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Abstract

A bandwidth puzzle was recently proposed to defend against colluding adversaries in peer-to-peer

networks. The colluding adversaries do not do actual work but claim to have uploaded content for each

other to gain free credits from the system. The bandwidth puzzle guarantees that if the adversaries can

solve the puzzles, they must have spent substantial bandwidth, the size of which is comparable to the

size of the content they claim to have uploaded for each other. Therefore, the puzzle discourages the

collusion. In this paper, we study the performance of the bandwidth puzzle and give a lower bound on

the averagenumber of bits the adversaries must receive to be able to solve the puzzles with a certain

probability. We show that our bound is tight in the sense thatthere exists a strategy to approach this lower

bound asymptotically within a small factor with practical puzzle parameters. The new bound gives better

security guarantees than the existing bound, and can be usedto guide the choices of puzzle parameters

for practical systems.

I. INTRODUCTION

A key problem in peer-to-peer (p2p) based content sharing isthe incentive for peers to contribute

bandwidth to serve other peers [?], [?], [?]. Without a robust incentive mechanism, peers may choose

not to upload content for other peers, causing the entire system to fail. In many applications, a peer’s

contribution is measured by the number of bits it uploads forother peers. It is difficult to measure the

contribution because peers may collude with each other to get free credits. For example, if Alice and
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Bob are friends, Alice, without actually uploading, may claim that she has uploaded a certain amount

of bits to Bob. Bob, when asked about this claim, will attest that it is true because he is Alice’s friend.

Therefore, Alice gets free credits.

With the current Internet infrastructure, such collusionsare difficult to detect, because the routers

do not keep records of the traffic. Recently, a bandwidth puzzle scheme has been proposed solve this

problem [?]. In the bandwidth puzzle scheme, a central credit manager,called theverifier, is assumed

to exist in the network. The verifier issues puzzles to suspected nodes, calledprovers, to verify if the

claimed transactions are true. To be more specific, when the verifier suspects a set of provers for certain

transactions, it issues puzzlessimultaneouslyto all the involved provers, and asks them to send back

answers within a time threshold. The puzzle’s main featuresare: 1) it takes time to solve a puzzle and

2) a puzzle can be solved only if the prover has access to the content. To illustrate the basic idea of

the puzzle, we may consider the previous simple example withAlice and Bob. The verifier issues two

puzzles, one to Alice and one to Bob. As Alice did not upload the content to Bob, Alice has the content

but not Bob. When Alice receives the puzzle, she can solve thepuzzle and send the answer to the verifier

before the threshold, but not Bob. Neither can Bob ask help from Alice, because Alice cannot solve two

puzzles within the threshold. Given this, Bob will fail to reply with the answer of the puzzle and the

verifier will know that the transaction did not take place.

The bandwidth puzzle can be implemented in practical systems to thwart collusions. It is most suited

for real time video broadcast applications, where the verifier can naturally reside in the source node of

the video, and the puzzles can be generated based on the unique content currently being broadcast [?]. It

is desirable for the content to be fresh, because otherwise,the adversaries may use out-of-band channels

to “smuggle” the content in order to game the system. For example, if the puzzles are based on static

content, Alice may burn the content she has into DVDs and givethem to all her friends, who may be

living in the same building. This will enable Alice’s friends to solve the puzzles, and trick the system

into believing that Alice contributed a huge amount of network bandwidth to the system.

The construction of the bandwidth puzzle is simple and is based only on hash functions and pseudoran-

dom functions. In [?], the puzzle scheme was implemented and incorporated into ap2p video distributing

system, and was shown to be able to limit collusions significantly. An upper bound was also given for

the expected number of puzzles that can be solved given the limit of the number of bits received among

the adversaries. However, the bound is “loose in several respects,” as stated by the authors, because its

dominating term is quadratic to the number of adversaries such that it deteriorates quickly as the number

of adversaries increases. In this paper, we give a much improved bound on the performance of the puzzle.

April 7, 2012 DRAFT



3

The new bound gives theaveragenumber of bits the adversaries must have received if they cansolve the

puzzles with a certain probability. As we will prove, the average number of bits the adversaries receive

is linear to the number of adversaries. It is also asymptotically tight in the sense that, for practical puzzle

parameters, there exists a strategy that approaches this bound asymptotically within a small factor. The

improved bound leads to more relaxed constraints on the choice of puzzle parameters, which should in

turn improve the system performance.

The rest of this paper is organized as follows. Section?? describes the construction of the puzzle.

Section?? gives the proof of the new bound. Section?? discusses practical puzzle parameters and shows

how a simple strategy approaches the bound. Section?? discusses related works. Section?? concludes

the paper.

II. T HE CONSTRUCTION

In this section, we describe the construction of the puzzle.The puzzle construction is largely the same

as [?] except one difference: allowing repeated indices in one sequence (the definition of sequence will

be given shortly), which simplifies the puzzle construction. We first give a high-level overview of the

puzzle construction as well as introducing some notations.The main parameters of the puzzle are listed

in Table??.

A. A High-level Description

The content being challenged is referred to simply ascontent. There aren bits in the content, each

given a unique index. Ansequenceis defined ask ordered indices chosen from then indices. Each

sequence defines a string denoted asstr , called thetrue string of this sequence, which is obtained by

reading the bits in the content according to the indices.str can be hashed using a hash function denoted as

hash, and the output is referred to as the hash of the sequence. To construct a puzzle, the verifier needs

L sequences denoted asI1, . . . , IL, where a sequence is obtained by randomly choosing the indices,

allowing repeat. The verifier randomly chooses one sequenceamong theL sequences, denoted asIℓ̂,

called theanswer sequence. It useshash to get the hash ofIℓ̂, denoted aŝh, which is called thehint of

the puzzle. The puzzle is basically theL sequences and̂h. When challenged with a puzzle, the prover

should prove that it knows which sequence hashes intoĥ, by presenting another hash ofIℓ̂ generated by

hash functionans. The purpose of usingans is to reduce the communication cost, asstr ℓ̂ may be long.

The verifier may issuez puzzles to the prover and the prover has to solve the all puzzles before a time

thresholdθ.
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n The number of bits in the content

k The number of indices in a sequence

L The number of sequences in a puzzle

z The number of puzzles sent to a prover

θ The time threshold to solve the puzzles

TABLE I

L IST OF PUZZLE PARAMETERS

The strengths of the puzzle are: 1) a prover must have the content, otherwise it cannot get the true

strings of the sequences, and 2) even if the prover has the content, it still has to spend time and try

different sequences until it finds a sequence with the same hash as the hint, refereed to as aconfirm

event, because the hash function is one-way. In practice, the verifier need not generate all sequences;

it need only generate and find the hash of the answer sequence.The verifier should not send theL

sequences to the prover because this requires a large communication cost; instead, the verifier and the

prover can agree on the same pseudorandom functions to generate the sequences and the verifier sends

only a key for the pseudorandom functions. Therefore, this construction has low computation cost and

low communication cost.

As a example, supposen = 8 and the content is 00110101. Supposek = 4, L = 3, and the three

sequences in the puzzle areI1 = (6; 4; 8; 1), I2 = (2; 3; 7; 4), and I3 = (3; 4; 6; 4). Correspondingly,

str1 = 1110, str 2 = 0101 and str3 = 1111. Suppose the verifier choosesℓ̂ = 1. Supposehash is

simply the parity bit of the string, such thatĥ = 1. The prover receives the hint and generates the three

sequences, and finds that onlyI1 has parity bit 1. Supposeans is simply the parity bit of every pair of

adjacent bits. The prover presents ‘01’ which proves that itknowsI1 is the answer sequence.

B. Detailed Puzzle Construction

In the construction, it is assumed that the keys of the pseudorandom functions and the output of the

hash functions are bothκ bits.

Pseudorandom functions are used to generate the sequences.A pseudorandom function family{fK}
is a family of functions parameterized by a secret key. Roughly speaking, once initialized by a key, a

pseudorandom function generates outputs that are indistinguishable from true random outputs. Two pseu-

dorandom function families are used:{f1
K : {1, . . . , L} → {0, 1}κ} and{f2

K : {1, . . . , k} → {1, . . . , n}}.
Two hash functions are used in the construction,hash andans. hash is used to get the hint. It actually

hashes the concatenation of aκ-bit key, a number in the range of[1, L], and ak-bit string into κ-bits:
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qhash The number of hash queries allowed, determined byθ

Ω A special oracle for hash and content queries

V The maximum number of missing bits

Υ The constant for theUniqueness Constraint

δ A constant representing the deviation from the mean

TABLE 2

L IST OF NOTATIONS IN THE PROOF

{0, 1}κ × {1, . . . , L} × {0, 1}k → {0, 1}κ. To prove the security of the puzzle,hash is modeled as a

random oracle [?]. The other hash function isans : {0, 1}k → {0, 1}κ. For ans, only collision-resistance

is assumed.

As mentioned earlier, a puzzle consists of the hintĥ and L sequences. The verifier first randomly

picks a κ-bit string as keyK1. Then it randomly picks a number̂ℓ from [1, L] as the index of the

answer sequence. WithK1 and ℓ̂, it generatesK ℓ̂
2← f1

K1
(ℓ̂). K ℓ̂

2 is used as the key forf2
K2

to generate

the indices in the answer sequence:Iℓ̂ = {f2
K ℓ̂

2

(1) . . . f2
K ℓ̂

2

(k)}. The verifier then findsstr ℓ̂, and uses the

concatenation ofK1, ℓ̂, and str ℓ̂ as the input tohash and uses the output aŝh: ĥ← hash(K1, ℓ̂, str ℓ̂).

Including K1 and ℓ̂ ensures that the results of one puzzle-solving process cannot be used for another

puzzle, regardless of the content,k, andL. The prover can generate sequences in the same way as the

verifier generates the answer sequence, and can compare the hash of the sequences with the hint until a

confirm is found. When the prover finds aconfirm upon stringstr ℓ, it returnsans(str ℓ).

III. T HE SECURITY BOUND

In this section, we derive the new bound for the bandwidth puzzle. Although the puzzle is designed

to defend against colluding adversaries, we begin with the simple case when there is only one adversary

given only one puzzle, because the proof for this simple casecan be extended to the case when multiple

adversaries are given multiple puzzles.

A. Single Adversary with a Single Puzzle

Consider a single adversary challenged with one puzzle. We begin with assumptions and definitions.

Some key proof parameters and notations are listed in Table??.

1) Assumptions and Definitions:In the proof, we modelhash and ans as random oracles and refer

to them as thehash oracleand theanswer oracle, respectively. Obtaining a bit in the content is also

modeled as making a query to thecontent oracledenoted ascontent. The adversary is given access
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to hash, ans, and content. To model the computational constraint of the prover in the limited time θ

allowed to solve the puzzle, we assume the number of queries to hash is no more thanqhash. To ensure

that honest provers can solve the puzzle,qhash ≥ L. However, we do not assume any limitations on the

number of queries tocontent and ans. We refer a query tocontent as acontent queryand a query to

hash a hash query. We useG to denote the algorithm adopted by the adversary. We useω() to denote

the average number of bits received by an algorithm, where the average is taken over the random choices

of the algorithm and the randomness of the puzzle.

In our proof, we define a special oracle,Ω, as an oracle that answers two kinds of queries, both the

content query and the hash query. LetB be an algorithm for solving the puzzle, when given access to

the special oracleΩ and the answer oracleans. If B makes a content query,Ω simply replies with the

content bit. In addition, it keeps the history of the contentqueries made. WhenB makes a hash query

to Ω for a string, if it has made content queries for more thank−V bits in this string, we say the hash

query is informedanduninformedotherwise, whereV is a proof parameter much smaller thank. If B
makes an informed hash query forIℓ, Ω replies with the hash ofIℓ; otherwise, it returns∅. In addition,

if B makes more thanL hash queries for the puzzle,Ω will not answer further hash queries.

2) Problem Formalization:The questions we seek to answer is: givenqhash, if the adversary has a

certain advantage in solving the puzzle, how many content queries it must make tocontent on average? In

the context of p2p content distribution, this is analogous to giving a lower bound on the average number

of bits a peer must have downloaded if it can pass the puzzle challenge with a certain probability. Note

that we emphasize on the average number of bits because a deterministic bound may be trivial: if the

adversary happens to pick the answer sequence in the first attempt of hash queries, onlyk content queries

are needed. However, the adversary may be lucky once but may unlikely to be always lucky. Therefore,

if challenged with a large number of puzzles, the average number of queries it makes tocontent must

be above a certain lower bound, which is the bound we seek to establish.

3) Proof Sketch:A sketch of our proof is as follows. As it is difficult to derivethe optimal algorithm the

adversary may adopt, our proof is “indirect.” That is, by using Ω, we introduce a simplified environment

which is easier to reason about. We show that given an algorithm for the real environment, an algorithm

for the simplified environment can be constructed with performance close to the algorithm for the real

environment. This provides a link between the simplified environment and the real environment: knowing

the bound for the former, the bound for the latter is a constant away. We establish the performance bound

of the optimal algorithm in the simplified environment, by showing that to solve the puzzle with certain

probability, an algorithm must make a certain number of informed hash queries toΩ and the average
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number of unique indices in the informed queries, i.e., the number of content queries, is bounded.

4) Proof Details: Given any algorithmG the adversaries may adopt, we construct an algorithmBG
that employsG and implements oracle queries forG. BG terminates whenG terminates, and returns what

G returns. WhenG makes a query,BG replies as follows:

Algorithm 1 BG answers oracle queries forG
1: WhenG makes a query tocontent, BG makes the same content query toΩ and returns the result

to G.

2: WhenG makes a query toans, BG makes the same query toans and returns the result toG.

3: WhenG makes a query tohash for Iℓ:

1) BG checks ifG has made exactly the same query before. If yes, itreturns the last answer.

2) BG checks ifG has made content queries for more thank − V bits in Iℓ. If not, it returns a

random string.

3) If BG has not made a hash query forIℓ before,BG makes a hash query toΩ. Depending on if

confirm is obtained upon this query,BG knows if Iℓ is the answer sequence. IfIℓ is the answer

sequence,BG sends content queries toΩ to get the remaining bits inIℓ.

4) If Iℓ is not the answer sequence,BG returns a random string.

5) If the stringG submitted is the not true string ofIℓ, BG returns a random string.

6) BG returns the hash ofIℓ.

Theorem 3.1:Let CG be the event thatG returns the correct answer whenG is interacting directly with

content, hash andans. Let CBG
be the event thatBG returns the correct answer, whenBG is interacting

with Ω. Then,

P [CBG
] ≥ P [CG ]− qhash

2V
,

and

ω[BG ] ≤ ω[G] +
Lkqhash

2V
+ V − 1.

Proof: In our construction,BG employsG, and answers oracle queries forG. Denote the random

process ofG when it is interacting directly withcontent, hash and ans as W , and denote the random

process ofG when it is interacting with the oracles implemented byBG asW ′. We prove thatW and

W ′ will progress in the same way statistically with only one exception, while the probability of this

exception is bounded.
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First, we note that whenG makes a query tocontent or ans, BG simply gives the query result, therefore

the only case needs to be considered is whenG makes a query tohash. WhenG makes a query forIℓ

to hash,

• If there are still no less thanV unknown bits inIℓ, BG will simply return a random string, which

follows the same distribution as the output of thehash modeled as a random oracle. Ifℓ 6= ℓ̂, such

a query will not result in aconfirm, and this will have same effect on the progress of the algorithm

statistically as whenG is making a query tohash. However, ifℓ = ℓ̂, it could happen thatG is making

a query with the true string. In this case, the exception occurs. That is,W ′ will not terminate, but

W will terminate with the correct answer to the puzzle. However, the probability of this exception

is bounded from the above byqhash

2V , because if no less thanV bits are unknown, the probability of

making a hash query with the true string is no more thanqhash

2V .

• If BG has made enough content queries forIℓ, BG checks if it has made hash query forIℓ before.

If not, BG makes the hash query, and if aconfirm is obtained,BG knows thatIℓ is the answer

sequence and gets the possible remaining bits inIℓ; otherwiseBG knows thatIℓ is not the answer

sequence. IfIℓ is not the answer sequence,BG will simply return a random string, which will have

the same effect statistically on the progress ofG as whenG is interacting withhash. If Iℓ is the

answer sequence,BG checks ifG is submitting the true string, and returns a random string ifnot

and the true hash otherwise. This, clearly, also has the sameeffect statistically on the progress ofG
as whenG is interacting withhash.

From the above discussion, we can see thatP [CBG
] is no less thanP [CG ] minus the probability of

the exception. Therefore, the first half of the theorem is proved. We can also see that if the exception

occurs,BG makes at mostLk more content queries thanG. If the exception does not occur,BG receives

at mostV −1 more bits thanG it encapsulates, and therefore at mostV −1 bits more thanG on average

whenG is interacting directly withcontent, hash andans.

Theorem?? allows us to establish a connection between the “real” puzzle solver and the puzzle solver

interacting withΩ. The advantage of introducingΩ is that a good algorithm will not send any uninformed

queries toΩ, because it will get no information from such queries. If there is a bound on the number of

hash queries, which are all informed, it is possible to establish a lower bound on the number of unique

indices involved in such queries, with which the lower boundof the puzzle can be established. It is

difficult to establish such bound based onhash directly becausehash answers any queries. Although

some queries are “more informed” than others, all queries have non-zero probabilities to get aconfirm.
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The next theorem establishes the lower bound on the expectednumber of informed hash queries to

achieve a given advantage by an optimal algorithm interacting with Ω.

Theorem 3.2:SupposeB∗ is an optimal algorithm for solving the puzzle when interacting with Ω. If

B∗ solves the puzzle with probability no less thanǫ, on average, the number of informed hash queries it

makes is no less than
(ǫ− 1

2V
)(L+1)

2 .

Proof: Let correct denote the event thatB∗ returns the correct answer. We have

P [correct] = P [correct | confirm]P [confirm] + P [correct | ¬confirm]P [¬confirm]

= P [confirm] + P [correct | ¬confirm] P [¬confirm]

≤ P [confirm] + P [correct | ¬confirm]

≤ P [confirm] +
1

2V

Note thatP [correct | ¬confirm] ≤ 1
2V because if the algorithm returns the correct answer, it musthave

the true string of the answer sequence, sinceans is collision-resistant. If aconfirm was not obtained,

the answer sequence is missing no less thanV bits, since otherwise an optimal algorithm should make

a query which will result in aconfirm. Therefore, the probability that the algorithm can obtain the true

string of the answer sequence is no more than1
2V . Note that hash queries toΩ will not help in the

guessing of the true string, becauseΩ is aware of the number of missing bits and will not reply with

any information. Therefore, any algorithm that achieves advantageǫ in solving the puzzle must have an

advantage of no less thanǫ− 1
2V in gettingconfirm.

Let P1 be the probability thatB makes no hash query and letPi be the probability thatB stops making

hash queries after all previous queries (queries 1 toi − 1) failed to generate aconfirm for 2 ≤ i ≤ L.

Consider the probability that aconfirm is obtained upon theith query. For a given set ofP1, P2, . . . , PL,

becausêℓ is picked at random, the probability is

(1− P1)
L− 1

L
(1− P2)

L− 2

L− 1
. . . (1− Pi)

1

L− i
=

1

L

i
∏

j=1

(1− Pj)

Therefore, the probability that the algorithm can get aconfirm is

L
∑

i=1

[
1

L

i
∏

j=1

(1− Pj)].

The event that exactlyi queries are made occurs when aconfirm was obtained upon theith query, or

when all first i queries failed to obtain theconfirm and the algorithm decides to stop making queries.
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The probability is thus

[

i
∏

j=1

(1− Pj)][
1

L
+

L− i

L
Pi+1].

Note thatPL+1 is not previously defined. However, asL−i
L = 0 when i = L, for convenience, we can

use the same expression for all1 ≤ i ≤ L for any arbitrary value ofPL+1. To derive the lower bound,

we therefore need to solve the problem of minimizing

L
∑

i=1

i[
i

∏

j=1

(1− Pj)][
1

L
+

L− i

L
Pi+1]

subject to the constraints that
∑L

i=1[
1
L

∏i
j=1(1− Pj)] = ǫ− 1

2V and0 ≤ Pi ≤ 1.

To solve the problem, we letηi =
∏i

j=1(1− Pj). Note thatPi+1 = 1− ηi+1

ηi
. Therefore,

L
∑

i=1

i[

i
∏

j=1

(1 − Pj)][
1

L
+

L− i

L
Pi+1]

=

L
∑

i=1

iηi[
1

L
+

L− i

L
(1− ηi+1

ηi
)]

=
1

L
[

L
∑

i=1

(L− i + 1)ηii−
L−1
∑

i=1

(L− i)ηi+1i]

=
1

L
[

L
∑

i=1

(L− i + 1)ηi].

We therefore consider a new problem of minimizing1
L [

∑L
i=1(L− i + 1)ηi] subject to the constraints

that
∑L

i=1 ηi = L(ǫ− 1
2V ), 0 ≤ ηi ≤ 1, andηi+1 ≤ ηi. The optimal value for the newly defined problem

must be no more than that of the original problem, because anyvalid assignment of{Pi}i gives a valid

assignment of{ηi}i. To achieve the optimal value of the new problem, note that ifi < j, the coefficient

of ηi is more thanηj in the objective function, therefore, to minimize the objective function, we should

reduceηi and increaseηj . Considering that{ηi}i is nondecreasing, the optimal is achieved when allηi

are set to the same value(ǫ− 1
2V ), and the optimal value is

(ǫ− 1

2V
)(L+1)

2 .

Based on Theorem??, any algorithm with an advantage ofǫ must make no less than a certain number

of informed hash queries toΩ on average. We next derive the number of unique indices in a given

number sequences. We first need the following lemma.

Lemma 3.3:Supposec indices are randomly picked amongn indices, with repeat. LetY be the random

number denoting the number of unique indices among thec indices. For any constant0 < δ < 1, let
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µ = n(1− δ)(1 − e−
c

n ) andη =
c−n ln n

n−µ

n
√

( 1

n−µ
− 1

n
)
. We have

P [Y < µ] <
e−η2/2

√
2πη

whenn→∞ andc→∞.

Proof: Consider the process when indices are randomly taken fromn indices. LetZi be the random

number denoting the number of samples needed to get theith unique index. Clearly,P [Z1 = 1] = 1. In

general,Zi follows the geometric distribution, i.e.,

P [Zi = j] = (
i− 1

n
)j−1 n− i + 1

n
.

Let pi = n−i+1
n , we haveE [Zi] = 1

pi
, and Var [Zi] = 1−pi

p2
i

. Also, {Zi}i are independent of each

other. DefineSµ =
∑µ

i=1 Zi and note thatP [Y < µ] = P [Sµ > c]. Therefore, we will focus on finding

P [Sµ > c].

DefineZ ′
i = Zi − E [Zi]. Let S′

µ =
∑µ

i=1 Z ′
i, clearly,P [Sµ > c] = P

[

S′
µ > c−∑µ

i=1
1
pi

]

. As {Z ′
i}i

are independent random variables with zero mean, due to the Central Limit Theorem,S′
µ follows the

Gaussian distribution with zero mean and variance
∑µ

i=1
1−pi

p2
i

asµ→∞.

We note thatc >
∑µ

i=1
1
pi

. This is because

µ
∑

i=1

1

pi
=

n

n
+

n

n− 1
+ ... +

n

n− µ + 1
< n ln

n

n− µ
,

while

c > n ln
n

n− µ

⇔ e
c

n >
1

1− (1− δ)(1 − e−
c

n )

⇔ e
c

n − (1− δ)e
c

n + (1− δ) > 1

⇔ δe
c

n − δ > 0

which is true becausee
c

n > 1. Therefore,

P

[

S′
µ > c−

µ
∑

i=1

1

pi

]

≤ Q(
c−∑µ

i=1
1
pi

√

∑µ
i=1

1−pi

p2
i

),
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whereQ() is the Gaussian Error Integral. To simplify the result, notethat

µ
∑

i=1

1− pi

p2
i

=

µ−1
∑

i′=0

1− n−i′

n

(n−i′

n )2
=

µ−1
∑

i′=0

ni′

(n− i′)2

= n

µ−1
∑

i′=0

[
n

(n − i′)2
− n− i′

(n− i′)2
]

< n2
µ−1
∑

i′=0

1

(n− i′)2

< n2(
1

n− µ
− 1

n
)

Applying the bounds, we have

P [Y < µ] < Q(
c− n ln n

n−µ

n
√

( 1
n−µ − 1

n)
)

The proof completes sinceQ(x) ≤ e−x2/2

√
2πx

[?].

Note that according to the well-known Coupon Collector problem, n(1− e−
c

n ) is actually the average

number of unique indices amongc indices, andδ determines how farµ deviates from this value. This

lemma establishes the bound for the probability that the number of unique indices is less than1 − δ

fraction of the average.

Let Y J
s denote the minimum number of unique indices ins sequences among all possible choices ofs

sequences picked fromJ sequences wheres ≥ 1. Let µs = n(1− δ)(1− e−sk/n) andηs =
sk−n ln n

n−µs

n
√

( 1

n−µs
− 1

n
)
.

Based on Lemma??, we have

P
[

Y J
s < µs

]

<
e−η2

s/2

√
2πηs

Js

asn→∞ andk →∞. This is because eventY J
s < µs happens if one combination ofs sequences have

less thanµs unique indices, the probability of which is bounded by Lemma??, and the total number

of combinations to picks sequences is less thanJs. For a givenδ, we introduce a constraint called the

Uniqueness Constraintand a constantΥ:

• A set of J sequences satisfy theUniqueness Constraintif Y J
s ≥ µs for any s ≤ J .

• In our proof, we specifically choose aΥ such that all sequences in the puzzle (or in the puzzles in

the multiple adversary case) satisfy theUniqueness Constraintwith probability no less than1−Υ.

Clearly,Υ depends onδ. We discuss in Section?? and show that for practical puzzles, whenJ ≤ 1012,

δ can be as small as0.1 while Υ can be as small as10−10.

To establish the bound, the next lemma is also needed.
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Lemma 3.4:Consider a linear programing problem of maximizing
∑L

i=0 Pie
−id subject to the con-

straints that
∑L

i=0 Pii = β,
∑L

i=0 Pi = γ, Pi ≥ 0, where0 ≤ d, 0 ≤ γ ≤ 1 and0 ≤ β ≤ γL. Denote the

optimal value of the objective function asFL(β, γ), we have

FL(β, γ) = γ − (1− e−Ld)

L
β

That is, to achieve the optimal value is to letP0 = γ− β
L andPL = β

L , while lettingPi = 0 for 0 < i < L.

Proof: We will use induction onL. To begin with, consider whenL = 1. In this case, due to the

constraints,P0 andP1 can be uniquely determined asP0 = γ − β andP1 = β. Therefore,

F1(β, γ) = γ − β + βe−d,

and the lemma is true. Suppose the lemma is true tillL = j. To getFj+1(β, γ), supposePj+1 = γ− γ′,

whereγ′ ≤ γ. Given this, let

β′ =

j
∑

i=0

Pii = β − (γ − γ′)(j + 1),

and therefore,

Fj+1(β, γ) = Fj(β
′, γ′) + (γ − γ′)e−(j+1)d

= γ′ − 1− e−jd

j
β′ + (γ − γ′)e−(j+1)d

= γ′[1− (1− e−jd)(j + 1)

j
− e−(j+1)d]− 1− e−jd

j
[β − γ(j + 1)] + γe−(j+1)d

Regardingγ′ as a variable, its coefficient is

1− (1− e−jd)(j + 1)

j
− e−(j+1)d,

which is no more than 0. To see this, consider function

f(x) = 1− (1− e−jx)(j + 1)

j
− e−(j+1)x.

Note thatf(0) = 0, and f ′(x) < 0 when x ≥ 0. Therefore, to maximize the objective function,γ′

should be as small as possible. Note thatjPj = β − (j + 1)γ + (j + 1)γ′ andP0 + Pj = γ′. Therefore,

P0 = (j+1)γ−β−γ′

j . SinceP0 ≤ γ′, we haveγ′ ≥ γ− β
j+1 . Therefore,Fj+1(β, γ) = γ− β

j+1 + β
j+1e−(j+1)d.

We next wish to bound from below the expected number of uniqueindices whenβ sequences form a

puzzle are picked in expectation, denoted asU(β). We know that with probability no more thanΥ, the

sequences do not satisfy theUniqueness Constraint, in which case we simply use a bound 0. Otherwise,
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let Pi denote the probability thati sequences are picked where0 ≤ i ≤ L, the expected number of

unique indices should be no less than

L
∑

i=0

(1− δ)n(1 − e−ik/n)Pi.

Therefore, to derive the lower bound is to maximize
∑L

i=0 Pie
−ik/n subject to the constraints that

∑L
i=0 Pii = β,

∑L
i=0 Pi = 1, andPi ≥ 0. Based on Lemma??, we immediately have

Lemma 3.5:If the average number of picked sequences isβ, then

U(β) ≥ (1 −Υ)(1− δ)n(1 − e−Lk/n)β

L

asn→∞ andk →∞, whereδ andΥ are constants determined by the puzzle parameters.

We may finally assemble the parts together and obtain the bound. Suppose algorithmG has an advantage

of σ in solving the puzzle when receivingω(G) bits on average. Based on Theorem??, BG has an

advantage of no less thanσ− qhash

2V while receiving no more thanω(G) + Lkqhash

2V + V − 1 bits on average.

Based on Theorem??, to achieve an advantage of at leastσ− qhash

2V , the optimal algorithmB∗ must make

at least
(σ− q

hash
+1

2V
)(L+1)

2 informed hash queries. Based on Lemma??, also considering thatB∗ needs to

receive onlyk − V + 1 bits per sequence,B∗ receives at leastU(
(σ− q

hash
+1

2V
)(L+1)

2 ) − L(V − 1) bits on

average. Therefore,

Theorem 3.6:SupposeG solves the puzzle with probability no less thanσ. We have

ω(G) ≥ (1−Υ)(1−δ)n(1−e−Lk/n)(σ− q
hash

+1

2V
)(L+1)

2L − (L + 1)(V − 1)− Lkqhash

2V

asn→∞ andk →∞, whereqhash, Υ, V , andδ are constants determined by the puzzle parameters.

B. Multiple Adversaries with Multiple Puzzles

We next consider the more complicated case when multiple adversaries are required to solve multiple

puzzles. Suppose there areA adversaries, and the number of puzzles they attempt to solveis P . Note

that P is greater thanA whenz > 1.

1) Proof Sketch:The proof uses the same idea as the single adversary case. Basically, we extendΩ

to handle multiple adversaries, whereΩ gives the correct answer to a hash query from an adversary only

if the number of bits the adversary received for the sequenceis greater thank − V , regardless of the

number of bits other adversaries received. With similar arguments as the single adversary case, we can

establish the relationship between the algorithm performance when interacting withΩ and with the real

oracles. We also obtain the average number of informed queries the adversaries must make to achieve
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certain advantages when interacting withΩ. The bound is established after solving several optimization

problems.

2) Proof Details:Suppose the adversaries run an algorithmG that solves theP puzzles with probability

σ while receivingω(G) bits on average. We wish to bound from belowω(G) for a givenσ. We extend

the definition ofΩ and let it remember the content queries from each adversary.We useIp
ℓ to denote

sequenceℓ in puzzlep where1 ≤ p ≤ P . If an adversary makes a hash query forIp
ℓ while this adversary

has made content query for more thank − V bits in Ip
ℓ , Ω replies with the hash ofIp

ℓ , otherwise, it

returns∅. In addition, if the adversaries have made more thanL hash queries for a particular puzzle,Ω

will not answer further hash queries for this puzzle.

Similar to the single puzzle case, given an algorithmG for solving the puzzles, we construct an

algorithmBG employingG denoted asBG. BG terminates whenG terminates, and returns whatG returns.

Algorithm ?? describes howBG implements oracle queries forG, which is very similar to the single

adversary case.

Algorithm 2 BG answers oracle queries forG
1: WhenG makes a query tocontent, BG makes the same content query toΩ and gives the result toG.

2: WhenG makes a query toans, BG makes the same query toans and gives the result toG.

3: WhenG makes a query forIp
ℓ to hash at adversaryv:

1) BG checks if adversaryv has made exactly the same query before. If yes, itreturns the last

answer.

2) BG checks if adversaryv has made content queries for more thank−V bits in Ip
ℓ , and if this

is not true, itreturns a random string.

3) If BG has not made a hash query forIp
ℓ , it makes a hash query toΩ. Depending on ifconfirm

is obtained upon this query,BG knows if Ip
ℓ is the answer sequence of puzzlep. If Ip

ℓ is the

answer sequence,BG sends content queries toΩ to get the remaining bits inIp
ℓ .

4) If Ip
ℓ is not the answer sequence of puzzlep, BG returns a random string.

5) If the stringG submitted is the not true string ofIp
ℓ , BG returns a random string.

6) BG returns the hash ofIp
ℓ .

With very similar arguments as in Theorem??, we have

Theorem 3.7:Let CG be the event thatG returns the correct answers when it is interacting directlywith

content, hash andans. Let CBG
be the event thatBG returns the correct answers, when it is interacting
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with Ω. Then,

P [CBG
] ≥ P [CG ]− Aqhash

2V
,

and

ω[BG] ≤ ω[G] +
PLkAqhash

2V
+ (V − 1)P.

Let B∗ denote the optimal algorithm for solving the puzzles when the algorithm is interacting withΩ.

Note that if the probability thatB∗ solves all puzzles is no less thanǫ, the probability that an individual

puzzle is solved is no less thanǫ. Based on Theorem??, if a puzzle is solved with probability no less

than ǫ, the average number of informed hash queries made for this puzzle is no less than
(ǫ− 1

2V
)(L+1)

2 .

For P puzzles, we obtain the following theorem due to the linearity of expectation.

Theorem 3.8:If the probability thatB∗ solves all puzzles is no less thanǫ, on average, the number of

informed hash queries is no less than
P (ǫ− 1

2V
)(L+1)

2 .

Next, we wish to bound from below the number of unique indicesin the involved sequences, whenever

the adversaries collectively have to makeT hash queries. Here we define the unique indices at adversary

v as the total number of unique indices in the sequences that itmakes hash queries for, and denote it as

uv. The total number of unique indices is defined as
∑A

v=1 uv. The adversaries may assign hash queries

intelligently, such that
∑A

v=1 uv is minimized. For example, if two sequences share a large number of

indices, they should be assigned to the same adversary. Nevertheless, we have

Lemma 3.9:If the number of queries isT and if the involved sequences satisfy theUniqueness

Constraint,
A

∑

v=1

uv ≥ (1− δ)n[t(1− e−qhashk/n) + (1− e−(T−qhasht)k/n)]

asn→∞ andk →∞, where| x |− denotes the largest integer no more thanx andt =| T/qhash |−.

Proof: Suppose the number of hash queries made by adversaryv is sv. We have

A
∑

v=1

uv ≥
A

∑

v=1

(1− δ)n(1 − e−svk/n)

Therefore, to minimize
∑A

v=1 uv is to maximize
∑A

v=1 e−svk/n subject to the constraints that
∑A

v=1 sv =

T and0 ≤ sv ≤ qhash.

We claim that the optimal is achieved whensi is set to beqhash for 1 ≤ i ≤| T/qhash |−, which we

show by induction on the number of adversaries. First consider whenA = 2. If T ≤ qhash, we claim that
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∑2
i=1 e−sik/n is maximized whens1 = T ands2 = 0, which is because for any valids1 ands2,

(1 + e−Tk/n)− (e−s1k/n + e−s2k/n)

= (1− e−s1k/n)(1− e−s2k/n)

≥ 0.

Similarly, if qhash ≤ T ≤ 2qhash,
∑A

i=1 e−sik/n is maximized whens1 = qhash ands2 = T − qhash, which

is because for any valids1 ands2,

(e−qhashk/n + e−(T−qhash)k/n)− (e−s1k/n + e−s2k/n)

= (1− e(−s1+T−qhash)k/n)(e(−T+qhash)k/n − e−s2k/n)

≥ 0.

Therefore our claim is true forA = 2. Suppose our claim is true forA = j. For A = j + 1, suppose in

the optimal assignment,sj+1 = 0. Then, our claim is true based on the induction hypothesis. If in the

optimal assignment,sj+1 > 0, we argue that in the optimal assignment,si = qhash for all 1 ≤ i ≤ j,

therefore our claim is still true. This because ifsi < qhash for somei, we can increasesi while decreasing

sj+1. Using similar arguments as for the case whenA = 2, this will increase the objective function, thus

violating the fact that the assignment is optimal.

Similar to the single adversary case, if the average number of informed hash queries isβ, we need to

bound from below the average number of unique indices in the involved sequences, denoted asU(β).

Lemma 3.10:Consider when the adversaries are givenP puzzles. If the average number of informed

hash queries isβ, asn→∞ andk →∞,

U(β) ≥ (1−Υ)(1− δ)nβ(1 − e−qhashk/n)

qhash

Proof: Similar to the arguments leading to Lemma??, the involved sequences do not satisfy the

Uniqueness Constraintwith probability no more thanΥ, in which case we simply use a bound 0. In the

rest we focus on the case when theUniqueness Constraintis satisfied.

Denote the probability that there arei queries asPi, where0 ≤ i ≤ PL. For notational simplicity, in

the proof for this lemma, we letd = k/n. Based on Lemma??, we want to bound from below

PL
∑

i=0

Pi[(ti − 1)(1− e−qhashd) + (1− e−[i−qhash(ti−1)]d)]
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under the constraints that
∑PL

i=0 Pii = β,
∑PL

i=0 Pi = 1, andPi ≥ 0, whereti is an integer satisfying

(ti − 1)qhash ≤ i < tiqhash. To solve this problem, supposeC is the minimum integer satisfyingPL ≤
Cqhash − 1, we relax the problem to minimizing

Ψ =

Cqhash−1
∑

i=0

Pi[(ti − 1)(1 − e−qhashd) + (1− e−[i−qhash(ti−1)]d)]

under the same constraints that
∑Cqhash−1

i=0 Pii = β,
∑Cqhash−1

i=0 Pi = 1, andPi ≥ 0.

The optimal value of the relaxed problem will be no more than the optimal value of the original

problem. To solve the relaxed problem, let

Ψs =

sqhash−1
∑

i=(s−1)qhash

Pi[(s − 1)(1− e−qhashd) + (1− e−[i−qhash(s−1)]d)]

for 1 ≤ s ≤ C. Clearly,Ψ =
∑C

s=1 Ψs.

Suppose a set of{γs}s and{βs}s are given where
∑C

s=1 γs = 1 and
∑C

s=1 βs = β. The set of{γs}s
and{βs}s are calledfeasibleif it is possible to find{Pi}i such that

sqhash−1
∑

i=(s−1)qhash

Pi = γs,

and
sqhash−1
∑

i=(s−1)qhash

Pii = βs

for all 1 ≤ s ≤ C. Note that{γs}s and{βs}s are feasible if and only if

(s− 1)qhashγs ≤ βs ≤ (sqhash − 1)γs.

When{γs}s and{βs}s are given and are feasible, to minimizeΨ is to minimize each individualΨs.

Note that

Ψs = γs[(s− 1)(1 − e−qhashd) + 1]−
sqhash−1
∑

i=(s−1)qhash

Pie
−[i−qhash(s−1)]d

= γs[(s− 1)(1 − e−qhashd) + 1]−
qhash−1
∑

h=0

Pqhash(s−1)+he−hd,

whereh = i− qhash(s− 1). Note that if

sqhash−1
∑

i=(s−1)qhash

Pii = βs,

then
qhash−1
∑

h=0

Pqhash(s−1)+hh = βs − (s− 1)qhashγs.
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Denote the minimum value ofΨs for given γs andβs asΨγs,βs
s . Applying Lemma??,

Ψγs,βs

s = γs[(s − 1)(1− e−qhashd) + 1]− γs + [
1− e−(qhash−1)d

qhash − 1
][βs − (s− 1)qhashγs]

= γs(s− 1)[
qhashe

−(qhash−1)d

qhash − 1
− e−qhashd − 1

qhash − 1
] + [

1− e−(qhash−1)d

qhash − 1
]βs

Let

a =
qhashe

−(qhash−1)d

qhash − 1
− e−qhashd − 1

qhash − 1

and

b =
1− e−(qhash−1)d

qhash − 1
,

we have

Ψ ≥
C

∑

s=1

Ψγs,βs

s = bβ + a
C

∑

s=1

(s− 1)γs.

We also note thata < 0, which is because function

f(x) =
qhashe

−(qhash−1)x

qhash − 1
− e−qhashx − 1

qhash − 1

is 0 whenx = 0, while f ′(x) < 0 for x > 0. Therefore, finding the minimum value ofΨ is equivalent

to finding a set of feasible{γs}s and{βs}s such that
∑C

s=1(s− 1)γs is maximized.

We consider the problem of maximizing

R =

C
∑

s=1

(s− 1)γs

subject to the constraints that

(s− 1)qhashγs ≤ βs ≤ (sqhash − 1)γs,

C
∑

s=1

γs = γ,

C
∑

s=1

βs = β,

where0 ≤ γ ≤ 1 and0 ≤ β ≤ γ(Cqhash − 1). Denote the maximum value ofR asR∗. We claim that

• If (C − 1)qhashγ < β, R∗ = γ(C − 1) and the optimal is achieved whenγC = γ, βC = β, while

γs = 0 andβs = 0 for 1 ≤ s < C;

• If (C − 1)qhashγ ≥ β, R∗ = β
qhash

, and the optimal value is achieved whenγ1 = γ − β
(C−1)qhash

,

β1 = 0, γC = β
(C−1)qhash

, βC = β, while γs = 0 andβs = 0 for 1 < s < C.

To show this, we use induction onC. First, whenC = 2, W = γ2. Note that
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• If qhashγ < β, we can letγ2 = γ, β2 = β, while γ1 = 0 andβ1 = 0, in which caseγ2 is maximized,

while all constraints are satisfied;

• If qhashγ ≥ β, note that for any givenβ2, γ2 ≤ β2

qhash

≤ β
qhash

. When β ≤ qhashγ, we may let

γ1 = γ − β
qhash

, β1 = 0, γ2 = β
qhash

, β2 = β, such that all constraints are satisfied, whileγ2 is

maximized.

Therefore, our claim is true whenC = 2. Suppose the claim is true tillC = j. WhenC = j + 1,

• If jqhashγ < β, we may letγj+1 = γ, βj+1 = β, and letγs = 0 andβs = 0 for 1 ≤ s ≤ j, such

that all constraints are satisfied. In this case,R = jγ. SinceR ≤ jγ, we haveR∗ = jγ.

• If jqhashγ ≥ β, given any valid assignment{γs}s and{βs}s, let
∑j

s=1 γs = γ′ and
∑j

s=1 βs = β′.

γ′ andβ′ must satisfy

(γ − γ′)jqhash ≤ (β − β′) ≤ (γ − γ′)[(j + 1)qhash − 1]

and

β′ ≤ γ′(jqhash − 1).

– If (j−1)qhashγ
′ < β′, based on the induction hypothesis, the maximum value of

∑j
s=1(s−1)γs

is (j − 1)γ′, and hence

R ≤ jγ − γ′.

Because

(γ − γ′)jqhash ≤ (β − β′),

we have

γ′ ≥ γ − β

jqhash

+
β′

jqhash

.

As (j − 1)qhashγ
′ < β′, we have

γ′ > γj − β

qhash

.

Therefore,

R ≤ β

qhash

.

– If (j−1)qhashγ
′ ≥ β′, based on the induction hypothesis, the maximum value of

∑j
s=1(s−1)γs

is β′

qhash

, and hence

R ≤ β′

qhash

+ (γ − γ′)j.
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Since(γ − γ′)j ≤ β−β′

qhash

, we have

R ≤ β

qhash

.

Note thatR achieves β
qhash

whenγ1 = γ − β
jqhash

, β1 = 0, γj+1 = β
jqhash

, βj+1 = β, while γs = 0 and

βs = 0 for 1 < s ≤ j. Therefore,R∗ = β
qhash

.

Note that actually, in the first case whenjqhashγ < β, jγ ≤ β
qhash

, therefore we also haveR∗ ≤ β
qhash

.

Hence,

Ψ ≥ bβ + a
β

qhash

=
β(1− e−qhashd)

qhash

,

which completes our proof.

Similar to single puzzle case, we may now put things together. SupposeG has an advantage ofσ in

solving the puzzles when receivingω(G) bits on average. Based on Theorem??, BG has an advantage of

no less thanσ− Aqhash

2V while receiving no more thanω(G)+ PLkAqhash

2V +(V −1)P bits on average. Based

on Theorem ??, to achieve an advantage of at leastσ − Aqhash

2V , the optimal algorithmB∗ must make at

least
P (σ−Aq

hash
+1

2V
)(L+1)

2 informed hash queries. Based on Lemma??, also considering thatB∗ needs to

receive onlyk −V + 1 bits per sequence,B∗ receives at leastU(
P (σ−Aq

hash
+1

2V
)(L+1)

2 )− PL(V − 1) bits

on average. Therefore,

Theorem 3.11:SupposeA adversaries are challenged withP puzzles. SupposeG solves the puzzle

with probability no less thanσ. We have

ω(G) ≥ (1−Υ)(1− δ)nP (σ − Aqhash+1
2V )(L + 1)(1 − e−qhashk/n)

2qhash

− P (L + 1)(V − 1)− PLkAqhash

2V
P

asn→∞ andk →∞, whereqhash, Υ, V , andδ are constants determined by the puzzle parameters.

IV. D ISCUSSIONS

In this section we discuss the bound and its practical implications. We begin by considering a simple

strategy the adversaries may adopt to be compared with the bound.

A. A Simple Adversary Strategy

We note that there exists a simple strategy the adversaries may adopt, referred to as theAll-Or-Nothing

(AON) Strategy:

• When challenged withP puzzles, the adversaries flip a coin and decide whether or notto solve

all puzzles. They attempt with probabilityω; otherwise they simply ignore all puzzles.ω is called

the attempt probability. If they decide to solve the puzzles, the adversities selectτP (L+1)
2qhash

members,
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called theactive adversaries, whereτ is a constant slightly larger than 1, such as 1.01. Each of

active adversary gets the entire content, and makesqhash hash queries. For each puzzle, the active

adversaries make hash queries for the sequences one by one until a confirm is obtained.

We note that the number of adversaries must be no less thanPL
qhash

, such that the adversaries can always

find the required number of active adversaries. This is because the puzzle parameters should be selected

such thatqhash ≥ zL to ensure an honest prover can solve the puzzle.

We now analyze the performance of AON strategy. We argue that

Lemma 4.1:According AON strategy, asP → ∞, the probability that the adversaries can solve the

puzzles asymptotically approaches 1 if they decide to make the attempt.

Proof: Note that to obtain aconfirm for a puzzle according to the AON strategy, the number of

hash queries follows a uniform distribution in[1, L] and is independent of other puzzles. Denote the

total number of hash queries to obtainconfirm for all puzzles asR. R is a random variable with mean
P (L+1)

2 and varianceP (L2−1)
12 . As P → ∞, due to the Central Limit Theorem, the distribution ofR

approaches a Gaussian distribution. On the other hand, the active adversaries can make a total ofτP (L+1)
2

hash queries. Asτ > 1, it can be verified that the adversaries can obtainconfirm for all puzzles with

probability asymptotically approaching 1.

Note that if the adversaries decide to make the attempt, theyneed to downloadτnP (L+1)
2qhash

bits in total.

If they attempt to solve the puzzles for onlyω fraction of the time, they downloadωτnP (L+1)
2qhash

bits in

expectation.

The following theorem summaries the above discussions.

Theorem 4.2:According the AON strategy, asP →∞, the probability that the adversaries can solve

all puzzles asymptotically approachesω while downloadingωτnP (L+1)
2qhash

bits in expectation.

Remark 4.3:ω is basically the advantage of the adversaries. Replacingσ in Theorem?? with ω, noting

that τ is only slightly greater than 1, the expected number of downloaded bits according to the AON

strategy is a small fraction from the bound in Theorem?? as P → ∞, n → ∞, andk → ∞, if the

following conditions are true:

1) Υ is small comparing to 1,

2) δ is small comparing to 1,

3) e−qhashk/n is small comparing to 1,

4) 2V is much larger thanAqhash,

5) 2V is no less thankAqhash,

6) V is much smaller thank.
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B. Puzzle Parameter Space

We show that there are a wide range of puzzle parameters satisfying the conditions in Remark??. We

considern ≥ 107 andk ≥ 104, which can be considered as large enough for the conditions in the proofs

to hold. In the following we use an example to illustrate the choices of parameters whenA ≤ 106; the

parameters can be similarly determined for other values ofA. Concerning the conditions,

• For Conditions 1 and 2, we letδ = 0.1. The total number of sequences isAzL. We find numerically

that whenA ≤ 106, zL ≤ 107, δ = 0.1, n = 107, k = 104, the probability that a combination of

sequences do not satisfy theUniqueness Constraintis no more than10−10, thereforeΥ can be set

to as small as10−10.

• For Condition 3, we letqhash ≥ 4n
k , noting thate−4 = 0.018.

• For Conditions 4, 5, 6, we letV = 60. Condition 4 is satisfied whenqhash ≤ 107. Condition 5 is

satisfied whenk ≤ 105. Condition 6 is satisfied becausek ≥ 104.

Therefore, as long as

• n ≥ 107, 105 ≥ k ≥ 104, 107 ≥ Lz, 107 ≥ qhash ≥ 4n
k ,

our bound is tight in the sense that it is a small fraction fromthe number of downloaded bits according

to the AON strategy.

For example, Figure?? shows the average number of downloaded bits by the AON strategy and the

lower bound as a function of the number of adversaries for different content sizes, whenσ = 1, τ = 1.01,

Υ = 10−10, δ = 0.1, V = 60, k = 104, qhash = 4n/k and Lz = qhash/2. We can see that they differ

only by a small constant factor. We have tested other parameters satisfying the constraints and the results

show similar trends.

C. Puzzle Parameter Space in Practice

We also note that the parameter space is not restrictive in practice:

• n can be set to107 or higher in practice. Considering the data rate of video broadcast, this leads to

a challenge rate in the order of 10 seconds or higher, which webelieve to be acceptable.

• k may be set to104. k should be as small as possible, because a larger value ofk results in a heavier

load of the verifier.

• Concerning requirement107 ≥ Lz, we note that for practical puzzles,Lz is unlikely to be greater

than 107, due to the computation cost of hash queries. There are two time consuming tasks when

making hash queries, namely the hash function call and the generation of the random indices. The
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Fig. 1. Comparison of the average number of downloaded bits by the AON strategy and the bound. (a).n = 10
7. (b). n = 10

8.

choices of hash function and random number generator have been discussed in [?]. Basically, secure

hash functions such as SHA-1 can be used as the hash function and block ciphers such as AES can

be used to generate the random indices. The optimization of the puzzle implementation is out of

the scope of this paper. We here show the speed of several machines in Emulab [?] when executing

the SHA-1 hash and the AES encryption in the Openssl library [?], summarized in Table??, when

the input to SHA-1 is104 bits and the AES is 128 bits. We can see that it will take too long even

for the fastest machine to finish107 SHA-1 hash queries and the required AES calls for random

numbers.

• Concerning requirement107 ≥ qhash ≥ 4n
k , we note that107 ≥ qhash for the same reason as107 ≥

Lz. As to qhash ≥ 4n
k , we note that ifn = 107 andk = 104, this is equivalent toqhash ≥ 4 × 103.

Based on our experiments in Emulab, it is possible for mainstream machines such as pc3000 and

pc2000 to finish such number of queries in the order of secondsif the random number generation

can be further optimized.

We also make some additional remarks concerning the requirements for puzzle parameters, which are

not related to the validity of the bound but important in practice. First, the puzzle solving time should

be in the order of seconds to accommodate issues such as network delay fluctuations. As a result,Lz
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machine CPU SHA1 AES

pc3000 3.0GHz 64-bit 202165 4059157

pc2000 2.0GHz 71016 2605490

pc850 850MHz 39151 1086667

pc600 600MHz 29064 789624

TABLE 3

SHA-1 AND AES FUNCTION CALLS EXECUTED IN ONE SECOND.

should be selected such that it takes non-trivial time to make Lz hash queries. Second, as mentioned

earlier,θ should be selected such thatqhash is greater thanLz.

V. RELATED WORK

Using puzzles has been proposed (e.g., in [?], [?], [?], [?], [?]) to defend against email spamming or

denial of service attacks. In these schemes, the clients arerequired to spend time to solve puzzles before

getting access to the service. The purpose of the bandwidth puzzle is to verify if the claimed content

transactions took place, where the ability to solve the puzzles is tied to the amount of content actually

downloaded. As such, the construction of the bandwidth puzzle is different from existing puzzles.

Proofs of Data Possession (PDP) (e.g., [?], [?], [?], [?]) and Proofs of Retrievability (POR) (e.g., [?],

[?], [?]) have been proposed, which allow a client to verify if the data has been modified in a remote

store. As discussed in [?], the key differences between PDP/POR schemes and the bandwidth puzzle

include the following. Fundamentally, the PDP/POR schemesand the bandwidth puzzle are designed for

different systems. The PDP/POR schemes consider a user outsourcing the content to a server, and require

the server to prove the possession or retrievability of the content while the user does not keep the content

after outsourcing. The bandwidth puzzle considers a verifier and many provers where the provers may

be colluding. The bandwidth puzzle assumes that the verifierkeeps the content, and requires the provers

to prove that they all possess the same content as an evidencefor the claimed data transfer over the

network. The PDP/POR schemes and the bandwidth puzzle use different techniques and are optimized

for different system requirements. In particular, the PDP/POR schemes and the bandwidth puzzle have

very different per challenge cost ratios between the verifier and the prover, where the costs include the

challenge generation/verification cost for the verifier andthe challenge response cost for the prover. In the

existing PDP/POR schemes, the ratio is a constant not far from 1, i.e., the verifier and the prover incur

similar costs per challenge, because the existing PDP/POR schemes are designed for the one-verifier-
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one-prover scenarios. In the bandwidth puzzle, because theverifier handles many provers simultaneously,

the ratio is much smaller, i.e., 1:L/2 in expectation. The proof techniques for the existing PDP/POR

schemes are also different from the proof techniques used inthis paper, because the PDP/POR schemes

considers a single prover while the bandwidth puzzle considers many provers who may be colluding.

In our earlier work [?], an upper bound was given on the expected number of puzzles that can be

solved if the adversaries are allowed a certain number of hash queries and content queries. In this work,

we remove the assumption on the maximum number of content queries. With less assumptions, our proof

is less restrictive and applies to more general cases. The new problem is different from the problem

studied in [?], and new techniques have been developed to establish the bound. Note that although the

adversaries are allowed to download as many bits as they wish, they prefer to employ an intelligent

algorithm to minimize the number of downloaded bits. The newbound guarantees that, if the adversaries

wish to have a certain advantage in solving the puzzles, there exists a lower bound on the average number

of bits they have to download, regardless of the algorithm they adopt.

We published a shorter, conference version of this work in [?]. This paper contains substantially

extended content compared to the conference version, especially the detailed analysis on the multiple

adversary case.

VI. CONCLUSIONS

In this paper, we prove a new bound on the performance of the bandwidth puzzle which has been

proposed to defend against colluding adversaries in p2p content distribution networks. Our proof is based

on reduction, and gives the lower bound of the average numberof downloaded bits to achieve a certain

advantage by the adversaries. The bound is asymptotically tight in the sense that it is a small fraction

away from the average number of bits downloaded when following a simple strategy with practical puzzle

parameters. The new bound is a significant improvement over the existing bound which is derived under

more restrictive conditions and is much looser. The improved bound can be used to guide the choices of

better puzzle parameters for practical systems.
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