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Abstract—Switches with a shared buffer have lower packet loss
probabilities than other types of switches when the sizes of the
buffers are the same. In the past, the performance of shared buffer
switches has been studied extensively. However, due to the strong
dependencies of the output queues in the buffer, it is very difficult
to find a good analytical model. Existing models are either accu-
rate but have exponential complexities or not very accurate. In this
paper, we propose a novel analytical model called the Aggregation
model for switches with shared buffer. The model is based on the
idea of induction: first find the behavior of two queues, then aggre-
gate them into one block; then find the behavior of three queues
while regarding two of the queues as one block, then aggregate the
three queues into one block; then aggregate four queues, and so on.
When all queues have been aggregated, the behavior of the entire
switch will be found. This model has perfect accuracies under all
tested conditions and has polynomial complexity.

Index Terms—Aggregation, analytical model, Markov chain,
shared buffer, switches.

I. INTRODUCTION

SWITCHES with shared buffer have lower packet loss prob-
abilities than other types of switches when the sizes of the

buffers are the same. Due to its practical interest, over the years,
the performance analysis of shared buffer switches has intrigued
many researchers and has become a classical problem in the lit-
erature. However, it has not been adequately solved. Existing
models are either accurate but have exponential complexities or
not very accurate.

A shared buffer switch is shown in Fig. 1(a). It has input/
output ports and a common buffer pool with cell locations.
It receives fixed length cells from the input ports and operates
in a time-slotted manner. The arriving cells are multiplexed and
stored in the buffer, where they are organized into separate
first-in first-out queues, one for each output port. The difficulty
in analytically modeling a shared buffer switch is due to the
strong dependence of queues in the buffer, which means that the
numbers of cells stored in the queues are a set of random vari-
ables strongly depending on each other. The dependence comes
from both the dependence of the input and the dependence of
the finite size buffer. The dependence of the input means, for ex-
ample, that if there are cells destined for output 1, then there
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Fig. 1. (a). A shared buffer switch with N input ports andN output ports and
a common buffer pool with B cell locations. (b). After the behaviors of queue
1 and queue 2 are found, consider them as one block.

cannot be over cells destined for other outputs at the
same time slot. In other words, the knowledge of the number
of cells destined to one output contains much information about
the number of cells destined to other outputs. The dependence
of the buffer is similar: knowing that there are cells in output
queue 1 rules out the possibility that there are over cells
in other queues.

The strong dependence of the queues makes exact analytical
modeling impossible except by the vector method which uses a

vector to represent the state of the switch, with each ele-
ment being the number of cells stored in each queue [5]. How-
ever, this makes the number of states grow exponentially with

. To make the analysis tractable, researchers tried different
approximation models based on different assumptions about the
queues or the cells. In [5] and [6], it was assumed that the queues
are independent of each other. In [1], it was assumed that the
cells stored in the buffer have independent random destinations.
In [3] and [4], it was assumed that all possible combinations
for cells to be distributed in the buffer are equally likely. Since
queues and cells may behave according to these assumptions
only in some cases, the resulting analytical models perform sat-
isfactorily only in some cases but not in all cases. In this paper,
we will give the Aggregation model which, although is also an
approximation model, does not make assumptions about depen-
dencies of the queues nor about how cells are distributed and
is very accurate in all tested cases. It is also efficient since its
complexity is a polynomial function of the switch size.

Although the technical details and mathematical interpreta-
tions could be lengthy, the idea of this model is quite simple and
can be described as follows. The basic idea is to find the behavior
of the queues in an inductive way. First consider the case when
the buffer is very large such that the cell loss probability will be
very small and the buffer dependence can be neglected. However,
note that the queues are still dependent on each other due to the
input dependence. Now, if we only consider two queues in the
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buffer, say, queues for output 1 and output 2, a very good pre-
diction about the behaviors of these two queues can be obtained
without much difficulty since the input traffic patterns to them are
known (by the assumptions about input traffic) and other queues
will grow so large such that some of the input cells to outputs
1 and 2 have to be dropped. After finding out the behaviors of
these two queues, they can be “aggregated” together into a single
block. This block will store the cells for output 1 and output 2, as
illustrated in Fig. 1(b), and its behavior can be deduced from the
behaviors of the two queues. Now consider three queues: queues
for outputs 1, 2, and 3. Instead of three separate queues, they can
be regarded as two components: one component is the block con-
taining queue 1 and queue 2, and the other component is queue 3.
Since the behaviors of both components are known, the behaviors
of the three queues can be found quite precisely. Then again, the
three queues can be aggregated into one block, which can be used
to find the behavior of four queues. The process can be carried on
until all queues have been aggregated into one block, and by
this time, the queueing properties of the entire switch will have
been found. Note that although the idea is illustrated by assuming
the buffer is large, we will show later that it can also be used for
switches with small buffers.

The advantage of this method is that, regardless of the value
of , in each step, there are always only two components that
need to be considered: the block and the new queue. The whole
process takes steps; therefore, the complexity is a polyno-
mial function of the switch size. Also note that although queues
are dependent upon each other, they interact in such a way that
after each step some unnecessary details can be omitted, thus re-
ducing the complexity of the model. For example, when aggre-
gating two queues, only the probability that queue 1 and queue 2
are of size is needed rather than the probability that queue
1 is of size and queue 2 is of size , because other queues typ-
ically do not care how these cells are distributed as long
as they know that there are cells in queue 1 and queue 2.

In this paper, we will mainly illustrate the Aggregation
model under the widely used Bernoulli traffic and the ON–OFF

Markovian traffic. It should be mentioned that although today’s
routers are mainly input-queued switches, the shared buffer
switch remains an important option for switching and will
likely become even more important when all-optical packet
switching becomes mature. A preliminary version of this work
can be found in [16].

The rest of the paper is organized as follows. Section II
describes the operations of the switch. Section III describes the
Aggregation model under uniform Bernoulli traffic. Section IV
describes the Aggregation model under ON–OFF Markovian
traffic. Section V shows how to apply the Aggregation model
to optical WDM switches. Section VI shows how to apply the
Aggregation model to a type of switch called the transmit-first
switch. Section VII gives detailed comparisons between the
Aggregation model and other existing models and also gives
reasons for the very good accuracy of the Aggregation model.
Finally, Section VIII concludes the paper.

II. SWITCH OPERATIONS

In this section, we describe the operations of a shared buffer
switch. As shown in Fig. 1(a), the switch is assumed to have

input/output ports and a common buffer pool with cell
locations. It receives fixed length cells from the input ports and
operates in a time-slotted manner. There are first-in first-out
queues in the buffer, one for each output port.

The switch is modeled as running in a three-phase manner. In
phase 1, it accepts the arrived cells. In phase 2, it transmits the
cells at the head of queues. In phase 3, it runs a buffer manage-
ment algorithm and drops some cells if necessary. Such a switch
is called the “receive-first switch” and is denoted as RFS. There
is also the “transmit-first switch,” or TFS, in which phase 1 and
phase 2 are reversed. The Aggregation model can be applied to
both the RFS and the TFS, and we will mainly illustrate it with
the RFS.

Before executing phase 3, the switch is in the “intermediate
state.” In the intermediate state, if the number of cells that have
to be buffered exceeds the buffer size, some of the cells have to
be dropped. The decisions of which cells should be dropped are
made by a buffer management algorithm. We adopt a “random
dropwithpushout”algorithm,which,if thebuffersizeisexceeded
by ,will randomly drop cellsout of the total cells. Note
that by this algorithm, not only the newly arrived cells but also
cellsalready in thebuffer couldbedropped,orbe“pushed out.” In
general, algorithms that allow pushout have better performance
than those do not [7]. The advantage of the random drop algo-
rithm is that cells in longer queues are more likely to be dropped
than cells in shorter queues, thus preventing some queues from
completely occupying the buffer and starving others.

III. AGGREGATION MODEL UNDER BERNOULLI TRAFFIC

In this section, we will illustrate the Aggregation model using
uniform Bernoulli traffic. The assumptions of the traffic are as
follows:

• the arrival at the input is Bernoulli with parameter
, i.e., at a time slot, the probability that there is a cell

arriving at an input port is and is independent of other
time slots;

• the destination of a cell is uniformly distributed over all
outputs;

• inputs are independent of each other.
Before diving into the formulas and equations, we first give

an overview of the method.

A. Overview

There are virtual queues in the buffer, one for each output.
First consider two queues, queues for output 1 and for output
2. The state of these two queues can be represented by a pair
of random variables , with being the number of cells
stored in queue 1 and being the number of cells stored in
queue 2. can be regarded as a two-dimensional Markov
chain, whose transition rate and steady-state distribution can
be found by the assumptions of the input traffic. Then, the
two queues can be combined into one block that stores the
cells for output 1 and output 2. The state of the block can
be represented by another pair of random variables ,
where is the number of cells stored in the block and is
the number of nonempty queues in the block. To describe
the behavior of the block, two conditional probabilities are
computed and .
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is the probability that the block goes
from state to intermediate state after re-
ceiving cells. is the probability that the
block will have nonempty queues after dropping
cells in intermediate state . Note that here we have
made the first of the two assumptions in the Aggregation model,
which is that the transition of over time has Markov
property. A detailed discussion with regard to this assumption
is provided in Section VII-B.

When considering three queues, queue 1 to queue 3, the
first two queues can be regarded as a block and the state of
the three queues can be represented by , where
is the number of cells stored in the block, is the number
of nonempty queues in the block, and is the number of
cells stored in queue 3. With the transition probability for

obtained in the previous step, the transition rate and
the steady-state distribution of this three-dimensional Markov
chain can be found. Similar to the previous step, the three
queues can now be combined into a single block and only two
random variables can be used to represent the state of
this block, where is the number of cells stored in queue 1
to queue 3 and is the number of nonempty queues from
queue 1 to queue 3. The two conditional probabilities used
to describe the behavior of the new block (containing three
queues) and can
be found, where is the probability
that the block goes from state to intermediate state

after receiving cells, and is
the probability that the block will have nonempty queues
after dropping cells. When considering four queues,
again the first three queues will be considered as one block,
and the state of the four queues can be represented by triple

. The process can be carried on until all queues have
been combined into one single block. Then, useful information
such as cell loss probability and average delay can be found
with the behavior of the -queue block.

B. Detailed Description

In the following, we give detailed description of our model.
First consider only two queues.

1) Getting Started—Two Queues: The state of the queue for
output 1 and the queue for output 2 is represented by random
variable pair . We will first give the transition rate of this
two-dimensional Markov chain.

Suppose the Markov chain is currently in state . The
probability that there are cells arrived for output 1 and cells
arrived for output 2 follows multinomial distribution and can be
found as

(1)
After receiving cells and sending out 1 cell if not empty, queue
1 will have cells, where if

and if . Similarly, queue 2 will have
cells.

If there is no buffer overflow in the switch, the next state of
the Markov chain is . Otherwise, some of the cells

may be dropped by the buffer management algorithm, and the
two queues may store fewer cells than and . Note that
it will be difficult, if not impossible, to know exactly how many
cells will be dropped from queue 1 and queue 2, because at this
moment, we have no information about other queues. There-
fore, some approximation has to be used. We assume that if

, no cells will be dropped from queue 1 and
queue 2; otherwise cells will be dropped from
queue 1 and queue 2. This assumption is the second of the two
assumptions used in the Aggregation model and can be called
the “zero external interference assumption,” since it is equiv-
alent to assuming that only queue 1 and queue 2 are in the
buffer, or, the “external queues,” i.e., queue 3 to queue , will
never grow to a size large enough to interfere with queue 1 and
queue 2. A detailed discussion with regard to this assumption
is provided in Section VII-B. The probability that the switch
dropped cells from queue 1 and cells from queue 2, where

, and is

(2)

Combining these discussions, the transition rate of the
Markov chain from state to state can be
determined as follows. We say integer satisfies the queuing
relation defined by and if and
denote the set of such integers as .
is introduced for presentational convenience only. In fact, for
most values of and is simply ;
only when will have two elements
which are 0 and 1. Clearly, if , the transition rate is

(3)

where and , since if
, according to our assumption, no cells would have been

dropped from queue 1 and queue 2 and the probability that the
Markov chain will go from to is the prob-
ability that the two queues have received a proper number of
cells. If , some cells may have been dropped from
the queues, i.e., the queues may have visited some intermediate
state before reaching , where

. The probability that they will go to intermediate
state is , where and

. At intermediate state , to go to state
, there must be cells dropped from queue 1

and cells dropped from queue 2, which occurs with
probability . Therefore, the
transition probability when is

(4)

where .
After obtaining the transition rates, the steady-state distribu-

tion of the Markov chain, , can be easily found. As de-
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scribed earlier, we will now combine these two queues into one
block. Another pair of random variables will be used as
the state of this block, where is the number of cells stored
in this block and is the number of nonempty queues in this
block, where . For a given

that satisfies and is
called a “substate” of , where is the step function

otherwise

There can be more than one substate of , and all such
substates will merge into one state. Note that this is where the
simplification over the vector method begins. The probability
that the block is in state , or , is ,
where denotes the substate of .

For future computations, two conditional probabilities will
be needed to describe the behavior of the block. The first one
is , the probability that the block will
go from state to intermediate state after
receiving cells. (Note that the intermediate state is
the state of the block before the buffer management algorithm
is run and is not a state of the Markov chain.) Let
denote the th substate of and denote the
th substate of . Note that given the block is in

state , the probability that it is in substate

is . Let denote the proba-
bility that after receiving cells, the two queues will go from

to . Clearly, we have

(5)

Also note that

(6)

where and and , and
the expression inside the summation is the probability that out
of the arriving cells, go to output 1 and go to output 2.

The other one is , which is the proba-
bility that the block will have nonempty queues after drop-
ping cells at intermediate state . Note that
the probability that the two queues are in intermediate state

is

(7)

where and . The probability
that the block is in intermediate state is

, where denotes the substate
of . We have

(8)

where denotes the th substate of
denotes the th substate of , and

is the probability that after
dropping cells, the two queues will go from
to . Clearly

(9)

2) Iteration—More Queues: Suppose queues have been
aggregated into one block. After finishing computing for two
queues . We can now study queues by regarding
queue 1 to queue as a block and use to represent the
state of the queues, where is the number of cells stored in the
block, is the number of nonempty queues in the block, and
is the number of cells stored in queue .

Suppose initially the Markov chain is in state .
The probability that there are cells arrived for output 1 to
output and cells arrived for output also follows multi-
nomial distribution and can be found as

(10)

After receiving cells and sending out 1 cell if not empty, queue
will contain cells. After receiving

cells and sending out cells in nonempty queues, the probability
that the first queues will contain cells and will have
nonempty queues is , which is the con-
ditional probability obtained in the previous iteration.

Similarly to the two-queue case, we make the “zero external
interference assumption,” which means that if , no
cells will be dropped from queue 1 to queue ; otherwise

cells will be dropped from these queues. The
transition rate of the Markov chain from state to
state can be determined as follows. If ,
no cells would have been dropped from these queues, and the
transition rate is simply

(11)

where . If , some cells may
have been dropped from the queues, i.e., the queues may have
visited some intermediate state before reaching

, where and . The
probability that they will go to intermediate state
is , where

. At intermediate state , to go to state
, first there must be cells dropped from

the block and cells dropped from queue , which
occurs with probability ;
second, after dropping cells, the block must con-
tain nonempty queues, which occurs with probability
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and is obtained from the previous itera-
tion. Therefore, the transition probability when is

(12)

where .
After obtaining the transition rates, the steady-state distribu-

tion of the Markov chain can be found. We will then aggregate
the queues into one block. The state of block will be rep-
resented by , where is the number of cells stored in
queue 1 to and is the number of nonempty queues
from queue 1 to . (We use a prime to denote variables
and expressions related to the block with queues.) The
probability that the block is in state can be found by

, where satisfies
and . Following our convention, each such

triple is called a substate of .
Similar to the two-queue case, two conditional proba-

bilities are needed for the next iteration. The first one is
, which is the probability that when

cells arrived for output 1 to output , the block will go
from to . Let denote the th
substate of and denote the th substate
of . Similar to the two-queue case, we have

(13)

where is the probability that
after receiving cells, the queues go from
to , and

(14)

where and .
The other one is , which is the proba-

bility that the block will have nonempty queues after drop-
ping cells at intermediate state . Note that
the probability that the queues are in a certain interme-
diate state, i.e., and , can be found
similarly to the two-queue case. Also, as in the two-queue case,
we have

(15)

where denotes the th substate of
denotes the th substate of , and

is the probability that
after dropping cells, the queues will go from

to . We have

(16)

Finally, let

and continue to the next iteration.

C. Using the Model

After iterating the process until , the stationary
distribution can be found, where is the number of
cells stored in the buffer and is the number of nonempty
queues. can also be obtained, which
is the probability that when there are cells and nonempty
queues in the buffer, after receiving cells and sending out cells
in nonempty queues, the switch will store cells and has
nonempty queues. With this information, we are now in the po-
sition to derive the cell loss probability and the average delay
time of the switch.

1) Cell Loss Probability: The cell loss probability, denoted
by , can be found by

(17)

where is the probability that there are totally cells ar-
rived at this switch

(18)

for . To see why (17) holds, note that the proba-
bility that the switch is in state is . After re-
ceiving new cells and sending out cells in nonempty queues,
the probability that it will go to intermediate state is

. If , no cell will be dropped;
otherwise, exactly will be dropped.

2) Average Delay: The delay time of a cell is usually defined
as the number of time slots it stays in the buffer before being sent
out. Since the buffer management algorithm we adopt allows
pushout, cells that are in buffer could be dropped without being
sent out. Therefore, we modify the definition of delay time as
the number of time slots a cell stays in the buffer before being
sent out or being dropped.

It can be shown that in such a system Little’s formula still
holds. That is

(19)
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where is the average delay time, and is the average
number of cells stored in the buffer. can be found as

(20)

D. Validation of the Model

We have conducted extensive simulations to validate the Ag-
gregation model. In our simulations, if the cell loss probability
is in the order of or higher, the simulation program is run
for 10 000 000 time slots. If the cell loss probability is below

(only in three cases in this paper), the simulation program
is run until it has encountered 1000 lost cells. The number of
times slots run in the simulations is determined by the cell loss
probability because cell loss is a rare event, while cell delay can
be collected for each cell. For comparison purpose, we have also
implemented four other models, called the Active Input model
[1], the URN model [3], the Tagged Queue model [5], and the
Bidimensional model [4]. Figs. 2 and 3 show the analytical re-
sults along with the simulation results. We can see that for both
cell loss probability and average delay, and for both the small
switch and the large switch, the Aggregation model is very accu-
rate since its curves almost overlap with the simulation curves.
On the other hand, the performances of other models may be
good when the switch is small (Fig. 2, and ) but
will deteriorate when the switch becomes large (Fig. 3,
and ). We did not provide the results for the Tagged
Queue model in Fig. 3 because it is actually of exponential com-
plexity and takes too much time for larger switches. A detailed
comparison of the Aggregation model and other models will be
given in Section VII.

IV. THE AGGREGATION MODEL UNDER ON–OFF

MARKOVIAN TRAFFIC

So far, we have considered the Aggregation model under
Bernoulli traffic. The idea of aggregation can also be applied
to other traffic types, and in this section, we will illustrate how
to apply it to ON–OFF Markovian traffic, which is also widely
used in the literature. Under this type of traffic, an input port
alternates between two states, the “idle” state and the “busy”
state. In a time slot, if the input port is in “idle” state, there will
be no arriving cell at this input port; otherwise, that is, if the
input port is in “busy” state, there will be one arriving cell at
this input port. Cells arriving in consecutive busy time slots are
called a stream, and all cells belonging to the same stream go to
the same destination. Since the state transition is Markovian, an
input port can be modeled as a two-state Markov chain. When in
the busy state, the probability that it will go to the idle state in the
next time slot is , and the probability that it will stay in the busy
state is . Similarly, when in the idle state, the probability
that it will go to the busy state in the next time slot is , and the
probability that it will stay in the idle state is . It can be
derived that the average stream length is , the average idle
period length is , and the traffic load is .

When applying the aggregation method to ON–OFF Mar-
kovian traffic, the general scheme is exactly the same as that for
Bernoulli traffic. However, it becomes more complex because

Fig. 2. Cell loss probability and average delay under Bernoulli traffic when
N = 4; B = 8.

the inputs at different time slots are no longer independent.
Therefore, some random variables have to be added to describe
the state of the input.

A. Input State Transitions

We use triple to represent the state of the input,
where is the number of cells arrived for output 1 to output

, is the number of cells arrived for output , and is
the total number of input cells arrived at this switch for

. is a Markov chain. The transition rate from state
to state can be found as follows.

Let be the probability that there are totally
input ports jumped from the idle state to the busy state, given
that there were busy input ports in the previous time slot.

(21)

Given , the probability that there are new busy input ports
sending cells to output 1 to and new busy input ports
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Fig. 3. Cell loss probability and average delay under Bernoulli traffic when
N = 16; B = 32.

sending cells to output is

(22)

Therefore, the probability that there are totally new busy input
ports and among them there are input ports sending cells to
output 1 to and input ports sending cells to output is

(23)

Now let be the probability that given there were
input ports sending cells to output 1 to output , of them

jumped from the busy state to the idle state

(24)

Similarly, let be the probability that given there
were input ports sending cells to output of them
jumped from the busy state to the idle state

(25)

There were input ports sending cells to output
port to output . Let be the probability that
of these input ports jumped from the busy state to the idle state

(26)

Therefore, the probability that there are totally input ports
jumped from the busy state to the idle state and of them used
to send cells to output 1 to output and of them used to send
cells to output is

(27)

After obtaining (23) and (27), the transition probability from
to state is

(28)

where and satisfy
, and .

B. Aggregation Method for ON–OFF Markovian Traffic

After obtaining the transition probability of the inputs, we
can start deriving the transition probability of the entire switch.
Since much of the technical details is very similar to the
Bernoulli traffic case, we only briefly outline those are unique
to ON–OFF Markovian traffic.

When considering two queues, the state of the two queues is
represented by five random variables, , where
is the number of busy inputs addressing to output 1, is the
number of busy inputs addressing to output 2, is the total
number of busy inputs, is the number of cells stored in queue
1, and is the number of cells stored in queue 2. The transition
rate from state to state
can be obtained in two phases, that is, first finding the transition
probability of the inputs, and then finding the transition proba-
bility of the queues, and the transition rate will be the product
of the two. The transition probability of the inputs can be found
first since the input transition is independent of the state of the
switch. Then, the probability that the inputs will go from state

to is given in (28). After that, the prob-
ability that the two queues will go from to
given that queue 1 received cells and queue 2 received is
needed. Clearly, when , this probability is 1 only
if and ; otherwise
it is zero. When , let and
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. If and , this prob-
ability is ; otherwise, it is
zero.

After obtaining the transition matrix, the steady-state distri-
bution can be found. Like in Bernoulli traffic, the two queues
will now be combined into one block, that is,
will be replaced by , where is the total number
of busy inputs addressing to output 1 and output 2, is the
number of cells stored in the block, and is the number of
nonempty queues in the block. The two conditional probabil-
ities for describing the behavior of the block can be found in a
very similar way as that for Bernoulli traffic. The difference is
that the first conditional probability will add to the conditions
and will be . Also, the second con-
ditional probability will add and to the conditions and will
be .

When considering queues, where , the
state of the queues is represented by six random variables

, where is the number of busy inputs ad-
dressing to output 1 to output , is the number of busy
inputs addressing to output , is the total number of
busy inputs, is the number of cells stored in queue 1 to
queue , is the number of nonempty queues from queue
1 to queue , and is the number of cells stored in queue

. The transition rate from state
to state is also obtained in two phases
and the transition probability of the inputs is given in (28). The
probability that the queues will go from to

given that queue 1 to queue received cells
and queue received can be found as follows. When

, the transition rate is
if ; otherwise, it is zero. When ,
the transition rate is

where .
Then, combine the queues into one block: will be
replaced by , where and ,
and will be replaced by . After that, the
two conditional probabilities and

will be updated.

C. Rewinding

The Aggregation model can be improved as follows. Recall
that the assumption we have made that could lead to model
inaccuracy is the zero external interference assumption; thus,
the model can be improved if the external queues, i.e., queue

to queue , can somehow be taken into account. Note
that the behavior of a block containing queues is found
after the th iteration and is fully described by the
two conditional probabilities and

, where subscript is used to
indicate that they are for a block containing queues. For
simplicity, in the following, they will be written as and

, respectively. After going through steps,
and for all will have been found. We can
then run the model again by regarding the switch as two blocks,
one with queues and the other with queues. Since at
this time the behavior of these two blocks is known, the state
distribution of the two blocks can be found. Note that the zero
external interference assumption is not needed at this time since
all queues in the switch are considered. With the steady-state
distribution, the probability that when the first block is in a
certain state, the second block stores a certain number of cells
can be found, and this probability can, in turn, be used to obtain
better and without the zero external interference
assumption. This recalculation may start with , then for

to , and is called “rewinding.”
The rewinding modification is similar to a fixed-point

method: first make a guess about the solution, then use this
guess to find a better solution in hope that it will indeed become
better. We found that the rewinding will improve the accuracy
of the Aggregation model, and typically only one round of
rewinding is needed. Therefore, in our program for ON–OFF

Markovian traffic, this modification is included. However, for
Bernoulli traffic, it seems unnecessary because the model is
already very accurate.

D. Validations of the Model

Fig. 4 shows the cell loss probability and the average delay
time of a switch, where and as a function of
the traffic load when the average stream length is 5. It can be
seen that the results of the Aggregation model are very close to
the simulation. The cell loss probabilities of other models are
close to the simulation, but the average delays are not. Note that
the Bidimensional model is not shown here, because [4] did not
consider ON–OFF Markovian traffic. A detailed comparison will
be given in Section VII.

V. AGGREGATION MODEL FOR OPTICAL SWITCHES

The idea of aggregation is not limited only to electronic
switches, and in this section, we will apply it to wavelength-di-
vision-multiplexing (WDM) switches used in optical packet
switching networks. The WDM technique is now widely re-
garded as the candidate for future high-speed communications
due to its nearly unlimited bandwidth [12]. In a WDM packet
switch, input and output links are optical fibers. On a fiber,
there are wavelengths, each carrying independent data [12].
Buffers are implemented with fiber delay lines (FDLs), which
are capable of delaying packets for a certain amount of time.
The incoming packets are fixed-length cells in the optical
domain. In the past, the performance of WDM packet switches
with dedicated buffer for each output link has been studied in
[13] and [14]. However, since FDLs are expensive and bulky,
to reduce the cost and the size of the switch, it is more desirable
to let them be shared by all outputs [15]. Fig. 5 shows such a
WDM switch with shared buffer. It has input/output fibers
and shared FDLs, each capable of delaying a packet for one
time slot. Before entering the switching fabric, a packet can
be converted from one wavelength to another by wavelength
converters. Whenever possible, an arriving packet will be sent,
by the switching fabric, to its destined output fiber. However, if
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Fig. 4. Cell loss probability of and average delay under ON–OFF Markovian
traffic when N = 4; B = 8. The average stream length is 5.

it cannot be sent to the output fiber, it will be sent to one of the
delay lines. After being delayed for one time slot, it will come
out of the delay line and compete with other delayed packets as
well as the newly arrived packets for access to the output fiber
again. If it fails, it will be sent to a delay line again to wait for
the next time slot. Aside from the technical details, this switch
can be considered as a switch with input/output ports and
buffer locations, with each port capable of receiving/sending
up to packets in a time slot. To the best of our knowledge,
the performance of this type of switch has not been studied
analytically.

In mathematical terms, the only difference between the WDM
switch and the electronic switch is that at one time slot, a queue
can send out up to cells instead of only one. Therefore, the
only modification needed is about the equation governing the
queue behavior: after receiving cells, a queue that used to have

cells will have cells in the interme-
diate state. Variable in the pair of random variables

Fig. 5. An optical WDM switch with shared buffer.

representing the state of an aggregated block of queues should
be interpreted as the number of cells ready to be transmitted in
the block. Fig. 6 shows the cell loss probability and the average
delay of a WDM switch with eight input/output fibers, four
FDLs, and four wavelengths per fiber under Bernoulli traffic. It
can be seen that the Aggregation model matches perfectly with
the simulations.

VI. TRANSMIT-FIRST SWITCH

So far, we have considered receive-first switches, which first
accept all arrived cells, then transmit cells at the head of queues.
There are also transmit-first switches, which first transmit cells
at the head of queues, then accept arrived cells. The extension
of the Aggregation model from the receive-first switch to the
transmit-first switch is immediate. Similar to Section V, only
the equation about queuing behavior needs to be modified. In a
transmit-first switch, after receiving cells, a queue that used
to have cells will have cells in the
intermediate state. Fig. 7 shows the analytical and simulation
results for an electronic transmit-first switch under Bernoulli
traffic when . Again, we can see that the
Aggregation model is very accurate.

VII. COMPARISONS WITH OTHER EXISTING MODELS AND A

DEEPER UNDERSTANDING OF THE AGGREGATION MODEL

In this section, we will first compare the Aggregation model
with four other existing analytical models for shared buffer
switches we are aware of. Then we will give explanations for
the very good performance of the Aggregation model.

A. Comparisons With Other Existing Models

We are aware of four approximation models for shared buffer
switches, which are called the Active Output model, the URN
model, the Tagged Queue model, and the Bidimensional model.
The Active Output model was first introduced by Turner in [1]
and may be the earliest model for the shared buffer switches.
In this model, it is assumed that cells stored in the buffer have
independent random destinations. The URN model was intro-
duced by Fong in [3] and assumes that all possible combinations
for cells to be distributed in the buffer are equally likely. The
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Fig. 6. Cell loss probability and average delay of a WDM switch under
Bernoulli traffic when N = 8; B = 4; k = 4.

Tagged Queue model was introduced by Pattavina and Gianatti
in [5] and [6] and assumes that queues in the buffer are indepen-
dent of each other. The Bidimensional model was introduced by
Bianchi and Turner in [4] and assumes that all possible combi-
nations for cells to be distributed in the buffer are equally likely
(it should be mentioned that the Bidimensional model is earlier
than the URN model), and like the Aggregation model, also uses
the number of nonempty queues as one of its two state variables
of the Markov chain. It should be pointed out that in our im-
plementation of the Active Output model and URN model, as
suggested in [3], the idea of the “tagged queue” in the Tagged
Queue model is incorporated to improve the model accuracy,
that is, a queue called the “tagged queue” is singled out, and the
rest queues are modeled as a block and the behavior of
the block is obtained by the methods of different models. The
results of these models have been shown in the figures. We did
not implement the vector method as it is of exponential com-
plexity and, since it is known to be exact, it should yield the
same results as the simulations.

Fig. 7. Cell loss probability and average delay of an electronic transmit-first
switch under Bernoulli traffic when N = 16; B = 32.

From the figures, first it can be seen that our Aggregation
model is very accurate, since in every figure, its curve matches
perfectly with the simulation curve. Other models may perform
well in some occasions [for example, in Fig. 4(a)] for cell
loss probability under the ON–OFF Markovian traffic in a small
switch but also may perform not so well in other occasions (for
example, in Fig. 3) both for cell loss probability and average
delay under Bernoulli traffic in a larger switch. Therefore, we
can say that these four models are capable of giving satisfac-
tory results under some type of traffic for some performance
measures, but not for all types of traffic and all performance
measures.

An interesting phenomena that might have been noticed in
Fig. 4 is that the performances of the Active Output model,
the URN model, and the Tagged Queue model for finding
the cell loss probability are better under ON–OFF Markovian
traffic than under Bernoulli traffic. However, it is not because
the transition rates of these models are better under ON–OFF

Markovian traffic than under Bernoulli traffic. In fact, we have
found that the transition rates of these models do not agree
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very well with the simulations both under Bernoulli traffic
and under ON–OFF Markovian traffic. Similar facts with regard
to the ON–OFF Markovian traffic can also be found in [3].
The reason for this improvement is that under the ON–OFF

Markovian traffic, two more random variables describing the
state of the input were added. However, note that under ON–OFF

Markovian traffic, the average delays given by these models
are still not very good, which is because their buffer transition
probabilities are indeed not very accurate. Note that in these
models, the cell loss probability is derived only from the
tagged queue and is thus less dependent on the buffer transition
probabilities than the average delay does.

Next, we consider the complexities of the models. The
complexities of the Aggregation model, the Active Output
model, the URN model, and the Bidimensional model are all
polynomial functions of the switch size. The complexity of the
Tagged Queue model is an exponential function of the switch
size, which is explained in more details in the Appendix. The
complexities of the polynomial models are mainly determined
by the size of the state space. For Bernoulli traffic, the sizes of
the state spaces of the Active Output model, the URN model,
and the Bidimensional model are all ,
while the size of the state space of the Aggregation model is

. For ON–OFF Markovian traffic,
the sizes of the state spaces of the Active Output model and
the URN model are all ,
while the size of the state space of the Aggregation model is

. Therefore,
among the polynomial models the Aggregation model has the
highest complexity. It should be mentioned that if implemented
without the tagged queue, the Active Output model and the
URN model may use only one variable for Bernoulli traffic and
two variables for ON–OFF Markovian traffic, and the sizes of the
state spaces will be reduced to and ,
but they will be less accurate.

B. Deeper Understanding of the Aggregation Model

We have seen that the Aggregation model is very accurate.
A natural question is, Being that it is an approximation model,
why does it have such a good performance? This question
can be answered by examining the assumptions made by the
Aggregation model since the performance of an approximation
model depends on how good its assumptions approximate the
reality.

We make only two assumptions in the Aggregation model.
The first is that we assume has a Markov property where

is used to represent the state of the aggregated queues.
This assumption is not true in some cases since examples can
be found that the value of is dependent on the value of

two time slots ago. However, it can be shown that it is
still quite a good approximation. To give a quantitative measure
of the model accuracy, we define the total square error (TSE) of
a model as , where and denote
the probability that there are totally cells in the buffer found by
the model and the simulations, respectively. The distribution of
buffer occupancy is used because the cell loss probability and

TABLE I
TOTAL SQUARE ERROR (TSE) OF DIFFERENT

MODELS UNDER BERNOULLI TRAFFIC

cell delay are all derived from it. We have tried the “semianalyt-
ical model” by plugging the one-step transition matrix of
found by simulations into the program for solving the Markov
chain. Table I shows the TSE of the semianalytical model along
with other models under Bernoulli traffic where “semi,” “Bi,”
“Tri,” and “Aggr” denote the semianalytical model, the Bidi-
mensional model, the Tridimensional model (to be explained
soon), and the Aggregation model, respectively. We can see that
the buffer distribution of the semianalytical model is very close
to the simulation, since, for example, when

, the TSE of the semianalytical model is in the order
of . Note that for TSE, values in the
order of can already be considered very small since when
shown in figures, the two curves will overlap with each other
and become indistinguishable. Thus, although strictly speaking,

is not a Markov chain; it can be approximated by the
Markov chain with extremely small error.

The other assumption is the “zero external interference as-
sumption” used when deriving the transition rate of the Markov
chain. Recall that we have assumed that when considering

queues, if the number of cells that have to be buffered in
these queues, i.e., , exceeds the buffer capacity ,

cells will be dropped from them; otherwise,
no cell will be dropped from them. Note that the switch may
not actually work according to this assumption, because when

, cells from these queues may still be dropped
since other queues may be storing too many cells, and when

, more than cells may be dropped
from these queues since it may happen that other queues are not
empty and the switch decides to drop more cells from queue 1
to queue . However, the probabilities of the above events
are relatively small, and most important, as the iteration goes
on, will become larger and larger, and this assumption will
become closer and closer to the truth since the number of un-
known queues will become smaller and smaller. In the last it-
eration, , and there is indeed no interference from
external queues since there is no external queues at all.

Another question is whether the Aggregation model achieves
good performance because it uses more variables as the state of
the Markov chain. To check this, we have taken the idea of the
Bidimensional model and implemented the “Tridimensional”
model for Bernoulli traffic, which has the exactly the same state
space as the Aggregation model and can be regarded as the Bidi-
mensional model enhanced with the tagged queue idea. In the
Tridimensional model, same as the Aggregation model in the
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last iteration, the state of the switch is represented by ,
where the meanings of the random variables are exactly the
same as in the Aggregation model, and the transition of the
block with queues, i.e., , is derived according to
the Bidimensional model. The Bidimensional model is chosen
because it has better accuracy compared with other models. We
have found that the TSE of the Tridimensional model is quite
large. For example, as can be seen in Table I, when

, under Bernoulli traffic, the TSE of the Tridi-
mensional model is in the order of . Note
that values in the order of are quite large for TSE since if
shown in figures, the two distribution curves will be separated
by significant distances. The TSE of the Aggregation model, on
the other hand, is in the order of . We
have also found that the TSE of the Bidimensional to be also in
the order of and is slightly larger than that
of the Tridimensional model. Therefore, we can conclude that
1) there is very little improvement only by adding one variable
to the state space and 2) the Aggregation model outperforms the
Tridimensional model, and similarly, other models, because its
transition rate is more accurate.

VIII. CONCLUSION

In this paper, we have presented the Aggregation model for
switches with shared buffer. This model finds the behavior of
queues in the shared buffer in a step by step manner. The com-
plexity of this model is a polynomial function of the switch
size. We have conducted extensive simulations and the results
showed that the new model is very accurate. Our future work
includes further reducing the complexity of this model and con-
sidering other buffer management algorithms.

APPENDIX

In this Appendix, we analyze the complexity of the Tagged
Queue model. In the Tagged Queue model, a queue called the
“Tagged Queue” is singled out, and the rest queues are
modeled as a block. The tagged queue is a single queue, and its
behavior can be easily found. The behavior of the block con-
taining queues is described by , which is the con-
ditional probability that when there are cells in the block,
cells are ready to be transmitted. is approximated by
using the independent assumption of the queues. Let be the
number of cells stored in queue . States satisfying
are said to be in set . States in satisfying
are said to be in set , where is the step function. The
probability that the block is in state is approx-
imated by using the independence assumption: ,
where is the probability that the tagged queue is storing

cells at the beginning of a time slot which can be found ap-
proximately with the zero external interference assumption. The
probability that the block is storing cells and has cells ready
to transmit is approximated by summing probability over all the
states in . The probability that the block is storing cells is
approximated by summing probability over all the states in .

Then, is approximated as the ratio of the former over the
latter. Note that to find , one may have to go through all
the possible states of the queues. With each queue having
maximum length , it will require time. This number
could be reduced by carefully avoiding redundant states but will

still be roughly in the order of , which is still exponen-
tial [10], since the number of different states it has to visit is the
number of different ways to put indistinguishable balls into

indistinguishable boxes.
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