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Abstract—All-optical communication, in particular, wavelength-division-multiplexing (WDM) technique, has been proposed as a

promising candidate to meet the ever-increasing demands on bandwidth from emerging bandwidth-intensive computing/networking

applications. However, with current technology, the cost of optical communication, especially the cost of optical buffering and

wavelength conversion, remains a major concern for such applications. In this paper, we study WDM optical interconnects that utilize

low cost recirculating buffering and limited range wavelength conversion. We first consider the packet scheduling problem in this type

of interconnect, and formalize the problem of maximizing throughput and minimizing packet delay as a matching problem in a bipartite

graph. We give an optimal parallel algorithm for this problem that runs in OðBk2Þ time, compared to OððN þ BÞ3k3Þ time if directly

applied to existing matching algorithms for general bipartite graphs, where N is the number of input/output fibers of the interconnect, B

is the number of fiber delay lines, and k is the number of wavelengths. We also consider efficient switching fabric designs for this type

of interconnect. We distinguish between the switching fabric connecting the input fibers to the output fibers and the switching fabric

connecting the input fibers to the delay lines and show that by adopting the idea of concentration, the cost of the latter can be reduced

significantly in terms of the number of crosspoints.

Index Terms—Wavelength-division-multiplexing (WDM), optical interconnects, optical packet switching, recirculating buffers, limited

range wavelength conversion, concentrators, parallel algorithms, scheduling, matching, bipartite graphs.
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1 INTRODUCTION AND BACKGROUND

ALL-OPTICAL communication has been proposed as a
promising candidate for providing high-speed network-

ing [8], [4], [6] because of the huge bandwidth of optics: A
single fiber has a bandwidth of nearly 50 THz [11]. To fully
utilize it, the bandwidth of a fiber can be divided into a
number of independent channels with each channel on a
different wavelength, which is referred to as wavelength-
division-multiplexing (WDM). Several technologies have been
proposed for WDM, including broadcast and select, wave-
length routing, optical packet switching(OPS), and optical
burst switching. In this paper, we focus on WDM packet
switching as it has better flexibility and better exploitations of
bandwidth [8].

In an OPS network, the key component is the optical
interconnect (or optical switch) which forwards the packets
to their destinations. As in other packet switched networks,
the WDM interconnect needs to combat output contention. In
a WDM interconnect, output contention arises when more
than one packets on the same wavelength are destined to
the same output fiber at the same time. When this occurs,
one will have to either temporarily store some of the
packets in a buffer, or to convert wavelengths of the packets
to some idle wavelengths by wavelength converters [8].

However, these methods are expensive, since at present,
optical random access memory still does not exist and
optical buffers are implemented with Optical Delay Lines
(ODL) which are very expensive and bulky. Also, optical
wavelength converters, if full range (i.e., capable of convert-
ing a wavelength to any other wavelengths), are very
expensive and difficult to implement.

To reduce the cost, instead of allocating dedicated
buffers for each output fiber, we can let all output fibers
share a common ODL buffer pool [24], [25]. Due to
statistical multiplexing, the size of the buffer can be reduced
significantly. In a WDM interconnect with shared buffer, a
packet that cannot be directly sent to the output fiber is sent
to one of the delay lines. After being delayed for some time,
the packet will come out of the delay line and attempt to be
transmitted again along with the newly arrived packets. If it
fails, the packet will be sent to a delay line again to wait for
the next round.

The cost can also be reduced by using limited range
wavelength converters instead of full range wavelength
converters. Limited range wavelength converter, as the
name implies, can only convert a wavelength to a limited
number of wavelengths. However, as shown in [9], [5], [10],
the performances of networks with limited range wave-
length converters are close to those with full range
wavelength converters even when the conversion range is
small. Therefore, it is a more realistic and cost-effective way
to provide wavelength conversion ability.

As an example, Fig. 1 shows a WDM interconnect with
recirculating buffer and limited range wavelength conver-
sion. As in [8], [4], [6], we assume that network is time
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slotted and the packets arrive at the interconnect at the
beginning of time slots, and the duration of an optical
packet is one time slot. Under these assumptions, the
interconnect operates in a synchronized manner. The
advantage of such a synchronized scheme is that it has
better resource utilization than nonsynchronized schemes.
The traffic is unicast, i.e., each packet is destined to only one
output fiber. The interconnect has N input fibers and
N output fibers. Inside the interconnect there are B delay
lines, each capable of delaying a packet for one time slot. On
each fiber, including the input fiber, the output fiber, and
the delay line, there are k wavelengths. Limited range
wavelength converters are equipped for the input wave-
length channels to the switching fabric. The converters will
convert the input wavelength to a wavelength determined
by a packet scheduling algorithm. The switching fabric is
capable of connecting any one of the ðN þBÞk inputs, Nk
from the input fibers and Bk from the ODLs, to any one of
the N output fibers and B ODLs.

We will first consider the problem of packet scheduling in
such an interconnect. The goal is to maximize throughput and
minimize packet delay. To maximize throughput, as many
packets should be sent to the output fibers and ODLs as
possible such that minimum number of packets are dropped.
In the mean time, to minimize packet delay, whenever
possible, a packet should be sent to the output fiber rather
than to the ODLs. As will be seen, this problem can be
formalized as a weighted matching problem in a bipartite
graph and an optimal schedule is an optimal matching in the
bipartite graph. However, if directly applying existing
matching algorithms for general bipartite graphs, it will take
OððN þBÞ3k3Þ time to find the matching, which is too slow
for an optical interconnect. We will show that, due to the
limited range wavelength conversion, the bipartite graph will
have some nice properties and we can obtain a parallel
algorithm called Parallel Segment Expanding Algorithm that
runs in OðBk2Þ time to find the optimal schedule.

Matching algorithms for general bipartite graphs were
well studied [16]. However, since the bipartite graph
considered in this paper exhibits some special properties
due to limited range wavelength conversion, it is possible to

design new algorithms to speed up the scheduling.
Scheduling algorithms for electronic interconnects have
also been extensively studied, for example, the iSLIP
algorithm [15] for input-buffered interconnects. However,
these algorithms cannot be applied to our problem since the
recirculating buffer is a shared output buffer. WDM
interconnects with dedicated output buffers and full range
wavelength conversion were studied and their performance
was evaluated with analytical models in [4]. Scheduling in
unbuffered WDM interconnects with limited range wave-
length conversion was studied in [27], [17], and an optimal
scheduling algorithm called the First Available Algorithm
was given in [27]. Scheduling in WDM interconnects with
dedicated output buffers and limited range wavelength
conversion was studied in [6], [18], and an optimal
scheduling algorithm called the Scan and Swap Algorithm
was given in [18]. Note that the scheduling problem in this
paper is quite different from and more complex than those
in [27], [18]. Since first, in the case of no buffer or dedicated
buffer, scheduling can be carried out for each output fiber
independently, but when the buffers are shared, scheduling
must be carried out with respect to the entire interconnect.
Second, though [27], [18] also formalized the scheduling
problems as a matching problem in bipartite graphs, the
bipartite graphs are quite different from the bipartite graphs
considered in this paper because in [27], [18] the adjacency
set of a vertex is always an interval, while, in this paper, this
property no longer holds. Therefore, the problem in this
paper is much more challenging than those in [27], [18].

Finally, note that in a WDM interconnect, using buffer is
at the cost of a larger switching fabric. To reduce the cost,
we give a new design of the switching fabric using the idea
of concentration, which is the second contribution of this
paper besides the optimal scheduling algorithm. This new
design distinguishes between the switching fabric connect-
ing the input fibers to the output fibers and the switching
fabric connecting the input fibers to the ODLs, and can
significantly reduce the number of crosspoints of the latter.

The rest of this paper is organized as follows: Section 2
describes the properties of limited range wavelength
conversion. Section 3 presents the optimal scheduling
algorithm. Section 4 analyzes the complexity of the
algorithm and gives some performance evaluation results.
Section 5 presents the new switching fabric design. Finally,
Section 6 concludes the paper.

2 WAVELENGTH CONVERSION

All-optical wavelength conversion is usually achieved by
conveying information from the input light signal to a probe
signal [19], [7]. The probe signal is generated by a tunable
laser tuned to the desired output wavelength. The tuning
range of the laser is continuous, but under limited range
wavelength conversion, it is only part of the whole
spectrum due to constraints such as tuning speed, loss, etc.

We can see that a wavelength can be converted to an
interval of wavelengths because the tuning range of the
laser is continuous and covers an interval of wavelengths.
Also, note that if the laser for the conversion of �1 can be
tuned to �3, then the laser for the conversion of �2 should
also be able to be tuned to �3 since �2 is closer to �3 than �1
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Fig. 1. Optical packet switch with recirculating buffering and wavelength

conversion.



is. These two observations lead to the following two
assumptions of wavelength conversion:

Assumption 1. The wavelengths that can be converted from �i
for i 2 ½1; k� can be represented by interval ½BeginðiÞ; EndðiÞ�,
where BeginðiÞ and EndðiÞ are positive integers in ½1; k�.
Wavelengths belong to this interval are called the adjacency
set of �i.

Assumption 2. For two wavelengths �i and �j, if i < j, then
BeginðiÞ � BeginðjÞ and EndðiÞ � EndðjÞ.

We call this type of wavelength conversion “ordered
interval” because the adjacency set of a wavelength can be
represented by an interval of integers, and the intervals for
different wavelengths are “ordered.” The cardinality of the
adjacency set is called the conversion degree of the wavelength.
Different wavelengths may have different conversion de-
grees. The conversion distance of a wavelength, denoted as d, is
defined as the largest difference between a wavelength and a
wavelength that can be converted from it.

A bipartite graph can be used to visualize the wave-
length conversion. Let the left side vertices represent input
wavelengths and the right side vertices represent output
wavelengths. �i on the left and �j on the right are connected
if �i can be converted to �j. Fig. 2 shows such a conversion
graph for k ¼ 8. The adjacency set of �3, for example, can be
represented as ½2; 4�. The conversion degree and conversion
distance of �3 are 3 and 1, respectively.

Note that the assumptions we made about wavelength
conversion are very general, only relying on the two facts
observed at the beginning of this section. Different
wavelengths are allowed to have different conversion
degrees and different conversion distances. This type of
wavelength conversion is also used in other research works,
for example, [20], [21], [17]. Full range wavelength conver-
sion can also be considered as a special case, by letting the
conversion degrees for all wavelengths be k.

3 OPTIMAL SCHEDULING ALGORITHM—THE

PARALLEL SEGMENT EXPANDING ALGORITHM

3.1 Formalization of the Scheduling Problem

As mentioned earlier, the goal of the scheduling algorithm
should be: 1) To minimize the packet loss, drop as few
packets as possible. 2) To minimize the packet delay, send
as many packets directly to the output fiber as possible.

This is a typical resource allocation problem and can be
formalized as a matching problem in a bipartite graph.

Fig. 3b shows such a graph for a simple interconnect where
N ¼ 2, B ¼ 2, k ¼ 4, and the wavelength conversion as
defined in Fig. 3a. In this graph, left side vertices represent
arrived packets and right side vertices represent wave-
length channels. Vertices are arranged according to wave-
lengths, lower wavelength first. In this example, there are
four input (output) channels on each wavelength, two from
the input fibers and two from the ODLs. Vertices are
represented by boxes. On the left side, label “1” or “2” was
put in the box to represent the destination of the packet. A
box is left empty if there is no packet on the wavelength
channel. On the right side, there are two types of vertices:
the output vertices and the buffer vertices, where output
vertices represent wavelength channels on the output fibers
and buffer vertices represent wavelength channels on the
delay lines. In the figure, an output vertex is labeled as “1”
or “2” according to the output fiber it is in, and a buffer
vertex is labeled by a cross. A left side vertex, say, a, is
connected to a right side vertex, say, b, by an edge (either
thin edge or fat edge in this example) if and only if the
wavelength channel represented by b can be assigned to the
packet represented by a. A necessary condition for a left
side vertex to be adjacent to b is that its wavelength must be
able to be converted to the wavelength of b. If b is a buffer
vertex, all such left side vertices are adjacent to b, regardless
of their destinations. However, if b is an output vertex, b is
only adjacent to vertices representing packets destined to
the output fiber where b is in.

In this bipartite graph, let E denote the set of edges. Any
schedule can be represented by a subset ofE,E0, where edge
ab 2 E0 if wavelength channel b is assigned to packet a. Under
unicast traffic, any packet needs only one output channel and
an output channel can be assigned to only one packet. It
follows that the edges in E0 are vertex disjoint since if two
edges share a vertex, either one packet is assigned to two
wavelength channels or one wavelength channel is assigned
to two packets. Thus, E0 is a matching in G.

To maximize network throughput, we should find a
maximum cardinality matching. To minimize the total
delay, this matching should cover maximum number of
output vertices. To do this, we can assign weight 1 to the
output vertices and weight 0 to the buffer vertices, then find
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Fig. 2. Wavelength conversion of an eight-wavelength system.

Fig. 3. (a) Wavelength conversion of a four-wavelength interconnect.

(b) Packets and wavelength channels in an interconnect with N ¼ 2,

B ¼ 2.



the optimal matching, which is a matching with maximum

cardinality and also maximum total weight. In the example

in Fig. 3b, an optimal matching is shown in heavy lines.

Next, we will give an outline of our algorithm and

introduce some notations. Some of the most frequently

used notations are listed in Table 1.

3.2 Outline of the Parallel Segment Expanding
Algorithm

For any vertex b, if one of the edges in a matching has one end

being b, we say b is covered in this matching. Otherwise, we say

b is uncovered in this matching. Optimal matching in a

bipartite graph can be found by the following simple genetic

algorithm, which can be called the Matroid Greedy Algo-

rithm [22], [23]. The algorithm starts with an empty set �. In

step s, let b be the vertex with the sth largest weight. The

algorithm checks whether there is a matching covering b and

all the vertices in �. If yes, add b to �, otherwise leave b

uncovered. Then, s sþ 1 and repeat until all vertices have

been checked. When finished, � stores weighted vertices that

can be covered by an optimal matching.
In an arbitrary bipartite graph with n vertices, to check

whether a vertex can be covered along with vertices in �

needs Oðn2Þ time, thus the time complexity of the matroid

greedy algorithm is Oðn3Þ. For our application, it will be as

high as OððN þBÞ3k3Þ, where N is the number of input/

output fibers, B is the number of delay lines, and k is the

number of wavelength channels, which is apparently too

slow since the scheduling must be carried out in real time.

In the following, we will give a fast optimal scheduling

algorithm called the Parallel Segment Expanding Algorithm

that solves the problem in OðBk2Þ time. The algorithm is

based on the matroid greedy algorithm, however, the

running time is greatly reduced due to the following two

reasons.

First, in our bipartite graph, vertices have only two types of
weights: Output vertices have weight 1 and buffer vertices
have weight 0. According to the matroid greedy algorithm,
the output vertices should be checked first since they are of
larger weights, and then the buffer vertices. Therefore, our
algorithm runs in only two phases. In the first phase, it will
find a matching that covers the maximum number of output
vertices, such that the resulting matching will have the largest
weight. In the second phase, it will augment the matching
until it covers as many buffer vertices as possible, such that
the resulting matching will also have maximum cardinality.
Second, our algorithm is run in parallel. We will not use a
centralized scheduler that works on the bipartite graph
introduced in Section 3.1, rather, we will draw the bipartite
graph as the union ofN subgraphs, one for each output fiber,
and use N processing units to find the matching in parallel.

The subgraphs will be denoted as Gi for 1 � i � N . In Gi,
the left side vertices represent the packets destined for
output fiber i, and the right side vertices include the output
vertices on output fiber i and the buffer vertices that are
matched to left side vertices in Gi. These buffer vertices are
said to be “assigned” to Gi. Unmatched buffer vertices are
not shown in any subgraphs. Note that this is an equivalent
way for representing the input/output relationship as using
the “whole” bipartite graph; nevertheless, this enables us to
develop an algorithm that runs in parallel. For example,
Fig. 3b can be shown equivalently as in Fig. 4b. It is
important to note that output vertices are only adjacent to
left side vertices in one particular subgraph while buffer
vertices can be adjacent to left side vertices in several
subgraphs. We will denote left side vertices as ai and right
side vertices as bu according to their wavelengths, where i
and u are the indices of the vertices. Vertices on lower
wavelengths have smaller indices and vertices on the same
wavelength are in an arbitrary order.

Note that, in phase one, the parallelism of our algorithm
is quite natural since only the output vertices need to be
considered while an output vertex in Gi is only adjacent to
left side vertices in Gi. As a result, a subgraph has no
connections to other subgraphs. For example, if only the
output vertices in Fig. 3b are considered, the whole bipartite
graph is decomposed into two isolated subgraphs shown in
Fig. 4a. Therefore, matching the maximum number of
output vertices can be achieved by finding a maximum
matching for each of the subgraphs in parallel and then
combining them. However, the problem becomes more
complex in phase two since, after assigning buffer vertices
to the subgraphs, the subgraphs will not be isolated. For
example, a buffer vertex on �4 in the example of Fig. 4b can
be matched to a3 in G2; therefore, it is assigned to G2, and is
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TABLE 1
List of Symbols

Fig. 4. (a) Fig. 3 is decomposed into two subgraphs when only considering the output vertices. (b) Assigning a buffer vertex on �4 to G2.



denoted as b5. Note that it is not only adjacent to vertices in

G2 but also to vertices in G1. Nevertheless, we can still

design an algorithm that runs in all subgraphs in parallel by

taking advantage of the properties of the subgraphs.
In phase two, according to the matroid greedy algorithm,

we can check the buffer vertices one by one to see whether

they can be matched along with all the previously matched

vertices. Buffer vertices on lower wavelengths are checked

first. We will refer to the buffer vertex being checked as bx.

When checking bx, the matching in Gi is denoted as Mi, and

the union of Mi for i ¼ 1; 2; . . . ; N is denoted as M. If bx can

be matched, we update M to cover bx; otherwise, M is not

changed and we proceed to the next buffer vertex. The

details of the method for matching buffer vertices will be

described in later sections.

3.3 Phase One—Matching Output Vertices

As explained earlier, in this phase the N subgraphs are

isolated and we can find a maximum matching for each of

them in parallel. Since the method for finding maximum

matching is the same for all subgraphs, we will only explain

it for one subgraph Gi.
In this phase, the right side vertices of in Gi are all output

vertices. Based on the properties of wavelength conversion,

Gi has following two properties:

Proposition 1. The adjacency set of any right side vertex, say, bu,

is an interval and can be represented as ½beginðbuÞ; endðbuÞ�.
Proposition 2. If u < v, then beginðbuÞ � beginðbvÞ and

endðbuÞ � endðbvÞ.

We call a bipartite graph with Properties 1 and 2 a request

graph. Maximum matching in request graphs can be found

by First Available Algorithm described in Table 2 [27]. This

algorithm checks the right side vertices from top to bottom.

A right side vertex bu will be matched to its first available

neighbor, which is an unmatched left side vertex adjacent to

it with the smallest index. The time complexity of this

algorithm is OðnÞ, where n is the number of right side

vertices, since the loop is executed n times and the work

within the loop can be done in constant time. For example,

after running the First Available Algorithm, the matchings

in Fig. 4a are shown in heavy lines.
It was also shown that a bipartite graph with Properties 1

and 2 has the following property in [27]:

Proposition 3. If edge aibu 2 E, ajbv 2 E, and i < j, u > v,

then aibv 2 E, ajbu 2 E.

This property can be called the crossing edge property,
which will be frequently used in proving other properties of
request graphs in this paper. It is so called because if i < j
and u > v, aibu and ajbv will appear crossing each other in
the request graph. A direct consequence of this property is
that there must be a maximum matching of a request graph
with no crossing edges since any pair of crossing edges in
the matching, say, aibu and ajbv, can be replaced with aibv
and ajbu which do not cross each other. Such a matching is
called a noncrossing matching, in which the ith matched
left side vertex is matched to the ith matched right side
vertex.

It can be easily verified that:

Proposition 4. The matching found by First Available Algorithm
is noncrossing.

Another property of the matching found by the First
Available Algorithm, due to the fact that a vertex is always
matched to its first available neighbor, is

Proposition 5. If bu is matched to ai, all the left side vertices
adjacent to bu with smaller indices than ai must be matched to
right side vertices with smaller indices than bu.

We introduce a more sophisticated example in Fig. 5,
which will be used throughout this section to help under-
stand our algorithm. In this example,N ¼ 4,B ¼ 2,k ¼ 8, and
the wavelength conversion is as defined in Fig. 2. For
notational convenience, we use a 1� 8 vector called the
arrival vector to represent the number of packets destined for
an output fiber, in which the ith element is the number of
packets destined for this output fiber on �i. In this example,
the arrival vectors for output fiber 1 to output fiber 4 are
½2; 1; 1; 0; 3; 0; 0; 2�, ½2; 5; 3; 0; 0; 0; 0; 0�, ½2; 0; 2; 5; 0; 0; 0; 0�, and
½0; 0; 0; 0; 0; 0; 0; 0�, respectively. There is no packet destined
for output fiber 4, therefore, only three subgraphs,G1,G2, and
G3, were shown. Fig. 5a shows the matching after running
First Available Algorithm on each of the subgraphs.

3.4 Phase Two—Matching Buffer Vertices

After phase one, the matching needs to be augmented to cover
buffer vertices. The goal is to match as many buffer vertices as
possible while keeping the previously matched vertices
matched. As mentioned earlier, we will check the buffer
vertices one by one. By graph theory, the vertex being
checked, bx, can be matched if and only if there exists an
M augmenting path with one end being bx. AnM augmenting
path is an M-alternating path with both ends being
unmatched vertices, where an M alternating path is a path
that alternates between edges in M and not in M. More
materials about augmenting paths can be found in [28].

Our algorithm also searches for the M augmenting path.
However, before searching for the augmenting path, we
will first try to use a simpler method to match bx, which is
called “direct insertion.” Direct insertion, roughly speaking,
is to match bx in each subgraphs by running the First
Available Algorithm in these subgraphs in parallel. bx can
be matched if it can be matched in one of the subgraphs.
Note that, if a buffer vertex can be matched by direct
insertion, it can also be matched by the augmenting path
approach, but the reverse may not be true. We try direct
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insertion first because it is much simpler and, thus, in
practice this may greatly reduce the running time of our
algorithm.

3.4.1 Matching Buffer Vertices—Direct Insertion

To match buffer vertex bx by direct insertion in subgraph Gi

is to first add a vertex on the same wavelength as bx to Gi

then run the First Available Algorithm. If all the right side
vertices in Gi can be matched, including the added vertex,
bx can be matched in Gi and will be assigned to it. Note that
this can be done in parallel in all subgraphs. If bx can be
directly inserted to more than one subgraphs, we can
arbitrarily pick one.

After a buffer vertex has been assigned to a subgraph, it is
given an index. The indices of some right side vertices may

also need to be updated. For example, in Fig. 5b, buffer vertex

bx on wavelength �1 can be directly inserted into G1. After

assigning it toG1, it is given an index 2, and the indices of the

right side vertices following it are incremented by 1.

3.4.2 Matching Buffer Vertices—An Outline for

Augmenting Path Search

As mentioned earlier, even if bx cannot be directly inserted to

any of theN subgraphs, bx may still be able to be matched. We

can try our second method which is to find anM augmenting

path. If such an augmenting path is found, we can perform a

“flip” operation on the edges in the path, i.e., remove edges

that were inM and add in edges that were not inM. The new
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Fig. 5. Matchings of an interconnect with N ¼ 4, B ¼ 2, k ¼ 8, and the wavelength conversion is as defined in Fig. 2. G4 is not shown here because
there is no packet destined for output fiber 4. On the right side, a dot is an output vertex and a cross is a buffer vertex. (a) After matching output
vertices by the First Available Algorithm. (b) Direct insertion of a buffer vertex on �1 to G1. (c) An augmenting path for bx on �6. (d) bx is matched in G1

and is given an index 7.



matching will cover all previously covered vertices plus the
two vertices at the ends of the path.

An example is shown in Fig. 5c. In this figure, a dot
represents an output vertex and a cross represents a buffer
vertex. Edges in M are represented by solid lines and edges
not in M are represented by dashed lines. Let bx be the
buffer vertex on wavelength �6. It is not hard to see that bx
cannot be directly inserted in any of the subgraphs.
However, it can still be matched because, as shown in the
figure, there is an M augmenting path starting at bx,
traversing G1, G2, and G3, and ending at an unmatched left
side vertex a9 in G3. After the flip operation, the new
matching is shown in Fig. 5d. Note that the buffer vertex on
�1 has been moved from G1 to G2 and the buffer vertex on
�2 has been moved from G2 to G3 because according to the
new matching they should be assigned to G2 and G3,
respectively.

It is important to note that, in the augmenting path, some
buffer vertices serve as “bridges” to extend the path from
one subgraph to another. Also note that to update the
matching according to the augmenting path, some buffer
vertices are moved from one subgraph to another. The
purpose of this moving can be considered as “making
room” for bx in one of the subgraphs. The optimal
scheduling algorithm can also be considered as optimally
assigning the buffer vertices to the subgraphs such that
maximum number of them can be matched.

To find the augmenting path, similar to the algorithms
for general bipartite graphs, our algorithm also searches for
the reachable set of bx. The reachable set, denoted as R, is
defined as the set of vertices that can be reached from bx via
M-alternating paths. If there is an unmatched left side
vertex in this set, the augmenting path is found. However,
note that the differences between our algorithm and
algorithms for more general bipartite graphs are profound.
First, our algorithm is executed in all subgraphs in parallel
and, as a result, many vertices in different subgraphs can be
added to R simultaneously. Second, in the general method,
a vertex can be added to R only when it is adjacent to some
vertices already in R. In our algorithm, many vertices can be
added to R even if they are not adjacent to any vertices
currently in R, as long as these vertices are in the same
forward segment or backward segment which will be defined
soon. More importantly, this can be done in constant time
regardless of the number of vertices in the segment, which
makes a parallel algorithm possible.

Before presenting the algorithm, due to the importance
of the forward and backward segments, in the next section
we will first formally define them and describe their
properties.

3.4.3 Matching Buffer Vertices—Identifying Forward and

Backward Segments

The forward and backward segments are defined within a
subgraph; hence, in this section, we consider only one
subgraph, say, Gi. First, we assume that Mi is the matching
found by running the First Available Algorithm on Gi.
Recall that due to the properties of the First Available
Algorithm, Mi is noncrossing in Gi.

Note that two types of vertices in Gi do not need to be
considered for the purpose of matching a buffer vertex:
1) left side vertices with larger indices than ah and right side
vertices with larger indices than bu, where bu is the right

side vertex on a wavelength no higher than that of bx with
the largest index and ah is the vertex matched to bu;
2) unmatched right side vertices. Type 1 vertices do not
need to be considered because when bx cannot be directly
inserted in Gi, left side vertices with larger indices than ah
have to be matched to right side vertices with indices larger
than bu. Type 2 vertices do not need to be considered
because they cannot be used to expand the reachable set.
Therefore, when searching for an augmenting path for bx,
these vertices will be considered as having been removed
from the graph. For example, as shown in Fig. 5c, in G1, a8,
a9, b8, and b9 have been removed. In G2, b11 to b14 have been
removed. In G3, b9 to b11 have been removed.

First, we define forward segment. For notational simpli-
city, for any vertex b, we use mat½b� to denote the vertex
matched to it. Note that the index of mat½bp� is larger than
mat½bq� if p > q since Mi is noncrossing. Now, imagine
scanning the right side vertices from b1; b2; . . . , until bv when
one of the following conditions is satisfied: 1) bv is not
adjacent to mat½bvþ1� or 2) there are some unmatched left
side vertices adjacent to bv. If such bv is found, b1 to bv and
all the left side vertices matched to them, plus the
unmatched left side vertices adjacent to bv with smaller
indices than mat½bvþ1� are called a forward segment. After
finding the first forward segment, scan from bvþ1 to find the
second forward segment, then the third until reaching bu,
the last right side vertex in Gi. As an example, in Fig. 5c,
note that in G3, though b1 is adjacent to a2 (mat½b2�), b2 is not
adjacent to a3 (mat½b3�). Thus, a1 to a2 and b1 to b2 should be
a forward segment. The second forward segment in G3 is a3

to a9 and b3 to b8.
We now describe the properties of forward segments.

Proposition 6. In a forward segment, the index of an unmatched
left side vertex is larger than any matched left side vertex.

Proof. Without loss of generality, consider the first forward
segment. Let aj be the unmatched left side vertex and let
bv be the last right side vertex in this segment. It suffices
to show that the index of mat½bv�must be smaller than aj.
However, this is immediate due to Proposition 5. tu

The following is the most important property of a
forward segment. It enables us to add many vertices to
the reachable set at the same time.

Proposition 7. Suppose left side vertex as is matched to bp. If as
is in R, then in the same forward segment as as, left side
vertices with no smaller indices than as and right side vertices
with no smaller indices than bp can all be added to R.

Proof. Let bv be the last right side vertex in this forward
segment and suppose bv is matched to at. Since the
matching is noncrossing, left side vertices in the same
forward segment with larger indices than as are either
matched to bpþ1; bpþ2; . . . ; bv, or unmatched (if there are
any). By the definition of the forward segment, a possible
alternating path is as to bp, bp to mat½bpþ1�, mat½bpþ1� to
bpþ1; . . . ; bv�1 to at, at to bv, then to any of the unmatched
vertices. tu
For example, in Fig. 5c, once the alternating path reaches

a4 in G3, left side vertices with indices no smaller than a4

and right side vertices with indices no smaller than b4 can
all be added to R. Note that this is a much efficient way to
expand the reachable set since many vertices including
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those not adjacent to a4, are added to R in one single

operation.
The following properties can also be easily verified:

Proposition 8. Any nonisolated vertex is in exactly one forward

segment.

Proposition 9. Nonisolated vertices on the same wavelength are

in the same forward segment.

We will denote the pth forward segment in Gi as FSip.
For a forward segment, the following information is needed
in our algorithm: 1) Whether there is an unmatched left side
vertex in this segment. 2) The wavelength indices of buffer
vertices in the segment. The first item can be stored in a
single bit. The second item is stored in a k-bit register,
denoted as fsregip for FSip, in which bit l is “1” if there is a
buffer vertex on �l in FSip. For example, the information
about the second forward segment in G3 is fyes;
“000010XX”g, which means that in this segment there is
an unmatched left side vertex, and there are buffer vertices
on �5. “X” means “don’t care” since there cannot be buffer
vertices on wavelengths higher than bx assigned to any
subgraph.

The backward segment is defined in a similar way, only the
scanning direction is now reversed to backwards. Imagine
starting at bu where bu is the last right side vertex in Gi, and
scan back to bu�1; bu�2; . . . , till bw when bw is not adjacent to
mat½bw�1�. bw to bu and all the left side vertices matched to
them is called a backward segment. After finding the first
backward segment, start scanning from bw�1 to find other
backward segments. Note that unlike the forward segments
which are numbered from top to bottom, the backward
segments are numbered in the reverse direction, or from
bottom to top, in accordance to the scanning direction. For
example, in Fig. 5c, both G1 and G3 have only one backward
segment. G2 has two backward segments. The first one has
vertex set a8 to a10 and b8 to b10, and the second one has
vertex set a1 to a7 and b1 to b7.

Proposition 10. In a backward segment, let bu and bw be the right

side vertices with the largest and the smallest index,

respectively. Suppose bu is matched to ai and bw is matched

to aj. Then, left side vertices between ai and aj are all matched.

Proof. By contradiction. If this is not true, suppose al is not
matched while i > l > j. Let as and at be matched left
side vertices in this segment where s < l and t > l.
Furthermore, let as and at be such vertices that are closest
to al. Note that, if at is matched to bz, then as must be
matched to bz�1 and bz must be adjacent to as. By
Property 1 of the request graph, bz is also adjacent to al.
But, since l < t, the First Available Algorithm would not
have matched bz to at. This is a contradiction. tu
Similar to forward segments, it can be shown that

Proposition 11. Suppose left side vertex as is matched to bw. If as
is in R, then in the same backward segment as as, left side

vertices with no larger indices than as and right side vertices

with no larger indices than bw can all be added to R.

Proposition 12. Any matched vertex is in exactly one backward

segment.

Proposition 13. Matched vertices on the same wavelength are in

the same backward segment.

We will denote the qth backward segment in Gi as BSiq.
Note that unmatched vertices are not in any backward
segment, and the information of a backward segment
needed in our algorithm is only the wavelength indices of
buffer vertices stored in register bsregiq for BSiq. For
example, bsreg1

1 is f“100000XX”g which means that there
is a buffer vertex on �1.

3.4.4 Matching Buffer Vertices—Expanding the

Reachable Set in Parallel

We are now ready to present the core of our algorithm,
which is to expand the reachable set R in parallel. In the
expanding process, we say a buffer vertex in R discovers a
forward or backward segment if it is adjacent to some left
side vertex in the segment. Left side vertices and right
vertices satisfying conditions in Propositions 7 and 11 are
also said to be discovered by this buffer vertex, and the
buffer vertex is called the “discoverer” of these vertices. All
the discovered vertices can be added to R; hence, in the rest
of the paper, we will interchangeably say a vertex is
“discovered” or a vertex is “added to R.” Despite the
technical details, the idea is quite simple. In short, the
algorithm runs in “rounds.” Before each round, the buffer
vertices discovered in the previous round were made
known to every subgraph. Then, in parallel, each subgraph
uses these buffer vertices to discover more vertices in it.
Each subgraph will use the buffer vertices to discover as
many vertices as possible. If an unmatched left side vertices
were discovered, the augmenting path is found. Otherwise,
the reachable set needs to be further expanded, which can
only be done by making use of the newly discovered buffer
vertices to discover more vertices because at this time each
subgraph has expanded the reachable set within itself to the
maximum. Thus, the subgraphs will announce the newly
discovered buffer vertices and then start the next round.

To elaborate, before the first round, bx itself is added toR.
Then, in parallel, each subgraph checks which vertices in itself
that can be discovered by bx. It can be shown that these
vertices must be in the first backward segment of each
subgraph. Note that there cannot be unmatched left side
vertices since there is no unmatched vertex in backward
segments. However, at this time, some buffer vertices may
have been discovered. These buffer vertices can be used to
discover more vertices that cannot be discovered by bx. Each
subgraph will announce the buffer vertices that were
discovered in itself. The union of the buffer vertices
announced by all N subgraphs will be known to all
subgraphs. Then, the second round begins. In parallel, each
subgraph will check which vertices can be discovered by the
buffer vertices announced in the previous round. If un-
matched left side vertices are discovered, the augmenting
path is found. Otherwise, as before, each subgraph can
announce the newly discovered buffer vertices. This process
is repeated until an unmatched left side vertex is discovered
or until after a round in which no new buffer vertex is
discovered.

We can now explain how the augmenting path was
found in the example in Fig. 5c. This is illustrated in Fig. 6.
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Round 1. Since bx is on �6, it is only adjacent to a5, a6, and
a7 in G1. It can discover the first backward segment in G1,
and vertices a1 to a7 and b1 to b7. Only one buffer vertex, b2

in G1, can be discovered. Thus, G1 announces that there is a
buffer vertex on �1. G2 and G3 do not make any
announcement.

Round 2. Each of the subgraphs checks which vertices
can be discovered by a buffer vertex on �1. G1 finds out that
these vertices have been discovered before. G2 finds that the
buffer vertex can discover the first forward and the second
backward segment. G3 finds that the buffer vertex can
discover the first forward and the first backward segment.
No unmatched left side vertices in these segments can be
discovered; however, buffer vertices on �2, �3, and �4 in the
first forward segment of G2 can be discovered.

Round 3. G3 finds that a buffer vertex on �2 can discover
the second forward segment in it, and there is an
unmatched left side vertex a9 in this segment; thus, an
augmenting path is found.

3.4.5 Matching Buffer Vertices—Details of Reachable

Set Expanding

After explaining the general idea, in this section, we give
the details of parallel reachable set expanding.

First, note that after a round, to announce the newly
discovered buffer vertices, subgraph Gi needs only to write
to a k-bit register, denoted as bregi, in which bit i is “1” if a
buffer vertex on �i in Gi has been discovered. The union of
the N announcements can thus be obtained by doing an
“or” operation to bregi for all 1 � i � N , and suppose the
result is stored in register breg. With breg, another register
lreg can be obtained which is the information needed in the
next round. In lreg, bit i is “1” if left side vertices on �i can
be discovered by the buffer vertices indicated by breg and if
these left side vertices have not been discovered before.

In the next round, each subgraph will examine lreg by

scanning through it. If subgraph Gi finds that bit l of lreg is

“1,” it will check whether there are left side vertices on �l,

and if yes, these left side vertices have been discovered. It

can then find the forward and backward segment to which

these left side vertices belong, and suppose they are FSip
and BSiq, respectively. From previous discussions, we know

that left side vertices and right vertices in the same forward

and backward satisfying conditions in Propositions 7 and 11

are also discovered. To be specific, left side vertices in FSip
on wavelengths no lower than �l and left side vertices in

BSiq on wavelengths no higher than �l are discovered. If

there are unmatched left side vertices in FSip, the search is

over. Otherwise, suppose a right side vertex on �h is

matched to one of the left side vertices on �l. Then, right

side vertices in FSip on wavelengths no lower than �h and

right side vertices in BSiq on wavelengths no higher than �h
are discovered. We will refer to this right side vertex as a

“pivot” vertex. Any right side vertex matched to left side

vertex on �l can be a pivot vertex and, in practice, it can be

the one with the smallest index. The subgraph needs to

write a few “1”s to bregi according to the wavelengths of

discovered buffer vertices. Let �fh be a k-bit register where

bit t is “1” only if t � h. Let �bh be a k-bit register where bit t

is “1” only if t < h. To update bregi, we can “or” bregi with

fsregip&�
f
h and bsregiq&�

b
h. Note that all these operations take

constant time in all subgraphs; therefore, all subgraphs will

finish checking lreg at the same time in each round, which is

the desired behavior of a parallel algorithm.
When an unmatched left side vertex is found, the

algorithm needs to establish the M-augmenting path. Note
that, if a vertex was discovered in a certain round, its
discoverer must be discovered in the previous round, and
there must be an M-alternating path from a vertex to its
discoverer. When the unmatched left side vertex, say, at, is
found, we will have a sequence of vertices, at; bu; bv; bw; . . . ;
bz; bx, where each vertex is discovered by the vertex next to it.
In case a vertex has multiple discoverers, we can arbitrarily
choose one. Therefore, we can start with at, and first find the
M-alternating path to its discoverer bu, then extend the
M-alternating path from bu to bv, and so on, until the path
extends to bx.

However, in implementation, the augmenting path
needs not be explicitly established. As mentioned earlier,
to update the matching is actually to move some buffer
vertices from one subgraph to another. We can first move bu
to the subgraph where at is in, then move bv into the
subgraph where bu used to be in, then move bw into the
subgraph where bv used to be in, . . . , until bx is moved into
the subgraph where bz used to be in. Then, the First
Available Algorithm can be run in the subgraphs in parallel
to obtain the new matching. All vertices involved in this
moving should be able to be matched due to the properties
of the forward and backward segments.

3.4.6 Matching Buffer Vertices—Proof for the Optimality

of Reachable Set Expanding

We now prove the optimality of the algorithm.

Theorem 1. When the algorithm terminates, it either discovers
an unmatched left side vertex reachable from bx or the entire
reachable set of bx.
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Proof. It suffices to show that if the algorithm terminates
without reporting an augmenting path, it has discovered
all the left side vertices reachable from bx. We show this
by contradiction. If this is not true, then there will be a
left side vertex at, either matched or unmatched, that can
be reached by an alternating path starting from bx but
was not discovered by the algorithm. Suppose in this
hypothetical alternating path, at is proceeded by bu, and
bu is proceeded by as. We claim that if at was not
discovered, neither would as.

Suppose the claim is not true, that is, the algorithm
has discovered as. Note that bu must be matched to as
thus was also discovered. If bu is a buffer vertex, the
algorithm would have discovered at since all vertices
adjacent to buffer vertices were scanned. Thus, bu must
be an output vertex. Note that, if bu is an output vertex, at
must be in the same subgraph as as.

First, consider when s < t. In this case, if as and at are
in the same forward segment, the algorithm would have
discovered at; thus, as and at must be in different
forward segments. However, if this is true, there must be
an unmatched left side vertex between as and at since bu
is adjacent to at, by the definition of forward segments.
Thus, the algorithm would have terminated by discover-
ing an unmatched left side vertex, which is a contra-
diction. Thus, s cannot be smaller than t.

However, if s > t, according to Proposition 5 in
Section 3.3, at must be matched. It is not hard to see
that as and at must be in the same backward segment
since bu is adjacent to at. But, in this case, the algorithm
must also have discovered at, which is also a contra-
diction. Therefore, the claim is true, i.e., the algorithm
did not discover as.

Following the same argument, we can show that the
algorithm also did not discover the left side vertex
proceeding as in the alternating path, and this can be
carried on until the conclusion that the algorithm did not
discover any left side vertex in this alternating path. But,
this contradicts with the fact that the algorithm at least
discovers all the left side vertices directly adjacent to bx
and any alternating path starting from bx must visit one
of these vertices first. tu

We summarize all the previous discussions and present
the Parallel Segment Expanding Algorithm in Table 3 for
finding optimal schedules in the WDM interconnect with
shared buffer.

4 COMPLEXITY ANALYSIS AND PERFORMANCE

EVALUATION

4.1 Implementation Issues and Complexity Analysis

In this section, we give the complexity analysis of the
algorithm. We show that by using N processing units or
decision making units, the algorithm runs in OðBk2Þ time.
In addition, it should be mentioned that it is not difficult to
implement the N processing units in hardware to reduce
the cost and further speed up the scheduling process.

The key to reducing the running time and storage space is
that we will work on wavelengths of vertices rather than the
indices, because vertices on the same wavelength have the

same adjacency sets and are in the same forward and
backward segments. For each subgraph, we can store both
left side and right side vertices in an array with k entries,
denoted by LS½� and RS½�, respectively, where each entry
stores: 1) the number of vertices on this wavelength and 2) the
index of forward and backward segments these vertices
belong to. The forward and backward segments can be
described by two intervals of integers because, in a segment,
left side vertices and right side vertices are all consecutive. For
example, the second forward segment in G3 in Fig. 5 can be
represented by ½3; 4� and ½2; 5�, corresponding to left and right
side vertices, respectively, which means that vertices with
wavelengths in this range are in this segment. Each segment
also needs a k-bit register to store the wavelengths of buffer
vertices. In addition, the forward segment needs one bit to
store the information of whether there is an unmatched left
side vertex. The total storage space needed for all
N subgraphs is OðNkðkþ logNkÞÞ bits.

The first task, covering maximum number of output
vertices, is to run First Available Algorithm on each subgraph
with only output vertices. It can be done in parallel and takes
OðkÞ time. After this, the buffer vertices need to be matched
one by one. We will show that to match a buffer vertex totally
OðkÞ time is needed. Suppose buffer vertex bx is on
wavelength �j. As mentioned earlier, first, direct insertion
will be tried in parallel. For each subgraph, this is to increment
the number of vertices of RS½j� by one, then run the First
Available Algorithm, which takes OðkÞ time. If direct
insertion fails, the augmenting path needs to be found. The
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forward and backward segments in each subgraph can be
found by a linear search. inOðkÞ time. Then, at each round of
reachable set expansion, each subgraph checks the content of
register lreg. While scanning through lreg, simple hardware
can be used to skip the “0” bits and scan only the “1” bits. As
explained earlier, for each “1” bit in lreg, the work can be
finished in constant time for all subgraphs. Also note that, in
each round, the subgraph only checks the new wavelengths
that have not been checked before. Thus, the total time spent
on this task in the entire expansion process isOðkÞ since there
are k wavelengths.

Between two expansions, the content of bregi for 1 � i �
N should be “OR”ed, and then be used to generate lreg.
This function can be implemented in hardware which
finishes this job in constant time. Also note that the number
of expansion rounds can never exceed k, because after each
round, there must be some “1” bit in lreg, i.e., there must be
some newly discovered left side vertices. Therefore, the
total time spent in generating lreg is also OðkÞ.

If one unmatched left side vertex is found, the matching
should be updated. As explained earlier, this is to move
some buffer vertices from one subgraph to another which is
to increment or decrement the corresponding entries in RS½�
of the subgraphs. Since the number of expansion rounds
cannot exceed k, this will also take OðkÞ time. Then, the new
matching can be obtained in OðkÞ time by running the First
Available Algorithm on each subgraph.

Therefore, overall, it needs OðkÞ time to match a buffer
vertex. Thus, the total running time of the algorithm is
OðBk2Þ since there are Bk buffer vertices.

4.2 Performance Evaluation

We implemented Parallel Segment Expanding Algorithm
in software and evaluated the performance of the
WDM interconnect. The interconnect simulated has eight
input fibers and eight output fibers with eight wave-
lengths on each fiber. We assume that the arrivals of the
packets at the input channels are bursty: An input
channel alternates between two states, the “busy” state
and the “idle” state. When in the “busy” state, it
continuously receives packets and all the packets go to
the same destination. When in the “idle” state, it does not
receive any packets. The length of the busy and idle

periods follows geometric distribution. The durations of
the packets are all one time slot and for each experiment
the simulation program was run for 100,000 time slots.

Fig. 7a shows the packet loss probability (PLP) of the
interconnect as a function of the number of fiber delay lines.
The traffic load is 0:8, the average burst length and the
average idle period are 5 and 1.25 time slots, respectively.
Two wavelength conversion distances, d ¼ 1 and d ¼ 2
were tested, along with the no conversion case (d ¼ 0) and
the full conversion case. As expected, packet loss prob-
ability decreases as the number of delay lines increases.
However, more significant improvements seems to come
from the increase of the conversion ability. For example,
when d ¼ 0, the PLP curve is almost flat, which means that
without wavelength conversion, there is scarcely any
benefit by adding buffer to the interconnect. But, when
d ¼ 1, the PLP drops by a great amount as compared to
d ¼ 0, and the slope of the PLP curve is also much larger.
We can also see that the PLP for d ¼ 2 is already very close
to the full wavelength conversion; therefore, there is no
need to further increase the conversion ability. All this
suggests that in a WDM interconnect, wavelength conver-
sion is crucial, but the conversion needs not to be full range,
and with a proper conversion distance, adding buffer will
significantly improve the performance.

Fig. 7b shows the average delay of a packet as a function
of the number of fiber delay lines. The average delay is
actually the average rounds a packet needs to be recircu-
lated before being sent to the output fiber. We can see that a
larger conversion distance results in a shorter delay, and the
delay for d ¼ 2 is very close to the delay for full conversion.
Fixing the conversion distance, the delay is longer for larger
buffer sizes since when buffer is larger more packets are
directed to buffers rather than being dropped.

We also compared the performance of the interconnect
with another type of WDM interconnect studied in [6], [18],
where the ODLs are not shared but dedicated to each
output fiber. Calling the interconnect in this paper I1 and
the interconnect to be compared with I2, we find that with
the same conversion distance and the same number of
ODLs, the PLP of I1 is much smaller than I2, though the
delay time of I1 is slightly larger. For example, when N ¼ 8,
k ¼ 8, d ¼ 2, and when there are a total of 16 ODLs, the
PLPs and the delay times for I1 versus I2 are 0:00072 versus
0:020 and 1:06 versus 0:4622, respectively. Therefore,
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probability. (b) Average delay.



interconnect with shared buffer is a better choice for OPS
networks.

5 EFFICIENT DESIGN OF THE SWITCHING FABRIC

In this section, we will study another important aspect of the
WDM interconnects, which is the design of the switching
fabric. The switching fabric is configured according to the
decisions of the scheduling algorithms, and connects the
inputs to the outputs. As mentioned earlier, to resolve the
output contention buffers are added to the switch, however,
this will result in a larger switching fabric. Hence, it is
important to find efficient ways to build the switching fabric
to reduce the cost of the interconnect.

In Fig. 1, the interconnect has one switching fabric with
ðN þBÞk inputs/outputs. However, we may not actually
need to build such a switching fabric since, unlike an
unbuffered packet which must be sent to the specified
output fiber, a buffered packet can be sent to any of the
ODLs. As a result, the switching fabric connecting the
inputs to the delay lines needs not be so “powerful” as the
switching fabric connecting the inputs to the output fibers.
Hence, we can build two switching fabrics, one is ðN þ
BÞk�Nk which connects the inputs to the output fibers
and the other is ðN þBÞk�Bk which connects the inputs to
the delay lines. We will show that by adopting the idea of
concentration, the cost of the latter, measured by the number
of crosspoints, can be reduced by a significant amount.

In this section, we will assume the conversion distances
for all wavelengths are the same, i.e., the wavelength
conversion is “regular.” However, this is only for presenta-
tional convenience and it is not difficult to generalize our
designs to “irregular” wavelength conversion systems
where different wavelengths may have different conversion
distances.

5.1 Switching Fabric 1

The switching fabric we will design has ðN þBÞk inputs
and Bk outputs, because there are N þB input fibers and
B output fibers with respect to the switching fabric. The
inputs and outputs can be ordered according to the
wavelengths. To be specific, the ½ðt� 1ÞðN þBÞ þ p�th input
is wavelength channel �t on the pth input fiber and the

½ðt� 1ÞBþ p�th output is wavelength channel �t on the
pth output fiber. We use ai where 1 � i � ðN þBÞk and bu
where 1 � u � Bk to denote the inputs and outputs.

With wavelength conversion ability, an input wave-
length channel can be connected to output wavelength
channels that can be converted from it. An example of the
switching fabric is shown in Fig. 8b, where N ¼ 4, B ¼ 3,
k ¼ 4, and wavelength conversion is as defined in Fig. 8a. In
this figure, each vertical line represents an input and each
horizontal line represents an output. There is a node (either
in black or in gray) at the intersection of input line ai and
output line bu if there can be a connection between ai and bu,
i.e., the wavelength of bu can be converted from the
wavelength of ai. Apparently, if the wavelength conversion
is full range there will be a node at every intersection. A
possible design of the switching fabric is to let each node in
Fig. 8b be a crosspoint, which will be referred to as
“Switching Fabric 1.”

For Switching Fabric 1 as well as for any switching fabric,
given a set of inputs which are the set of packets that should
be buffered, decided by the scheduling algorithm, there
should be a method to assign the outputs to the inputs. We
call the set of outputs (inputs) that can be connected to an
input (output) the adjacency set of this input (output). Under
Switching Fabric 1, the adjacency set of the inputs/outputs
has the same properties as the vertices in the request graph
in Section 3.3. By regarding the inputs as left side vertices
and the outputs as right side vertices, it is not difficult to see
that the First Available Algorithm can be used to find the
maximum number of inputs that can be simultaneously
connected to the outputs. That is, we can scan the inputs
according to their indices, and assign an output bu to input
ai if bu is the output adjacent to ai with the smallest index
and is not assigned to any input yet.

We now define the feasible input.

Definition 1. A group of inputs is feasible to a switching fabric
if each of the inputs can be assigned to some output by the
switching fabric.

For Switching Fabric 1, a group of inputs is feasible if and
only if each input in the group can be assigned to an output
by the First Available Algorithm.

Switching Fabric 1 is the most powerful switching fabric
one can have, given the wavelength conversion ability.
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wavelength conversion as defined in Fig. 8a.



However, it is not optimal for our purpose, since many
crosspoints are redundant. We will give a better design next.

5.2 Concentrators

We now show how to adopt the idea of concentration to
reduce the switching cost. A p� q concentrator is a switching
fabric with p inputs and q outputs where p > q, and for any
q inputs, it is capable of assigning an output for each of the
inputs [13], [14]. However, it does not guarantee that an
input can be connected to a specific output. The concen-
trator only guarantees that there exists some output that this
input can be connected to.

The switching fabric we are designing can also be a
concentrator since an input packet needs only to be
assigned to some wavelength channel and this wavelength
channel can be on any delay line. However, because of the
wavelength conversion constraint, the “concentrator” here
is more complex than an electronic concentrator. We define
a WDM concentrator with limited range wavelength
conversion as follows:

Definition 2. A WDM switching fabric with limited range
wavelength conversion is a concentrator if any feasible input to
Switching Fabric 1 is also feasible to it.

In plain words, for anything Switching Fabric 1 can do,
so does the concentrator. Any set of packets that are to be
buffered, decided by the Parallel Segment Expanding
Algorithm or any other correct scheduling algorithms, must
be feasible to Switching Fabric 1. If so, they must also be
feasible to a concentrator, i.e., for every packet there must
be a unique wavelength channel on the ODLs that can be
connected to.

5.3 Switching Fabric 2

We now divide the crosspoints of Switching Fabric 1 into
three areas, area X, area Y, and area Z, as shown in Fig. 8b,
and we will show that a concentrator needs only the
crosspoints in area Z.

From the figure, we can see that area X contains the
triangle areas with cyan nodes in the lower half of the
switching matrix; area Y contains the triangle areas with
cyan nodes in the upper half of the switching matrix,
symmetrical to area X; and area Z is the rest of the switching
matrix. More formal definitions of these areas are given as
follows.

There are two subareas of area X, X1, and X2, where X1 is
a single large triangle area and X2 is a group of small
triangle areas. For area X1, the easiest way to understand it
is to imagine drawing a 45 degree line starting from ða1; b1Þ,
and extending to ða2; b2Þ; ða3; b3Þ; . . . , until ðaI; bIÞ when
node ðaIþ1; bIþ1Þ does not exist. Nodes under this line are
said to be in area X1. In Fig. 8b, I ¼ 6, i.e., the line stops at
node ða6; b6Þ. Note that, if node ðai; buÞ is in this area, then
u > i, and input ai is adjacent to output bw for all w � I.

Next, we define area X2. If the imaginary 45 degree line
described above stops at ðaI; bIÞ, either bIþ1 does not exist or bI
is the end of the adjacency interval of aIþ1. In the first case,
I ¼ kB and there is no area X2. Otherwise, there is area X2,
and two parameters, t and h, are involved for defining it,
where t is the wavelength of output bI andh is the wavelength
of input aI . In the example, t ¼ 2 and h ¼ 1. For theB outputs
on �tþ1: btBþ1 to btBþB, the first (with the smallest index)
B inputs adjacent to them are ahðNþBÞþ1 to ahðNþBÞþB. Imagine
drawing a 45 degree line crossing nodes ðahðNþBÞþ1; btBþ1Þ;

ðahðNþBÞþ2; btBþ2Þ; . . . ; ðahðNþBÞþB; btBþBÞ. Nodes under this
line are said to be in area X2 for output wavelength �tþ1. In
Fig. 8b, this line crosses ða8; b7Þ, ða9; b8Þ, and ða10; b9Þ and
nodes in area X2 for output wavelength �3 are ða8; b8Þ, ða8; b9Þ,
and ða9; b9Þ. For any node ðaj; bvÞ in this area, we have
j� hðN þBÞ < v� tB, and aj is adjacent to output bw for all
tBþ 1 � w � tBþB. Area X2 for output wavelengths
�tþ2; �tþ3; . . . ; �k can be defined in a similar way.

The definitions for areas Y1 and Y2 are similar to areas
X1 and X2, except that the imaginary 45 degree line starts
from the other end (node ðaðNþBÞk; bBkÞ) and the nodes above
the line are in area Y. Nodes in areas Y1 and Y2 also have
similar properties as nodes in areas X1 and X2.

If the First Available Algorithm is run on Switching
Fabric 1, we have:

Lemma 1. The First Available Algorithm does not use the
crosspoints in area X.

Proof. Consider area X1 first. If node ðai; buÞ is in area X1
and ai is assigned to bu by the First Available Algorithm,
b1 to bu�1 cannot be available to ai when ai is checked.
This only occurs when all these outputs are assigned to
some inputs with smaller indices than ai, since ai is
adjacent to all these outputs. But, this is impossible since
there are at most i� 1 inputs before ai and u > i.

The proof for the first block of area X2, i.e., the area for
�tþ1 is similar. Suppose node ðaj; bvÞ is in area X2 and aj
was assigned to bv by the algorithm. Note that, inputs from
a1 to ahðNþBÞ can only be assigned to b1 to btB, and aj is
adjacent to all btBþ1 to bv�1. Thus, if aj is assigned to bv, btBþ1

to bv�1 must be all assigned to inputs fromahðNþBÞþ1 toaj�1.
This contradicts with the fact that j� hðN þBÞ < v� tB.
Similarly, we can prove for other blocks of area X2. tu

Lemma 2. After running the First Available Algorithm on
Switching Fabric 1, any assignment in area Y can be replaced
with an assignment in area Z without causing any collision.

Proof. Consider area Y1. If there are assignments in this area,
let ai be the one with the largest index and suppose it is
assigned to bu. By the algorithm, outputs from buþ1 to bkB
are not assigned to any inputs. Hence, we can assign ai to
bkB and, after that, bu to bkB�1 will be free and we can assign
the active input with the second largest index, say, aj, to
bkB�1, and bv to bB�2 will be free, where bv was used to be
assigned to aj. This reassignment can be carried on, and in
the pth reassignment the active input with the pth largest
index will be assigned to bkB�pþ1. Note that, after the
reassignment, the inputwillbeassignedto anoutputwith a
larger index than the output it used to be assigned to,
therefore, not colliding with the assignments for inputs
with smaller indices, and all new assignments are in area Z.

Following similar arguments, we can show that the
assignments in area Y2 can be replaced with nodes in
area Z and the new assignments will also not collide with
other existing assignments. tu

Calling the switching fabric with crosspoints only in area
Z “Switching Fabric 2,” clearly, we have:

Theorem 2. Any feasible inputs to Switching Fabric 1 are also
feasible to Switching Fabric 2. As a result, Switching Fabric 2
is a concentrator.
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An efficient algorithm is needed to assign outputs to
inputs in Switching Fabric 2. Luckily, we can simply use the
First Available Algorithm, since the adjacency set of inputs/
outputs in Switching Fabric 2 also has the properties in
Section 3.3. Practically, since there are fewer outputs than
inputs, we can run the First Available Algorithm on the
output side and the time complexity is OðBkÞ.

The following theorem indicates that Switching Fabric 2
uses the minimum number of crosspoints for this type of
crosspoint layout.

Theorem 3. Switching Fabric 2 will not be a concentrator if any

crosspoint is removed from it.

Proof. We prove this by showing that, if any one of the
crosspoints is removed, the remaining switching fabric
will fail to satisfy a set of feasible inputs. For notational
convenience, we define “area X inputs.” Input aj is an
area X input if the 45 degree lines used in the definition
for area X crosses some node ðaj; bvÞ. In the example of
Fig. 8b, they are inputs 1-6, 8-10, and 15-17. Similarly,
define “area Y inputs” as the inputs involved in the
45 degree lines for the definition of area Y. In the
example they are inputs 12-14, 19-21, and 23-28.

Now, suppose crosspoint ðai; buÞ was removed and
suppose when defining area Y, the 45 degree line crosses
node ðaj; buÞ. Consider the set of inputs consisting of all
area X inputs with smaller indices than ai and all area Y
inputs with larger indices than aj, plus input ai. For
example, in Fig. 8b, if crosspoint ða6; b5Þ was removed, aj
is a20, and the set of inputs will be a1 to a4, a21, a23 to a28,
plus a6. Note that a1 is only adjacent b1 and, therefore,
must be assigned to b1. Given this, a2 though adjacent to
b1 and b2, must also be assigned to b2. This argument is
carried on, and as a result, outputs except for bu must be
assigned to inputs except for ai. In the example, b1 to b4

must be assigned to a1 to a4, b6 must be assigned to a21,
and b7 to b12 must be assigned to a23 to a28. Therefore, no
output can be assigned to ai. But, the set of inputs would
be feasible had ðai; buÞ not been removed. tu

5.4 Cost Comparison

In this section, we will see how much this concentrator
design reduces the switching fabric cost in terms of the
number of crosspoints.

Let the conversion distance be d and note that the

number of nodes in area X as well as in area Y is

� ¼ kBðB� 1Þ=2þB2tðt� 1Þ=2; ð1Þ

where t is the largest integer that satisfies

Bt

N þB

� �
þ d � t: ð2Þ

The number of crosspoints in Switching Fabric 1 is

� ¼ BðN þBÞ½kþ 2kd� d2 � d�; ð3Þ

assuming k > 2d. The saved cost is 2�=�. Fig. 9 shows the

saved cost by using Switching Fabric 2 when N ¼ 16 and

k ¼ 16 for different B and d. We can see that in general the

concentrator design will save more when B is large, and at

least about 10 percent of the cost can be saved.

6 CONCLUSIONS

In this paper, we have studied WDM optical interconnects

with limited range wavelength conversion and shared

buffer. We first considered the scheduling problems in this

type of interconnect and gave an optimal parallel algorithm

called the Parallel Segment Expanding Algorithm that finds

a schedule that both maximizes throughput and minimizes

packet delay. The proposed algorithm runs in OðBk2Þ time,

as compared to OððN þBÞ3k3Þ time if directly applying

other existing algorithms, where N is the number of input/

output fibers, B is the number of optical delay lines (ODL),

and k is the number of wavelengths per fiber. We also

considered the switching fabric design for this type of

interconnect. We distinguished between the switching

fabric connecting the inputs to the output fibers and the

switching fabric connecting the inputs to the ODLs, and

gave a new design based on the idea of concentration which

significantly reduces the cost of the latter in terms of the

number of crosspoints. Our future work includes analytical

performance evaluation of the interconnect under different

traffic models.
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