
Optimal Scheduling Algorithms in WDM Optical
Interconnects with Limited Range Wavelength

Conversion Capability
Zhenghao Zhang, Student Member, IEEE, and Yuanyuan Yang, Senior Member, IEEE

Abstract—Optical communication is a promising candidate for many emerging networking and parallel/distributed computing

applications because of its huge bandwidth. Wavelength Division Multiplexing (WDM) is a technique that can better utilize the optical

bandwidth by dividing the bandwidth of a fiber intomultiple wavelength channels. In this paper, we study optimal scheduling algorithms to

resolve output contentions in bufferless time slotted WDM optical interconnects with wavelength conversion ability. We consider the

general caseof limited rangewavelength conversionwith arbitrary conversion capability, as limited rangewavelength conversion is easier

to implement and more cost effective than full range wavelength conversion, and it also includes full range wavelength conversion as a

special case. We first consider the conversion scheme in which each wavelength can be converted to multiple wavelengths in an interval

of wavelengths and the intervals for different wavelengths are “ordered.”We show that the problemofmaximizing network throughput can

be formalized as finding amaximummatching in a bipartite graph.We then give an optimal scheduling algorithm called the First Available

Algorithm that runs inOðkÞ time, where k is the number of wavelengths per fiber. We also study the case where the connection requests

have different priorities. We formalize the problem as finding an optimal matching in a weighted bipartite graph and give a scheduling

algorithm called the Downwards Expanding Algorithm that runs inOðkDþNk logðNkÞÞ time whereN is the number of input fibers of the

interconnect and D is the conversion degree. Finally, we consider the circular symmetrical wavelength conversion scheme and give

optimal scheduling algorithms for nonprioritized scheduling in OðDkÞ time and prioritized scheduling in Oðk2 þNk logðNkÞÞ time.

Index Terms—Wavelength-division-multiplexing (WDM), optical interconnects, scheduling, wavelength conversion, limited range

wavelength conversion, bipartite graphs, bipartite matching, matroid.

�

1 INTRODUCTION AND BACKGROUND

MANY emerging networking applications, such as data-
browsing in the World Wide Web, video conferen-

cing, video on demand, E-commerce, and image distribu-
tion, require very high network bandwidth, often far
beyond what today’s high-speed networks can offer.
Optical networking is a promising solution to this problem
because of the huge bandwidth of optics: A single fiber has
a bandwidth of nearly 50 THz [14]. To fully utilize the
bandwidth, a fiber is divided into a number of independent
channels, with each channel on a different wavelength. This
is referred to as wavelength-division-multiplexing (WDM) [1].

In a WDM all-optical network, data is modulated on a
selected wavelength channel and this information-bearing
signal remains in the optical domain throughout the path
from source to destination. A wavelength converter can be
used to convert one wavelength to another wavelength, and
make the network more flexible for satisfying various
connection requests. Studies show that network perfor-
mance is greatly improved by using wavelength converters
[3]. The converters can be full range which are capable of
converting a wavelength to any other wavelengths, or
limited range which only convert a wavelength to several
adjacent wavelengths and the number of these adjacent
wavelengths is called the conversion degree. Full range

wavelength converters are quite difficult and expensive to
implement due to technological limitations [12], [10].
Limited range wavelength converters, on the other hand,
are much cheaper and easier to implement and can achieve
network performance similar to full range wavelength
converters even when the conversion degree is very small
[12], [10], [13]. Thus, limited range converters are consid-
ered as a practical, cost-effective choice for providing
wavelength conversion ability in WDM networks, which
will be the main focus of this paper. Note that full range
wavelength conversion can be viewed as a special case of
limited range wavelength conversion when the conversion
degree is equal to the number of wavelengths on a fiber.

We study scheduling algorithms in WDM optical inter-
connects (also called WDM switch or crossconnect in the
literature) with limited range wavelength conversion in this
paper. A WDM optical interconnect provides interconnec-
tions between a group of input fiber links and a group of
output fiber links with each fiber link carrying multiple
wavelength channels. Such an interconnect can be used to
provide high-speed interconnections among a group of
processors in a parallel and distributed computing system
or serve as an optical crossconnect (OXC) in a wide-area
communication network. We consider WDM optical inter-
connects that operate synchronously, such as time slotted
WDM packet switching networks where information is
carried by optical packets that arrive at the interconnect at
the beginning of time slots [11]. In such an interconnect,
scheduling algorithms are needed to smartly allocate the
resources (the wavelength channels) to the requests (the
arrived packets) to optimize network performance, such as

1012 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 11, NOVEMBER 2004

. The authors are with the Department of Electrical and Computer
Engineering, State University of New York at Stony Brook, Stony Brook,
NY 11794-2350. E-mail: {zhhzhang, yang}@ece.sunysb.edu.

Manuscript received 2 July 2003; revised 2 Mar. 2004; accepted 7 May 2004.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0104-0703.

1045-9219/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

network throughput. Since optical buffers are currently
made of fiber delay lines and are very expensive and bulky
[2], we consider bufferless WDM optical interconnects in
this paper. We refer to an incoming packet as a connection
request or simply a request. We consider unicast traffic, i.e.,
each connection request has only one destination fiber. The
duration of a request can be one time slot or several time
slots, however, as in [11], [23], we focus on the one time slot
case since in most packet switching networks the inter-
connect only switches fixed length cells.

Such an interconnect is shown in Fig. 1. It has input N
fibers and N output fibers. On each fiber, there are k
wavelengths that carry independent data. Thus, there are a
total of Nk input wavelength channels and Nk output
wavelength channels. It can be seen from the figure that an
input fiber is first fed into a demultiplexer, where different
wavelength channels are separated from one another. An
input wavelength is then fed into a wavelength converter to
be converted to a proper wavelength. The output of a
wavelength converter is then split into N signals, which are
connected to each of the output fibers under the control of
N SOA gates. The signal can reach the output fiber if the
SOA gate is on, otherwise, it is blocked. Since the request
has only one destination, only one of the SOA gates is on at
a time. In the front of each output fiber there is an optical
combiner which multiplexes the signals on different
wavelengths into one composite signal and send to the
output fiber. Apparently, it is required that all signals to the
optical combiner must be on different wavelengths.

To understand the problem that needs to be solved by the
scheduling algorithm, we can use the following example.
Consider a simple interconnect with two input/output fibers
and four wavelengths per fiber shown in Fig. 2. Suppose
under limited range conversion,wavelength�i,1 � i � 4, can
be converted to �j, where j 2 ½maxði� 1; 1Þ;minðiþ 1; 4Þ�, as
shown in the left part of the figure. At the beginning of a time
slot, there are four connection requests on �1, �2, �3, and �4

arrived at input fiber 1, destined for output fiber 2, 2, 1, and 1,
respectively. In the figure, the destination of a request is the
number shown in the parenthesis. There are two connection
requests on �1 and �2 arrived at input fiber 2, and all destined
for output fiber 2.We first notice that there is no contention at
output fiber 1, since there are only two requests destined to it,
and they are on different wavelengths. These two requests
can bothbe granted andnowavelength conversion is needed.

However, there is contention at output fiber 2 since there are
four requests, two on �1 and two on �2, destined for this
output fiber.Withoutwavelength conversion, one request on
eachof thewavelengthsmust bedropped.With limited range
wavelength conversion, three wavelengths, �1 to �3, can be
converted from �1 and �2 and, therefore, three of the four
requests destined for output fiber 2 can be granted. We can
assign channel �1 to the request arrived at input fiber 1 on �1,
assign channel �2 to the request arrived at input fiber 2 on �1,
assign channel �3 to the request arrived at input fiber 1 on �2,
and reject the request arrived at input fiber 2 on �2. Based on
these decisions, the wavelength converters are configured to
convert input wavelengths to proper output wavelengths, as
shown in the figure. An SOA gate is set to on if the request is
granted and is destined to the output fiber connected to the
gate. We can see in the example that, when contention arises
at an output fiber, to maximize network throughput, we
attempt to find the largest group of requests that are
contention free.

Extensive research has been conducted on scheduling
algorithms for various electronic switches (which can be
considered as a single wavelength switch). For example, [5]
and [6] considered scheduling algorithms in input-buffered
electronic switches under unicast traffic. Scheduling algo-
rithms for WDM broadcast and select networks were also
well studied in recent years, see, for example, [15], [16]. In
this type of network, the source node broadcasts its
information to all other nodes via a selected wavelength,
and only the destination node tunes into this wavelength to
get the message. In this way, only one wavelength on the
fiber is used at a time, both for the source and the
destination node. It is a different type of network from
the WDM interconnect considered in this paper. We
consider a space-division switch where all wavelengths on
a fiber can be utilized simultaneously. There has also been
some work in the literature on the performance analysis of
WDM optical interconnects with limited range wavelength
conversion in WDM wavelength routing networks (or
optical circuit switched networks), e.g., [10], [12], [13]. Note
that connection requests arrive at this type of optical
interconnect asynchronously and, thus, there is no need
for a scheduling algorithm since the requests have a natural
order and are assumed to be served in a “first come first
served” manner. Time slotted WDM switches with limited
range wavelength conversion were considered in [23], in
which a simple scheduling algorithm was given. However,

ZHANG AND YANG: OPTIMAL SCHEDULING ALGORITHMS IN WDM OPTICAL INTERCONNECTS WITH LIMITED RANGE WAVELENGTH... 1013

Fig. 1. A wavelength convertible WDM optical interconnect.

Fig. 2. Requests and wavelength channel assignments of an example
interconnect with two input/output fibers and four wavelength per fiber.
The number in the parenthesis are the destination of a request.

the authors did not show whether the algorithm is optimal
in terms of maximizing network throughput. In this paper,
we will present scheduling algorithms that can maximize
network throughput. We will also consider networks that
supports Quality of Service (QoS) and will give optimal
algorithms that both maximize network throughput and
give service differentiation.

The rest of this paper is organized as follows: Section 2
describes two types of limited range wavelength conver-
sions, namely, the “ordered interval” wavelength conver-
sion and the “circular symmetrical” wavelength conversion.
Section 3 introduces the request graph and shows that the
problem of maximizing network throughput is equivalent
to the problem of finding a maximum matching in the
request graph. Section 4 gives the First Available Algorithm
for finding maximum matchings in the request graph for
ordered interval wavelength conversion. Section 5 gives the
Downwards Expanding Algorithm for finding optimal
matchings in the request graph when the connection
requests have different priorities. In Section 6, we consider
circular symmetrical wavelength conversion and give the
algorithms for finding maximum matchings and optimal
matchings in the request graphs for both nonprioritized and
prioritized scheduling. Section 7 gives some simulation
results of the algorithms and, finally, Section 8 concludes
the paper.

2 WAVELENGTH CONVERSION

2.1 Ordered Interval Wavelength Conversion

All-optical wavelength conversion is usually achieved by
conveying information from the input light signal to a probe
signal [8], [9]. The probe signal is generated by a tunable
laser tuned to the desired output wavelength. The tuning
range of the laser is continuous, but under limited range
wavelength conversion, it is only part of the whole
spectrum because of constraints such as tuning speed, loss,
etc. We can see that a wavelength can be converted to an
interval of wavelengths, because the tuning range of the
laser covers an interval of wavelengths. Also, note that, if
the laser for the conversion of �1 can be tuned to �3, then the
laser for the conversion of �2 should also be able to be tuned
to �3 since �2 is closer to �3 than �1 is. Thus, we have
following two observations on wavelength conversion:

Observation 1. Thewavelengths that can be converted to by �i for

i 2 ½1; k� can be represented by interval ½beginðiÞ; endðiÞ�, where
beginðiÞ and endðiÞ are positive integers in ½1; k�. We call

wavelengths that belong to this interval adjacency set of �i.

Observation 2. For two wavelengths �i and �j, if i < j,

beginðiÞ � beginðjÞ and endðiÞ � endðjÞ.

We call this type of wavelength conversion “ordered
interval” because the adjacency set of an wavelength can be
represented by an interval of integers, and the intervals for
different wavelengths are “ordered.” The cardinality of the
adjacency set is called the conversion degree of the wave-
length. Different wavelengths may have different conver-
sion degrees. The conversion degree of the interconnect,
denoted by D, is defined as the largest conversion degree of
all wavelengths. The conversion distance of a wavelength is
defined as the largest difference between a wavelength and
a wavelength that can be converted from it.

We can use a bipartite graph to visualize the wavelength
conversion, as have informally practiced in the example in
Fig. 2. Let the left side vertices represent input wavelengths
and the right side vertices represent output wavelengths. �i

on the left and �j on the right are connected if �i can be
converted to �j. Fig. 3a shows such a conversion graph for
k ¼ 8. The adjacency set of �3, for example, can be
represented as ½1; 5�, and the conversion degree of �3 is 5.
Other wavelengths, for example, �1, has a smaller conver-
sion degree of 3. Since 5 is the largest conversion degree,
D ¼ 5. The conversion distance for �3 is 3� 1 ¼ 2. In fact,
the conversion distance is 2 for all the wavelengths in this
example.

Note that the observations we made about wavelength
conversion above are very general, only relying on the two
facts observed at the beginning of this section. It is allowed
that different wavelengths have different conversion de-
grees and different conversion distances. This type of
wavelength conversion is also used in other research work,
for example, [24], [25]. In fact, the conversion distance in
[24], [25] is the same for all wavelengths and therefore is a
special case of the wavelength conversion considered in this
paper. Full range wavelength conversion can also be
considered as a special case, by letting the conversion
degrees for all wavelengths be k.

2.2 Circular Symmetrical Wavelength Conversion

Theordered intervalwavelength conversiondiscussedabove
is not the only type of wavelength conversion used in the
literature. Another popular type of wavelength conversion
which is vastly used for the purpose of performance analysis
can be called “circular symmetrical” wavelength conversion,
in which the conversion degrees of all wavelengths are the
same [12], [10], [13].Awavelength canbe converted tod lower
wavelengths and d higher wavelengths, where d is the
conversion distance. For the wavelengths near the “bound-
ary,” say, �1, it is allowed to be converted to wavelengths on
the other end, say, �k. To be specific, wavelength �i can be
converted to ½kþ i�d; k� [½1; iþ d� for 1 � i � d, ½i� d; iþ d�
for dþ1� i�k�d, and ½i�d; k�[½1; dþi�k� for k� d < i � k.
Fig. 3b shows a conversion graph for circular symmetrical
wavelength conversion when k ¼ 8 and D ¼ 5. From an
implementational point of view, circular symmetrical wave-
length conversion is not as practical as the ordered interval
wavelength conversion, but in somecases, itmay simplify the
theoretical analysis.

1014 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 11, NOVEMBER 2004

Fig. 3. Conversion graphs for an 8-wavelength optical system for two
types of wavelength conversions, both with conversion distance 2.
(a) Ordered interval. (b) Circular symmetrical.

3 PROBLEM FORMALIZATION

In this section, we show how the problem of maximizing
network throughput in the WDM interconnect can be
formalized into a bipartite graph matching problem. We
first consider the case where all connections hold for one
time slot. The multitime slot case will be discussed at the
end of Section 4.

First, we consider one output fiber. The relationship
between the connection requests destined for an output
fiber and the available wavelength channels on this output
fiber can be represented by a bipartite graph, called request
graph. The left side vertices represent the connection
requests and the right side vertices represent output
wavelengths. The vertices on each side of the graph are
placed according to their wavelength indices, �1 first, then
�2, then �3, and so on. Vertices on the same wavelength can
be placed in an arbitrary order. There is exactly one vertex
on each wavelength on the right side. However, on the left
side, there could be more than one vertices on the same
wavelength since there may be more than one requests on
the same wavelength going to the same output fiber. We
will use a1; a2; . . . ; an and b1; b2; . . . ; bm to denote the left side
vertices and right side vertices, respectively, throughout the
paper. There is an edge connecting left side vertex ai and
right side vertex bu if the wavelength of ai can be converted
to the wavelength represented by bu which is �u. The
conversion graph discussed earlier can be simply consid-
ered as a special case of the request graph when there is
exactly one connection request coming on each wavelength.

For convenience, we also define the request vector. A
request vector is a 1� k row vector, with the ith element
representing the number of connection requests arriving on
wavelength �i. Fig. 4a shows a request graph for an output
fiber under the ordered interval conversions when the
request vector is ½1; 2; 2; 3; 0; 0; 0; 1�. The numbers in the
parenthesis are the weights of the requests which will be
discussed later in Section 5.

We can also draw a “whole” request graph with the left
side vertices being the all the requests arrived at the
interconnect and the right side vertices being all the
wavelength channels on the N output fibers. However,
since a wavelength channel on output fiber p will not be
assigned to a request destined to output fiber q if p 6¼ q,
there will be no edge connecting this pair of vertices even if
the wavelength channel is within the conversion range of
the request. As a result, the whole request graph will have
N isolated components, or N separate “small” request

graphs, one for each output fiber. We can work on the small
request graphs one by one. In other words, we can use the
same scheduling algorithm to find an optimal solution for
each request graph, and the N optimal solutions for the N
request graphs, when put together, will be the optimal
solution for the whole request graph. Therefore, in the
following, we explain our algorithm for only one output
fiber. The input to the scheduling algorithm is the
connection requests destined to this fiber. The output of
the algorithm is the decisions about whether a request is
granted or not and, if granted, which wavelength channel it
is assigned to. As the relations between the requests and the
wavelength channels can be fully described by the request
graph, the scheduling algorithm will be explained as an
algorithm for a bipartite graph. The algorithm can be run
independently and in a distributed manner to speed up the
scheduling process.

In a request graph G, let E denote the set of edges. Any
wavelength assignment can be represented by a subset of E,
E0, where edge aibu 2 E0 if wavelength channel bu is
assigned to connection request ai. Under unicast traffic,
any connection request needs only one output channel.
Also, an output channel can be assigned to only one
connection request. It follows that the edges in E0 are vertex
disjoint, because if two edges share a vertex, either one
connection request is assigned two wavelength channels or
one wavelength channel is assigned to two connection
requests. Thus, E0 is a matching in G. For a given set of
connection requests, to maximize network throughput, we
should find a maximum matching in the request graph. The
maximum matching for Fig. 4a is shown in Fig. 4b.

The best known algorithm for finding a maximum
matching in an arbitrary bipartite graph was given in [19],
and has time complexityO½n1

2ðmþ nÞ�, where n andm are the
number of vertices and edges in the bipartite graph,
respectively. If we directly adopt this algorithm in our
scheduling algorithm, the time complexity would be as high
asOðN 3

2k
3
2DÞ since the number of left side vertices in a request

graphalone couldbe as large asNk and each left side vertex is
adjacent to up to D right side vertices. However, faster
algorithms are required for scheduling in WDM optical
interconnects as thedecisionmust bemade in real timewithin
a time slot, which is in the order of �s [11]. Wewill show that
the request graph for limited range wavelength conversion
exhibits some nice properties so that faster algorithms are
possible.

ZHANG AND YANG: OPTIMAL SCHEDULING ALGORITHMS IN WDM OPTICAL INTERCONNECTS WITH LIMITED RANGE WAVELENGTH... 1015

Fig. 4. Request graphs and matchings when the request vector is ½1; 2; 2; 3; 0; 0; 0; 1� in an 8-wavelength interconnect with conversion distance 2.
(a) Request graph. The numbers in the parenthesis are the weights of the requests. (b) Maximum matching. (c) Optimal matching.

4 MAXIMUM MATCHINGS IN ORDERED INTERVAL
WAVELENGTH CONVERSION REQUEST GRAPHS

In this section, we discuss how to find a maximum

matching in an ordered interval wavelength conversion

request graph. Table 1 lists the symbols that we are going to

use in this section.
We have the following theorem concerning the proper-

ties of a request graph.

Theorem 1. A request graph with ordered interval wavelength

conversion has the following properties:

Property 1. The adjacency set of any left side vertex is an interval.

Namely, if left side vertex ai is adjacent to right side vertices bu
and bv, whereu < v, ai is adjacent to all bw, whereu � w � v. In

the following, we use interval ½beginðaiÞ; endðaiÞ� to represent
the adjacency set of an left side vertex ai. We call beginðaiÞ and
endðaiÞ the begin value and end value of ai, respectively. The

vertex with index beginðaiÞ and endðaiÞ are called the begin

vertex and end vertex of ai, respectively.

Property 2. Let ½beginðaiÞ; endðaiÞ� be the adjacency set of left

side vertex ai and ½beginðajÞ; endðajÞ� be the adjacency set of

left side vertex aj. If i < j, then beginðaiÞ � beginðajÞ and
endðaiÞ � endðajÞ.

Property 3. In the request graph G, if edge aibu 2 E, ajbv 2 E

and i < j, u > v, then aibv 2 E, ajbu 2 E.

Property 4. Properties 1 and 2 also hold for right side vertices.

Namely, the adjacency set of any right side vertex bu is also an

interval or can be represented by ½begin0ðbuÞ; end0ðbuÞ�, and for

two right side vertices bu and bv, if u < v, then begin0ðbuÞ �
begin0ðbvÞ and end0ðbuÞ � end0ðbvÞ.

Property 5. Removing any vertex from the request graph, all the

above properties still hold.

Proof. The first two properties come directly from the two
observations on the ordered interval wavelength conver-
sion. Next, we show that Property 3 holds. A visual
illustration of this property is shown in Fig. 5. Let the
adjacency set of ai be ½beginðaiÞ; endðaiÞ� and the adjacency
set of aj be ½beginðajÞ; endðajÞ�. By Property 1, in order to
prove aibv 2 E, we need to show that beginðaiÞ � v �
endðaiÞ. First, since i < j, by Property 2, we have ½beginðaiÞ
� beginðajÞ�. We also have beginðajÞ � v since ajbv 2 E.
Therefore, beginðaiÞ � v. Next, since aibu 2 E, we have
u � endðaiÞ. Then, v � u � endðaiÞ and, thus, aibv 2 E.
Similarly, we can show ajbu 2 E.

Wenowgive theproof forProperty 4.We first showthat
the adjacency set of any right side vertex must also be an
interval. Let bu be any right side vertex. Suppose aibu 2 E
andakbu 2 Ewhere i < k, as shown inFig. 6a.Toprove this
claim, we need to show that ajbu 2 E for all aj where
i < j < k. That is to say, beginðajÞ � u � endðajÞ where
½beginðajÞ; endðajÞ� is the adjacency set of aj. We have
beginðakÞ � u since akbu 2 E. Since j < k, by Property 2,
beginðajÞ � beginðakÞ � u. Similarly, we have u � endðaiÞ
since aibu 2 E. Finally, since i < j, by Property 2, u �
endðaiÞ � endðajÞ. Thus, ajbu 2 E.

Next, we prove that Property 2 also holds for right
side vertices. We show this by contradiction. Assume
Property 2 does not hold. Then, we can find two vertices
bu and bv where u < v, with the adjacency set of bu being
½begin0ðbuÞ; end0ðbuÞ� ¼ ½u1; u2� and the adjacency set of bv
being ½begin0ðbvÞ; end0ðbvÞ� ¼ ½v1; v2�, but either u1 > v1 or
u2 > v2. We show that u1 cannot be greater than v1, and
the proof for the other case is similar. If u1 > v1, as shown

1016 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 11, NOVEMBER 2004

TABLE 1
List of Symbols in Section 4

Fig. 5. Illustration of Property 3 of a request graph. If aibu 2 E and
ajbv 2 E, then aibv 2 E and ajbu 2 E.

Fig. 6. Property 4 of a request graph. (a) If aibu 2 E and akbu 2 E, ajbu 2
E for i < j < k. (b) au1, which is the begin vertex of bu cannot have a

larger index than av1 which is the begin vertex of bv if u < v. The wavy

line segments are the nonexisting edges.

in Fig. 6b, we have au1bu 2 E and av1bv 2 E, but u1 > v1
and u < v. By Property 3, we have av1bu 2 E, which
contradicts the fact that au1 is the first left side vertex
adjacent to bu. In Fig. 6b, this nonexisting edge is drawn
in a wavy line segment.

Finally, Property 5 is quite straightforward and we
only need to show that, if some vertex is removed,
Properties 1 and 2 still hold, since other properties can be
derived from these two properties. If the vertex to be
removed is a left side vertex, Properties 1 and 2
obviously hold. Hence, we only need to consider the
case that the removed vertex is from the right side. Note
that, if the right side vertex bu is removed, we will need
to renumber the right side vertices: The indices of
vertices from b1 to bu�1 are unchanged, and the indices
of vertices from buþ1 to bm are all decremented by 1. After
this renumbering, for any interval in the old numbering,
if it does not contain u, it is still an interval in the new
numbering; if it contains u, it is also an interval since the
indices following u are all decremented by 1. Thus,
Property 1 holds. Similarly, Property 2 can also be easily
verified by considering all four combinations of the
adjacency sets of two left side vertices, i.e., containing u
or not in both sets. tu
A bipartite graph with Property 1 is called a convex

bipartite graph and was first studied in [20]. Clearly, the
request graph we consider is a convex bipartite graph.
Furthermore, due to other properties of the request graph,
mainly Property 2, it is a special case of a convex bipartite
graph, and we call it an ordered convex bipartite graph. For
simplicity, throughout this section and the next section, we
will still refer to it as a request graph and, by a request
graph, we mean a bipartite graph with Properties 1-5. There
are also doubly convex bipartite graphs in the literature [21] in
which the adjacency sets of the left side and the right side
vertices are all intervals. Our request graph is also doubly
convex, but is also a special case of it because there exist
graphs that are doubly convex but do not satisfy all
Properties 1-5.

Finding a maximum matching in a convex bipartite
graph is much easier than that in general bipartite graphs.
Lipski Jr. and Preparata [21] gave such an algorithm in
OðnþmAðmÞÞ time, where n is the number of left side
vertices, m is the number of right side vertices, and AðmÞ is
a slowly growing function with respect to m. Since the
request graph has stronger properties, we can obtain even
simpler algorithms. We present the First Available Algo-
rithm as described in Table 2 for finding a maximum
cardinality matching in a request graph. The input to this

algorithm is the adjacency set of left side vertices denoted
by interval ½beginðaÞ; endðaÞ� for each left side vertex a. The
output of the algorithm is array MATCH½�. MATCH½i� ¼ j
means that the ith left side vertex is matched to the jth right
side vertex. MATCH½i� ¼ � if the ith left side vertex is not
matched to any right side vertex.

In the description of the algorithm, n is the number of left
side vertices. current is the location of the right side vertex
that immediately follows the most recently matched right
side vertex. In other words, if we just matched right side
vertex bv to some left side vertex, current ¼ vþ 1. Initially,
current ¼ 1. As shall be seen soon, in this algorithm, we
match left side vertex ai to the first adjacent right side vertex
(the onewith the smallest index) that has not beenmatched to
other left side vertex yet, such a vertex is called the first
available vertex.

To show the correctness of the algorithm, we need to first
prove the following invariant:

Lemma 1. Throughout the execution, in every step, the First
Available Algorithm finds the first available vertex for a left
side vertex if such a vertex exists.

Proof. By induction. This is obviously true in the first step
since the first left side vertex, if not isolated, will be
matched to its begin vertex which is the first available
vertex by definition. If it is isolated, it has no available
vertex. Now, suppose it is true for all the steps before the
ith step when checking ai, where i > 1. We now prove
that it is still true for the ith iteration, i.e., the algorithm
finds a first available vertex for ai.

We first claim that all right side vertices with indices
smaller than current are not available to ai. They are either
not adjacent to ai or are adjacent to ai, but were already
matched to someother left sidevertices. Suppose this isnot
the case. Then, there exists a vertex bu which is available to
ai but u < current. We know that bv is matched where
v ¼ current� 1. Suppose bv ismatched to aj.Wehave i > j
since the left side vertices are checked in an increasing
order according to their indices. We also know that u < v.
Since ajbv 2 E and aibu 2 E, by Property 3, we have
ajbu 2 E, which contradicts with the inductive hypothesis
that bv is the first available vertex for aj.

We next claim that none of the right side vertices with
indices no less than current are matched yet. Since, by
the algorithm, the most recently matched right side
vertex has the largest index among all the matched right
side vertices, and the value of current is larger than the
index of this most recently matched right side vertex.

Therefore, at the ith iteration, if current < beginðaiÞ,
beginðaiÞ is not matched and it will be the first available
vertex for ai. Otherwise, if beginðaiÞ � current � endðaiÞ,
the first available vertex is simply current, and if
current > endðaiÞ, all the vertices in ½beginðaiÞ; endðaiÞ�
have beenmatched and there is no available vertex for ai.tu
Having seen that we always match a left side vertex to its

first available vertex, we next show that by doing so we can
obtain a maximum matching of the request graph.

Theorem 2. The First Available Algorithm finds a maximum
matching in a request graph.

Proof. We first define the “top edge” of a request graph as
the edge connecting the first nonisolated left side vertex
to the first nonisolated right side vertex. For example,

ZHANG AND YANG: OPTIMAL SCHEDULING ALGORITHMS IN WDM OPTICAL INTERCONNECTS WITH LIMITED RANGE WAVELENGTH... 1017

TABLE 2
First Available Algorithm for Finding a Maximal Matching

edge a1b1 in Fig. 4a is the top edge. We claim that the top
edge must belong to some maximum matching. Let aibu
be the top edge of request graph G. Given any maximum
matching of G, if it contains edge aibu, we have found
such a maximum matching. Otherwise, we show it can
be transformed into a maximum matching that contains
edge aibu. Note that in this maximum matching at least
one of ai and bu is matched since, otherwise, we can add
edge aibu in and obtain a matching with a larger
cardinality. If exactly one of ai and bu is matched, we
can add edge aibu in and remove the edge covering ai or
bu. The resulting matching is still maximum. For
example, if in Fig. 4a a matching matches a1 to b2 and
b1 is unmatched, we can match a1 to b1 and leave b2
unmatched. This new matching will be of the same
cardinality as the old matching. Hence, we only need to
consider the case that ai and bu are both matched, but not
to each other. Let ai be matched to bv and bu matched to
aj. We have i < j and u < v since ai and bu are the first
nonisolated vertices. Thus, by Property 3, we have aibu 2
E and ajbv 2 E. Therefore, we can match ai to bu and aj
to bv, and the resulting matching is still maximum and
also contains edge aibu. For example, if in Fig. 4a, in a
matching a1 is matched to b2 and a2 is matched to b1, we
can match a1 to b1 and match a2 to b2. After this change,
the new matching still has the same number of edges but
now contains edge a1b1.

Now, consider the subgraph ofG obtained by deleting
vertices ai and bu and all the edges incident to them. We
call it residual graph of G and denote it as G1. We assert
that edge aibu together with a maximum matching in G1

is a maximum matching in G. We give a proof by
contradiction. Suppose this is not true, then let M be a
maximum matching in G that contains edge aibu. From
previous discussions, we know that such a matching
always exists. Let M1 be a maximum matching in G1.
Since M1 [aibuf g is not a maximum matching in G,
jM j> 1þ jM1 j . However, M 0

1 ¼M n aibuf g is a match-
ing in G1. Therefore, jM 0

1 j¼jM j �1 >jM1 j , which
contradicts with the fact that M1 is a maximum matching
in G1.

Therefore, to find a maximum matching of G, we can
first take the top edge and then find a maximum
matching of G1. Note that by Property 5, finding a
maximum matching in G1 can be done in exactly the
same way as in G. Thus, we can take the top edge of G1

and go on to work on G2 which is the residual graph of
G1. The process can be repeated and, in each step, we
simply take the top edge until no vertex is left in the
residual graph. By then, the edges we have taken will
constitute a maximum matching of G. Note that, by
matching a left side vertex to the first available right side
vertex, we are precisely taking a top edge of some
residual graph. This completes our proof. tu

For example, Fig. 7a is G1, the residual graph of the
request graph shown in Fig. 4a after removing a1 and b1. In
G1, the top edge is a2b2. Thus, edge a2b2 should be added to
the matching. Note that this is exactly what is done by the
First Available Algorithm since, after matching a1 to b1, the
first available vertex of a2 will be b2. The residual graph of

G1 after removing a2 and b2 is shown in Fig. 7b, and the top
edge a3b3 should be added to the matching. This process is
carried on. After adding six edges, residual graph G6 is
shown in Fig. 7c. Note that, although a7 and a8 have smaller
indices than a9, they are isolated and, therefore, the top
edge of G6 is a9b7. The First Available Algorithm will find
that there is no available vertex for a7 and a8 and leave them
unmatched and match a9 to b7. The maximum matching is
shown in Fig. 4b.

We now analyze the complexity of this algorithm. The
loop in the algorithm is executed exactly n times and the
work within the loop can be done in constant time. Thus,
the running time is OðnÞ, where n is the number of left side
vertices. However, due to Property 4, the same algorithm
can also be run on the right side vertices. That is to say, we
can also scan through the right side vertices and match
them to their first available left side vertices. Therefore, if
we know before hand which side has fewer vertices, we can
choose to run the algorithm on that side, and the running
time would be Oðmin n;mf gÞ, where m is the number of
right side vertices.

For our applications, we can choose to run the algorithm
on the right side since the maximum number of left side
vertices can be as large as Nk when all the connection
requests are destined to this fiber, while the number of right
side vertices is k, the number of wavelengths on a fiber. The
running time thus becomes OðkÞ. However, the scheduling
time is not completely independent of network size N since
to generate the input to the algorithm one might have to
scan all the input channels.

Before concluding this section, we would like to address
the issue when the connection requests are more then one
time slot long. So far, we have only considered one time slot
connection requests. Note that in most packet switched
interconnects, connection requests can be considered as one
time slot since the switching core only switches fixed length
cells [6]. However, it poses an interesting problem when the
duration of a request is multitime slot long. In this case, at
the beginning of a time slot, some of the output wavelength
channels may still be occupied by connections arrived
earlier and cannot be assigned to the newly arrived
requests. We can still draw request graphs by simply
removing the right side vertices representing these occu-
pied channels. By Property 5, we can use the same
algorithm to find maximum matchings for the request
graph with this incomplete right side. In this way, we
maximize the number of granted requests at this time slot.
This will be the optimal solution if we measure the network
performance by the number of granted requests at current
time slot. It might not be optimal under other criteria such
as maximizing network utilization. However, since the
decisions are made in real time and we do not know what

1018 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 11, NOVEMBER 2004

Fig. 7. Residual graphs of request graph shown in Fig. 4a. (a) G1. (b) G2.

(c) G6.

requests will arrive in the future, global optimization goals
such as maximizing network utilization cannot be achieved.
We are interested in finding algorithms to give suboptimal
solutions to this case in our future work.

5 OPTIMAL MATCHINGS IN ORDERED INTERVAL
WAVELENGTH CONVERSION WEIGHTED

REQUEST GRAPHS

In this section, we consider the scheduling in a commu-
nication environment that requires Quality of Service (QoS)
in which the connection requests have different priorities.
In this case, the interconnect should be able to give service
differentiation: Lower priority connection requests should
have higher blocking probabilities than higher priority
connection requests. We can assign weights to connection
requests based on their priorities and then find a group of
contention-free connection requests with maximum total
weight. We can solve this problem by generalizing the
results in the previous section to the case that left side
vertices of the request graph are weighted.

More formally, the problem can be described as follows:
Given a request graph (which is a bipartite graph with the
five properties described in Section 4) with weighted left
side vertices, find a matching that maximizes both the
number and the total weight of the covered left side
vertices. Such a matching is called an optimal matching. As
an example, Fig. 4c is the optimal matching for the request
graph in Fig. 4a where the weights of the left side vertices
were shown in the parenthesis next to them.

Table 3 lists the symbols which we are going to use in
this section that are not listed in Table 1.

Next, we will adopt a useful tool, matroid, to solve this
problem.

5.1 Matroid Greedy Algorithm

A matroid is a structure defined on a finite whole set S and
a family of subsets of the whole set, with property usually
refereed to as independence defined on the elements of the
subsets [18]. For example, in a graph, we can let the vertex
set be the whole set. A proper subset, which is a subset
belonging to the matroid, is a group of vertices that can be
covered by a matching. These vertices are said to be
independent of each other in the matroid theory. Greedy
algorithms can be used to find optimal solutions for
problems defined on a matroid.

An optimal matching of an arbitrary bipartite graph can
be found by the matroid greedy algorithm [18], [21]. In
essence, the algorithm tries to find a set of vertices that can

be covered by a matching by checking the vertices one by
one according to their weights, vertices with larger weights
first. A vertex is added to the set if it can be covered along
with the previously selected vertices. To elaborate, the
algorithm starts with an empty set �. In step s, let ai be the
left side vertex with the sth largest weight. The algorithm
checks whether there is a matching covering ai and all the
previously selected vertices in �. If yes, add ai to �,
otherwise, leave ai uncovered. Update s sþ 1 and repeat
until all vertices have been checked. When finished, �
stores left side vertices that can be covered by an optimal
matching.

For example, consider the request graph shown in Fig. 4a.
In the first step, the matroid algorithm should check the left
side vertex with the largest weight, which is a6. a6 can be
matched to b2 and, therefore, is added to �. The next vertex
needs to be checked is a7, which can be matched to b3, and is
also added to �. In the following steps a9, a5, a4, a1, a2, a3, a8
are checked, in this order. a3 and a8 cannot bematched to any
vertices if all the vertices added to � prior to them should
remain matched. So, when the algorithm terminates,
� ¼ a6; a7; a9; a5; a4; a1; a2f g. The optimal matching is shown
in Fig. 4c.

The matching found by this greedy algorithm is optimal
in a strong sense:

1. It is a maximum cardinality matching.
2. The total weight of the vertices covered by the

matching is maximum.
3. Thematching is also lexicographically maximum: Let

thematching foundby the greedy algorithmbeM and
leta1; a2; . . . ; ajMj be the left sidevertices coveredbyM
sorted in a nonincreasing order according to their
weights. Let M 0 be any other matching and let
a01; a

0
2; . . . ; a

0
jM 0 j be the left side vertices covered by M 0

sorted in a nonincreasing order according to their
weights. Then, wða0iÞ � wðaiÞ for all 1 � i �jM 0 j
where wðÞ is the weight of a vertex.

The key operation of the matroid algorithm is to check
whether there exists a matching covering the new vertex
and all the previously selected vertices. Suppose we are
checking vertex ai and let the matching covering all the
vertices in � at this step be Mi. An Mi alternating path is a
path with edges alternating between edges belonging to Mi

and edges not belonging to Mi. There is such a matching if
and only if there exists an Mi alternating path with one end
being ai and the other end being an unmatched right side
vertex. For example, in Fig. 8a an alternating path starts
from a2 and ends at b7 is shown. The edges belong to

ZHANG AND YANG: OPTIMAL SCHEDULING ALGORITHMS IN WDM OPTICAL INTERCONNECTS WITH LIMITED RANGE WAVELENGTH... 1019

TABLE 3
List of Symbols in Section 5

current matching M2 are shown in solid lines and the edges
not belonging to M2 are shown in dashed lines. If such a
path is found, we can perform a “flip” operation along the
path to augment the matching and also to cover ai: Remove
the edges that used to be in Mi and add in the edges that
used to not be in Mi. For example, in Fig. 8a after the flip
operation, the new matching is shown in Fig. 4c, which
covers a2 and has one more edge than M2. For more
detailed coverage of alternating paths, the readers are
refereed to [22] and [18].

It has been shown in [21] how to find an optimal
matching in a convex bipartite graph by using the matroid
greedy algorithm and we will briefly describe it here. Recall
that a bipartite graph is convex if it has Property 1. Define
the set of the right side vertices that can be reached by ai
using Mi alternating paths as the reachable set of ai and
denote it by R. For example, the reachable set of a2 in Fig. 8a
is all the right side vertices. If there is an unmatched vertex
in the reachable set, ai can be matched, since there will be
an Mi alternating path starting from ai and ending at this
unmatched right side vertex. R can be found by expanding
itself in a step by step manner. In the first step, vertices in
the adjacency set of ai are added to R. In each step, the
newly added vertices are checked to see whether there is
one unmatched. If yes, we are done. Otherwise, R needs to
be expanded. When expanding R, for each left side vertex
which is matched to one of the vertices in R, say, aj, add to
R the right side vertices adjacent to aj, but not in R yet,
since these vertices can also be reached by ai using Mi

alternating paths (aj can be reached by ai using Mi

alternating paths, and all the vertices adjacent to aj can be
reached from aj). This is simply to take the unions of R and
the adjacency set of aj. Note that the adjacency set of aj is an
interval, and it has at least one common element with R,
which is the vertex matched to aj. Thus, if R is also an
interval, the union of the two will also be an interval.
Because in the beginning R is an interval, R will always be
an interval during the expansion process. Hence, the
expansion is simply to take the unions of two intervals
which can be done in constant time. To find the entire
reachable set, no more than nðiÞ expansions are needed,
where nðiÞ is the number of the left side vertices in � when
checking ai.

In a general bipartite graph, to find the reachable set or
equivalently an Mi augmenting path, we may also need
only nðiÞ expansions, but the work in each expansion may
not be constant time. One might need to scan all the edges
incident to a left side vertex which might take as many as m
operations, where m is the number right side vertices.
Therefore, we can see that finding the reachable set in a

convex bipartite graph is considerably easier. We next show
that in a request graph, the amount of work can be further
reduced.

5.2 The Downward Expanding Algorithm

We now present a new algorithm, called the Downwards
Expanding Algorithm, for finding an optimal matching in
the request graph.

First,wenotice that, due toProperty 2of the request graph,
when expanding the reachable set R, we do not have to take
theunionofRwith the adjacency set of all the left side vertices
matched tovertices inR, instead, only twoareneeded.To find
R, at first we can set R0 ¼ ½beginðaiÞ; endðaiÞ�. If one of the
vertices in R0 is not covered by Mi, we can match ai to this
vertex andwe are done. Otherwise,R0 needs to be expanded.
As explained earlier, to expand R0 is to take the union of R0

with the adjacency set of a left side vertexmatched to a vertex
inR0. Of all the left side vertices matched to vertices inR0, let
au0 and al0 be the one with the smallest and the largest index,
respectively.We claim that right side vertices in intervalR1 ¼
½beginðau0Þ; endðal0Þ� all can be reached by ai using Mi

alternating paths. This is because by Property 2 of the request
graph, the union of the adjacency set of au0 and R0 is
½beginðau0Þ; endðaiÞ� and the union of the adjacency set of al0
and R0 is ½beginðaiÞ; endðal0Þ�, and these two intervals must
have some overlap. Furthermore, also by Property 2, the
adjacency set of any other left side vertexmatched to a vertex
inR0 is a subset ofR1. Thus, there is no need to take the union
ofR0 with the adjacency set of vertices other than au0 and al0 .

We can check all the right side vertices in R1 that have
not been checked before. If there is an unmatched vertex,
we are done. Otherwise, we can again find two left side
vertices with the smallest index and the largest index that
are matched to vertices in R1, say, au1 and al1 , and expand
R1 to R2 ¼ ½beginðau1Þ; endðal1Þ�. This process is repeated
until an unmatched right side vertex is found, or until the
interval cannot be expanded further which means after
some Ith expansion RI�1 ¼ RI . In this case, we have found
all the right side vertices reachable from ai via Mi

alternating paths.
Before moving on, we first define crossing edges in a

request graph. In a request graph G, we say that edge aibu
and ajbv cross each other if i < j and u > v. Note that by
Property 3 of request graphs, if edge aibu and ajbv cross each
other, then aibv 2 E and ajbu 2 E and these two edges are
not crossing each other. For example, in Fig. 4a, edge a1b2
and a2b1 are a pair of crossing edges. a1b1 2 E and a2b2 2 E
and are not crossing each other. A matching is called
“noncrossing” if it does not have any crossing edges. In
such a matching, the jthmatched left side vertex is matched
to the jth matched right side vertex. There always exists a
maximum matching in a request graph that is noncrossing
since given any maximum matching, if there are crossing
edges, we can simply use Property 3 to replace the two
crossing edges with two noncrossing edges until no
crossing edges are left.

Now, we show that, if the current matching Mi has some
properties, finding an unmatched right side vertex can be
greatly simplified. To be specific, the desired properties are:
1) the matching is noncrossing and 2) no matched left side
vertices has an unmatched upper neighbor, where an
unmatched upper neighbor of a matched left side vertex

1020 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 11, NOVEMBER 2004

Fig. 8. (a) Expanding reachable set for checking a2. a2 can be matched.
Solid lines are edges in matching M2. An M2 alternating path is also
shown. (b) Expanding reachable set for checking a3. a3 cannot be
matched.

aj is defined as an unmatched adjacent right side vertex
with a smaller index than the vertex matched to aj. For
example, in Fig. 4a, at the first step of the algorithm when
checking a6, if it is matched to b4, it will have two
unmatched upper neighbors, b2 and b3. If it is matched to
b2, it will have no unmatched upper neighbor.

The first simplification is about searching for auI and alI .
We will not need to compare the indices of all the left side
vertices matched to vertices in RI , instead, we can simply
find buI and blI which are the vertices in RI with the smallest
index and the largest index, respectively, and auI must be
the vertex matched to buI and alI must be the vertex
matched to blI , because the matching is noncrossing. Note
that finding buI and blI is very easy as they are simply the
beginning and the end of interval RI .

The second simplification, as implied by the name of the
Downwards Expanding Algorithm, is that we need only to
expand the reachable set downwards. In other words, we
only take the union of RI with the adjacency set of alI , and
auI is not needed. This will need a little proof. Suppose the
claim is not true, that is, an unmatched right side vertex can
be found by searching right side vertices with smaller
indices than beginðaiÞ. Suppose an unmatched vertex bw is
found after the ðI þ 1Þth expansion by an upward search,
that is to say, bw is in the adjacency set of auI , where auI is
the left side vertex matched to RI with the smallest index,
and bw =2 RI . bw must have a smaller index than bv, the
vertex matched to auI since bv 2 RI . But, this contradicts the
fact that auI does not have unmatched upper neighbors.

The algorithm is shown in Table 4. The while loop
corresponds to the searching for an unmatched vertex. We
can see that when checking ai, we start with beginðaiÞ and
search downward in interval ½x0; y0� ¼ ½beginðaiÞ; endðaiÞ�. If
no unmatched right side vertex is found, we find the left side
vertex matched to endðaiÞ and let it be al0 . Then, start
searching from x1 in interval ½x1; y1� ¼ ½y0 þ 1; endðal0Þ�.
Again, if no unmatched right side vertex is found, start the
search fromx2 in interval ½x2; y2� ¼ ½y1 þ 1; endðal1Þ�,whereal1
is the vertex matched to by1 . This process is repeated until an
unmatched vertex is found or at some step I xI > yI , in the
latter case alI�1 is matched to its end vertex and the reachable
set cannot be expanded. Note that, in the algorithm, the
expanding is to set RIþ1 to RI [½beginðalI Þ; endðalI Þ�, i.e.,
expanding only downward. And, to find alI we used the fact
that the current matching is noncrossing.

As an example, consider the request graph in Fig. 4a
when checking a2. The expanding process is shown in
Fig. 8a. The current matching M2 is shown in solid lines.
We can see that it is noncrossing, and no matched left
side vertices have an unmatched upper neighbor. At the
beginning, the algorithm finds that the adjacency set of a2
is R0 ¼ ½1; 4�. But, currently, b1 to b4 are all matched,
therefore, R0 needs to be expanded. al0 is a6 which is the
vertex matched to b4. The adjacency set of a6 is ½2; 6�.
Therefore, the algorithm sets x1 ¼ 4þ 1, y1 ¼ 6, and starts
searching from b5 in interval ½5; 6�. It finds that b5 and b6
are also matched. It then finds al1 , which is the vertex
matched to b6 and is a9. The adjacency set of a9 is ½6; 8�.
Thus, it starts searching from b7 in interval ½x2; y2� ¼
½6þ 1; 8�. It finds that b7 is unmatched. Hence, it returns
bw ¼ b7. Fig. 8b shows the expanding for a3. In this case,
no unmatched vertices can be found.

We notice the following facts: 1) w � beginðaiÞ since the
algorithm only scans vertices with indices no less than
beginðaiÞ, and 2) right side vertices with indices in range
½beginðaiÞ; bw�1� are all matched, in the case that bw is not the
begin vertex of ai.

If an unmatched right side vertex bw is found, we need to
update matching Mi to M 0

i to cover ai and bw. In the
algorithm, after bw was found, we search for the matched
left side vertex with a larger index than ai and closest to ai.
If no such vertex exists, we simply match ai to bw.
Otherwise, let this vertex be a�, and suppose a� is matched
bu. If w < u, we also match ai to bw. If w > u, we match ai to
bu and perform the following shifting operation: For the left
side vertices matched to bu to bw�1 under Mi, increment the
indices of their matchings by 1. In this case, we say ai is
matched by shifting. In the other case, when ai is matched
to bw and the matchings for all other vertices are not
changed, we say that ai is directly matched.

As an example, consider Fig. 8a. When checking a2, the
algorithm finds an unmatched right side vertex b7. In
current matching M2, a4 is the matched left side vertex
closest to a2 and has a larger index. a4 is matched to b2.
Therefore, w ¼ 7, � ¼ 4, and u ¼ 2. Since 2 < 7, a2 should be
matched to b2. For all the vertices matched to b2 to b6 under

ZHANG AND YANG: OPTIMAL SCHEDULING ALGORITHMS IN WDM OPTICAL INTERCONNECTS WITH LIMITED RANGE WAVELENGTH... 1021

TABLE 4
Downward Expanding Algorithm for Finding

an Optimal Matching

M2, which are a4, a5, a6, a7, a9, the indices of the vertices
matched to them are incremented by 1. Matching M 0

2 is
shown in Fig. 4c which is the optimal matching of the
request graph since vertices that are to be checked in the
following steps cannot be covered.

To show that the algorithm is correct, we need first to
show that the new matching given by the algorithm is valid,
i.e., no vertex is matched to a vertex not adjacent to it. To see
this, first consider when ai is directly matched. In this case,
the matchings for all other vertices are not changed, and we
need only to show that ai is adjacent to bw. We prove this by
contradiction. Suppose ai is not adjacent to bw, then either
w < beginðaiÞ or w > endðaiÞ. But, since w � beginðaiÞ, we
have w > endðaiÞ. Since right side vertices with indices in
½beginðaiÞ; w� 1� are all matched, right side vertices in
½beginðaiÞ; endðaiÞ� must be also matched. Some of them
must be matched to left side vertices with a larger indices
than ai since, if this is not true, i.e., all the vertices in
½beginðaiÞ; endðaiÞ� are matched to vertices with smaller
indices than ai, the downward expansion must have
stopped at the first iteration and would not have found bw
since al0 , which is the vertex matched to the end vertex of ai,
must also have end value of endðaiÞ. Then, we have found a
contradiction since if ai is directly matched, either there is
no matched left side vertex with a larger index than ai or the
one closest to ai is matched to a vertex with a larger index
than bw and, therefore, also larger than endðaiÞ.

If ai is matched by shifting, we need to show that every
left side vertex involved in the shifting is adjacent to the
right side vertex assigned to it. First, we show that bu, the
vertex used to matched to a�, is adjacent to ai. Since by
Property 2 of the request graph, bu must have a larger index
than beginðaiÞ since it is matched to a� and � > i. Therefore,
if bu is not adjacent to ai, u > endðaiÞ. Since the matching is
noncrossing, all the left side vertices with larger indices
than i must be matched to right side vertices with larger
indices than endðaiÞ. This is a contradiction since some of
the vertices in ½beginðaiÞ; endðaiÞ� must be matched to left
side vertices with larger indices than i, as shown a short
while ago. Next, we show that all other involved left side
vertices cannot be matched to its end vertex under Mi and,
therefore, each of them is adjacent to the right side vertex
immediately following the one matched to it. To see this,
suppose bw was found in the ðI þ 1Þth expansion. Then, bw
must be adjacent to alI . By Property 2 of the request graph,
all the left side vertices involved in the shifting with larger
indices than alI must also adjacent to bw and, therefore, is
not matched to their end vertices. For the left side vertices
involved in the shifting with smaller indices than alI , if
some of them, say, ah is matched to its end vertex, the
algorithm will have stopped expanding at ah and would
have not expanded to alI .

Now, we show that M 0
i is also noncrossing, again by

contradiction. First, consider when ai is directly matched to
bw. In this case, the matchings for all other left side vertices
are not changed. Therefore, ifM 0

i has crossing edges, it must
be that the newly added edge aibw is crossing some other
edges. But, aibw cannot cross any edges covering left side
vertices with larger indices than ai since, if ai is matched to
bw, either there is no matched left side vertices with larger

indices than ai, or they are all matched to right side vertices
with larger indices than bw. Thus, if aibw crosses another
edge ajbv, it must be i > j and w < v. By Property 3 of
request graph, aj is adjacent to bw. This contradicts the fact
that under Mi, aj has no unmatched upper neighbor.

The proof for the case when ai is matched by shifting is
similar. First, notice that after the shifting the new edges are
not crossing each other. Suppose in M 0

i, bw is matched to al.
The new edges cannot cross edges covering vertices with
larger indices than al since they are matched to vertices with
larger indices than bw. Therefore, if they are crossing, it must
be the new edges are crossing edges covering vertices with
smaller indices than ai. Following exactly the same argument
as in the previous case, we can find a contradiction.

Finally, we show that under M 0
i, no matched left side

vertex has an unmatched upper neighbor. If ai is directly
matched, one more right side vertex becomes matched, and
the matchings for all other vertices are not changed.
Therefore, for all the matched left side vertices except ai,
if no one has an unmatched upper neighbor under Mi, it
must also be the case under M 0

i. Therefore, we need only to
show that under M 0

i ai has no unmatched upper neighbor.
Note that this is obviously true if bw is the begin vertex of ai.
The claim is also true if bw is not the begin vertex of ai, since
vertices in ½beginðaiÞ; w� 1� are all matched under M 0

i.
If ai is matched by shifting, suppose bw is matched to al

in M 0
i. Again, it is simple to verify that none of the matched

left side vertices with smaller indices than ai or with larger
indices than al has an unmatched upper neighbor. Also, by
Property 2 of the request graph, if ai has no unmatched
upper neighbor, none of the matched vertices from ai to al
can have an unmatched upper neighbor. Thus, what is left
to show is that ai has no unmatched upper neighbor. This
can be shown in exactly the same way as in the case when ai
is directly matched.

Therefore, we have the following theorem.

Theorem 3. The Downward Expanding Algorithm finds an
optimal matching in the request graph.

5.3 Complexity Analysis

Now, we analyze the complexity of this algorithm. The
algorithm is composed of two parts: 1) expanding the
reachable set and 2) updating the matching. In 1), there are
two cases: Either a) the algorithm cannot find an unmatched
right side vertex, or b) it finds such a vertex.We show that the
time spent in a) can be controlled under OðkÞ. To see this,
suppose when checking ai, the algorithm finds that the
reachable set cannot be expanded any further after the Ith
expansion. In this case, the algorithm finds that alI ismatched
to its end vertex. We notice the fact that for any other vertex
which is to be checked later, if it is within the wavelength
range starting from the wavelength of ai and and ending at
the wavelength of alI , it also cannot find an unmatched right
side vertex. Therefore, we can mark the wavelengths in this
range. If a left side vertex is in this range or the expansion
reaches this range, there isnoneed toexpand the reachable set
any further. In otherwords, the expansion needs to be carried
on only if it does not hit any such marked wavelengths. As a
result, for any expanding that ends without finding an
unmatched vertex, it only visits those wavelengths that have
not been marked before. And, after the failure to find an

1022 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 11, NOVEMBER 2004

unmatched vertex, the wavelengths that are involved in the
expansion that were previously unmarked should also be
marked. Since there are a total of kwavelengths, the time of a)
is bounded by OðkÞ.

In the algorithm, the time spent in b) is nomore than that in
2). We next show that the time spent in 2) is bounded by
OðkDÞ, whereD is the conversion degree.Whenupdating the
matching, the first thing is to find a�, the matched vertex
closest to ai and is with a larger index than ai. To find a�, we
can start from thewavelength of ai and checkwhether there is
an matched vertex on higher wavelengths. We need to check
only D wavelengths since if the wavelength of a� is greater
than the wavelength of ai by an amount of D, bu cannot be
adjacent to ai. In our application, since there k right side
vertices, 2) is performed nomore than k times. Therefore, the
time spent in finding a� is bounded by OðkDÞ.

When updating the matching, if ai is matched to bw, the
matchings for all other vertices are not changed, and it only
takes constant time. We next show that time spent in
shifting is bounded by OðkDÞ. This is because when doing
the shifting, the matchings for all the left side vertices must
shifted down by one and will never go up. Therefore, for
any left side vertex, it can be involved in this shifting for no
more than D times. There can be at most k matched left side
vertex, and the time is thus OðkDÞ.

As a conclusion of the complexity analysis, the Down-
ward Expanding Algorithm runs in OðkDÞ time, where k is
the number of wavelength on a fiber and D is the
conversion degree. However, note that in order to find the
optimal scheduling, we should first sort the left side vertices
according to their weights since the algorithm must check
the vertices with larger weights first. The sorting will need
OðNk logðNkÞÞ time in the worst case when all the left side
vertices have different weights. Thus, the total scheduling
time is OðkDþNk logðNkÞÞ.

6 SCHEDULING ALGORITHMS FOR CIRCULAR

SYMMETRICAL WAVELENGTH CONVERSION

In this section, we consider the scheduling when the
wavelength conversion is circular symmetrical. We can still
draw the request graphs and formalize the problem as a
matching problem. However, the request graphs in this case
no longer exhibit the nice properties as the ordered interval
wavelength conversion. For example, the adjacency set of
some left side vertex can no longer be represented by an
interval. Fortunately, we can still consider it as an extended
case to the ordered interval wavelength conversion. For
example, the adjacency set of a left side vertex ai can be
represented either as an interval ½beginðaiÞ; endðaiÞ� or the
union of two intervals: ½beginðaiÞ;m� 1� [½0; endðaiÞ�, where
m is the number of right side vertices. Note that in this type of
request graph, we number the vertices as a0; a1; . . . ; an�1 and
b0; b1; . . . ; bm�1 because of the circular symmetrical nature.
The ideas for the ordered intervalwavelength conversion can
still be used here. We will describe how to find maximum
matchings and optimal matchings in this type of request
graph. The proofs for these algorithms are similar to the
ordered interval case andwill not be repeatedhere, rather,we
will only outline the general ideas.

6.1 Finding Maximum Matching for Nonprioritized
Scheduling

We first consider the nonprioritized scheduling. In the

request graph, we refer to an edge connecting a left side

vertex to a right side vertex at the other end as a “wrap

around” edge. If there is no wrap around edge, the request

graph would be the same as the ordered interval case. In a

request graph, if the first left side vertex a0 has degree D

and has twrap around edges connecting to bm�t; bm�tþ1; . . . ;

bm�1, we can redraw the request graph by rotating these

right side vertices up: Let bm�t be b0, bm�tþ1 be b1; . . . ; bm�1
be bt. The old b0 would be btþ1. It can be considered as

circularly shifting these vertices to the other end while still

keeping all the edges. The adjacency set of a0 would be

½0; D� 1�. Call this request graph G0. Note that any request

graph can be transformed to this type of request graph, and

there will be no wrap around edges incident to the first left

side vertex. Hence, from now on we will only consider the

request graph of this type.
Clearly, there must be a maximum matching M of G0 in

which a0 is matched. Suppose a0 is matched to bu. If in M
there is some left side vertex that is matched to a right side
vertex with a larger index than bu using a wrap around
edge, say, ai is matched to bv where v > u and aibv is a wrap
around edge, similar to the ordered interval case, we can
show that edges a0bv and aibu exist, and we can match a0 to
bv and match ai to bu. Also, if in M there is a left side vertex
that is matched to a right side vertex with a smaller index
than bu, say, aj is matched to bw where w < u, but ajbw is not
a wrap around edge, we can similarly match a0 to bw and
match aj to bu. Eventually, we obtain a maximum matching
in which a0 is matched to some bu, and all the matched right
side vertices with smaller indices than bu are matched to
some left side vertices via wrap around edges.

If we know before hand such a maximum matching M,

we can circularly shift vertices b0; b1; . . . ; bu�1 down to the

other end. Call this new request graph Gu. In Gu, matching

M has no wrap around edges. Let G0u be the subgraph of Gu

which is obtained by deleting all the wrap around edges.

Then, the maximum matching of G0u is the maximum

matching of Gu. Notice that the maximum matching of G0u
can be found by the First Available Algorithm.

Of course, we do not know before hand this maximum

matching ofG0. But, the reasoning above can still lead us to a

new algorithm. We can generate D isomorphic graphs,

G0; G1; . . . ; GD�1 of theoriginal requestgraphG0 bycircularly

shiftingdown0vertex, 1vertex, 2vertices,uptoD� 1vertices

starting from b0 to bD�2. Then, we can delete all the wrap

around edges of these graphs and generate D subgraphs,

G00; G
0
1; . . . ; G

0
D�1. Now, we can use the First Available

Algorithm for finding maximum matchings for G00; G
0
1; . . . ;

G0D�1 and the one with the maximum cardinality is the

maximum matching of G0. We call the operation of deleting

the wrap around edges as “breaking” the request graph, and

the algorithm is thus called the Breaking Algorithm.
Since, in our applications, the degree of a left side vertex

cannot exceed D which is the conversion degree and the
running time of the First Available Algorithm is OðkÞ, the
Breaking Algorithm runs in OðkDÞ time.

ZHANG AND YANG: OPTIMAL SCHEDULING ALGORITHMS IN WDM OPTICAL INTERCONNECTS WITH LIMITED RANGE WAVELENGTH... 1023

6.2 Finding Optimal Matching for Prioritized
Scheduling

For the circular symmetrical wavelength conversion, opti-
mal matchings for the prioritized scheduling can also be
found relatively easily. The idea is still to use the interval
property to find the reachable set for a left side vertex. The
adjacency set of a left side vertex is, of course, not always an
interval, and sometimes may be the union of two intervals.
We refer to the former as type 1 adjacency set and the latter
as type 2 adjacency set. The union of two adjacency sets that
share at least one element is still either type 1 or type 2.

Now, suppose we are using the matroid algorithm in
Section 5.1 to find the reachable set for ai. At the beginning,
the reachable set R0 is simply the adjacency set of ai. Thus,
it is either type 1 or type 2 interval. When expanding R0 to
R1, we basically take unions of two adjacency sets that share
one element. Thus, R1 is also either type 1 or type 2 interval.
This is true for all the following expansions and the
reachable sets we find are all type 1 or type 2 intervals.

One way to expand the reachable set is to check all the
left side vertices that are matched to the reachable set one
by one, and update the reachable set by taking unions of the
current reachable set with the adjacency set of the left side
vertex. Since the both sets are type 1 or type 2 intervals, the
union operation takes constant time. The union operation
needs to be performed no more than nðiÞ times, where nðiÞ
is the number of matched left side vertices before checking
ai. Checking the reachable set for finding an unmatched
vertex can also be done in OðnðiÞÞ time. Therefore, checking
ai needs OðnðiÞÞ time. Also, note that ai needs to be checked
only if there has not been a left side vertex on the same
wavelength of ai that was checked before and failed to find
an unmatched vertex. There are k wavelengths, as a result,
in the algorithm, the total time spent in expanding the
reachable set of the vertices is Oðk2Þ. The time spent in
updating the matching is also Oðk2Þ. Thus, the running time
of this algorithm is Oðk2Þ. Plus the sorting, the scheduling
takes Oðk2 þNk logðNkÞÞ time.

There also exist two left side vertices that maximally
expand the reachable set in when the conversion is circular
symmetrical. However, these two vertices are not very easy

to find. One might still need to scan all the adjacency set of
the matched left side vertices and compare them. Thus,
finding these two vertices may be more complicated than
simply taking the union of all of the adjacency sets one by
one. The latter is also much easier and straightforward to
implement.

7 SIMULATION RESULTS

Besides giving proofs and analyses for the proposed
scheduling algorithms, we also implemented the algorithms
in software and tested them by simulations. We tested the
interconnects of two typical sizes, one with eight input fibers
and eight output fibers and with eight wavelengths on each
fiber, and the other with 16 input fibers and 16 output fibers
and with 16 wavelengths on each fiber.

In the simulations, we assume that the arrivals of the
connection requests at the input channels are bursty: An
input channel alternates between two states, the “busy”
state and the “idle” state. When in the “busy” state, it
continuously receives connection requests and all the
connection requests go to the same destination. When in
the “idle” state, it does not receive any connection requests.
The length of the busy and idle periods follows geometric
distribution. The network performance is measured by the
blocking probability which is defined as the ratio of the
number of rejected connection requests over the number of
arrived connection requests. The durations of the connec-
tions are one time slot and for each experiment the
simulation program was run for 100,000 time slots.

In Fig. 9, we plot the blocking probability of the
interconnect as a function of conversion distance of the
two types of wavelength conversions when the connection
requests do not have priority. We use the maximum
matching algorithms to maximize network throughput, or
equivalently, to minimize blocking probability. We tested
under two traffic loads, � ¼ 0:6 where average busy period
15 time slots and average idle period 10 time slots, and
� ¼ 0:8 where average busy period 40 time slots and
average idle period 10 time slots. We can see that for both
types of conversions the blocking probability decreases as
the conversion distance increases. But, when the conversion

1024 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 11, NOVEMBER 2004

Fig. 9. Blocking probability of WDM interconnects under bursty traffic where the connection requests have no priority. (a) 8� 8 interconnect with

eight wavelengths per fiber. (b) 16� 16 interconnect with 16 wavelengths per fiber.

distance is larger than a certain value, the decease of
blocking probability is marginal. In this case, there is little
benefit for further increasing the conversion degree, which
is exactly the reason for using limited range wavelength
converters other than full range wavelength converters. We
can also see that the circular symmetrical conversion has
smaller blocking probability than the ordered interval
conversion because of the extra conversions allowed at the
boundaries.

In Fig. 10, we plot the blocking probability when the
connection requests have priorities. We use the optimal
matching algorithms to maximize network throughput and
give service differentiation. The tested traffic load is � ¼ 0:8,
where the average busy period is 40 time slots and average
idle period 10 time slots. There are four priorities, with 10, 20,
30, and 40 percent of the total traffic, from the highest priority
(priority 1) to the lowest priority (priority 4), respectively.We
can see that the optimal matching algorithms achieve good
service differentiation. For example, in Fig. 10b, we can see
that in a 16� 16 interconnect with 16 wavelengths per fiber,
for ordered interval wavelength conversion when the
conversion distance is 3, the blocking probability of priority
4 is about 10�1, while the blocking probability of priority 2 is
about 10�4. The blocking probability of priority 1 should be
even smaller, but cannot be seen here because the reliable
values of small blocking probability are extremely hard to
obtain by simulations and we will use analytical models to
find them in our future work.

8 CONCLUSIONS

In this paper, we have presented optimal scheduling
algorithms to resolve output contentions in bufferless time
slotted WDM optical interconnects with limited range
wavelength conversion ability. We have introduced the
request graph and showed that the problem of maximizing
network throughput is equivalent to finding a maximum
matching in the request graph. We then gave the First
Available Algorithm that runs in OðkÞ time for finding a
maximum matching in the request graph for the ordered
interval wavelength conversion, where k is the number of

wavelengths per fiber. We also considered optimal schedul-

ing for connection requests with priorities and gave the

Downwards Expanding Algorithm that runs in OðkDþ
Nk logðNkÞÞ time for finding an optimal matching in a

weighted request graph for the ordered interval wavelength

conversion, where N is the number of input/output fibers

and D is the conversion degree. Finally, we considered the

circular symmetrical wavelength conversion scheme and

gave optimal scheduling algorithms for nonprioritized

scheduling in OðkDÞ time and prioritized scheduling in

Oðk2 þNk logðNkÞÞ time. The proposed scheduling algo-

rithms were also evaluated by simulations under bursty

traffic. Our future work includes developing analytical

models for performance evaluation of the interconnects

under these scheduling algorithms.

ACKNOWLEDGMENTS

This work was supported in part by the US National

Science Foundation under grant numbers CCR-0073085

and CCR-0207999.

REFERENCES

[1] B. Mukherjee, “WDM Optical Communication Networks: Pro-
gress and Challenges,” IEEE J. Selected Areas in Comm., vol. 18,
no. 10, pp. 1810-1824, 2000.

[2] D.K. Hunter, M.C. Chia, and I. Andonovic, “Buffering in Optical
Packet Switches,” J. Lightwave Technology, vol. 16 no. 12, pp. 2081-
2094, 1998.

[3] M. Kovacevic and A. Acampora, “Benefits of Wavelength
Translation in All-Optical Clear-Channel Networks,” IEEE
J. Selected Areas in Comm., vol. 14, no. 5, pp. 868-880, 1996.

[4] S.L. Danielsen, C. Joergensen, B. Mikkelsen, and K.E. Stubkjaer,
“Analysis of a WDM Packet Switch with Improved Performance
under Bursty Traffic Conditions Due to Tunable Wavelength
Converters,” J. Lightwave Technology, vol. 16, no. 5, pp. 729-735,
1998.

[5] N. McKeown, P. Varaiya, and J. Warland, “Scheduling Cells in an
Input-Queued Switch,” IEEE Electronics Letters, pp. 2174-2175,
1993.

[6] N. McKeown, “The iSLIP Scheduling Algorithm Input-Queued
Switch,” IEEE/ACM Trans. Networking, vol. 7, pp. 188-201, 1999.

[7] H.J. Chao, C.H. Lam, and E. Oki, Broadband Packet Switching
Technologies, first ed. Wiley-Interscience, 2001.

ZHANG AND YANG: OPTIMAL SCHEDULING ALGORITHMS IN WDM OPTICAL INTERCONNECTS WITH LIMITED RANGE WAVELENGTH... 1025

Fig. 10. Blocking probability of WDM interconnects under bursty traffic when the connection requests have priorities. The solid lines are for the
ordered interval wavelength conversion and the dashed lines are for the circular symmetrical wavelength conversion. (a) 8� 8 interconnect with
eight wavelengths per fiber. (b) 16� 16 interconnect with 16 wavelengths per fiber.

[8] W.J. Goralski,Optical Networking and WDM, first ed. McGraw-Hill,
2001.

[9] R. Ramaswami and K.N. Sivarajan, Optical Networks: A Practical
Perspective, first ed. Academic Press, 2001.

[10] T. Tripathi and K.N. Sivarajan, “Computing Approximate Block-
ing Probabilities in Wavelength Routed All-Optical Networks
with Limited-Range Wavelength Conversion,” IEEE J. Selected
Areas in Comm., vol. 18, pp. 2123-2129, 2000.

[11] L. Xu, H.G. Perros, and G. Rouskas, “Techniques for Optical
Packet Switching and Optical Burst Switching,” IEEE Comm.
Magazine, pp. 136-142, 2001.

[12] R. Ramaswami and G. Sasaki, “Multiwavelength Optical Net-
works with Limited Wavelength Conversion,” IEEE/ACM Trans.
Networking, vol. 6, pp. 744-754, 1998.

[13] X. Qin and Y. Yang, “Nonblocking WDM Switching Networks
with Full and Limited Wavelength Conversion,” IEEE Trans.
Comm., vol. 50, no. 12, pp. 2032-2041, 2002.

[14] Y. Yang, J. Wang, and C. Qiao, “Nonblocking WDM Multicast
Switching Networks,” IEEE Trans. Parallel and Distributed Systems,
vol. 11, no. 12, pp. 1274-1287, 2000.

[15] M.S. Borella and B. Mukherjee, “Efficient Scheduling of Nonuni-
form Packet Traffic in a WDM/TDM Local Lightwave Network
with Arbitrary Transceiver Tuning Latencies,” IEEE J. Selected
Areas in Comm., vol. 14, no. 5, pp. 923-934, 1996.

[16] G.N. Rouskas and V. Sivaraman, “Packet Scheduling in Broadcast
WDM Networks with Arbitrary Transceiver Tuning Latencies,”
IEEE/ACM Trans. Networking, vol. 14, no. 3, pp. 359-370, 1997.

[17] Z. Zhang and Y. Yang, “Distributed Scheduling Algorithms for
Wavelength Convertible WDM Optical Interconnects,” Proc. 17th
IEEE Int’l Parallel and Distributed Processing Symp., 2003.

[18] E.L. Lawler, Combinatorial Optimization: Networks and Matroids.
Holt, Rinehart and Winston, 1976.

[19] J. Hopcroft and R. Karp, “An n
5
2 Algorithm for Maximum

Matchings in Bipartite Graph,” SIAM J. Computing, vol. 2, no. 4,
pp. 225-231, 1973.

[20] F. Glover, “Maximum Matching in Convex Bipartite Graph,”
Naval Research Logistics Quarterly, vol. 14, pp. 313-316, 1967.

[21] W. Lipski Jr. and F.P. Preparata, “Algorithms for Maximum
Matchings in Bipartite Graphs,” Naval Research Logistics Quarterly,
vol. 14, pp. 313-316, 1981.

[22] E.L. Lawler, Introduction to Graph Theory. Holt, Rinehart and
Winston, 1976.

[23] G. Shen et al., “Performance Study on a WDM Packet Switch with
Limited-Range Wavelength Converters,” IEEE Comm. Letters,
vol. 5, no. 10, pp. 432-434, 2001.

[24] H. Qin, S. Zhang, and Z Liu, “Dynamic Routing and Wavelength
Assignment for Limited-Range Wavelength Conversion,” IEEE
Comm. Letters, vol. 5, no. 3, pp. 136-138, 2003.

[25] X. Masip-Bruin et al., “Routing and Wavelength Assignment
under Inaccurate Routing Information in Networks with Sparse
and Limited Wavelength Conversion,” Proc. IEEE GLOBECOM
Conf. ’03, vol. 5, pp. 2575-2579, 2003.

Zhenghao Zhang received the BEng and MS
degrees in electrical engineering from Zhejiang
University, People’s Republic of China, in 1996
and 1999, respectively. From 1999 to 2001, he
worked in industry as a software engineer in
embedded systems design. Since 2001, he has
been working toward the PhD degree in the
Department of Electrical and Computer Engi-
neering at the State University of New York at
Stony Brook. His research interest includes

scheduling and performance analysis of optical networks. He is a
student member of the IEEE and IEEE Computer Society.

Yuanyuan Yang received the BEng and MS
degrees in computer science and engineering
from Tsinghua University, Beijing, China, and
the MSE and PhD degrees in computer science
from Johns Hopkins University, Baltimore, Mary-
land. Dr. Yang is a professor of computer
engineering and computer science at the State
University of New York at Stony Brook. Dr.
Yang’s research interests include parallel and
distributed computing and systems, high speed

networks, optical and wireless networks, and high performance
computer architecture. Her research has been supported by the US
National Science Foundation (NSF) and US Army Research Office
(ARO). She has published extensively in major journals and refereed
conference proceedings and holds six US patents in these areas. She is
an editor for the IEEE Transactions on Parallel and Distributed Systems
and the Journal of Parallel and Distributed Computing. Dr. Yang has
served on NSF review panels and program/organizing committees of
numerous international conferences in her areas of research. She is a
senior member of the IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1026 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 11, NOVEMBER 2004

