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On-Line Optimal Wavelength Assignment in WDM
Networks With Shared Wavelength Converter Pool

Zhenghao Zhang and Yuanyuan Yang

Abstract—In this paper, we study on-line wavelength assignment
in wavelength-routed WDM networks under both unicast and mul-
ticast traffic where nodes in the networks have wavelength con-
version ability. Since wavelength converters are still expensive and
difficult to implement, we consider the case where nodes in net-
works have only a limited number of converters that are shared
by all input channels. We study the problem of setting up connec-
tions in such networks using minimum number of wavelength con-
verters. For unicast traffic, we first study the problem of setting
up a lightpath on a given link-path with minimum number of con-
versions. We give a simple algorithm that solves it in ( ) time
where is the number of links on the path and is the number
of wavelengths per fiber, as compared to the best known existing
method that needs to construct an auxiliary graph and apply the
Dijkstra’s algorithm. We also consider the problem of setting up
a lightpath while using wavelength converters at nodes with fewer
available converters only when necessary, and give an ( ) time
algorithm. We then generalize this technique to WDM networks
with arbitrary topologies and give an algorithm that sets up an op-
timal lightpath network-wide in ( + ) time, where and

are the number of nodes and links in the network, respectively.
We also consider multicast traffic in this paper. Finding an optimal
multicast light-tree is known to be NP-hard and is usually solved
by first finding a link-tree then finding a light-tree on the link-tree.
Finding an optimal link-tree is also NP-hard and has been exten-
sively studied. Thus, we focus on the second problem which is to
set up a light-tree on a given link-tree with minimum number of
conversions. We propose a new multicast conversion model with
which the output of the wavelength converter is split-table to save
the usage of converters. We show that under this model the problem
of setting up an optimal light-tree is NP-hard and then give efficient
heuristics to solve it approximately.

Index Terms—Multicast, on-line algorithms, optical networks,
routing, shared wavelength converter pool, unicast, wavelength
assignment, wavelength conversion, wavelength division multi-
plexing (WDM).

I. INTRODUCTION AND BACKGROUND

OPTICAL networks with wavelength division multiplexing
(WDM) are now widely regarded as the future backbone

network for communications because of the huge bandwidth of
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optical systems. In a WDM network, nodes are connected by op-
tical fiber links and on each link there are multiple wavelengths
serving as independent data channels. To send information from
the source to the destination, along the path between these two
nodes, a wavelength channel must be selected on each link to
make a lightpath [19]. Without wavelength converters, the light-
path must be on the same wavelength, i.e., be wavelength contin-
uous, which limits the number of connections that can be simul-
taneously set up in the network. However, with wavelength con-
verters, the lightpath does not have to be on the same wavelength
and can consist of several consecutive wavelength continuous
segments, with wavelength conversion carried out at the junc-
tion nodes. It has been shown that by adding wavelength conver-
sion ability, network performance can be greatly improved [15].
However, wavelength converters are still expensive and difficult
to implement today. Therefore, to save wavelength converters,
it is more cost-effective to use a converter pool consisting of a
relatively small number of converters and let them be shared by
all inputs than to give each input channel its own wavelength
converter, because at any moment it is highly unlikely that all
input wavelengths will need wavelength conversion [4]. A con-
sequence of this is that when setting up connections, it is desir-
able to use as few converters as possible. In this paper, we will
study several related problems under this scenario and give ef-
ficient algorithms for setting up light connections using fewer
wavelength converters whenever possible for both unicast and
multicast traffic.

We focus on the on-line (or dynamic) version of the problem,
which means that the scheduler does not know the traffic inten-
sities between the nodes a priori, and when a connection request
arrives, it tries to satisfy the request optimally based on the cur-
rent state of the network. It is different from what is usually
referred to as the Routing and Wavelength Assignment (RWA)
problem, which can be regarded as the off-line or static version
of the problem where the traffic intensities between all pairs of
nodes in the network are known in advance [14]. Apparently, the
speed requirement for on-line scheduling is far more critical.

We first consider unicast traffic, i.e., there is one source and
one destination in a connection request. The problem of finding
lightpaths for unicast connection requests in WDM networks
has been extensively studied in recent years, see, for example,
[4], [7], [9], [12], [17]. It can be solved by breaking into two
subproblems: the routing problem which is to find a link-path
in the network connecting the source to the destination, and the
wavelength assignment problem which is to find a lightpath on
the link-path [4], [17]. Alternatively, the problem can be solved
by jointly considering the two subproblems [7], [9], [12]. The
second approach will give better results but may be hard to re-
alize especially in a large network. We will mainly follow the
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first approach, in particular, we will give new algorithms for the
wavelength assignment problem.

The problem of finding a lightpath on a given link-path is
usually solved by applying the First Fit Algorithm which starts
from the source node and uses the first available wavelength
channel to reach to the next node. This may cause unneces-
sary wavelength conversions, which is especially undesirable
in an environment where wavelength converters are scarce. In
[4] the problem of finding a lightpath using minimum number
of converters was studied and solved by constructing an aux-
iliary graph and then applying the Dijkstra’s algorithm. In this
paper, we will study the same problem but will give a completely
different and more direct way for solving it without using auxil-
iary graphs, and the resulting algorithm, called the Longest Seg-
ment Algorithm, is much simpler than the algorithm given in [4]
and has linear time complexity of where is the number
of nodes on the path and is the number of wavelengths per
fiber. We will also consider the case when some nodes, called
the “critical nodes”, have fewer available wavelength converters
than others, and study the problem of setting up a lightpath using
converters in critical nodes only when necessary and give the
Label Extending Algorithm that runs in time as well.

In addition, using similar ideas as Label Extending Algo-
rithm, we will also give an algorithm for a special case of the
joint routing and wavelength assignment problem. In [7] and
[9] this problem was solved by first assigning costs to wave-
length channels and wavelength converters and then finding an
optimal lightpath which is defined as a lightpath with minimum
total cost, including the wavelength cost and the conversion
cost. In this paper, we will consider the same problem, however,
we make the following simplifications: 1) wavelength chan-
nels have the same cost; 2) wavelength conversions have the
same cost; 3) the cost of wavelength conversion is much higher
than the cost of wavelength channel. The reasons for these sim-
plifications, respectively, are: 1) wavelength channels typically
have the same bandwidth; 2) when converting a wavelength to
different wavelengths with full-range wavelength converter, al-
though the physical characteristics such as power consumption
and tuning time may differ, the differences are typically not
large and should be hidden to upper layer protocols; 3) wave-
length channels are more abundant than wavelength converters
and propagation loss of the optical signals can be compensated
for by optical amplifiers that are much cheaper than wavelength
converters. Therefore, though only a special case of the more
generalized problem, the problem we consider clearly has suf-
ficient practical interest. We will give an algorithm that runs in

time to solve this problem, where and are the
number of nodes and links in the network, respectively. Note
that in [7] and [9] the more generalized problem needs at least

time.
Multicast, which is to send information from one source to

multiple destinations, is also considered in this paper. In a com-
munication network, a multicast connection is usually realized
by establishing a multicast tree covering all nodes involved,
where a tree is defined as a connected graph with no cycles.
In WDM networks, since there are multiple wavelengths on a
link, multicast can be supported by finding a light-tree [19].
Finding an optimal light-tree in WDM networks is NP-hard [1],

Fig. 1. Under the Converter Spilt Model, one wavelength converter can be
saved.

[2], and can be solved, similarly to unicast, by breaking into two
sub-problems and solving them one by one: 1) find a link-tree
that covers all nodes involved; then 2) find a wavelength assign-
ment in this link-tree to construct a light-tree. Finding a link-tree
in a network is still NP-hard and has been extensively studied
[1], [2], and we will focus on the second subproblem in this
paper.

In [2], a linear time algorithm was given for setting up a
light-tree in a link-tree using dynamic programming method,
however, it was under a different scenario without trying to min-
imize the total number of conversions. In [1], a linear time al-
gorithm was given for setting up a light-tree using minimum
number of conversions. In this paper, we will also consider the
problem of finding a light-tree with minimum number of con-
versions, but under a new multicast model that will reduce the
number of wavelength conversions. In [1], it was assumed that
the output of the wavelength converter cannot be split. That is, if
an intermediate node of the tree has branches, the light signal
is first split into copies, and each copy is either sent directly
into a branch or first converted to another wavelength by a sep-
arate wavelength converter and then sent into a branch. In this
paper, we propose a new model which allows the output of the
converter to split. This is not technologically difficult and does
not increase the splitting cost defined in [1], however, as will
be seen, the new model can reduce the conversion cost consid-
erably. For example, in Fig. 1, suppose node 1 wants to send
information to nodes 2 and 3 through an intermediate node, but
on the link between node 1 and the intermediate node, only is
available and on the links from the intermediate node to nodes 2
and 3, only is available. If the output of the converter cannot
be split, two wavelength converters have to be used, both con-
verting to , as shown in Fig. 1(a). On the other hand, if
the output of the converter can be split, only one wavelength
converter is needed to convert to , thus saving one con-
verter, as shown in Fig. 1(b). In this paper, the two multicast
conversion models are called the Converter No-Split Model and
the Converter Split Model, respectively. We will first show that
when the output of the converter can be split, the optimal wave-
length assignment problem is NP-hard and then give efficient
heuristics to solve it approximately. Through simulation studies
we will also show that with our heuristics, the Converter Split
Model saves a significant number of converters comparing to
the Converter No-Split Model.

The rest of the paper is organized as follows. Section II studies
unicast problems, in which Section II-A gives the Longest Seg-
ment Algorithm for setting up a lightpath on a given link-path
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Fig. 2. The state of a link-path with 16 nodes and 4 wavelengths. Wavelength
convertible nodes are shown as rectangles with round corners. Wavelength chan-
nels chosen by the algorithms are shown as wide line segments. Wavelength con-
vertible nodes performing wavelength conversion are shown as rectangles with
heavy edges. (a) A link path with 16 nodes. (b) Assignment found by the first
fit algorithm. (c) Assignment found by the longest segment algorithm. (d) As-
signment found by the label extending algorithm. The shaded nodes, nodes 3,
8, and 10, are critical nodes.

with minimum number of wavelength conversions, Section II-B
gives the Label Extending Algorithm for setting up a lightpath
on a given link-path while considering the availabilities of wave-
length converters at different nodes, and Section II-C gives the
Label Searching Algorithm for setting up an optimal lightpath
network-wide. Section III studies multicast problems and gives
heuristics for setting up a light tree on a given link-tree with min-
imum number of wavelength conversions. Finally, Section IV
concludes the paper.

II. WAVELENGTH ASSIGNMENT FOR UNICAST

In a network, a link-path is defined as several consecutive
links. If wavelength is currently unused on all links along
a link-path, these wavelength channels are called a wavelength
continuous segment on . A lightpath is defined as several con-
secutive wavelength continuous segments, with the constraint
that the junction node where two segments join should be wave-
length convertible.

For example, Fig. 2(a) shows a link-path with 16 nodes and 4
wavelengths per fiber, where wavelength convertible nodes are
shown as rectangles with round corners. There is a wavelength
continuous segment on the first wavelength, , from node 0
to node 4. The lightpath connecting node 0 to node 15 found

TABLE I
LONGEST SEGMENT ALGORITHM

by the First Fit Algorithm is shown in Fig. 2(b), where wave-
length channels chosen by the algorithm are shown as wide line
segments and nodes that perform wavelength conversions are
shown as rectangles with heavy edges.

A. Longest Segment Algorithm for Setting Up a Lightpath With
Minimum Number of Conversions

We now give the Longest Segment Algorithm for setting up
a lightpath along a given link-path with minimum number of
conversions.

The source node is at one end of the path and is given index
0. Other nodes are indexed according to their distances to the
source. For example, if there are links between the source and
the destination, the nodes are indexed as . Node is
said to be able to find node with hops if and there
exists a wavelength continuous segment from to . The fur-
thest reachable wavelength convertible node from node , or ab-
breviated as the FRC node from , is defined as the wavelength
convertible node with largest index that can be found by . If

and there is a lightpath from to , can be reached by
. For example, in Fig. 2(a), node 0 finds node 4 because there

is a wavelength continuous segment on from 0 to 4, and the
FRC node from node 0 is node 3. Node 5 can be reached by
node 0, although it cannot be found by it.

The algorithm is described in Table I. The basic idea is to
extend the current lightpath to as far as possible to reach more
nodes in each step, until the destination node is reached. To ex-
tend the lightpath is to choose a wavelength convertible node
that has already been reached as the extending point, and extend
the path to the node with the largest index (the furthest away
from the source) that can be found by the extending point, be-
cause all such nodes can be reached by the source node. The
extending point is chosen as the FRC node from the current
extending point. Initially, the source node is the first extending
point.

For example, the assignment found by the Longest Segment
Algorithm for the link-path in Fig. 2(a) is shown in Fig. 2(c). In
the first step, node 0 can find as far as 4 on , and the FRC node
is 3. Therefore, the extending point at the next step is 3. Then 3
can find as far as 8 on , and 8 is the FRC node and will be the
next extending point. This is carried on until 15 is found. Note
that one less converter is used than that in Fig. 2(b).

Theorem 1: The Longest Segment Algorithm finds an light-
path on a given link-path using minimum number of wavelength
conversions.

Proof: Clearly the theorem is true if the destination can be
found by the source. In the following we consider the case when
wavelength conversion has to be used for the source to reach the
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Fig. 3. If node 0 can reach node v and v is wavelength convertible,u cannot
be the FRC node from node 0.

destination. Let the lightpath found by the algorithm be .
will consist of several, say, , wavelength continuous seg-
ments, denoted by , , with wavelength
conversion at , , as shown in Fig. 3. To show this
algorithm is indeed optimal, let be any other lightpath. Con-
sider the first wavelength continuous segment in . We claim
that from node 1 to , there is at least one wavelength conver-
sion on . Suppose the claim is not true, that is, on , none of
node converts wavelength. Since there must be at
least one wavelength conversion in , the conversions are car-
ried out by nodes with larger indexes than . Let the first such
node be . Note than , and 0 can find , which contra-
dicts the fact that is the FRC node from 0. Therefore, there
must be at least one wavelength conversion from node 1 to
on lightpath .

Similarly, we can show that in each of the first segments of
, there must be at least one wavelength conversion on lightpath
. Therefore, the number of conversions used in is no more

than that in . Since can be any lightpath, must use the
minimum number of conversions.

1) Implementation and Complexity of the Longest Segment
Algorithm: The Longest Segment Algorithm can be imple-
mented as follows. The state of a link can be represented by
a binary vector, where an element is “1” if the corre-
sponding wavelength channel is not used on that link and “0”
otherwise. The link vector of the link between node and
is denoted as .

Note that only a series of AND operations over the link vectors
are needed to check whether can be found by a node : starting
with an all “1” vector, AND with , .
If the result is not all zero after ANDing , can be found by

. If the result becomes all zero after ANDing, say, , then
can find as far as . In this case suppose the FRC node from

is which will be the next extending point. Note that
where is the FRC node from . As a result, a link vector

will be involved in the AND operation at most twice. Thus, the
running time for finding the minimum number of conversions is

.
From the proof of Theorem 1 it is clear that the extending

points should carry out wavelength conversions. To set up the
lightpath, it is also needed to find wavelength continuous seg-
ments to connect the successive extending points. This can be
done by scanning through the elements of the AND results and
choose the first “1”. As there are wavelengths and the number
of extending points cannot exceed , the running time for setting
up a lightpath is .

B. Label Extending Algorithm for Setting Up a Lightpath
When Considering the Availabilities of Converters at Different
Nodes

So far we have considered finding a lightpath using minimum
number of conversions. There are situations when some of the
wavelength convertible nodes should convert wavelength only
when extremely necessary. For example, when a node has very

TABLE II
LABEL EXTENDING ALGORITHM

few converters left, to set up a lightpath, it is intuitively better
to convert wavelength at other nodes whenever possible. This
problem can be formalized as follows. Categorize wavelength
convertible nodes into two classes: If the number of available
converters at a node is less than a threshold, the node is consid-
ered “critical”; otherwise, it is “noncritical”. Wavelength con-
version taking place at critical nodes and noncritical nodes are
called critical conversion and noncritical conversion, respec-
tively. An assignment is measured by a pair of integers, ,
called the cost of the lightpath, where is the number of crit-
ical conversions and is the number of noncritical conversions.
Assignment 1 is better than assignment 2 if its cost is lexico-
graphically smaller than the cost of assignment 2, that is, either
if or if and . Later in this subsection
we will also simply say that is smaller than and
denote the relation as . The optimal assign-
ment is defined as the one with the smallest cost.

The algorithm for finding the optimal assignment is shown
in Table II. The basic idea is to give labels to nodes where
a label represent the cost of the minimum cost path from the
source node to this node, until the destination is labeled. Like
the Longest Segment Algorithm, in each step, it will choose a
node as the extending point, say, , and will give labels to nodes
with larger indexes than that can be found by based on the
label of . Let the label of be . If is a noncritical node,
the label of the new nodes will be ; if is a critical
node, the label of the new nodes will be . At the first
step, the source is the extending point and all nodes that can be
found by the source are given label (0,0).
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The algorithm chooses the new extending point as follows.
If in the last extension some noncritical nodes were labeled,
the one with the largest index will be the next extending point.
Otherwise, suppose the last extending point is . It will first
determine the search label. If is a noncritical node, the search
label will be the label of ; if is a critical node, the search label
will be the one following that of , where the label of node is
said to follow the label of if is labeled in the next step after

is labeled. It will choose as the new extending point, where
is larger than and is the critical node with the search label

and is the one with the largest index.
For example, Fig. 2(d) shows the assignment found by the

Label Extending Algorithm. Nodes 3, 8, and 10 are critical
nodes. In the first step, nodes 1, 2, 3, and 4 are labeled as (0,0),
because they can be found by 0 on . Since a noncritical node,
node 2, was labeled, it is set to be the next extending point.
Node 2 gives label (0,1) to nodes 5 and 6, and node 5 becomes
the next extending point. Node 5 gives label (0,2) to nodes 7,
8, and 9, and node 7 becomes the next extending point. Node
7 gives label (0,3) to nodes 10 and 11. There is no noncritical
node labeled at this step. The algorithm sets the search label to
be (0,2), and finds that nodes 8 and 9 have label (0,2) and larger
indexes than 7. Node 8 is the next extending point and gives
the label (1,2) to node 12. Since node 12 is not wavelength
convertible, the algorithm searches among nodes with label
(0,3), which are nodes 10 and 11, and node 10 becomes the
new extending point and gives the label (1,3) to node 13. Node
13 is a noncritical node and can find node 15. The algorithm
then terminates.

The following two facts can be easily verified: 1) when
is labeled, all nodes with indexes less than must have been
labeled, and 2) if and can be reached from the source
with conversions, can be reached from the source with
no more than conversions.

The following theorem says that the Label Extending Algo-
rithm finds the optimal wavelength assignment.

Theorem 2: The following two invariants hold throughout the
execution of the algorithm: 1) The label given to each node is the
smallest cost to reach this node, or “the correct label”, and 2) If
some nodes are given label in an extension, all nodes that
can be reached with cost no more than have been labeled
by that extension.

Proof: We prove it by induction on the steps of extension.
The two invariants are obviously true at the first step when all
nodes that can be found by the source are labeled (0,0). Suppose
it is also true for the first extensions.

Consider the extension. If it extends at a noncritical node
with label , some nodes will be given label .

If the first invariant is not true, then among the newly labeled
nodes, there exists a node, say, , that can be reached from the
source with conversions where .
Note that cannot be smaller than , since if so, the label of
will not be correct which contradicts our induction hypothesis
that the first invariant is true. Thus, and .
But this contradicts our induction hypothesis that the second
invariant is true by step . Thus, the first invariant is true
at step .

To see the second invariant is also true at step , suppose
there are some node, say, , that can be reached with no more
than conversions but not labeled. Since cannot

Fig. 4. Ifu can findu , the Label Extending Algorithm will not convert wave-
length at v .

be found by , on the lightpath from the source to , the last
wavelength conversion must take place at a node, say, , where

. Note that must have been labeled by step ,
since if not, it must be the case that can only be reached with
more than conversions and thus cannot be reached with
only conversions. Since is the noncritical node with
label with the largest index, can only be a critical node
with label . However, in this case, cannot be labeled as

. Thus, the second invariant is also true at step .
If the extension extends at a critical node, say, , with

label , some nodes will be labeled as . If the first
invariant is not true, some newly labeled nodes, say, , can be
reached with conversions where .
Since was not labeled before the extension, can only
be found by nodes with an index no less than where is the
node with the smallest index with label . By the induction
hypothesis, to reach these nodes, at least conversions are
needed. By the algorithm, there are no noncritical nodes among
these nodes. It follows that cannot be reached with less than

conversions.
If the second invariant is not true, there is a node that can

be labeled as but not labeled. Note that since cannot
be found by , it can only be found by nodes with larger indexes
than . Suppose along the lightpath from the source to , the last
wavelength conversion takes place at . Since the first invariant
is true at the step, cannot be among the nodes labeled at
the step or have a larger index than them. Thus, is among
the nodes with larger indexes than and is labeled before the

step. By the algorithm, must be a critical node and by
the induction hypothesis and the choice of , to reach , more
than conversion is needed. Thus, the label of cannot be

.
The next theorem gives the bound of the number of converters

used by the Label Extending Algorithm.
Theorem 3: The total number of converters used by the Label

Extending Algorithm is at most twice of the Longest Segment
Algorithm.

Proof: Consider the assignment given by the Longest Seg-
ment Algorithm. Suppose it uses converters at nodes, say,

to , and these nodes divide the path into seg-
ments. We show that in the segment between any and ,
the Label Extending Algorithm can use no more than two con-
verters. Consider the example shown in Fig. 4 where . A
contradiction can be found immediately if the Label Extending
Algorithm uses more than three conversions between and :
since there is a wavelength continuous segment between and

, can find without converting wavelength at and thus
the wavelength converter at could not have been used. With
similar arguments, it can be shown that there can be at most one
converter used by the Label Extending Algorithm in the seg-
ment between the source and and the segment between
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Fig. 5. The bound in Theorem 3 is tight. 4 and 10 are critical nodes. (a) Longest
segment algorithm. (b) Label extending algorithm.

and the destination. Thus, at most con-
verters are used.

The example in Fig. 5 shows that the bound is tight.
1) Implementation and Complexity of the Label Extending

Algorithm: The state of links can still be represented by -bit bi-
nary vectors. The algorithm does two jobs: searching for wave-
length convertible nodes and give labels to nodes. The former
needs only time, where is the number of links between
the source and the destination, since a node is checked by the al-
gorithm for no more than a constant number of times. The latter
can also needs only time. To see this, note that to deter-
mine which nodes can be labeled is to do AND operations on the

-bit binary vectors until the ANDed result becomes all 0. We
note that in Label Extending Algorithm, one vector can be in-
volved in this operation at most 3 times. To see this, consider the
time when the algorithm finished an extension and labeled some
nodes. The vectors of the links connecting the newly labeled
nodes would have been ANDed exactly once. If among the newly
labeled nodes there is a noncritical node, these vectors will be
ANDed at most one more time. If there is no noncritical node,
these vectors will be ANDed at most two more times. This is be-
cause, for example, consider the first time when the algorithm
failed to find a noncritical node. There can be at most two sets
of nodes with indexes larger than the last extending point: nodes
with labels and where is the label given
to the newly labeled nodes. In each of these two sets, the algo-
rithm will choose at most one node as extending point, which is
why the vectors will be ANDed at most two more times. Similar
facts can be verified for the rest extensions. Hence, a vector is
involved in the AND operation no more than 3 times and the al-
gorithm needs only time in labeling.

Unlike the Longest Segment Algorithm, not all extending
points perform wavelength conversion. To determine where to
carry out wavelength conversion, each node remembers the node
that labeled it as its parent. At first, the parent of will carry out
wavelength conversion. After that the parent of the node that has
been most recently determined to carry out wavelength conver-
sion will carry out wavelength conversion, until such node be-
comes the source node 0. Similar to the Longest Segment Al-
gorithm, the time for setting up a lightpath is , where is
the number of wavelengths per fiber.

TABLE III
LABEL SEARCHING ALGORITHM

C. Network-Wide Dynamic Routing and Wavelength
Assignment Algorithm

A more complicated case is when the routing is dynamic, in
other words, the source can choose any path network-wide to
connect to the destination. This will potentially improve the net-
work performance, in the mean time, it also poses more chal-
lenges to the scheduler, because the entire network has to be
searched to find the optimal lightpath.

We still measure a lightpath by a pair of integers called the
cost of the lightpath denoted as , where is the number of
wavelength conversions and is the number of hops. For rea-
sons described in Section I, a lightpath is considered better than
another if its cost is lexicographically smaller than the other,
that is, if it uses less wavelength conversions, or, if it travels less
hops when the number of wavelength conversions are the same.
The optimal lightpath is defined as a path with the lexicograph-
ically smallest cost.

The Label Searching Algorithm for solving this problem is
shown in Table III. The idea is simple and can be roughly under-
stood as equivalent to doing Breadth First Search (BFS) starting
at wavelength convertible nodes. Let be the source and be the
destination. At first, all nodes are not labeled and the algorithm
will do BFS starting at , one for each wavelength, and give
label to nodes that can be found by with a minimum of
hops. The is the first “round” of searching. If the destination has
been labeled, the optimal lightpath has been found. Otherwise, it
will do another round of searching starting at the labeled wave-
length convertible nodes to label more nodes. If no more nodes
can be labeled and the destination is still not labeled, it will start
a new round of searching at the newly labeled wavelength con-
vertible nodes, and so on, until the destination is labeled.

To be more specific, suppose after the first round, is a wave-
length convertible node with the smallest label, say, . Note
that all unlabeled nodes that can be found by with one hop
can be labeled as . Since first, it must take at least one
wavelength conversion for the source to reach them. If they can
be reached with one conversion but less than hops, sup-
pose along one of such paths wavelength conversion takes place
at node . must have a label less than , which contradicts
the fact that is the labeled wavelength convertible node with
the smallest label.
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After labeling all nodes that can be found with one hop from
wavelength convertible nodes with label , the algorithm
starts to label nodes that can be found with two hops from wave-
length convertible nodes with label and nodes that can
be found with one hop from wavelength convertible nodes with
label . All such nodes can be labeled as , for
reasons similar to those described earlier. After that, the algo-
rithm gives label to nodes that can be found with
hops from wavelength convertible nodes with label for
all , until all nodes that can be found by wavelength
convertible nodes labeled in the first round have been labeled.

If the destination is still not labeled, a new round of searching
will be needed, starting from the wavelength convertible node
that was labeled in the previous round with the smallest label.
This process is repeated until the destination is labeled or until
no new nodes can be labeled. Since the label of a node is the
cost of the optimal lightpath from the source to it, when the
destination is labeled, the desired optimal lightpath is found.

To establish the lightpath, at first, will check on which wave-
length it was first found, and then trace back to on this wave-
length where is the wavelength convertible node that found
. will check on which wavelength it was first found, and use

this wavelength to trace back to which is the node that found
it, and so on, until the path reaches the source . The complexity
of this algorithm is , where is the number of
nodes, is the number of links, and is the number of wave-
lengths per fiber, since a link and a node is checked no more
than times.

D. Performance Study for Unicast Algorithms

We have implemented the algorithms and studied their per-
formances on different network topologies by simulation. The
connection requests are assumed to arrive at nodes according
to a Poisson process, and the duration of a connection follows
the exponential distribution with an average of 1 time unit. The
traffic intensities between every pair of nodes are assumed to
be the same. The network performance is measured by overall
blocking probability as a function of the arrival rate at a node.
Each point in the figures is obtained after generating 1 000 000
requests. In figures, the First Fit Algorithm, the Longest Seg-
ment Algorithm, the Label Extending Algorithm, and the Label
Searching Algorithm are referred to as “FF”, “LSeg”, “LExt”,
and “LSear”, respectively. In all simulations the number of
wavelengths per fiber is 16.

Fig. 6 shows the results for a bidirectional ring network with
16 nodes. Each node has eight wavelength converters, and the
threshold of the Label Extending Algorithm is set to be 2. The
Label Searching Algorithm is not shown because it is the equiv-
alent to the Longest Segment Algorithm in a ring network where
there is no routing problem involved. It can be observed that
both the Longest Segment Algorithm and the Label Extending
Algorithm outperform the First Fit Algorithm by a significant
amount when the arrival rates are not too high. However, to
much of our surprise, the performance of the Longest Segment
Algorithm and the performance the Label Extending Algorithm
are almost the same. By examining the data we found that while
the Label Extending Algorithm uses less converters at critical
nodes, overall it uses more converters and reduces the number
and the length of wavelength continuous segments in the net-
work and forces future lightpaths to use more converters. This

Fig. 6. Blocking probability of a bidirectional ring network with 16 nodes and
16 wavelengths per fiber.

Fig. 7. The NSF network.

offsets the benefits of using less converters at critical nodes and
makes the performance of the two algorithms very close.

More results are shown in Figs. 8 and 9. Fig. 8 shows the re-
sults for the well-known 14-node NSF network which is shown
in Fig. 7. In the simulations of Fig. 8, each node has 8 wave-
length converters, the threshold of the Label Extending Algo-
rithm is 2, and each pair of nodes keeps up to four link-disjoint
paths as candidate link-paths. Fig. 9 shows the results for a ran-
domly generated network with 50 nodes where the average node
degree is 5. In the simulations of Fig. 9, each node has 16 wave-
length converters, the threshold of the Label Extending Algo-
rithm is 8, and each pair of nodes keeps up to eight link-disjoint
paths as candidate link-paths. From these two figures, similar
facts can be observed as in Fig. 6. In addition, as expected, the
performance of the Label Searching Algorithm is better than
others, especially when the arrival rate is small. However, we
believe the Label Searching Algorithm may not be suitable for
very large networks, since it may require every node to have full
knowledge of the network, which is hard and expensive to re-
alize in large networks.

III. WAVELENGTH ASSIGNMENT FOR MULTICAST

In this section, we study on-line wavelength assignment
problem in WDM networks for multicast traffic. We will con-
sider setting up a light-tree in a given link-tree using minimum
number of converters. First, we introduce some definitions and
notations.
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Fig. 8. Blocking probability of the NSF network with 16 wavelengths per fiber.

Fig. 9. Blocking probability of a random network with 50 nodes and 16 wave-
lengths per fiber, where the average node degree is 5.

Definitions and Notations

For a tree denoted as , a node with out degree more than
one will be called a fork node. Each part of the tree starting at a
fork node is called a branch and the fork node is called the root
node of this branch. Since a fork node is the root node of more
than one branches, the root node of a branch is not counted as
a node in the branch. A tree may have many branches, and a
branch itself may also have child branches. A branch with no
child branches is called a simple branch. The tree itself can also
be regarded as a branch, with its root node being the source
node of the multicast connection. A branch is of level if along
the path from the source node to its root node there are fork
nodes, including the root node of the branch. The tree level is
the maximum branch level.

We say the light-tree enters a branch on if on the first
link of is used in the light-tree. We say can be covered by

if there exists a wavelength assignment in such that there is
a lightpath from the root of to every node in when the light-
tree enters on . The number of wavelength conversions used
in in such an assignment is called the covering cost of this
assignment, and the minimum cost among all assignments is
defined as . if cannot cover , which may

TABLE IV
LIST OF SYMBOLS IN SECTION III

Fig. 10. A link-tree with four wavelengths per fiber and the optimal light-tree,
where 2, 3, 4, and 10 are wavelength convertible nodes.

happen, for example, when on the first link has already been
occupied. Let among all .
If , is called optimal entering wavelength of
branch . For simplicity, the set of for all
is denoted as .

When the light-tree reaches a fork node on , we say all
child branches of can be covered if there is a wavelength as-
signment such that there is a lightpath from to every node in its
child branches. The number of wavelength conversions needed
in such an assignment, including the conversions at and the
conversions in its child branches, is called the covering cost of
this assignment, and the minimum cost among all assignments
is defined as . can be , for example, when there is
no available converter at and cannot cover one of ’s child
branches. The set of for all is denoted as

.
Table IV lists some of the frequently used notations. Also,

throughout this section, we use to denote the branches, to
denote the root of a branch, and to denote the fork node of a
branch.

Fig. 10 is an example for illustrating the definitions and no-
tations. The link-tree is shown in the left part of the figure. It
has 12 nodes, where node 0 is the root of the tree and node 3 is
the fork node. Node 3 has three child branches denoted as ,

, and , respectively, and node 3 is the root node of all these
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TABLE V
ALGORITHM FOR FINDING OPTIMAL LIGHT-TREE

branches. , , and are all simple branches of level 1,
is a branch of level 0 and is the tree itself. The tree level is 1.

It is not difficult to see that ,
, . ,

and the optimal entering wavelength of is .
since covers at cost 0, covers at cost 1, and can
be converted to at node 3 to cover at cost 0. In fact,

.
In this simple example, it can be seen that for ,

, and is the optimal entering wavelength. The
optimal light-tree is shown in the right of the figure where wave-
length channels in the optimal light-tree are shown as wide line
segments.

A. Outline of the Algorithm

The idea of our algorithm, as shown in Table V, is quite
simple: Find in a “bottom-up” way where is the tree.
Basically, we start from branches at the lowest level that are
all simple branches, and find their . Then “move up” one
level, find of higher level branches according to the
of their child branches obtained in the previous round. Keep on
moving up until of the highest level, i.e., , is found.
The minimum number of conversions needed in a light-tree is

. At this time, the minimum covering cost of each branch
for each wavelength can also be determined and the optimal
light-tree can be established.

The two major jobs the algorithm does are finding and
. In the following, we first describe how to find .

B. Finding

Our way of finding for is to apply the Longest Seg-
ment Algorithm in Table I. To find for a simple branch

, we can mask all wavelengths other than on the first link of
and apply the Longest Segment Algorithm, by regarding the

root of the branch as the source node and the leaf node of the
branch as the destination node. The number of converters found
by the algorithm is .

When is not a simple branch, can be found as fol-
lows. Let be the root node of the branch and let be the fork
node of the branch. Let be the set of nodes in excluding

and those in the child branches of . Note that at this time,
should have been found. There are two cases. 1) There

is no wavelength convertible node in . In this case, clearly
if there is a wavelength continuous segment

on from to , otherwise . 2) There are wave-
length convertible nodes in . Suppose the one nearest to is

. Consider the set of wavelengths on which there is a wave-
length continuous segment from to and let
where is a wavelength in this set. Again, we mask all other
wavelengths on the first link except and apply the Longest
Segment Algorithm from to , and suppose converters are
needed and the last extending point is . For all wavelengths on
which there is a wavelength continuous segment from to , if
there is where , then apparently, .
Otherwise, , since we can convert the wave-
length at to one of the wavelengths that achieve .

Clearly, it takes time to find . Since this is
required for all wavelengths, overall the time spent on this job
is where is the total number of nodes in the tree.

We have the following theorem concerning .
Theorem 4: If there are wavelength convertible nodes in ,

if , then either or .
Proof: Suppose the closest wavelength convertible node

to root is . For any wavelength , if , there
must be a wavelength continuous segment on from to .
If , suppose the optimal light-tree on this branch
leaves on . We can convert to at , and hence use a
total of no more than converters.

Note that the property in Theorem 4 was unaware of in [1]
and part of the algorithm in [1] is unnecessary.

C. Finding

In this subsection, we will study the problem of finding .
We will show that the problem is NP-hard, since it is related to
the Set Covering Problem which is known to be NP-hard. We
show that it can be solved approximately by consecutively run-
ning three greedy algorithms shown in Tables VII, VIII, and IX,
respectively. For convenience, we call them Greedy 1, Greedy 2,
and Greedy 3.

1) Determining Feasibility: The first question is to determine
feasibility: Suppose there are converters left at fork node ,
can all child branches of be covered while using no more than

converters at , if the light-tree reaches on a certain wave-
length?

Theorem 5: It is NP-complete to determine whether all child
branches of can be covered using no more than converters
at .

Proof: To see this, we will need the Set Covering Problem
which is known to be NP-complete: Given a whole set

and a collection of subsets denoted as
, does there exist subsets such that every

element is in at least one of the subsets?
Given any instance of the Set Covering Problem, construct

an instance of this problem as follows. Let and let
the wavelength that reaches be . Wavelength where

will correspond to subset . The fork node will
be given child branches where branch , ,
will correspond to element . No branch can be covered by

. If , can be covered by . It is then clear that
a yes answer to this constructed instance will give a yes answer
to the instance of the Set Covering Problem and vice versa.

As can be seen from the proof, this problem is actually ex-
actly the set covering problem. The set covering problem can
be solved approximately by a simple greedy algorithm shown
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TABLE VI
GREEDY SET COVER ALGORITHM

TABLE VII
GREEDY 1

TABLE VIII
GREEDY 2

in Table VI where the whole set is denoted by . In each step,
it finds a subset that covers the maximum number of uncov-
ered elements. It has an performance ratio, where
is the number of elements, which means that if the elements
can be covered with a minimum of subsets, the number
found by the algorithm, , satisfies . Recent
results show that no polynomial algorithm has a ratio smaller
than [16].

The algorithm for determining the feasibility when the light-
tree reaches on is shown in Table VII. If , the child
branches can be covered and the algorithm returns a yes.

2) Minimizing Conversion Cost: Suppose Greedy 1 deter-
mines that the request is feasible. The next question is to find
a wavelength assignment with minimum cost. Note that if the
minimum covering costs of the child branches are either 0 or

for any wavelength, this problem reduces to the optimiza-
tion version of the problem studied in Theorem 5. Therefore,
we have

Theorem 6: It is NP-hard to find a wavelength assignment to
cover all child branches of at minimum total cost.

We hereby give a greedy algorithm to solve this problem
shown in Table VIII. Note that if , can be
covered with minimum cost without wavelength conversion at
, therefore, the optimal assignment must enter branch with
. Thus, only branches where need to be con-

sidered. The input to this algorithm is for all such child
branches. The output is the number of wavelength converters
needed. Note that in the algorithm, a branch must be entered via
an optimal entering wavelength. We next show that

Theorem 7: The performance ratio of the algorithm in
Table VIII is , where is the number of branches.

Proof: Given any optimal assignment, if the entering wave-
length of a branch denoted by is not an optimal entering
wavelength, we can convert to an optimal entering wave-
length at denoted by , and enter this branch on . This new
assignment should still be optimal, since .
Hence, there exists an optimal assignment where every branch
is entered via its optimal entering wavelength. Since the assign-
ment given by Greedy 2 also enters every branch via its optimal
entering wavelength, the difference between the optimal algo-
rithm and the greedy algorithm is the number of wavelength
converters used at . Denote them as and , respectively.
As explained previously, . Therefore, the per-
formance ratio is

since and . Also note that this bound
is tight when .

3) Minimizing Conversion Cost With Limited Number of
Available Converters at Fork Node: Greedy 2 tries to minimize
the total number of wavelength conversions, however, it does
not consider the total number of available converters at . If

, i.e., the number of conversions it uses at is no
more than the number of available converters, Greedy 2 gives a
feasible assignment. Otherwise, the assignment is not feasible
and we have to use other method to find an assignment that
uses as few converters as possible under the constraint that no
more than converters at are used.

Clearly, the problem studied in Theorem 6 is a special case of
this problem. Thus, we have:

Theorem 8: It is NP-hard to find a wavelength assignment to
cover all child branches of at minimum total cost while using
no more than converters at .

Table IX gives an algorithm to solve this problem approxi-
mately when the light-tree reaches on . The idea is to start
with a feasible assignment which is the one found by Greedy 1,
and use wavelength conversions at to reduce the number of
conversions in each step. In the description of the algorithm, a
wavelength is “unused” if no wavelength converter is used at
to convert to it, otherwise it is “used”. If the entering wave-
length of is , the weight of is defined as .
If a converter is used at to convert to a wavelength , if

, will update its entering wavelength as
and its weight will be reduced by .

Unlike the previous two greedy algorithms, we cannot find a
bound for this algorithm. The reason is that due to its greedy
nature, the algorithm will try to make sure that all branches
are covered first, and may choose to enter a branch not using
the optimal entering wavelength while the difference between
the minimum covering cost of the optimal entering wavelength
and those of other wavelengths may be unbounded. However,
note that if there are wavelength converters on every branch, as
shown in Theorem 4, the minimum covering costs differ at most
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TABLE IX
GREEDY 3

TABLE X
FINDING � (i)

by one, and in this case, it is not hard to show that the cost differ-
ence between the assignment found by Greedy 3 and the optimal
assignment is no more than .

We next show that:
Theorem 9: In each iteration in the loop of Greedy 3, the cost

difference between the assignment found by Greedy 3 and the
optimal assignment in the child branches (excluding the wave-
length conversions at the fork node) will decrease exponentially
at a rate no less than .

Proof: Suppose when Greedy 1 has finished, the difference
between the greedy and the optimal in the child branches is .
Therefore, if all wavelengths in the optimal assignment
to which is converted at are used, the difference will de-
crease by exactly . Thus, at least one of the wavelengths in
the optimal assignment will reduce the difference by .
Since the greedy algorithm always chooses the wavelength that
decreases the maximum amount of branch weight, which is
the difference after the first execution of the loop in Greedy 3
satisfies . In other words, is at most a
fraction of of . The same is also true for all fol-
lowing steps. Thus, the decreasing rate is no less than ,
since .

The procedure for finding approximately for a wave-
length is summarized in Table X.

For a fork node with child branches, to find ,
Greedy 1 and Greedy 2 need time and Greedy 3 needs

time. Thus, the overall time to find a light-tree is thus
, where is the number of nodes in the tree and is

the number of wavelengths.

D. Applying to the Converter No-Split Model

For completeness, we briefly discuss how to apply our algo-
rithm to the Converter No-Split Model. First, note that under this
model the definitions of the tree branch, the fork node, and cor-
respondingly and are exactly the same and the op-

Fig. 11. Average number of converters needed to set up a light-tree in a random
link-tree with average 39.4 nodes.

timal assignment can still be found in the bottom-up way as de-
scribed in Table V. Also note that finding under the Con-
verter No-Split Model is exactly the same as under the Converter
Split Model. However, finding is no longer NP-hard. For
example, to find , we can first use to cover all branches
at cost defined as for branch (the cost can be

). Then we can find the branch with the largest cost and choose
to use a wavelength converter at to convert to its optimal en-
tering wavelength to cover it at minimum cost, and repeat this
until the costs of all branches become 0 or until there are no
converters left at . Note that this simple method finds
because the output of wavelength converter cannot be split and
only one branch needs to be considered at a time. As a result,
our algorithm finds the optimal light-tree in a given link-tree in
linear time.

In [1] a linear time algorithm for finding an optimal light-tree
in a given link-tree under the Converter No-Split Model was
also given. However, although both are linear time algorithms,
our algorithm is much simpler and needs less computation. This
is due to the major difference between the two algorithms: the
basic element of our algorithm is a tree branch while the basic
element of the algorithm in [1] is an individual node, and we
only compute for a branch and for a fork node while
[1] computes similar quantities for every node.

E. Performance Study for Multicast Algorithms

We have implemented our algorithm in software and applied
it to randomly generated trees. In our simulations, on average
the tree has three levels and 39.4 nodes, and there are a total of
16 wavelengths on the links. With probability 0.75, a tree node is
wavelength convertible, and the number of available wavelength
converters is randomly chosen from 1 to 10. Wavelength chan-
nels on the links are randomly chosen to be available or not, and
the overall percentage of availability varies from 0.5 to 0.9. The
data is collected after 100 000 runs. Both the results for Con-
verter Split Model and the Converter No-Split Model are shown
in Fig. 11. It can seen that the Converter Split Model saves about
6%–10% of the converters, which is the improvement we have
achieved over [1].
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IV. CONCLUSION

In this paper, we have studied the problem of setting up
connections on-line in WDM networks at minimum conversion
cost. We considered both unicast and multicast traffic and
improved existing results significantly. For unicast, we first
considered the problem of setting up a lightpath on a given
link-path with minimum number of conversions, and gave a
simple new algorithm that solves it in time, where is
the number of links and is the number of wavelengths. We
also considered the problem of setting up a lightpath while
using wavelength converters at nodes with fewer available
converters only when necessary, and gave an time algo-
rithm. We then generalized this technique to WDM networks
with arbitrary topologies and gave an algorithm that sets up an
optimal lightpath network-wide in time, where
is the number of nodes in the network and is the number of
links in the network. For multicast, we focused on the problem
of setting up a light-tree on a given link-tree with minimum
conversion cost. We proposed a new multicast conversion
model that allows the output of the converter to split, which
can save the conversion cost considerably. We showed that this
problem is NP-hard, and then gave efficient heuristics to solve
it approximately.
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