same performance as if the disks were con-
nected to the SCSI hot swappable backplane in the
server.

Figure 6.1.2: The resistor inserted in series between
the power supply and the disk adapter.

On the client, the Agilent Multimeter software logged
the data using Microsoft Excel XP. The multi-threaded
trace driver, implemented in Java 1.5, was designed to
replay web access log traces and collect performance
numbers. Associated requests generated from the same
IP address are each handled by a separate thread, to
emulate users clicking through web pages. The trace
driver also collected server-side and end-to-end per-
formance numbers.

power
supply

R

R

5v +

+
-

-

12v

Vr

Vd

Vr

Vd

data
logging

multimeter

client

multimeter

USB cable

BOOT

client

server

power
supply

12v & 5v
power

power
measurement

probes

SCSI
cable

crossover
cable

Disk 3

Disk 2

Disk 1

Disk 0

Disk 4

The server hosted an Apache 2.0.52 web server on
top of an ext2 file system operating over a RAID stor-
age device that is described in Table 6.1.1.

6.2 Web Server Workload

Workload characteristics affect PARAID’s ability to
save energy. Under a constant high load, PARAID will
not have opportunities to downshift and save energy.
Under a constant light load, trivial techniques like turn-
ing everything on and off can be used to save energy.
In practice, workloads tend to show cyclic fluctuations.
The chosen workload needs to capture these fluctua-
tions to demonstrate PARAID’s energy savings.

We chose a web server workload from the UCLA
Computer Science Department. Since the web content
is stored in a decentralized fashion via NFS mounts, we
only report the hardware configuration of the top-level
web server, which is a Sun Ultra-2 with 256 Mbytes of
RAM, 200 Mhz UltraSPARC I CPU, one 2-Gbyte sys-
tem disk and one 18-Gbyte external SCSI disk, running
Apache 1.3.27. Activity was captured from August 10,
2006 to August 16, 2006. Various NFS file systems
contained approximately 32 Gbytes of data and ~500K
files. We recreated the file system based on the refer-
enced files in the trace. For each full path referenced,
every directory in the full path and the file was created
according to the order of replay. The file blocks stored
on the web server were refilled with random bits. Also,
the replay did not include dynamic file content, which
accounts for relatively few references in this trace.

We chose a 30-hour trace starting from 6 PM, Au-
gust 12, 2006. The duration included 95K requests,
with 4.2 Gbytes of data, of which 255 Mbytes are
unique. Although the workload is light, it captures the
essence of read-mostly cyclic loads and sheds light on
PARAID system behaviors, gear-shifting overhead, and
the practical implementation limits on power savings.

6.3 Web Trace Replay Experimental Settings

PARAID was compared with a RAID-0 device. The
PARAID device used 5 disks, with 2 disks in gear 1,
and 5 disks in gear 2. Both client and server were re-
booted before each experiment, and PARAID was con-
figured to start with the lowest gear, with gear content
pre-populated. The client replayed trace log entries to
the server. Due to the hardware mismatch and light
trace workload, the collected trace was accelerated at
different speeds to illustrate the range of possible sav-
ings with different levels of workloads. Experiments
included a 256x speedup, which is close to a zero-think-
time model, translating to 241 requests/second. With
this reference point, we lowered the speedup factor to
128x and 64x, which correspond to 121 and 60 re-
quests/second. All three loads offer few opportunities
for the entire 5-disk RAID to be power-switched as a
whole. Timing dependent on human interactions, such
as the time between user mouse clicks on links (i.e.
reference intervals by the same IP) was not accelerated.

6.4 Power Savings

Figure 6.4.1 compares the power consumption of
PARAID and RAID-0. Due to the effects of averaging,
power spikes are not visible.

0

10

20

30

40

50

60

0 10 20 30

hours

watts
RAID-0

PARAID-0

(a) 256x speedup

0

10

20

30

40

50

60

0 10 20 30

hours

watts
RAID-0

PARAID-0

(b) 128x speedup

0

10

20

30

40

50

60

0 10 20 30

hours

watts
RAID-0

PARAID-0

(c) 64x speedup

Figure 6.4.1: Power consumption for web replay.

PARAID demonstrates a 34% overall savings (ratios of
areas under the curves) at 64x. The results approxi-
mately match the 33 - 42% range based on equation (2),
indicating that further load reduction will yield limited
energy benefits. However, turning off 3 out of 5 drives
achieves nowhere near 60% energy savings, for
PARAID or other RAID systems that save power by
spinning down disks. Powering off a disk only stopped
it from spinning its platter and therefore only the 12V
line was shut off. Power was still needed for the 5V
line that powered the electronics, so that it could listen
for a power-up command and pass commands along the
daisy-chained SCSI cable.

Based on our measurements, spinning up a disk can
consume 20-24W. Also, a spun-down disk still con-
sumes 2.9W, noticeably higher than the 1.0W to 2.5W
extracted from various datasheets and used in many
simulations [GURU03, HUAN03, PINH04, ZHU04,
ZHU04B, ZHU05]. The results show that variations in
physical characteristics can change the expected energy

savings significantly. In our case, if we replace our
Fujitsu [FUJI06] with the commonly cited IBM Ultras-
tar 36Z15 [IBM06], we anticipate an additional 5%
energy savings.

The second observation is that the traffic pattern
observed in the web log does not correlate well with the
disk power consumption. Although this finding reveals
more about the nature of caching than the energy bene-
fits of PARAID, it does suggest the value of further
investigations into the relationship between server-level
activities and after-cache device-level activities.

Table 6.4.1 summarizes the overall PARAID en-
ergy savings.

Speed-up Power savings

256x (241 req/sec) 10%
128x (121 req/sec) 28%
64x (60 req/sec) 34%

Table 6.4.1: Percent energy saved for web replay.

6.5 Performance

Latency: Figure 6.5.3 shows the CDFs of per-request
latency, which measures the time from the last byte of
the request sent from the client to the first byte of data
received at the client.

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

msec

RAID-0

PARAID-0

(a) 256x speedup

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

msec

RAID-0

PARAID-0

(b) 128x speedup

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

msec

RAID-0

PARAID-0

(c) 64x speedup

Figure 6.5.3: Latency for web replay.

As expected, when playing back the trace at high
speed, PARAID spent more time at the high gear and
used the original RAID-5 disk layout, and the latency
CDFs matched closely. The average latency is within
2.7% (~840ms). The data path overhead of PARAID is
negligible (Section 8).

When the load was light at 64x, PARAID spent
most of the time at the lower gear. PARAID-0 had to
use 2 disks to consolidate requests for 5 disks. As a
result, the average latency PARAID-0 was 80ms com-
pared to 33ms of RAID-0. However, a web end user
should not notice the response time difference during
light loads.

Bandwidth: Figure 6.5.4 shows the bandwidth
over time, which measures the number of bytes trans-
ferred in a 30-minute interval, divided by the time the
client spent waiting for any request to complete within
the same interval.

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30

hours

MB/sec
RAID-0

PARAID-0

(a) 256x speedup

0

20

40

60

80

100

120

140

160

180

0 10 20 30

hours

MB/sec
RAID-0

PARAID-0

(b) 128x speedup

0

20

40

60

80

100

120

140

160

180

0 10 20 30

hours

MB/sec
RAID-0

PARAID-0

(c) 64x speedup

Figure 6.5.4: Bandwidth for web replay.

As expected, when PARAID operates mostly in low
gear, having fewer active disks leads to lower band-
width numbers during light loads (Figure 6.5.4 (c)), 24
MB/sec as opposed to 31 MB/sec for RAID-0. How-
ever, during the time intervals when PARAID operates
in high gear, the peak load bandwidth matches well
with the original RAID (within 1.3% of 32MB/sec).

Note that due to time-based data alignment and averag-
ing effects, Figure 6.5.4 (a) only shows a close band-
width match when PARAID’s high-gear performance
dominates within a time bracket. Section 7 will also
explore request-based alignment to demonstrate band-
width matching.

Gear-switching statistics: Table 6.5.1 summa-
rizes various PARAID gear-switching statistics for the
web replay experiment. Clearly, PARAID spends more
time in the low gear as the intensity of workload de-
creases with the replay speed. Also, each gear switch
introduces up to 0.1% extra system I/Os. Interestingly,
frequent gear switches can reduce the per-switch cost
down to 0.041%, since less time is available for updates
to accumulate at a given gear.

 256x 128x 64x

Number of gear switches 15.2 8.0 2.0
% time spent in low gear 52% 88% 98%
% extra I/Os for update propagations 0.63% 0.37% 0.21%

Table 6.5.1: PARAID gear-switching statistics for
web replay.

7 HP Cello99 Replay

The HP Cello99 trace [HP06] is a SCSI-controller-level
trace collected by the HP Storage Research Lab from
January 14 to December 31, 1999. The Cello99 data
represents IO-intensive activity with writes, which is in
contrast to the read-mostly UCLA web with lighter
traffic. The traced machine had 4 PA-RISC CPUs, and
some devices are md devices, so we had to extract a
trace that neither overwhelms our system nor produces

too little traffic. The spc formatted trace file was gen-

erated from the Cello99 data using SRT2txt, a pro-

gram that comes with the HP Cello99 data. The gener-
ated trace file was further trimmed so that only the ac-

tivity associated with lun 2 was used. Also, we

looked for traces with cyclic behaviors. The extracted
trace contains 50 hours beginning on September 12,
1999, consisting of ~1.5M requests, totaling 12 GB
(stored in 110K unique blocks).

7.1 Cello99 Experimental Settings

PARAID was compared this time with a RAID-5 de-
vice. We used a 3-disk gear and 5-disk gear, each reus-
ing the RAID-5 disk layout and reliability mechanisms.
The Cello99 trace was replayed on the server at 128x,
64x, and 32x speedup factors to vary the intensity of
workloads, corresponding to 1020, 548, and 274 re-
quests/second. The energy measurement framework is
the same as depicted in Figure 6.1.1. The server was
rebooted before each run, with PARAID configured to
start in the lowest gear.

7.2 Power Savings

Figure 7.2.1 compares the power consumptions of
PARAID and RAID-5. PARAID demonstrates a sin-
gle- point-in-time savings of 30% at 128x speedup (~13

hours into the replay) and a 13% overall power savings
at 32x speedup. Equation (2) suggests a power saving
range of 22 - 28%. Adjusted by the time spent at the
high gear (no energy savings), PARAID should have
saved 17 - 22% at 32x, 14 - 18% at 64x, and 10 - 13%
at 128x. Based on Table 7.2.1, PARAID gear switches,
update propagations, and the additional parity computa-
tion incur about 4 – 10% of energy overhead, a future
goal for optimization. Nevertheless, despite the heavy
load of 270 – 1000 requests/second, PARAID can still
conserve up to 13% of power.

0

10

20

30

40

50

0 10 20 30 40 50

hours

watts
RAID-5

PARAID-5

(a) 128x speedup

0

10

20

30

40

50

0 10 20 30 40 50

hours

watts
RAID-5

PARAID-5

(b) 64x speedup

0

10

20

30

40

50

0 10 20 30 40 50

hours

watts
RAID-5

PARAID-5

(c) 32x speedup

Figure 7.2.1: Power consumption for Cello99.

Figure 7.2.2 shows how gears are shifted based on
the current gear utilization, on the percentage of busy
gear seconds within a 32-second window, and adjusted
utilization, as if the workload is using the low gear.
PARAID consolidates the load spread among 5 disks to
3 disks, so that disks 4 and 5 can be spun off, while
disks 1 to 3 can operate at 10 – 40% utilization. The
graph also reconfirms the lack of opportunities to
power-switch the entire RAID for power savings.

0

20

40

60

80

100

0 20 40

hours

% utilization
utilization

adjusted utilization

(a) 128x speedup

0

20

40

60

80

100

0 20 40

hours

% utilization
utilization

adjusted utilization

(b) 64x speedup

0

20

40

60

80

100

0 20 40

hours

% utilization
utilization

adjusted utilization

(c) 32x speedup

Figure 7.2.2: Gear utilization for Cello99 replay.
Utilization measures the percentage of busy time of
the current gear. Adjusted utilization measures
the percentage of busy time of the low gear if the

workload is applied to the low gear.

Speed-up Power savings

128x (1024 req/sec) 3.5%
64x (548 req/sec) 8.2%
32x (274 req/sec) 13%

Table 7.2.1: Percent energy saved for Cello99.

7.3 Performance

Completion time: Figure 7.3.1 shows the CDFs of
completion time (from the time of PARAID forwarding
a request to the moment the corresponding complete
callback function is invoked). Latency is more difficult
to measure since blocks are served out of order, and
individual blocks from various disks need to be de-
muxed to the corresponding multi-block request to
gather latency information. Therefore, completion
time, which is also the worst-case bound for latency, is
used.

Unlike the latency CDFs from the web trace, the
completion time CDFs of Cello99 showed very similar
trends between PARAID and RAID-5, and Figure 7.3.1
presents only the high 90 percentile. At 32x, since

PARAID spends more time at the lower gear, its la-
tency is 26% slower than RAID-5 (1.8ms vs. 1.4ms).

0.9

0.92

0.94

0.96

0.98

1

1 10 100 1000 10000 100000

msec

RAID-5

PARAID-5

(a) 128x speedup

0.9

0.92

0.94

0.96

0.98

1

1 10 100 1000 10000 100000

msec

RAID-5

PARAID-5

(b) 64x speedup

0.9

0.92

0.94

0.96

0.98

1

1 10 100 1000 10000 100000

msec

RAID-5

PARAID-5

(c) 32x speedup

Figure 7.3.1: Completion time for Cello99.

We examined the decompositions of I/Os. Al-
though only 51% of bytes are accessed at high gear,
they account for 97% of unique bytes. During the light-
load periods, such as between the 6

th
 and 27

th
 hour, only

29Mbytes of unique data were referenced. Given that
each powered disk can use 5Mbytes of on-disk cache,
the bandwidth degradation of PARAID at low gear is
significantly dampened by low-level caches. Therefore,
the shape of the completion time CDFs is dominated by
the high-gear operation, which uses the same RAID-5.

Figure 7.3.2 shows the bandwidth comparisons be-
tween PARAID and RAID-5. Note that these graphs
are aligned by request numbers to emphasize that 60%
of requests that occur during the peak load have the
same bandwidth. Whenever PARAID is at high gear,
the peak bandwidth is within 1% of RAID-5 (23
MB/sec). The low average bandwidth at high load pe-
riods reflects small average request sizes. During peri-
ods of light loads, the high bandwidth of both PARAID
and RAID-5 reaffirms the enhanced role of low-level
caches during light loads. Since PARAID did not use
the SCSI controller, which contains additional cache,

the bandwidth degradation of PARAID at low gear is
likely to be further dampened. When PARAID oper-
ates at low replay speed and spends most of its time in
the low gear, the average bandwidth degrades as ex-
pected (12 MB/sec vs. 21 MB/sec for RAID-5).

1

10

100

1000

0 500000 1000000 1500000

request number

MB/sec
RAID-5

PARAID-5

(a) 128x speedup

1

10

100

1000

0 500000 1000000 1500000

requests

MB/sec
RAID-5

PARAID-5

(b) 64x speedup

1

10

100

1000

0 500000 1000000 1500000

request number

MB/sec
RAID-5

PARAID

(c) 32x speedup

Figure 7.3.2: Bandwidth for Cello99.

Gear-switching statistics: Table 7.3.1 summa-
rizes various PARAID gear-switching statistics for the
Cello99 replay experiment. Again, PARAID spends
more time in the low gear with reduced workload with
decreasing playback speed. Due to heavy updates, each
gear switch needs to incur an extra 1.3% to 3.9% of
system I/Os. Fortunately, gear shifting occurs either
before the system becomes highly loaded or is about to
downshift due to the upcoming period of light loads.
Therefore, these extra I/Os can be effectively absorbed
by PARAID with spare I/O capacity, which may other-
wise be left unused.

 128x 64x 32x

Number of gear switches 6.0 5.6 5.4
% time spent in low gear 47% 74% 88%
% extra I/Os for update propagations 8.0% 15% 21%

Table 7.3.1: PARAID gear-switching statistics for

Cello99.

8 PostMark Benchmark

The PostMark synthetic benchmark generates ISP-style
workloads that stress a storage device’s peak perform-
ance for its read- and write-intensive activity
[KATC97]. Running PostMark with PARAID starting
at the lowest gear can be indicative of the overhead and
latency of gear shifts during a request burst. The Post-
Mark Benchmark was run directly on the server.
PARAID propagated updates synchronously during
gear shifts.

Figure 8.1 presents PostMark results comparing the
elapsed times of RAID 5, PARAID starting with the
highest gear, and PARAID starting with the lowest gear
under three different benchmark configurations.

0

50

100

150

200

1K files, 50K trans 20K files, 50K trans 20K files, 100K

trans

seconds

RAID-5 PARAID-5 high gear PARAID-5 low-gear

Figure 8.1: PostMark results for a RAID-5 device

compared to a PARAID device starting in the high-
est gear and starting in the lowest gear.

For different PostMark configurations, PARAID start-
ing with the highest gear demonstrates performance
similar to RAID 5, which reflects the preserved layout
of underlying RAID and minimal disturbances to

the md data path. Figure 8.2 shows that as expected,

PARAID does not save energy at the highest gear.
PARAID energy savings is primarily from low gear
settings.

0

10

20

30

40

50

60

70

80

0 50 100 150 200

seconds

watts

RAID-5 PARAID-5 high-gear PARAID-5 low-gear

Figure 8.2: The PostMark power consumption re-

sults for a RAID-5 device compared to a PARAID
device starting in the highest gear and starting in the
lowest gear. The experiment contains 20K files and

100K transactions.

Figure 8.1 also compares the performance of
RAID-5 with PARAID starting in the lowest gear. It
demonstrates how the current up-shift policy prevents
PARAID from being responsive to short bursts. The
slowdown factor is about 13% due to up-shift overhead.
The most responsive approach is to up-shift whenever a

burst is encountered. However, this would cause too
many gear shifts throughout a day. Our observations
suggest that daily cyclic workloads cause few gear
shifts, so this overhead is unnoticeable. We plan to
explore online algorithms to improve the responsive-
ness to burst loads while minimizing the number of
gear shifts.

Table 8.1 demonstrates that PARAID in either con-
figuration incurs similar CPU and system overhead
when compared to RAID-5.

 Mean % CPU Mean % System

RAID-5 3.24% 41.18%
PARAID high gear 3.11% 41.60%
PARAID low gear 3.08% 41.93%

Table 8.1: PostMark CPU and system overhead for

RAID-5, PARAID starting in the highest gear and
PARAID starting in the lowest gear. The experi-
ment contains 20K files and 100K transactions.

9 Related Work

Most energy-reduction studies have addressed mobile
computing [DOUG95, HELM96]. Recently, energy
reduction for servers has also generated interest. Vari-
ous approaches range from the hardware and RAID
levels to the file system and server levels.

Reducing power consumption in hard disks:
Carrera, et al. [CARR03] suggest using hypothetical
two-speed disks. During periods of high load, the disk
runs at maximum speed and power. During periods of
light load, the disk spins at a lower speed and possibly
idles. They report simulated disk energy savings be-
tween 15% to 22% for web servers and proxy servers,
with throughput degradation of less than 5%.

FS2 [HUAN05] replicates blocks on a single disk
to improve performance and reduce energy consump-
tion via reducing seek time. FS2 reports up to 34%
improvement in performance. The computed disk
power consumption for per disk access also shows a
71% reduction. Since FS2 does not attempt to spin
down disks, and since PARAID has spare storage for
disks in high gears due to skewed striping (Figure
3.1.1), FS2 can be used on disks in high gears to extend
PARAID’s power savings.

Energy-efficient RAIDs: Hibernator [ZHU05]
aims to reduce the energy consumption of RAIDs with-
out degrading performance through the use of multi-
speed disks. According to demand, data blocks are
placed at different tiers of disks spinning at different
speeds. A novel disk-block distribution scheme moves
disk content among tiers to match disk speeds. When
performance guarantees are violated, Hibernator spins
disks at full speed to meet the demand. In simulation,
Hibernator shows up to 65% energy savings.

Unlike Hibernator, PARAID is designed for exist-
ing server-class disks, and the minimum deployment
granularity can be a small RAID on a typical server.
Also, legacy systems can deploy PARAID via a soft-
ware patch. As one consequence, some of the PARAID

disks running at the lowest gear have few power-saving
options. The future ubiquity of multi-speed disks will
allow PARAID to explore further energy savings when
running at the lowest gear.

MAID [COLA02] assumes that the majority of the
data is being kept primarily for archival purposes, and
its energy savings are based on the migration of this
inactive majority to rarely used disks that fill a role
similar to tape archives. PARAID, on the other hand,
assumes that all data must be available at a high speed
at all times. PARAID’s techniques could be used on
MAID's relatively few active disks to further improve
the performance of that system.

Popular data concentration (PDC) [PINH04] saves
energy by observing the relative popularity of data.
PDC puts the most popular data on the first disk, the
second most popular on the second disk, etc. Disks are
powered off in PDC based on an idleness threshold.
Without striping, PDC does not exploit disk parallel-
ism.

In the absence of disk striping, the power-aware
cache-management policy (PA-LRU) [ZHU04] saves
power by caching data blocks from the less active disks.
Lengthening the access interval for less active disks
allows them to be powered off for longer durations.
Partition-based cache-management policy (PB-LRU)
[ZHU04B] divides the cache into separate partitions for
each disk. Each partition is managed separately by a
replacement algorithm such as LRU. PB-LRU provides
energy savings of 16%, similar to that of PA-LRU.

EERAID [LI04] and its variant, RIMAC [YAO06],
assume the use of a nonvolatile cache at the disk-
controller level and the knowledge of cache content to
conserve energy in RAIDs. Both lengthen disk idle pe-
riods by using nonvolatile disk controller cache to delay
writes and computing parity or data-block content on
the fly. Both spin down at most one disk for RAID-5,
which limits their power savings.

[PINH06] generalizes RIMAC to erasure encoding
schemes and demonstrates energy savings up to 61% in
simulated tests. This approach defines and separates
the primary data from the redundant data and stores
them on separate disks. Then, the system makes redun-
dant data unavailable at times to save energy. Writes
are buffered via nonvolatile RAM.

Energy-aware storage systems: BlueFS
[NIGH05], a distributed file system, uses a flexible
cache hierarchy to decide when and where to access
data based on the energy characteristics of each device.
Through empirical measurements, BlueFS achieved a
55% reduction in file system energy usage. Adding
PARAID to BlueFS can improve energy benefits.

 The Conquest-2 file system [XU03] uses nonvola-
tile RAM to store small files to save energy consumed
by disks. PARAID can be readily used as a counterpart
to serve large files while conserving energy.

Saving power in server clusters: Chase, et al.
[CHAS01] and Pinheiro, et al. [PINH01] have

developed methods for energy-conscious server
switching to improve the efficiency of server clusters at
low request loads. They have reported energy
reductions rangin from 29% to 43% for Webserver
workloads.

PARAID can be combined with the server
paradigm, so that over-provisioned servers used to
cushion highly bursty loads or pre-powered to
anticipate load increases can turn off many PARAID
drives. Since powering on disks is much faster than
booting servers, PARAID incurs less latency to respond
to traffic bursts.

When traffic loads involve a mixture of reads and
writes, disk switching in PARAID provides localized
data movement and reduces stress on the network
infrastructure. Also, PARAID can be deployed on
individual machines without distributed coordination.

Other alternatives: Instead of implementing
PARAID, one might use HP AutoRAID’s ability to
reconfigure to emulate PARAID’s behavior [WILK95].
However, one fundamental difference is that
reconfiguring a RAID with D disks to D - 1 disks under
AutoRAID requires restriping all content stored on D
disks, while PARAID can restripe the content from a
partial stripe, in this case 1 disk.

10 Ongoing Work

PARAID is still a work in progress. First, although
PARAID exploits cyclic fluctuations of workload to
conserve energy, our experience with workloads sug-
gests that it is difficult to predict the level of benefit
based on the traffic volume, the number of requests, the
number of unique bytes, the peak-to-trough traffic ra-
tios, and the percentage of reads and writes. We are
interested in measuring PARAID with diverse work-
loads to develop further understandings of PARAID’s
behavior. Also, we plan to test PARAID with other
types of workloads, such as on-line transaction process-
ing [UMAS06].

Currently, PARAID is not optimized. The selec-
tion of the number of gears, the number of disks in each
gear, and gear-shifting policies are somewhat arbitrary.
Since empirical measurement is unsuitable for explor-
ing a large parameter space, we are constructing a
PARAID-validated simulation for this purpose, which
will allow more exploration of parameters. At the same
time, we are investigating analytical approaches to de-
velop online algorithms with provable optimality.

We will modify our disk synchronization scheme
to explore asynchronous update propagation, allowing
newly powered-on drives to serve requests immedi-
ately. We plan to implement selective recovery
schemes for intermediary gears to speed up cascaded
recovery (Currently, PARAID-5, as used in this paper,
recovers 2.7x slower than RAID-5.), and also to incor-
porate the S.M.A.R.T tools [TOOL05] for disk health
monitoring, allowing more informed decisions on ra-
tioning power cycles, and rotation of the gear-

membership of disks. Finally, we plan to mirror a
PARAID server to FSU’s department server for live
testing, deploy PARAID in a real-world environment,
and compare PARAID with other energy-saving alter-
natives.

11 Lessons Learned

The idea of PARAID was born as a simple concept to
mimic the analogy of gear-shifting, which conserves
fuel in vehicles. However, turning this concept into a
kernel component for practical deployment has been
much more difficult than we anticipated.

First, our early design and prototype of PARAID
involved cloning and modifying RAID-0. As a result,
we had to bear the burden of inventing replication-
based reliability mechanisms to match different RAID
levels. Our second-generation design can reuse the
RAID encoding scheme, making the evolution of new
RAID levels independent of PARAID. Although the
resulting energy savings and performance characteris-
tics were comparable in both implementations,
PARAID’s structural complexity, development time,
and deployment potential improved in the new design.

Second, measuring energy consumption is difficult
because of data-alignment problems and a lack of inte-
grated tools. With continuous logging, aligning data
sets is largely manual. For multi-threaded experiments
and physical disks, the alignment of data sets near the
end of the experiment is significantly poorer than it was
at the beginning. Early results obtained from averages
were not explicable, since unaligned square waves can
be averaged into non-square shapes.

Third, measuring systems under normal loads is
harder than under peak loads. Replaying traces as
quickly as possible was not an option, and we had to
explore different speedup factors to see how PARAID
reacts to loads changes. Since server loads have con-
stant streams of requests, we cannot simply skip idle
periods [PEEK05], because such opportunities are rela-
tively infrequent. Worse, consolidated workloads are
carried by fewer powered-on components with less par-
allelism, further lengthening the measurement time.

Fourth, modern systems are complex. As modern
hardware and operating systems use more complex op-
timizations, our perception of system behaviors increas-
ingly deviates from their actual behaviors. Memory
caching can reduce disk activity, while file systems can
increase the burstiness of RAID traffic arrivals due to
delayed write-back policies. Disks are powered with
spikes of current, making it difficult to compute power
consumption as the areas under the spike. Disk drives
can still consume a significant amount of power even
when they are spun down.

Fifth, matching the trace environment to our
benchmarking environment is difficult. If we use a
memory size larger than that of the trace machine, we
may encounter very light disk activity. The opposite
can saturate the disks and achieve no power savings.

Cyclic workload patterns before the cache may poorly
reflect the patterns after the cache. Additionally, traces
might not have been made using RAIDs, some traces
might be old, and the RAID geometry might not match
our hardware settings. The base system might have
multiple CPUs, which makes it difficult to judge
whether a single modern CPU is powerful enough.
Although the research community is well aware of
these problems, the solutions still seem to be achieved
largely by trial and error.

12 Conclusion

PARAID is a storage system designed to save energy
for large computing installations that currently rely
upon RAID systems to provide fast, reliable data stor-
age. PARAID reuses standard RAID-levels without
special hardware, while decreasing their energy use by
34%. Since PARAID is not currently optimized, and
since we measured only 5 drives (among which at least
2 are always powered), we believe that an optimized
version of PARAID with many disks could achieve
significantly more energy savings.

A second important conclusion arises from the re-
search described in this paper. Actual implementation
and measurement of energy-savings systems is vital,
since many complex factors such as caching policies,
memory pressure, buffered writes, file-system-specific
disk layouts, disk arm scheduling, and many physical
characteristics of disk drives are difficult to capture
fully and validate simultaneously using only simulation.
Also, implementations need to address compatibility
with legacy systems, the use of commodity hardware,
and empirical evaluation techniques, all of which are
necessary for practical deployments.

Unfortunately, our research also shows that there
are considerable challenges to performing such experi-
ments. We overcame several unforeseen difficulties in
obtaining our test results, and had to invent techniques
to do so. This experience suggests the value of devel-
oping standard methods of measuring the energy con-
sumption of computer systems and their components
under various conditions. We believe this is another
fruitful area for study.

Acknowledgements

We thank our shepherd Keith Smith and the anonymous
reviewers for their invaluable insights. Additionally,
we thank Jason Flinn, Daniel Peek, Margo Seltzer,
Daniel Ellard, Ningning Zhu, HP, and Sun Microsys-
tems for providing accesses to various tools and traces.
Cory Fox, Noriel Lu, Sean Toh, Daniel Beech, and Carl
Owenby also have contributed to PARAID. This work
is sponsored by NSF CNS-0410896. Opinions, find-
ings, and conclusions or recommendations expressed in
this document do not necessarily reflect the views of
the NSF, FSU, UCLA, Harvey Mudd College, or the
U.S. Government.

References

[ABDE05] M. Abd-El-Malek, W.V. Courtright II, C.
Cranor, G.R. Ganger, J. Hendricks, A.J. Klosterman,
M. Mesnier, M. Prasad, B. Salmon, R. R. Sam-
basivan, S. Sinnamohideen, J.D. Strunk, E. Thereska,
M. Wachs, J.J. Wylie, URSA Minor: Versatile Clus-
ter-based Storage. Proceedings of the 4th USENIX
Conference on File and Storage Technology, 2005.

[ASAR05] T. Asaro. An Introduction to Thin Provi-
sioning. Storage Technology News, 2005.
http://searchstorage.techtarget.com/columnItem/0,29
4698,sid5_gci1134713,00.html.

[CARR03] E. Carrera, E. Pinheiro, R. Bianchini, Con-
serving Disk Energy in Network Servers, Proceed-
ings of the 17

th
 Annucal ACM International Confer-

ence on Super Computers, 2003.
[CHAS01] J. Chase, D. Anderson, P. Thakar, A.
Vahdat, R. Doyal, Managing Energy and Server Re-
sources in Hosting Centers, Proceedings of the 18th
ACM Symposium on Operating System Principles,
2001.

[COLA02] D. Colarelli, D. Grunwald, Massive Arrays
of Idle Disks For Storage Archives, Proceedings of
the 2002 ACM/IEEE Conference on Supercomputing,
2002.

[DOUG95] F. Douglis, P. Krishnan, B. Bershad Adap-
tive Disk Spin-down Policies for Mobile Computers
Proceedings of the 2nd USENIX Symposium on Mo-
bile and Location-Independent Computing, 1995.

[FUJI06] Fujitsu, MAP 10K RPM, 2006.
http://www.fujitsu.com/us/services/computing/storag
e/hdd/discontinued/map-10k-rpm.html.

[GRAY05] J. Gray, Keynote Address Greetings from a
Filesystem User, the 4

th
 USENIX Conference on File

and Storage Technologies, 2005.
[GURU03] S. Gurumurthi, A. Sivasubramaniam, M.
Kandemir, H. Franke, DRPM: Dynamic Speed Con-
trol for Power Management in Server Class Disks,
Proceedings of the International Symposium on
Computer Architecture, 2003.

[HELM96] D.P. Helmbold, D.D.E. Long, B. Sherrod, A
dynamic disk spin-down technique for mobile com-
puting, Proceedings of the 2nd Annual International
Conference on Mobile Computing and Networking
(MobiCon’06), 1996.

[HERB06] G. Herbst. Hitachi’s Drive Temperature
Indicator Processor (Drive-TIP) Helps Ensure High
Drive Reliability, http://www.hitachigst.com/hdd/
technolo/drivetemp/drivetemp.htm, 2006.

[HP06] HP Labs, Tools and Traces, 2006.
http://www.hpl.hp.com/research/ssp/software/

[HUAN03] H. Huang, P. Pillai, K.G. Shin, Design and
Implementation of Power Aware Virtual Memory,
Proceedings of the 2003 USENIX Annual Technical
Conference, 2003.

[HUAN05] H. Huang, W. Hung, K.G. Shin: FS2: Dy-
namic Data Replication in Free Disk Space for Im-

proving Disk Performance and Energy Consumption.
Proceedings of the 20

th
 Symposium on Operating Sys-

tems Principles, 2005.
[IBM06] IBM, IBM Hard Disk Drive—Ultrastar
36Z15.
http://www.hitachigst.com/hdd/ultra/ul36z15.htm.

[IYEN00] A. Iyengar, J. Challenger, D. Dias, P.
Dantzig, High-performance Web Site Design Tech-
niques, IEEE Internet Computing, 4(2):17–26, March
2000.

[KATC97] J. Katcher, PostMark: A New File System
Benchmark, Technical Report TR3022, Network Ap-
pliance Inc., 1997

[KUEN97] G.H. Kuenning, G.J. Popek. Automated
Hoarding for Mobile Computers. Proceedings of the
16

th
 ACM Symposium on Operating Systems Princi-

ples, 1997.
[LEVI06] M. Levin. Storage Management Disciplines
are Declining. Computer Economics. 2006.
http://www.computereconomics.com/article.cfm?id=
1129.

[LI04] D. Li, P. Gu, H. Cai, J. Wang. EERAID: En-
ergy Efficient Redundant and Inexpensive Disk Ar-
ray. Proceedings of the 11

th
 ACM SIGOPS European

Workshop, 2004.
[MANL98] S. Manley, M. Seltzer, M. Courage, A Self-
Scaling and Self-Configuring Benchmark for Web
Servers, Proceedings of the 1998 ACM SIGMETRICS
Joint International Conference on Measurement and
Modeling of Computer Systems, 1998.

[MILL93] E. Miller, R. Katz, An analysis of file migra-
tion in a Unix supercomputing environments, Pro-
ceedings of the 1993 USENIX Winter Technical Con-
ference, 1993.

[MOOR05] J. Moore, J. Chase, P. Ranganathan, R.
Sharma, Making Scheduling "Cool": Temperature-
Aware Workload Placement in Data Centers, Pro-
ceedings of the 2005 USENIX Annual Technical Con-
ference, 2005.

[NIGH05] E.B. Nightingale, J. Flinn, Energy-
Efficiency and Storage Flexibility in the Blue File
System, Proceedings of the 6

th
 Symposium on Oper-

ating Systems Design and Implementation, 2005.
[PATT88] D.A. Patterson, G. Gibson, RH Katz, A case
for redundant arrays of inexpensive disks (RAID).
ACM SIGMOD International Conference on Man-
agement of Data, 1(3):109-116, June 1988.

[PEEK05] D. Peek, J. Flinn, Drive-Thru: Fast, Accurate
Evaluation of Storage Power Management, Proceed-
ings of the 2005 USENIX Annual Technical Confer-
ence, 2005.

[PINH01] E. Pinheiro, R. Bianchini, E. V. Carrera, T.
Heath. Load Balancing and Unbalancing for Power
and Performance in Cluster-Based Systems. Pro-
ceedings of the Workshop on Compilers and Operat-
ing Systems for Low Power, 2001.

[PINH04] E. Pinheiro, R. Bianchini, Energy Conserva-
tion Techniques for Disk Array-Based Servers, Pro-

ceedings of the 18
th
 Annual ACM International Con-

ference on Supercomputing, 2004.
[PINH06] E. Pinheiro, R. Bianchini, C. Dubnicki. Ex-
ploiting Redundancy to Conserve Energy in Storage
Systems. Proceedings of Sigmetrics/Performance,
2006.

[RFC01] RFC-3174 - US Secure Hash Algorithm 1,
2001. http://www.faqs.org/rfcs/rfc3174.html

[TOOL05] SANTools, Inc. 2005.
http://www.santools.com/smartmon.html

[SANT99] D.S. Santry, M.J. Feeley, N.C. Hutchinson,
A.C. Veitch, R.W. Carton, J. Ofir, Deciding when to
forget in the Elephant File System, Proceedings of
the 17

th
 ACM Symposium on Operating Systems

Principles, 1999.
[UMAS06] UMass Trace Repository, Storage Traces,
2006. http://signl.cs.umass.edu/repository/walk.php?cat=Storage.

[WILK95] J. Wilkes, R. Golding, C. Staelin, T. Sulli-
van. The HP AutoRAID Hierarchical Storage Sys-
tem. Proceedings of the 15

th
 ACM Symposium on

Operating Systems Principles, 1995.
[XU03] R. Xu, A. Wang, G. Kuenning, P. Reiher, G.
Popek, Conquest: Combining Battery-Backed RAM
and Threshold-Based Storage Scheme to Conserve
Power, Work in Progress Report, 19th Symposium on
Operating Systems Principles (SOSP), 2003.

[YAO06] X. Yao, J. Wang. RIMAC: A Novel Redun-
dancy-based Hierarhical Cache Architecture for En-
ergy Efficient, High Performance Storage Systems.
Proceedings of the EuroSys, 2006.

[YU00] X. Yu, B. Gum, Y. Chen, R. Wang, K. Li, A.
Krishnamurthy, T. Anderson, Trading Capacity for
Performance in a Disk Array, Proceedings of the 4

th

Symposium on Operating Systems Design and Im-
plementation, 2000.

[ZHU04] Q. Zhu, F.M. David, C. Devaraj, Z. Li, Y.
Zhou, P. Cao, Reducing Energy Consumption of
Disk Storage Using Power-Aware Cache Manage-
ment, Proceedings of the 10

th
 International Sympo-

sium on High Performance Computer Architecture,
2004.

[ZHU04B] Q. Zhu, A. Shanker, Y. Zhou, PB-LRU: A
Self-Tuning Power Aware Storage Cache Replace-
ment Algorithm for Conserving Disk Energy, Pro-
ceedings of the 18

th
 Annual ACM International Con-

ference on Supercomputing, 2004.
[ZHU05] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton,
J. Wilkes, Hibernator: Helping Disk Arrays Sleep
through the Winter, Proceedings of the 20

th
 ACM

Symposium on Operating Systems Principles, 2005.

