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Abstract

A bandwidth puzzle was recently proposed to defend agawmikiding adversaries in peer-to-peer
networks. The colluding adversaries do not do actual wotkctaim to have uploaded content for each
other to gain free credits from the system. The bandwidtizleuguarantees that if the adversaries can
solve the puzzles, they must have spent substantial batigwiite size of which is comparable to the
size of the content they claim to have uploaded for each offtezrefore, the puzzle discourages the
collusion. In this paper, we study the performance of thedbadth puzzle and give a lower bound on
the averagenumber of bits the adversaries must receive to be able t® sbk puzzles with a certain
probability. We show that our bound is tight in the sense thette exists a strategy to approach this lower
bound asymptotically within a small factor with practicaizzle parameters. The new bound gives better
security guarantees than the existing bound, and can betasgdde the choices of puzzle parameters

for practical systems.

. INTRODUCTION

A key problem in peer-to-peer (p2p) based content sharintpdsincentive for peers to contribute
bandwidth to serve other peerg],[[?], [?]. Without a robust incentive mechanism, peers may choose
not to upload content for other peers, causing the entireesy$o fail. In many applications, a peer’s
contribution is measured by the number of bits it uploadsoitver peers. It is difficult to measure the

contribution because peers may collude with each other tdrge credits. For example, if Alice and
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Bob are friends, Alice, without actually uploading, mayieiathat she has uploaded a certain amount
of bits to Bob. Bob, when asked about this claim, will attéwstttit is true because he is Alice’s friend.
Therefore, Alice gets free credits.

With the current Internet infrastructure, such collusiare difficult to detect, because the routers
do not keep records of the traffic. Recently, a bandwidth jgugzheme has been proposed solve this
problem []. In the bandwidth puzzle scheme, a central credit managdled theverifier, is assumed
to exist in the network. The verifier issues puzzles to suspenodes, calleghrovers to verify if the
claimed transactions are true. To be more specific, whenehéier suspects a set of provers for certain
transactions, it issues puzzlesnultaneouslyto all the involved provers, and asks them to send back
answers within a time threshold. The puzzle's main featares 1) it takes time to solve a puzzle and
2) a puzzle can be solved only if the prover has access to thtemb To illustrate the basic idea of
the puzzle, we may consider the previous simple example Alite and Bob. The verifier issues two
puzzles, one to Alice and one to Bob. As Alice did not uploaa ¢bntent to Bob, Alice has the content
but not Bob. When Alice receives the puzzle, she can solvgtizele and send the answer to the verifier
before the threshold, but not Bob. Neither can Bob ask helm fAlice, because Alice cannot solve two
puzzles within the threshold. Given this, Bob will fail toptg with the answer of the puzzle and the
verifier will know that the transaction did not take place.

The bandwidth puzzle can be implemented in practical systenthwart collusions. It is most suited
for real time video broadcast applications, where the \&rifan naturally reside in the source node of
the video, and the puzzles can be generated based on theswagtent currently being broadcas. [It
is desirable for the content to be fresh, because othertfiseadversaries may use out-of-band channels
to “smuggle” the content in order to game the system. For @kanif the puzzles are based on static
content, Alice may burn the content she has into DVDs and tlieen to all her friends, who may be
living in the same building. This will enable Alice’s frieado solve the puzzles, and trick the system
into believing that Alice contributed a huge amount of netwbandwidth to the system.

The construction of the bandwidth puzzle is simple and igbasly on hash functions and pseudoran-
dom functions. InP], the puzzle scheme was implemented and incorporated ipRpavideo distributing
system, and was shown to be able to limit collusions sigmifigaAn upper bound was also given for
the expected number of puzzles that can be solved givenrtiiedf the number of bits received among
the adversaries. However, the bound is “loose in severges,” as stated by the authors, because its
dominating term is quadratic to the number of adversarieh $at it deteriorates quickly as the number

of adversaries increases. In this paper, we give a much wedrbound on the performance of the puzzle.
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The new bound gives thaveragenumber of bits the adversaries must have received if theysobse the
puzzles with a certain probability. As we will prove, the eage number of bits the adversaries receive
is linear to the number of adversaries. It is also asymgticight in the sense that, for practical puzzle
parameters, there exists a strategy that approaches thiwl tasymptotically within a small factor. The
improved bound leads to more relaxed constraints on thecehuii puzzle parameters, which should in
turn improve the system performance.

The rest of this paper is organized as follows. Secfi@ndescribes the construction of the puzzle.
Section?? gives the proof of the new bound. Secti®@hdiscusses practical puzzle parameters and shows
how a simple strategy approaches the bound. Se@discusses related works. Sectidf concludes

the paper.

Il. THE CONSTRUCTION

In this section, we describe the construction of the puZiahe puzzle construction is largely the same
as [?] except one difference: allowing repeated indices in orgueace (the definition of sequence will
be given shortly), which simplifies the puzzle constructi@ve first give a high-level overview of the
puzzle construction as well as introducing some notatidhg. main parameters of the puzzle are listed

in Table??.

A. A High-level Description

The content being challenged is referred to simplycastent There aren bits in the content, each
given a unique index. Arsequenceas defined ask ordered indices chosen from theindices. Each
sequence defines a string denoteds@as called thetrue string of this sequence, which is obtained by
reading the bits in the content according to the indisescan be hashed using a hash function denoted as
hash, and the output is referred to as the hash of the sequenceanBiract a puzzle, the verifier needs
L sequences denoted ds, ..., I;, where a sequence is obtained by randomly choosing theeisdic
allowing repeat. The verifier randomly chooses one sequanueng thel sequences, denoted &s
called theanswer sequencét useshash to get the hash ofl;, denoted asﬁ, which is called théhint of
the puzzle. The puzzle is basically thesequences antd. When challenged with a puzzle, the prover
should prove that it knows which sequence hashes/intny presenting another hash bfgenerated by
hash functionans. The purpose of usingns is to reduce the communication cost, &8; may be long.
The verifier may issue puzzles to the prover and the prover has to solve the all pazatfore a time

thresholdg.
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The number of bits in the content

The number of indices in a sequence

N3

The number of sequences in a puzzle

The number of puzzles sent to a prover

N

S

The time threshold to solve the puzzles

TABLE |
LiST OF PUzZLE PARAMETERS

The strengths of the puzzle are: 1) a prover must have theeegritherwise it cannot get the true
strings of the sequences, and 2) even if the prover has therdorit still has to spend time and try
different sequences until it finds a sequence with the sarsb ha the hint, refereed to ascanfirm
event, because the hash function is one-way. In practieeyéhnifier need not generate all sequences;
it need only generate and find the hash of the answer sequ&heeverifier should not send the
sequences to the prover because this requires a large caoatiom cost; instead, the verifier and the
prover can agree on the same pseudorandom functions toagertee sequences and the verifier sends
only a key for the pseudorandom functions. Therefore, thisstruction has low computation cost and
low communication cost.

As a example, suppose = 8 and the content is 00110101. Suppdse- 4, L = 3, and the three
sequences in the puzzle afe = (6;4;8;1), I = (2;3;7;4), and I3 = (3;4;6;4). Correspondingly,
stry = 1110, stro = 0101 and str5 = 1111. Suppose the verifier choosés= 1. Supposehash is
simply the parity bit of the string, such that= 1. The prover receives the hint and generates the three
sequences, and finds that orly has parity bit 1. Supposans is simply the parity bit of every pair of

adjacent bits. The prover presents ‘01’ which proves th&hdws I; is the answer sequence.

B. Detailed Puzzle Construction

In the construction, it is assumed that the keys of the psamdiom functions and the output of the
hash functions are both bits.

Pseudorandom functions are used to generate the sequénpssudorandom function family fx }
is a family of functions parameterized by a secret key. Rbugpeaking, once initialized by a key, a
pseudorandom function generates outputs that are inglisthable from true random outputs. Two pseu-
dorandom function families are usefd} : {1,..., L} — {0,1}*} and{f% : {1,...,k} — {1,...,n}}.

Two hash functions are used in the constructieash andans. hash is used to get the hint. It actually

hashes the concatenation ofebit key, a number in the range of, L], and ak-bit string into x-bits:
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gnash | The number of hash queries allowed, determined by
Q A special oracle for hash and content queries
v The maximum number of missing bits
T The constant for th&niqueness Constraint
0 A constant representing the deviation from the megan

TABLE 2

LIST OF NOTATIONS IN THE PROOF

{0,1}% x {1,...,L} x {0,1}* — {0,1}*. To prove the security of the puzzleash is modeled as a
random oracle7]. The other hash function isns : {0,1}* — {0,1}*. Forans, only collision-resistance
is assumed.

As mentioned earlier, a puzzle consists of the Hinand L sequences. The verifier first randomly
picks a r-bit string as keyK;. Then it randomly picks a number from [1,L] as the index of the
answer sequence. With'; and/, it generatesl{g — f}ﬂ (E). Kf is used as the key foff{2 to generate
the indices in the answer sequenég= {ff{g(l) e f{g(k)}. The verifier then findstr;, and uses the
concatenation of¢, /, and str; as the input tchash and uses the output ds / « hash(K1, 7, str)).
Including K, and/ ensures that the results of one puzzle-solving processotdrnused for another
puzzle, regardless of the conteht,and L. The prover can generate sequences in the same way as the
verifier generates the answer sequence, and can comparashehthe sequences with the hint until a

confirm is found. When the prover finds@nfirm upon stringstry, it returnsans(stry).

IIl. THE SECURITY BOUND

In this section, we derive the new bound for the bandwidthzfgizAlthough the puzzle is designed
to defend against colluding adversaries, we begin with imple case when there is only one adversary
given only one puzzle, because the proof for this simple casebe extended to the case when multiple

adversaries are given multiple puzzles.

A. Single Adversary with a Single Puzzle

Consider a single adversary challenged with one puzzle. ¥gnbwith assumptions and definitions.
Some key proof parameters and notations are listed in T2®le

1) Assumptions and Definitiondn the proof, we modehash andans as random oracles and refer
to them as théhash oracleand theanswer oracle respectively. Obtaining a bit in the content is also

modeled as making a query to tlwentent oracledenoted asontent. The adversary is given access
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to hash, ans, and content. To model the computational constraint of the prover in tingtéd time 6
allowed to solve the puzzle, we assume the number of queriessh is no more thany,,sp. TO ensure
that honest provers can solve the puzzlgs, > L. However, we do not assume any limitations on the
number of queries t@ontent and ans. We refer a query t@ontent as acontent queryand a query to
hash a hash queryWe usegG to denote the algorithm adopted by the adversary. Wew$do denote
the average number of bits received by an algorithm, whereterage is taken over the random choices
of the algorithm and the randomness of the puzzle.

In our proof, we define a special oracle, as an oracle that answers two kinds of queries, both the
content query and the hash query. I&be an algorithm for solving the puzzle, when given access to
the special oracl€ and the answer orackns. If B makes a content querg) simply replies with the
content bit. In addition, it keeps the history of the contqueries made. Whefi makes a hash query
to Q for a string, if it has made content queries for more tlan V' bits in this string, we say the hash
query isinformedand uninformedotherwise, wherel” is a proof parameter much smaller thanif B
makes an informed hash query for, Q2 replies with the hash of; otherwise, it returng. In addition,
if B makes more tha hash queries for the puzzI®, will not answer further hash queries.

2) Problem Formalization:The questions we seek to answer is: givgry,, if the adversary has a
certain advantage in solving the puzzle, how many conteetigs it must make toontent on averagée In
the context of p2p content distribution, this is analogaugiving a lower bound on the average number
of bits a peer must have downloaded if it can pass the puzakecige with a certain probability. Note
that we emphasize on the average number of bits because ranoheséic bound may be trivial: if the
adversary happens to pick the answer sequence in the festgtbf hash queries, onlycontent queries
are needed. However, the adversary may be lucky once but miéely to be always lucky. Therefore,
if challenged with a large number of puzzles, the averagelbmurof queries it makes toontent must
be above a certain lower bound, which is the bound we seektablesh.

3) Proof Sketch:A sketch of our proof is as follows. As it is difficult to deritiee optimal algorithm the
adversary may adopt, our proof is “indirect.” That is, byngsi2, we introduce a simplified environment
which is easier to reason about. We show that given an ahgorior the real environment, an algorithm
for the simplified environment can be constructed with p@nnce close to the algorithm for the real
environment. This provides a link between the simplifiediemment and the real environment: knowing
the bound for the former, the bound for the latter is a consteray. We establish the performance bound
of the optimal algorithm in the simplified environment, byogling that to solve the puzzle with certain

probability, an algorithm must make a certain number of imfed hash queries t@ and the average
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number of unigue indices in the informed queries, i.e., thmiper of content queries, is bounded.
4) Proof Details: Given any algorithmG the adversaries may adopt, we construct an algorifiym
that employsy and implements oracle queries f@r 55 terminates whe terminates, and returns what

G returns. Whery makes a query3g replies as follows:

Algorithm 1 Bg answers oracle queries for
1: WhenG makes a query taontent, B makes the same content queryQoand returns the result

to G.

2. WhengG makes a query tans, Bg makes the same query tms andreturns the result tog.

3: Wheng makes a query tbash for I;:

1) Bg checks ifG has made exactly the same query before. If yesetiirns the last answer.

2) Bg checks ifG has made content queries for more than V bits in I,. If not, it returns a
random string.

3) If Bg has not made a hash query forbefore,5; makes a hash query 0. Depending on if
confirm is obtained upon this querng knows if I, is the answer sequence.llf is the answer
sequencel3g sends content queries o to get the remaining bits id,.

4) If I, is not the answer sequendg; returns a random string.

5) If the stringG submitted is the not true string df, Bg returns a random string.

6) Bg returns the hash ofl,.

Theorem 3.1:Let Cg be the event tha¥ returns the correct answer whéris interacting directly with
content, hash andans. Let Cp, be the event thaBg returns the correct answer, whg is interacting

with Q. Then,

Ghash
2V

P[Cs,] = P[Cg] -

and

Lk
w[Bg] < w[G] + ;’}as*‘ +V -1

Proof: In our constructionBg employsg, and answers oracle queries 1@r Denote the random
process ofG when it is interacting directly witttontent, hash andans as W, and denote the random
process ofG when it is interacting with the oracles implemented By as W’. We prove thatW and
W' will progress in the same way statistically with only one epiton, while the probability of this

exception is bounded.
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First, we note that wheg@ makes a query toontent or ans, Bg simply gives the query result, therefore
the only case needs to be considered is wfiemakes a query thash. WhenG makes a query foi,
to hash,

« If there are still no less tha unknown bits ini,, Bg will simply return a random string, which

follows the same distribution as the output of thesh modeled as a random oracle./It 7, such
a query will not result in aonfirm, and this will have same effect on the progress of the algorit
statistically as wheg is making a query thash. However, if¢ = /, it could happen thaf is making
a query with the true string. In this case, the exception mcclihat is, W’ will not terminate, but
W will terminate with the correct answer to the puzzle. Howetlee probability of this exception
is bounded from the above t%';—“ because if no less thali bits are unknown, the probability of
making a hash query with the true string is no more tHgh

« If Bg has made enough content queries fari3g checks if it has made hash query firbefore.

If not, Bg makes the hash query, and ifcanfirm is obtained,Bg knows that/, is the answer
sequence and gets the possible remaining bitg;imtherwiseBg knows that/, is not the answer
sequence. I, is not the answer sequendg; will simply return a random string, which will have
the same effect statistically on the progressjoés wheng is interacting withhash. If I, is the
answer sequencég checks ifG is submitting the true string, and returns a random stringoif
and the true hash otherwise. This, clearly, also has the séffied statistically on the progress 6f

as wheng is interacting withhash.

From the above discussion, we can see thafz,] is no less tharP [Cg] minus the probability of
the exception. Therefore, the first half of the theorem isvpdo We can also see that if the exception
occurs,Bg makes at mosLk more content queries than If the exception does not occusg receives
at mostV — 1 more bits tharg it encapsulates, and therefore at mést 1 bits more tharg on average
wheng is interacting directly withcontent, hash andans. ]

Theorem?? allows us to establish a connection between the “real” gugalver and the puzzle solver
interacting with(2. The advantage of introducirg is that a good algorithm will not send any uninformed
gueries taof2, because it will get no information from such queries. Ifrthes a bound on the number of
hash queries, which are all informed, it is possible to dstala lower bound on the number of unique
indices involved in such queries, with which the lower bowfdthe puzzle can be established. It is
difficult to establish such bound based bash directly becausénash answers any queries. Although

some queries are “more informed” than others, all querie® m@on-zero probabilities to geta@nfirm.
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The next theorem establishes the lower bound on the expectedber of informed hash queries to
achieve a given advantage by an optimal algorithm intargatiith Q.

Theorem 3.2:Suppose&3* is an optimal algorithm for solving the puzzle when interagtwith Q. If
B* solves the puzzle with probability no less thgron average, the number of informed hash queries it

makes is no less thaﬁw.

Proof: Let correct denote the event thd&* returns the correct answer. We have

P [correct] = P [correct | confirm] P [confirm] 4 P [correct | —confirm] P [=confirm]
= P [confirm] 4 P [correct | =confirm] P [=confirm]
< P [confirm] 4 P [correct | —confirm]
< P[confirm] + 2LV

Note thatP [correct | —confirm] < 5+ because if the algorithm returns the correct answer, it rese
the true string of the answer sequence, siaceis collision-resistant. If aonfirm was not obtained,
the answer sequence is missing no less thahits, since otherwise an optimal algorithm should make
a query which will result in aconfirm. Therefore, the probability that the algorithm can obt&ie true
string of the answer sequence is no more t@én Note that hash queries 1@ will not help in the
guessing of the true string, becaules aware of the number of missing bits and will not reply with
any information. Therefore, any algorithm that achievegaathgec in solving the puzzle must have an
advantage of no less than— QLV in getting confirm.

Let P, be the probability thas makes no hash query and Bt be the probability thaB8 stops making
hash queries after all previous queries (queries 1-tol) failed to generate aonfirm for 2 < i < L.
Consider the probability that @nfirm is obtained upon thé, query. For a given set aPy, P, ..., Py,

becausé¢ is picked at random, the probability is

e S R e 3 | ()

Therefore, the probability that the algorithm can gefoafirm is
L i

DS | CE)!

i=1 " j=1
The event that exactly queries are made occurs wheranfirm was obtained upon thg,, query, or

when all firsti queries failed to obtain theonfirm and the algorithm decides to stop making queries.
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The probability is thus
% .
1 L—1
L~ P)llg + =Pl
7j=1
Note thatPr., is not previously defined. However, é%l = 0 wheni = L, for convenience, we can
use the same expression for alk ¢ < L for any arbitrary value ofP; ;. To derive the lower bound,

we therefore need to solve the problem of minimizing
L i

SII0 - Pl + P

i=1 j=1

subject to the constraints that,” [+ [T/_, (1 — ;)] = ¢ — 5~ and0 < P, < 1.

To solve the problem, we lef; = H;Zl(l — Pj). Note thatP;;; =1 — % Therefore,

L
— %[Z(L — it i — 3 (L — i)7i411]

1 izl 1=1
= @ -+l

We therefore consider a new problem of minimizi%ngzl(L — i+ 1)n;] subject to the constraints
that Zle n; = L(e— QLV), 0<mn; <1, andn;11 <n;. The optimal value for the newly defined problem
must be no more than that of the original problem, becausevaliy assignment of P; }; gives a valid
assignment of n; };. To achieve the optimal value of the new problem, note thakifj, the coefficient
of n; is more thary; in the objective function, therefore, to minimize the oliye function, we should
reducern; and increase);. Considering tha{n; }; is nondecreasing, the optimal is achieved whemall
are set to the same vale— 5+ ), and the optimal value iéﬁﬁ;ﬂ. |

Based on Theoren??, any algorithm with an advantage efmust make no less than a certain number
of informed hash queries t@ on average. We next derive the number of unique indices invangi
number sequences. We first need the following lemma.

Lemma 3.3:Suppose indices are randomly picked amongndices, with repeat. Let” be the random

number denoting the number of unique indices amongctimaices. For any constaik < § < 1, let
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c—nln —2—

p=n(l-0)(1—en)andn= Wl) We have
P Y 6_772/2
<pl <
Y <y o

whenn — oo andc — co.
Proof: Consider the process when indices are randomly taken framdlices. LetZ; be the random
number denoting the number of samples needed to getthenique index. ClearlyP [Z; = 1] = 1. In

general,Z; follows the geometric distribution, i.e.,

) i—1.. n—i+1
P12 = j) = ()

Let p; = "=, we haveE[Z;] = .-, and Var[Z)] = 1;5’1‘. Also, {Z;}; are independent of each
other. DefineS,, = " | Z; and note thaP [\ < p] = P[S, > ¢|. Therefore, we will focus on finding
P[S, > .

Define Z; = Z; —E[Z;]. Let S|, = Y7I_| Z], clearly,P[S, > ] =P [S;L >c—y pi] As {Z!};

are independent random variables with zero mean, due to ¢émeral Limit Theorem,SL follows the

Gaussian distribution with zero mean and variahcg , 1;5"1‘ asy — oo.

We note thate > % | pi This is because

"
1 n n n n
Z_':——F — +...+T<nln s

—pi n n 1 n—pu+1 n— [
while
c>nln
e 1
& €en

Tl (-5
& oen—(1—8er +(1-0)>1

& Jen —3>0

which is true because- > 1. Therefore,

o c— STH 1L
1= i
P [S;>c—§ j—l <Ql—F—=——>)
. pl I Di
i=1 i=1"p?
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whereQ() is the Gaussian Error Integral. To simplify the result, nibizt

p—1 1 _ n=t p—1

1—]%' N T _ ni'
Z o Z (%)2 Z(n—z”)2

2
-1 Pi i'=0 i'=0
il n n—1
- TLZZ::O[(TL—Z’)2 (n—z’)2]
“Z‘:l 1
2
< n
_ 2
1 1
2 [R—
< n (n _— n)
Applying the bounds, we have
c—nln #
PIY <ypf < Q——)
/G = w)
The proof completes sino@(x) < e [?]. [ |

2mx

Note that according to the well-known Coupon Collector peal (1 — e~ =) is actually the average
number of unique indices amongindices, andj determines how fap. deviates from this value. This
lemma establishes the bound for the probability that the bmmof unique indices is less than— ¢
fraction of the average.

Let Y,/ denote the minimum number of unique indicessisequences among all possible choices of

sk—mnln —2

sequences picked fromh sequences where> 1. Let y, = n(1 —0)(1 —e=**/?) andn, = ﬁ

Based on Lemm&?, we have
2
6—775/2

—J
V271N

asn — oo andk — oo. This is because evedt’ < u, happens if one combination efsequences have

S

PIY/ <] <

less thanu, unique indices, the probability of which is bounded by Lem®®aand the total number
of combinations to picks sequences is less thaii. For a givend, we introduce a constraint called the
Uniqueness Constrairgnd a constant’:

« A set of J sequences satisfy tHgniqueness Constraint Y,/ > u, for any s < J.

« In our proof, we specifically choose™ such that all sequences in the puzzle (or in the puzzles in

the multiple adversary case) satisfy tbaiqueness Constrainwith probability no less than — Y.

Clearly, T depends ord. We discuss in Sectio? and show that for practical puzzles, wh&n< 1012,
§ can be as small a&1 while T can be as small ar)~'°.

To establish the bound, the next lemma is also needed.
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Lemma 3.4:Consider a linear programing problem of maximizi@f:0 Pie~' subject to the con-
straints thatZiL:0 P =4, Z,-LZO P, =~, P, >0,where0 <d, 0 <~ <1and0 < 3 < ~L. Denote the
optimal value of the objective function d§.(53,~), we have

(1 — e Ld)

7P

Fr(B,7) =~ —

That is, to achieve the optimal value is to et = v— 2 and P, = 2, while letting P, = 0 for 0 < i < L.

Proof: We will use induction onL. To begin with, consider wheld = 1. In this case, due to the

constraints,/; and P, can be uniquely determined & = v — § and P, = 3. Therefore,

Fi(B,7) =v— B+ B,

and the lemma is true. Suppose the lemma is trud ti# j. To getF}1(3,~), SUPpPOSEP; 1 =~y —+/,

where~’ < ~. Given this, let ‘
J

8= Ri=f-(y-7)G+1),

=0
and therefore,
Fja(By) = Fj(89)+ (v —o)e UHDe
1—eJd ;
= 7 ———F+(y—A)e U
J
_ e—ddy (s . —eid ;
= - e j)(j D iy L ge.—[ﬂ — Y+ )] +ye UV

Regardingy’ as a variable, its coefficient is

1_ (1- e_j(.i)(j +1) (it

Y

J
which is no more than 0. To see this, consider function
1—e %) (j+1 '
f(fL') 1 ( e )(j + ) o e—(g+1)m.

J
Note thatf(0) = 0, and f/(x) < 0 whenxz > 0. Therefore, to maximize the objective functiof,
should be as small as possible. Note thBf = 5 — (j + 1)y + (j + 1) and P, + P; = ~'. Therefore,
Py= (J“)V% SinceP, < +/, we havey’ > —j%. Therefore F;+1(83,7) = v—j%%—j%e‘(j“)d.
[
We next wish to bound from below the expected number of unigdiees when3 sequences form a
puzzle are picked in expectation, denoted/d®). We know that with probability no more thaf, the

sequences do not satisfy thimiqueness Constrainin which case we simply use a bound 0. Otherwise,
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let P, denote the probability that sequences are picked whee< i < L, the expected number of

unique indices should be no less than
L

(1—08)n(l —e /)P,
>

i=0
Therefore, to derive the lower bound is to maximigé , P,e~**/" subject to the constraints that
Sk Pi=(,YF,P=1,andP, > 0. Based on Lemm&?, we immediately have

Lemma 3.5:If the average number of picked sequenceg,ishen

(1—=")(1—8)n(1 —e Lk/mp
U(p) > T

asn — oo andk — oo, whered and Y are constants determined by the puzzle parameters.
We may finally assemble the parts together and obtain thecdb@uppose algorithr has an advantage
of & in solving the puzzle when receiving(G) bits on average. Based on Theoref®?, Bg has an

advantage of no less than— %3 while receiving no more than(G) + % + V —1 bits on average.

Based on Theoren®?, to achieve an advantage of at least %3, the optimal algorithn3* must make
(o— Zah o) (L+1)

at least——=5——— informed hash queries. Based on Lem@fa also considering tha* needs to
_ 9hash+1
receive onlyk — V + 1 bits per sequencé3* receives at Ieaﬂ(%) — L(V —1) bits on

average. Therefore,
Theorem 3.6:Supposeg; solves the puzzle with probability no less thanWe have

— —0n(l—e Lk/n o-_qhash+1
L [ e e AR TP R G P8

asn — oo andk — oo, wheregnash, T, V, andé are constants determined by the puzzle parameters.

B. Multiple Adversaries with Multiple Puzzles

We next consider the more complicated case when multipleradvies are required to solve multiple
puzzles. Suppose there afeadversaries, and the number of puzzles they attempt to $®l?e Note
that P is greater thamd whenz > 1.

1) Proof Sketch:The proof uses the same idea as the single adversary casealfasve extend(2
to handle multiple adversaries, whebegives the correct answer to a hash query from an adversayy onl
if the number of bits the adversary received for the sequéncgeater thark — V, regardless of the
number of bits other adversaries receivétlith similar arguments as the single adversary case, we can
establish the relationship between the algorithm perfogeavhen interacting witk? and with the real

oracles. We also obtain the average number of informed emi¢hie adversaries must make to achieve
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certain advantages when interacting with The bound is established after solving several optinopati
problems.

2) Proof Details: Suppose the adversaries run an algoriththat solves the” puzzles with probability
o while receivingw(G) bits on average. We wish to bound from belag) for a giveno. We extend
the definition ofQ and let it remember the content queries from each advergéyusel) to denote
sequencé in puzzlep wherel < p < P. If an adversary makes a hash query ffrwhile this adversary
has made content query for more thian- V' bits in 17, Q replies with the hash of?, otherwise, it
returns(). In addition, if the adversaries have made more thamash queries for a particular puzzie,
will not answer further hash queries for this puzzle.

Similar to the single puzzle case, given an algoritbnfor solving the puzzles, we construct an
algorithm Bg employingG denoted ad3g. B¢ terminates whe terminates, and returns whé@treturns.
Algorithm ?? describes how3g implements oracle queries f@f, which is very similar to the single

adversary case.

Algorithm 2 Bg answers oracle queries for
1: WhenG makes a query taontent, B makes the same content queryStand gives the result tg.

2: WhenG makes a query tans, Bg makes the same query tms and gives the result tg.

3: WhenG makes a query fof} to hash at adversary:

1) Bg checks if adversary has made exactly the same query before. If yesgtiirns the last
answer.

2) Bg checks if adversary has made content queries for more than V bits in 17, and if this
is not true, itreturns a random string.

3) If Bg has not made a hash query fi, it makes a hash query @. Depending on ifonfirm
is obtained upon this querfg knows if I} is the answer sequence of puzglelf I} is the
answer sequenc&g sends content queries o to get the remaining bits it

4) If I} is not the answer sequence of puzgle3g returns a random string.

5) If the stringG submitted is the not true string df, Bg returns a random string.

6) Bg returns the hash off}.

With very similar arguments as in Theore?f?, we have
Theorem 3.7:Let Cg be the event tha¥ returns the correct answers when it is interacting direwtt

content, hash andans. Let Cp, be the event thaBg returns the correct answers, when it is interacting
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with Q. Then,

A
P[Cis,] > P[Cg) -
and
PLk Agpas
w[Bg) < w[G] + % +(V—1)P.

Let B* denote the optimal algorithm for solving the puzzles whendlgorithm is interacting witlg2.
Note that if the probability tha8* solves all puzzles is no less thanthe probability that an individual
puzzle is solved is no less thanBased on Theorer?, if a puzzle is solved with probability no less
thane, the average number of informed hash queries made for ttaslgis no less thaﬁ“ﬁ;ﬂ.
For P puzzles, we obtain the following theorem due to the lingaoit expectation.

Theorem 3.8:If the probability thatB3* solves all puzzles is no less thanon average, the number of
informed hash queries is no less tha 5—2%2)(“1)'

Next, we wish to bound from below the number of unique indicethe involved sequences, whenever
the adversaries collectively have to madkéash queries. Here we define the unigue indices at adversary
v as the total number of unique indices in the sequences tihatkes hash queries for, and denote it as
u,. The total number of unique indices is deﬁnedgﬁz1 u,. The adversaries may assign hash queries
intelligently, such thalz;“:1 u, 1S minimized. For example, if two sequences share a largebeurof
indices, they should be assigned to the same adversaryrtNelass, we have

Lemma 3.9:If the number of queries ig" and if the involved sequences satisfy thimiqueness

Constraint

A
Z’LLU > (1 — 5)n[t(1 _ e“]hashk/n) + (1 - e—(T_qhasht)k‘/n)]
v=1

asn — oo andk — oo, where| z |~ denotes the largest integer no more thaandt =| 7'/ qnash |~ -

Proof: Suppose the number of hash queries made by adversiary,. We have

A A
Dy =D (1= d)n(1 —e kM)
v=1 v=1

Therefore, to minimiz&_ % «, is to maximize}_:. , e~***/" subject to the constraints that: , s, =
T and0 <8y < Ghash-
We claim that the optimal is achieved whenis set to begpasn for 1 < i@ <| T'/gnash |~, Which we

show by induction on the number of adversaries. First cansichenA = 2. If T' < ghash, We claim that
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22 1 ek/" is maximized whers; = T and s, = 0, which is because for any valig, and ss,

1=

(1 + e—Tk/n) - (e—slk/n + e—SQk/n)
_ (1 o e—slk/n)(l o 6—32k/n)

> 0.

Similarly, if ghash < T < 2¢hash» Z;“zl e~sik/m ijs maximized wherms; = gnash @andss = T — ghash, Which

is because for any valid; and so,

(e_qhashk/n + e—(T—(Ihash)k/n) _ (e—slk/n + e—SQk/n)

= (1 _ e(_sl+T_‘Ihash)k/”)(e(—T“r(Ihash)k/n - e—SQk/n)
> 0.

Therefore our claim is true fod = 2. Suppose our claim is true fot = j. For A = j + 1, suppose in
the optimal assignmens,;,; = 0. Then, our claim is true based on the induction hypothegig the
optimal assignments;; > 0, we argue that in the optimal assignmesit= gnasn for all 1 < i < j,
therefore our claim is still true. This becauseif< gn.s, fOor somei, we can increase; while decreasing
sj+1. Using similar arguments as for the case whg- 2, this will increase the objective function, thus
violating the fact that the assignment is optimal. |

Similar to the single adversary case, if the average numbmfarmed hash queries i8, we need to
bound from below the average number of unique indices inlelved sequences, denoted(a&3).

Lemma 3.10:Consider when the adversaries are givepuzzles. If the average number of informed
hash queries ig, asn — oo andk — oo,

U(ﬂ) > (1 — T)(l - 5)715(1 — e—Qhashk/n)

Ghash

Proof: Similar to the arguments leading to LemrfA&, the involved sequences do not satisfy the
Unigueness Constraintith probability no more thaf(', in which case we simply use a bound 0. In the
rest we focus on the case when taiqueness Constraing satisfied.

Denote the probability that there arejueries asP;, where0 < i < PL. For notational simplicity, in

the proof for this lemma, we let = k/n. Based on Lemm&?, we want to bound from below

PL |
Z Pi[(ti — 1)(1 — e_qhashd) + (1 _ e_[l_(Ihash(ti—l)]d)]
=0
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under the constraints thgf%Pz = 0, Z P, =1, and P, > 0, wheret; is an integer satisfying
(t; — 1)gnash < i < tighash- TO SOlve this problem, suppoge is the minimum integer satisfyin@L <

Chash — 1, we relax the problem to minimizing

thash_l
U= Z PZ[(tz — 1)(1 — e_qhas"d) 4+ (1 — e_[i_qhash(ti—l)]d)]
1=0

under the same constraints tHa %" P;i = 8, .%%=~1 p, = 1, and P, > 0.
The optimal value of the relaxed problem will be no more thiae bptimal value of the original

problem. To solve the relaxed problem, let
Bom 30 Bl e 1 (1 bty
i=(5—1)Ghasn
for 1 <s < C. Clearly, ¥ = 3¢ v,
Suppose a set ofys}s and{f3s}s are given Wherer:1 vs=1and Zle Bs = (3. The set of{~s}
and{fs}s are calledfeasibleif it is possible to find{P;}; such that

SQhash — 1

> Pi=n,

i= (S 1)qhash
and

thash_l

Z Pii:ﬁs

i:(S_l)qhash
for all 1 < s < C. Note that{~s}s and{3;}s are feasible if and only if

(8 - 1)Qhash')/s < Bs < (thash — 1)')/3,

When{+s}s and{fs}s are given and are feasible, to minimigeis to minimize each individua¥ .

Note that
SQhash— 1
U, = yl(s—DA—e®p1]— Y Pe il
i=(5—1)Ghash
Qhash—1
= l(s — 1)(1 — em M=y 4 Z (s 1) 4hE ~hd

whereh =i — ghash(s — 1). Note that if
SQhash— 1
> Ri=p,
1=(5—1)qhash

then
Qhash — 1

Z Ghash (S— 1)+hh = 65 - (S - 1)Qhash75'
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Denote the minimum value o¥ for given~, and 3, as e Applying Lemma??,
1 — e_(qhash_l)d

\I/;{sﬂs = [(s =11 - e_qhaShd) + 1] = s+ 118s — (5 = 1)qhashs]
Ghash — 1
_(qhash_l)d 1 1 — _(qhash_l)d
Qh he ~hash €
= (s = [ et ]+ 18s
Ghash — 1 Ghash — 1 Ghash — 1
Let
o — qhashe_(qhash—l)d - e_qhashd - 1

Ghash — 1 Ghash — 1

and
1 — e_(qhash_l)d
B Ghash — 1

we have

C C
U= U =840 (s—1)7.
s=1 s=1

We also note that < 0, which is because function
_ qhashe—(%ash—l)m e 1

Ghash — 1 Ghash — 1
is 0 whenz = 0, while f'(z) < 0 for z > 0. Therefore, finding the minimum value df is equivalent

f(z)

to finding a set of feasibléy, }, and {f,}, such thaty"¢" (s — 1)y, is maximized.

We consider the problem of maximizing

R=Y) (s—1)ys

C
=1

s

subject to the constraints that

(3 - 1)Qhash’Ys S 58 S (SQhash - 1)787

C
> =1,
s=1

C

> Be=8,
s=1

where0 <~ <1 and0 < 8 < v(Cgnash — 1). Denote the maximum value d? as R*. We claim that

o If (C —1)ghashy < B, R* = v(C — 1) and the optimal is achieved wher: = v, 8o = 3, while

v =0andg; =0 for1<s<C;

o If (C—1)gpashy > 3, R* = B and the optimal value is achieved when = v — 7(0—%%@'

Qhash

51:O,’yc:ﬁ,ﬁc:ﬁ,while’ys:()andﬁs:OfOI’1<S<C.

To show this, we use induction afi. First, whenC' = 2, W = ~,. Note that
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o If grashy < 3, we can lety, = v, 8, = 3, while 4y = 0 and; = 0, in which casey; is maximized,
while all constraints are satisfied;

o If ghashy > B, note that for any givernds, 72 < 22 < 2. When 8 < gnashy, We may let

Ghash  —  Ghash ©

N =7—7= /=0, = 2, B = B, such that all constraints are satisfied, whilgis
maximized.
Therefore, our claim is true whefi = 2. Suppose the claim is true tifl' = j. WhenC = j + 1,
o If jgnashy < B, we may lety; 1 =, Bj+1 = 5, and letyy, = 0 and 3, = 0 for 1 < s < j, such
that all constraints are satisfied. In this caBes jv. SinceR < jv, we haveR* = j~.
o If jgnasny > B, given any valid assignmerity,}, and {3}, let 57 _ v, =+ and>/_, 3, = /..

~" and 3’ must satisfy

(v = )jahash < (B =5 < (v =) + 1)hash — 1]

and
B <9 (janash — 1)
— If (j—1)gnashy’ < ', based on the induction hypothesis, the maximum valugbf (s — 1)
is (j — 1)/, and hence
R<jy—o

Because

(v = 9")dhash < (6~ 6'),
we have

/
s B8

JQhash JQhash ‘

As (] - 1)Qhash7/ < ﬁly we have

v > ) — -
Ghash
Therefore,

R<ﬁ.

" Ghash
— If (j—1)gnashy’ > ', based on the induction hypothesis, the maximum valygbf , (s — 1),

is 2~ and hence
Qhash

/
R<ﬁ

< + (v =5
Ghash
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Since(y —+)j < 22, we have
R < b .
Ghash

Note thatR achievesﬁ wheny, =~ — jqish, Br =0, yj41 = ]q% Bj+1 = /3, while 4, = 0 and

B, =0 for 1 < s < j. Therefore,R* = -2

Qhash ’

Note that actually, in the first case Whé@.shy < 3, jv < B therefore we also havg* < -2

Ghash Ghash
Hence,

W > bﬁ +a /8 _ /8(1 — e_qhashd)’

Ghash Ghash

which completes our proof. [ |
Similar to single puzzle case, we may now put things togetBepposg; has an advantage of in

solving the puzzles when receivingG) bits on average. Based on Theoreéf, 5g has an advantage of

no less thamw — % while receiving no more than(G) + %‘V‘q“““ + (V —1)P bits on average. Based

on Theorem ??, to achieve an advantage of at least % the optimal algorithmB* must make at

P(o— et ) (L4+1) . . .
least 25 informed hash queries. Based on Lemfifa also considering tha8* needs to
Adhash 1
receive onlyk — V + 1 bits per sequencei* receives at Ieasﬂ/*(P(U_ 25 XLH)) — PL(V —1) bits

on average. Therefore,
Theorem 3.11:SupposeA adversaries are challenged with puzzles. Suppos€ solves the puzzle
with probability no less tham. We have

L =1 - nPlo — A1) ([, 1 1)(1 — e~ Beh/7)

PLkAQhash
w(G) > .
( ) 2(]hash

2V P

—P(L+1)(V—-1)—

asn — oo andk — oo, wheregnash, T, V, andé are constants determined by the puzzle parameters.

IV. DISCUSSIONS

In this section we discuss the bound and its practical imptas. We begin by considering a simple

strategy the adversaries may adopt to be compared with thiedoo

A. A Simple Adversary Strategy

We note that there exists a simple strategy the adversaagsadopt, referred to as thdl-Or-Nothing
(AON) Strategy

« When challenged withP puzzles, the adversaries flip a coin and decide whether otonsblve

all puzzles. They attempt with probability; otherwise they simply ignore all puzzles.is called

the attempt probability If they decide to solve the puzzles, the adversities s 311) members,
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called theactive adversarieswherer is a constant slightly larger than 1, such as 1.01. Each of

active adversary gets the entire content, and makgs hash queries. For each puzzle, the active

adversaries make hash queries for the sequences one by tine esmfirm is obtained.

We note that the number of adversaries must be no Iessﬁarsuch that the adversaries can always
find the required number of active adversaries. This is bee#lue puzzle parameters should be selected
such thatg,.sp > 2L to ensure an honest prover can solve the puzzle.

We now analyze the performance of AON strategy. We argue that

Lemma 4.1:According AON strategy, a$ — oo, the probability that the adversaries can solve the
puzzles asymptotically approaches 1 if they decide to mh&eattempt.

Proof: Note that to obtain aonfirm for a puzzle according to the AON strategy, the number of
hash queries follows a uniform distribution [, L] and is independent of other puzzles. Denote the
total number of hash queries to obtaionfirm for all puzzles ask. R is a random variable with mean
@ and variancew. As P — oo, due to the Central Limit Theorem, the distribution Bf
approaches a Gaussian distribution. On the other handctive adversaries can make a total—ﬁ%ﬂ
hash queries. As > 1, it can be verified that the adversaries can obtainfirm for all puzzles with
probability asymptotically approaching 1. [ |

Note that if the adversaries decide to make the attempt, ribey to download% bits in total.

If they attempt to solve the puzzles for only fraction of the time, they downloaé% bits in
expectation.

The following theorem summaries the above discussions.

Theorem 4.2:According the AON strategy, aB — oo, the probability that the adversaries can solve

wrnP(L+1)

all puzzles asymptotically approacheswhile downloading GT—

bits in expectation.

Remark 4.3:w is basically the advantage of the adversaries. Replacingl heorem?? with w, noting
that 7 is only slightly greater than 1, the expected number of doadéd bits according to the AON
strategy is a small fraction from the bound in Theor@thas P — oo, n — oo, andk — oo, if the
following conditions are true:

1) Y is small comparing to 1,

2) ¢ is small comparing to 1,

3) e~=k/" is small comparing to 1,

4) 2V is much larger thamgnash,

5) 2V is no less thark Aghash,

6) V is much smaller thar.
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B. Puzzle Parameter Space

We show that there are a wide range of puzzle parameter§ysadishe conditions in RemarR?. We
considern > 107 andk > 10%, which can be considered as large enough for the conditiotisei proofs
to hold. In the following we use an example to illustrate theices of parameters whet < 10°; the
parameters can be similarly determined for other valued.ofoncerning the conditions,

« For Conditions 1 and 2, we let = 0.1. The total number of sequencesAs L. We find numerically
that whenA4 < 105, 2L < 107, § = 0.1, n = 107, k = 10%, the probability that a combination of
sequences do not satisfy thimiqueness Constrairis no more thari0~'°, thereforeY can be set
to as small ad0~1°,

« For Condition 3, we letn,sn > 22, noting thate=* = 0.018.

« For Conditions 4, 5, 6, we le¥/ = 60. Condition 4 is satisfied wheg,.s, < 107. Condition 5 is
satisfied wherk < 10°. Condition 6 is satisfied becauge> 10*.

Therefore, as long as

e n>107,10° > k> 10%, 107 > Lz, 107 > gnash > 2,
our bound is tight in the sense that it is a small fraction fribhb number of downloaded bits according
to the AON strategy.

For example, Figur@? shows the average number of downloaded bits by the AON giraad the
lower bound as a function of the number of adversaries féemint content sizes, when= 1, 7 = 1.01,

T =107, 6 =0.1, V =60, k = 10*, ghash = 4n/k and Lz = qn.sn/2. We can see that they differ
only by a small constant factor. We have tested other pammeatisfying the constraints and the results

show similar trends.

C. Puzzle Parameter Space in Practice
We also note that the parameter space is not restrictiveaatipe:

« n can be set td0” or higher in practice. Considering the data rate of vide@mdoast, this leads to
a challenge rate in the order of 10 seconds or higher, whiclhelieve to be acceptable.

« k may be set td0*. k should be as small as possible, because a larger valueesiults in a heavier
load of the verifier.

« Concerning requiremerit)” > Lz, we note that for practical puzzleg is unlikely to be greater
than 107, due to the computation cost of hash queries. There are me tonsuming tasks when

making hash queries, namely the hash function call and therggon of the random indices. The
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Fig. 1. Comparison of the average number of downloaded pithié AON strategy and the bound. (&)= 107. (b). n = 10°.

choices of hash function and random number generator harediscussed in?]. Basically, secure
hash functions such as SHA-1 can be used as the hash funatiobl@ck ciphers such as AES can
be used to generate the random indices. The optimizatioheopuzzle implementation is out of
the scope of this paper. We here show the speed of severaimeach Emulab ?] when executing
the SHA-1 hash and the AES encryption in the Openssl librafysummarized in Tabl@?, when
the input to SHA-1 is10? bits and the AES is 128 bits. We can see that it will take toalewen
for the fastest machine to finist)” SHA-1 hash queries and the required AES calls for random
numbers.

« Concerning requiremen’ > gnash > 22, we note thatl0” > ghasn for the same reason a9’ >
Lz. As 10 gnasn > 22, we note that ifn = 107 and k = 10%, this is equivalent tayn,s, > 4 x 10°.
Based on our experiments in Emulab, it is possible for megast machines such as pc3000 and
pc2000 to finish such number of queries in the order of secdntie random number generation

can be further optimized.

We also make some additional remarks concerning the regairts for puzzle parameters, which are
not related to the validity of the bound but important in pige First, the puzzle solving time should

be in the order of seconds to accommodate issues such asrkeatelay fluctuations. As a resulf,z
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| machine] cPu | sHAL [ AEs |

pc3000 | 3.0GHz 64-bit| 202165 | 4059157
pc2000 2.0GHz 71016 | 2605490
pc850 850MHz 39151 | 1086667
pc600 600MHz 29064 | 789624

TABLE 3

SHA-1AND AES FUNCTION CALLS EXECUTED IN ONE SECOND

should be selected such that it takes non-trivial time to enk hash queries. Second, as mentioned

earlier,# should be selected such thats, is greater thar.z.

V. RELATED WORK

Using puzzles has been proposed (e.g., %, [[7], [?], [?], [?]) to defend against email spamming or
denial of service attacks. In these schemes, the clienteegtéred to spend time to solve puzzles before
getting access to the service. The purpose of the bandwidthl is to verify if the claimed content
transactions took place, where the ability to solve the |aszis tied to the amount of content actually
downloaded. As such, the construction of the bandwidth leuiszdifferent from existing puzzles.

Proofs of Data Possession (PDP) (e.g], [?], [?], [?]) and Proofs of Retrievability (POR) (e.g3]]

[?], [?]) have been proposed, which allow a client to verify if theadhas been modified in a remote
store. As discussed ir?], the key differences between PDP/POR schemes and the thdwuzzle
include the following. Fundamentally, the PDP/POR scheamasthe bandwidth puzzle are designed for
different systems. The PDP/POR schemes consider a useuccityy the content to a server, and require
the server to prove the possession or retrievability of thretent while the user does not keep the content
after outsourcing. The bandwidth puzzle considers a verdiel many provers where the provers may
be colluding. The bandwidth puzzle assumes that the vekieps the content, and requires the provers
to prove that they all possess the same content as an eviflent®e claimed data transfer over the
network. The PDP/POR schemes and the bandwidth puzzle fisesdt techniques and are optimized
for different system requirements. In particular, the FB®R schemes and the bandwidth puzzle have
very different per challenge cost ratios between the verdiel the prover, where the costs include the
challenge generation/verification cost for the verifier #ralchallenge response cost for the prover. In the
existing PDP/POR schemes, the ratio is a constant not far frpi.e., the verifier and the prover incur

similar costs per challenge, because the existing PDP/RsDBnges are designed for the one-verifier-
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one-prover scenarios. In the bandwidth puzzle, becauseettifier handles many provers simultaneously,
the ratio is much smaller, i.e., /2 in expectation. The proof techniques for the existing POHRP
schemes are also different from the proof techniques uséusrpaper, because the PDP/POR schemes
considers a single prover while the bandwidth puzzle camsidhany provers who may be colluding.

In our earlier work ?], an upper bound was given on the expected number of puzztscan be
solved if the adversaries are allowed a certain number di Qasries and content queries. In this work,
we remove the assumption on the maximum number of contemieguVith less assumptions, our proof
is less restrictive and applies to more general cases. Tivepneblem is different from the problem
studied in ], and new techniques have been developed to establish thedbbdlote that although the
adversaries are allowed to download as many bits as they, wisly prefer to employ an intelligent
algorithm to minimize the number of downloaded bits. The @und guarantees that, if the adversaries
wish to have a certain advantage in solving the puzzlese theists a lower bound on the average number
of bits they have to download, regardless of the algorithay thdopt.

We published a shorter, conference version of this work?h This paper contains substantially
extended content compared to the conference version, ieipebe detailed analysis on the multiple

adversary case.

VI. CONCLUSIONS

In this paper, we prove a new bound on the performance of theliidth puzzle which has been
proposed to defend against colluding adversaries in p2fenbdistribution networks. Our proof is based
on reduction, and gives the lower bound of the average numib@ownloaded bits to achieve a certain
advantage by the adversaries. The bound is asymptotiéghy in the sense that it is a small fraction
away from the average number of bits downloaded when foligvei simple strategy with practical puzzle
parameters. The new bound is a significant improvement &neexisting bound which is derived under
more restrictive conditions and is much looser. The impdaveund can be used to guide the choices of

better puzzle parameters for practical systems.
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