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Performance Analysis of £-Fold Multicast Networks
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Abstract—Multicast involves transmitting information from
a single source to multiple destinations, and is an important
operation in high-performance networks. A k-fold multicast
network was recently proposed as a cost-effective solution to pro-
viding better quality-of-service functions in supporting real-world
multicast applications. To give a quantitative basis for network
designers to determine the suitable value of system parameter k
under different traffic loads, in this paper, we propose an analyt-
ical model for the performance of k-fold multicast networks under
Poisson traffic. We first give the stationary distribution of network
states, and then derive the throughput and blocking probability of
the network. We also conduct extensive simulations to validate the
analytical model, and the results show that the analytical model
is very accurate under the assumptions made. The analytical
and simulation results reveal that by increasing the fold of the
network, network throughput increases very fast when the fanouts
of multicast connections are relatively small, compared with the
network size.

Index Terms—Blocking probability, Markov process, multicast
communication, performance analysis, quality of service (QoS),
switching networks, throughput.

1. INTRODUCTION AND PREVIOUS WORK

ULTICAST involves transmitting information from a

single source to multiple destinations, and is an impor-
tant operation in high-performance networks. Multicast will
be increasingly used to support various interactive applica-
tions, such as multimedia, teleconferencing, web servers and
electronic commerce on the Internet, as well as communica-
tion-intensive applications in parallel and distributed computing
systems, such as distributed database updates and cache co-
herence protocols. Many of these applications require not only
multicast capability, but also predictable communication per-
formance, called quality of service (QoS). The combination of
the nonuniform nature of multicast traffic and the requirement
of QoS guarantees makes the problem very challenging.

There has been much work in the literature on multicast com-
munication in various networks, see, for example, [3]-[13]. Sev-
eral researchers [3]-[7] have considered supporting multicast
assignments in switch-based networks (or switching networks)
in a nonblocking or rearrangeable fashion. A multicast assign-
ment is a mapping from a subset of network source nodes to
a subset of network destination nodes, with no overlapping al-
lowed among the destinations of different sources. However, in
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Fig. 1. Examples of twofold multicast assignments in an eight-node network.

reality, there are usually many instances of various multicast ap-
plications running on the same network. In this case, what we
can observe at the physical layer of the network is that many
independent multicast connections are being routed through the
switching network, which leads to the situation that the com-
bined multicast traffic in the network is not necessarily a mul-
ticast assignment, and overlapping among destinations of dif-
ferent multicast connections is quite possible. A simple example
is that a destination node may be simultaneously involved in two
multicast connections. Such connections will be blocked in a
network which is designed to be nonblocking or rearrangeable
for only multicast assignments.

To overcome this problem, recently [13] presented a design
for a nonblocking k-fold multicast network, which can pro-
vide better QoS functions for arbitrary multicast communica-
tion. Specifically, the network can realize multiple, say, & mul-
ticast assignments in a single pass with a guaranteed latency.
A k-fold multicast assignment is defined as a mapping from a
subset of network source nodes to a subset of network destina-
tion nodes, with up to k-fold overlapping allowed among the
destinations of different sources. In other words, any destina-
tion node can be involved in multicast connections, from up to
k different sources at a time. Fig. 1 gives several examples of
twofold multicast assignments in an eight-node network. A net-
work which can realize any k-fold multicast assignments in a
single pass is referred to as a k-fold multicast network. Clearly,
an ordinary multicast network is a onefold multicast network.
Here, £ is an adjustable parameter in network design, and an ap-
propriate value of k£ should be determined by the multicast traffic
in the target multicast applications, especially by the statistics of
destination overlapping in multicast connections. Note that al-
though k-fold multicast assignments can be realized by simply
stacking k copies of onefold networks together, the k-fold net-
work designed in [13] has a much lower hardware cost. In fact,
the cost of the former is about 3—% times of a k-fold network
for any k. Thus, a k-fold network is a cost-effective choice to
provide better QoS functions in supporting arbitrary multicast
communication.
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To provide a quantitative basis for network designers to
choose the suitable value of system parameter £ under different
traffic loads, in this paper, we propose an analytical model for
analyzing the performance of a k-fold multicast network. Al-
though there has been a lot of research on performance analysis
in various networks under multicast traffic, see, for example,
[8]-[12], none of them has considered network performance
in terms of k-fold multicast assignments. In this paper, we
derive the throughput and the blocking probability of a k-fold
multicast network under Poisson traffic and validate the model
through simulations. Based on the assumptions we make, we
first show that the number of ongoing multicast connections in
the network is a continuous-time Markov chain. The network
throughput and blocking probability can then be obtained in
terms of the stationary distribution of the Markov chain. We
also conduct extensive simulations to validate the analytical
results.

The rest of the paper is organized as follows. Section II de-
scribes some definitions and assumptions used in the paper. Sec-
tion III derives the stationary distribution of network states. Sec-
tion I'V gives the throughput and blocking probability of a k-fold
multicast network. Section V discusses some possible general-
izations of the results. Section VI shows the simulation results
along with analytical results and gives some observations. Fi-
nally, Section VII concludes the paper.

II. PRELIMINARIES

In this section, we give the definitions and assumptions we
will use in this paper.

First, we will need following definitions.

Definition 1: A multicast connection refers to a source node
being connected to multiple destination nodes simultaneously
in the network, and sending the same message to these destina-
tion nodes. In this paper, we sometimes simply refer to it as a
connection.

Definition 2: We assume that there are no buffers at source
nodes. Input blocking refers to the case that a multicast connec-
tion request arrives at a busy source node and is blocked.

Definition 3: If a destination node is the destination of m
source nodes, we say that this destination node is of degree .

Definition 4: Output blocking refers to the case that a mul-
ticast connection request arrives at an idle source node but is
blocked because at least one of its destination nodes is already
of degree k.

Definition 5: We define output blocking ratio as the ratio of
the requests blocked due to output blocking over all the requests
blocked.

Definition 6: If a group of multicast connections can be
transmitted simultaneously through the network without any
blocking, we say that they are mutually compatible and ab-
breviate it as m.c. Clearly, in a k-fold multicast network, only
those multicast connections that can fit into a k-fold multicast
assignment are m.c.

Definition 7: We define the average number of successful
multicast connection requests carried by the network in a unit
time as carried throughput, or simply throughput.

In addition, throughout this paper, we make following as-
sumptions on the multicast traffic we consider.

» The probability of a destination node being involved in an
incoming multicast connection request is § and is indepen-
dent of other destination nodes.

* Multicast connection requests at different source nodes are
independent of each other.

* Holding time of each multicast connection is exponen-
tially distributed with parameter 1 and is independent of
each other.

» Multicast connection requests arrive at each source node
according to a Poisson process with intensity A and are
independent of each other.

III. STATIONARY DISTRIBUTION OF NETWORK STATES

In this section, we will find the stationary distribution of
the network, by which we can obtain network throughput and
blocking probability.

First, if there are 7 multicast connection requests, let
Pdeg(%, m) be probability that a destination node is the desti-
nation of exactly m of the multicast connection requests, or,
is of degree m under these ¢ multicast connection requests.
The probability that any multicast connection request chooses
this destination node is # and is independent of other multicast
connections. Thus, we have

pacslic) = (1 )om1 =07 e 01,0} (0
which is a binomial random variable. Under the assumptions,
each destination node has the same distribution given by (1).
Furthermore, from the assumptions, whether a destination node
is chosen by a multicast connection is independent of other des-
tination nodes. Thus, in addition to having the same distribu-
tions, the degrees of the destination nodes are also independent
of each other. In other words, they are a group of independent,
identically distributed (i.i.d.) random variables.

Let Pp,c(7) be the probability that ¢ multicast connection re-
quests are m.c. in a k-fold multicast network. Recall that a set
of multicast connection requests are m.c. when none of the des-
tination nodes has a degree more than & when realized simulta-
neously in the network. From (1), we know that the probability
of a destination node having a degree less than or equal to &
is anzo Pdeg (3, m) for i > k, and 1 for ¢ < k, because when
1 < k, no destination node can have a degree more than k. Since
the degrees of destination nodes are independent of each other,
we have

N
Pc(i) = (Ziz:@ pdeg(ivm)) s 1>k )
1, otherwise.
Suppose a new multicast connection request arrives when there
are ¢ multicast connections in the network. If this new connec-
tion can be realized along with those ongoing connections, we
say it can “join” them. Let P;,,(7) be the probability that a new
multicast connection can join ¢ ongoing connections. We have

£ Pac(i+ 1)
P'n 1) = 7 3
J (L) Pmc(l) ( )
To see this, let £'; be the event that a new multicast connection

request and the existing 7 multicast connections are m.c, Fo be
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Fig. 2. State transition diagram of a k-fold multicast network.

the event that 7 multicast connections are m.c, and E3 be the
event that ¢ + 1 multicast connections are m.c. We have

" P(E,) P(E,) P.(4)
Suppose the network is carrying + multicast connections. Since
the arrival process is Poisson and the holding time follows the
exponential distribution, and the probability that a newly arrived
connection request can be accepted can be uniquely determined
by the number of currently ongoing connections, the number
of ongoing connections in the network is a continuous-time
Markov chain. The state of this Markov chain may change when
some connection requests arrive and can join the ongoing con-
nections, or when some ongoing connections are terminated. To
be specific, state ¢ may transit to state ¢ + 1 when a new con-
nection request arrives at an idle source node and can join the ¢
ongoing connections, or may transit to state ¢+ — 1 when one of
the ongoing connections terminates.

We now derive the state transition rate. First, consider the
transition from state 7 to state  + 1. We know that in state 7,
there are N — ¢ idle source nodes in the network, and under
the fourth assumption in the previous section, the arrival pro-
cesses at these nodes are Poisson with intensity A and indepen-
dent of each other. Hence, the combined arrival process is also
Poisson and with intensity (/N —)A. A connection request is ac-
cepted with probability Pj,(7) and is rejected with probability
1 — P;,u(4). Thus, the combined Poisson process is then ran-
domly split into two random processes: one is the process of
the arrivals that can be successfully realized in the network, and
another is the process of the arrivals that are blocked. Since a
split Poisson process is still Poisson, the arrival process of the
connection requests that can join the ¢ ongoing connections is
Poisson with intensity (N — i) AP;, (), which is the transition
rate from state ¢ to state © + 1. Now consider the transition from
state ¢ to state + — 1. In state ¢, there are ¢+ ongoing multicast
connections, whose holding times are exponentially distributed
with parameter 1 and independent of each other. Thus, the tran-
sition rate from state ¢ to state ¢ — 1 is 7. A complete state tran-
sition diagram, including the boundary conditions for : = 0 and
1 = N, is shown in Fig. 2. Clearly, this is a birth—death process.
Letting ;, ¢ = 0,1,..., N, be the stationary distribution, we

P(E1|Es) =

have
Tiy1 (1 + 1)p = m(N —i)APyu (i), ¢€{0,1,...,N —1}.
Letp = A/p
. i—1
N(N—=1)---(N—i+1) , .
T =T ( ) Z'< ),0 PJJH(J)
! o

“4)
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2\P;, (N-2)

-@7\@\@

(N-Dp

Pj, (N-1)

where 7y is the probability that the Markov chain is in state 0,
which can be determined by
1

Yo (7)p Pre(i)

Note that by the discussions in this section, we are actually using
one single variable, the number of ongoing connections, to rep-
resent the state of the whole network. The reason for this is that
we are only interested in the probability of a new arriving re-
quest being blocked, and as explained earlier in this section, this
probability can be determined by the number of ongoing con-
nections. There are, of course, other ways to model the network.
The most accurate one is to let each possible connection pattern
be a state. However, this will be highly unnecessary, and can
be shown to be equivalent to using the number of ongoing con-
nections as follows. First, note that much information about the
connection patterns is redundant for the purpose of determining
the blocking probability of a new connection request. This is
because to find the blocking probability, only the degrees of the
outputs are needed. Connection patterns that result in the same
degrees of the outputs will have exactly the same effect on the
new connection request, and therefore, can be merged into the
same state. The network state can then be reduced to a vector,
which can be called the “degree vector,” with each element rep-
resenting the degree of an output port. Furthermore, based on
the assumption on the multicast connections, the probability that
the network is in a state represented by a particular degree vector
can be uniquely determined by the number of active input ports.
Therefore, the state of the network can be further reduced to the
number of ongoing connections.

o =

IV. THROUGHPUT AND BLOCKING PROBABILITY

Given the stationary distribution of network states, in this sec-
tion, we derive the throughput and blocking probability of a
k-fold multicast network. We consider a long time period [0, T'],
such that the values under consideration have converged to their
average values. First we have the following lemma.

Lemma 1: For a long time period [0, 7], the total number of
successful multicast connection requests carried by the network
during [0, T is given by

succ - T/\Z’/TZ - Jﬂ(i>

Proof: The average dwellmg time of state ¢ is the inversion
of the rate that the network departs from state ¢
1
(N = )APyu(i) + ip
Itholds foralli € {0,1,..., N}. Since the total time the system
spent in state ¢ durlng [07 T] is 7; 1", the number of visits to state

(&)




ZHANG AND YANG: PERFORMANCE ANALYSIS OF k-FOLD MULTICAST NETWORKS 311

i during [0, T is Tm;((N — i)APju(i) + ip). Notice that the
number of visits is also the number of times the network de-
parts from state 7. A departure may be caused by the arrival of a
successful connection request or the termination of an ongoing
connection. The first case has the probability

(N — i)APj, (1)
(N = OAPuli) + it

Thus, the total number of times the network departs from state ¢
due to the arrival of a successful connection request is T'm; ([N —
i)A P, (7). This is also the total number of successful connection
requests arriving at the network when the network is in state
i(i € {0,1,...,N}) during [0, T. Therefore, the total number
of successful connection requests carried by the network during
[0, T] is obtained by summing over %

N
Nsucc =T\ Z 7T1'(N — L)]DJH(’L)
=0

|
Proposition 1: The throughput of a k-fold multicast network
is given by

N
TH=XY (N —i)P(i) (©6)
=0

which can be directly obtained from Lemma 1.

Note that the total number of connection requests arriving at
the network during [0, T is Niota1 = N AT, among which only
Ngyucc connection requests given in Lemma 1 are successful, and
the rest

N
Np1=Niotal — Nsuce = T'A Z”ri (N (1 - R]n(L)) + LP]n(L))
=0

connection requests are blocked. The blocking probability is
Np1/Niotar- Thus, we have the following proposition.

Proposition 2: The blocking probability of a k-fold multicast
network is

1 & -
PB = N ;WL (N (1 — Pjn(z)) + ZIDjn(Z)) ) )

To further study the performance of a k-fold multicast net-
work, we consider input blocking and output blocking sepa-
rately. Input blocking depends on the number of busy source
nodes in the network. Since a larger fold means more busy
source nodes, increasing k will generally increase the proba-
bility of input blocking. Input blocking can be reduced only
by adding buffers at each source node, which is not consid-
ered in this paper. On the other hand, increasing £ will reduce
the chance of output blocking. In order to calculate the output
blocking probability, first we have the following lemma.

Lemma 2: Let pyi(i,m) be the probability that exactly m
requests arriving at idle source nodes are blocked during a visit
to state 7. We have

poi(i,m) = a(l —a)™ )

where

(N = )APW() + i
(N =X +iu

Proof: Define the following events.

e F;: the first m connection requests arrive before any of
the ¢ ongoing connections terminates.

e Fs: none of the m connection requests can be realized
along with the 7 ongoing connections.

* Fs5: one of the ongoing connections terminates after the
arrival of the mth request, and before the arrival of the
(m + 1)th request.

e E,: the (m+ 1)th request arrives before any ongoing con-
nection terminates, and is m.c. with the < ongoing connec-
tions.

We have

pbl(z',m) = P(E1 n EQ)P(Eg U E4|E1 n Ez)

Events £y and E, are independent of each other, because
knowing the arrival time of a connection request does not
provide any information on whether it can join the ¢ ongoing
connections. Thus, P(E1 N E2) = P(E;)P(E3). Since events
FE5 and E,4 cannot occur at the same time

P(E3U E4|Ey N Ey) = P(Es|Ey N Ey) + P(E4|Ey N Ey).
Thus
pbl(z,m):P(El)P(EQ) (P(E3|E1 n E2)+P(E4|E1 n Eg)) .

Event E; occurs when the summation of m independent expo-
nentially distributed random variables with parameter (N — i)\
is less than another exponentially distributed random variable
with parameter ¢x. Thus

Since connection requests are independent of each other, we
have P(E>) = (1 — P;u(4))™. Due to the memoryless property
of exponentially distributed random variables, after the arrival
of the mth blocked request, the system starts over again. Thus,
P(E5|Eq N Ey) is simply the probability that an exponentially
distributed random variable with parameter :y is less than an-
other exponentially distributed random variable with parameter
(N — i)\. Therefore

if
P(Es|BxN Be) = s
Similarly, we have
(N — )\ .
P(E4E1 N Ey) = mpjn(l)-

Define

(V= APl +in
(N—i)A+ip

We have pp,(i,m) = (1 — a)™. ]
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From this lemma, we know that the number of the requests
blocked due to output blocking during a visit to state 4 is a geo-
metric distribution random variable with parameter «. It has
mean
(N —i)A (1 = Pu(7))

l—a
a  (N—i\Pu(i)+in ©)

From the proof of Lemma 1, the number of visits to state ¢ during
along time period [0, 7] is T'm;((N —i)AP;n(4) +ip). Thus, the
average total number of requests blocked due to output blocking
when the network is in state ¢ during [0, T'] is T'm; (N — i) A(1 —
P;,,(i)). Then the total number of requests blocked by output
blocking during [0, 7] is

(4)) -

Thus, the total number of requests blocked due to input blocking
during [0, T is the total number of the requests blocked minus
N, outbl

N
Noutbl = T)\ZWZ(N - L) (1 - [)J
=0

~
Ninbl = Npi — Nowepl = TA E it.
i—0

Proposition 3: The output blocking ratio, which is defined
as the ratio of blocked requests due to output blocking over all
blocked requests, is

SN TN —i)(1-P,
Yo mi (N (1 -

()
Pin(2)) + iPjn (i)

(10)

V. SOME GENERALIZATIONS

In this section, we discuss some possible generalizations of
the results obtained in previous sections.

First, although we have mainly focused on an V x N k-fold
multicast network, the results can be easily extended to an asym-
metrical k-fold multicast network with N source nodes and M
destination nodes. The only modification we need to make is (2).
For an N x M k-fold multicast network, the probability that ¢
multicast connection requests are m.c. is

&Anz{(zhﬂm%@moM,i>k

1, otherwise.

Y

All other results and discussions still hold.

This result can be directly applied to wavelength-division
multiplexing (WDM) optical multicast networks [15], where the
inputs and outputs are optical fibers, with k wavelengths on each
fiber. An N x N WDM multicast network, with each input fiber
equipped with a full-range wavelength converter, which con-
verts a wavelength to any of the k wavelengths in the network,
can be modeled as an asymmetrical Nk x N k-fold multicast
network. The throughput and blocking probability of this WDM
multicast network can then be obtained by using the results in
this paper.

Second, note that by our assumptions, the fanout of multi-
cast connection is a random variable that follows binomial dis-
tribution. If the fanout follows other types of distributions, for
example, geometric distribution, the only thing we need to do
is to recalculate Pp,.(¢). However, in this case, the degrees of
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output nodes will no longer be independent of each other. When
the network size is large, finding P,,.(%) analytically becomes
impractical. Thus, we have to generate Ppy,.(¢) by simulations.
After obtaining P, (), the throughput and blocking probability
can be obtained immediately from our analytical model.

VI. SIMULATIONS AND OBSERVATIONS

We have conducted extensive simulations for several network
sizes under different fanouts and arrival rates to validate our
analytical results. In the simulation, we use F' to represent the
fanout of a multicast connection request. F' is a binomial random
variable with parameter (N, #) and mean E(F') = N6. Without
loss of generality, we let service rate p = 1. The time interval
between two consecutive arrivals at an input node is a random
variable that follows exponential distribution with parameter ),
and is independent of network state.

Initially, all input nodes are set to be idle, and the degrees of
all output nodes are set to be zero. The system time is set to be
zero. The program runs in an event-driven mode: it looks for the
first event that is about to occur, either an arrival or a departure.
If it is an arrival, a random variable that follows exponential dis-
tribution with parameter \ is generated as the time interval until
next arrival. If the connection request arrives at a busy input
node, it is immediately rejected. For a connection request ar-
riving at an idle input node, its destinations are generated and
are represented by a 1 x NN binary vector. If one of its destina-
tion nodes is found to have degree k already, the connection re-
quest is rejected. Otherwise, the connection request is accepted,
and the degrees of all its destination nodes are incremented by
one. The input node is then set to state “busy.” A random vari-
able that follows exponential distribution with parameter y is
generated as the holding time of this connection. If the event is
a departure, the degrees of all its destination nodes are decre-
mented by one, and the input node is set to state “idle.” After
that, system time is set to the time when the event occurs. The
program then looks for the next nearest event. After the system
time exceeds a certain value 7', the simulation terminates. For
arrival rate A = 0.5 and network size N = 32, if T' = 4000,
there are about 64 000 arrivals. In our simulation, we ensure that
there are at least 50 000 arrivals.

Due to limited space, we only illustrate the simulation re-
sults along with the analytical results for network size 32. In
Fig. 3(a) and (b), we plot network throughput as a function of
network fold k. In Fig. 3(a), we keep arrival rates at 0.5 and
vary the fanout distribution. First, let’s look at the growth of
the throughput with respect to &k for different values of mean
fanout F(F'). We observe that when E(F’) is relatively small,
the throughput grows indeed very fast, but when F(F') becomes
larger, throughput grows much more slowly. Next, we can see
that for any E(F'), the throughput grows more rapidly when
k is small, and tends to converge to some value when k fur-
ther increases. For example, in Fig. 3(a), for the average fanout
E(F) = 3.2, the throughput increases by 75% when network
fold k increases from one to two, but when k& > 5, it stops in-
creasing and remains at about 10.6. This is because when & be-
comes very large, almost every connection request arriving at an
idle source node can go through. Thus, the network throughput
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Simulation and analytical results of a k-fold network for network size 32. (a) Network throughput under different fanout distributions. (b) Network

throughput under different arrival rates. (c) Blocking probability under different fanout distributions. (d) Blocking probability under different arrival rates. (e) Output
blocking ratio under different fanout distributions. (f) Output blocking ratio under different arrival rates.

is totally determined by the arrival rate. In this case, further in-
creasing k will not increase the throughput.

In addition, the value of k£ to achieve the maximum
throughput depends on the fanout distribution. In Fig. 3(a), we
can see that to achieve the maximum throughput, we need to
letk =5 for E(F) = 3.2,k = 8 for E(F) = 64,k = 13
for E(F) = 16, and k = 16 for E(F') = 28.8, respectively.

We can see that the increase is not linear to E(F'), because the
larger the E(F'), the less k we need to add to the network to
achieve the maximum throughput.

In Fig. 3(b), we fix the fanout distribution and study network
performance under different arrival rates. Similar observations
can be drawn for A < 1. We also did experiments on A > 1,
which means arriving is faster than serving. In most networks,
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this would lead to an unstable state and is not considered. How-
ever, since we assume no buffers at source nodes and any con-
nection request arriving at a busy source node is immediately
dropped, it is still valid in our case. As we can see, a larger A
leads to larger throughput, but needs a larger k to reach the max-
imum throughput.

In Figs. 3(c) and (d), we plot the network blocking proba-
bility as a function of network fold k. In Fig. 3(c), we keep
arrival rates at 0.5 and vary the fanout distribution. First, we
notice that when the average fanout F(F) is relatively small,
blocking probability decreases very fast when & increases. For
example, in Fig. 3(c) where N = 32, for E(F') = 3.2, blocking
probability drops by 30% when k increases from one to two.
However, when E(F') becomes larger, blocking probability de-
creases much more slowly and almost linearly to k. Next, we
can see that blocking probability does not reach zero when k fur-
ther increases. This is because of the presence of input blocking,
which actually increases with k. In Fig. 3(d), we fix the fanout
distribution and study network performance under different ar-
rival rates. Again, we can see that blocking probability decreases
quickly when arrival rates are small (say, less than 0.5) and much
more slowly when arrival rates become large.

In Figs. 3(e) and (f), we plot the output blocking ratio as a
function of network fold k. We can see that when £ is larger than
a certain value, the output blocking ratio tends to zero, which
means no connection request is blocked due to output blocking.
As in Fig. 3(e), where N = 32 and A = 0.5, to make the
output blocking ratio almost zero, we need only to let £k = 6
for E(F) = 3.2,k = 9 for E(F) = 6.4, and k = 14 for
E(F) = 16, respectively. Again, the value of k to eliminate
output blocking is not a linear function of E(F'). The larger the
E(F), the less fold we need to add to the network to achieve a
zero output-blocking ratio.

VII. CONCLUSIONS

A k-fold multicast network was recently proposed [13] as a
cost-effective solution to provide better QoS functions in sup-
porting real-world multicast applications. To give a quantitative
basis for network designers to determine the suitable value of
system parameter &k under different traffic loads, in this paper,
we have presented an analytical model for the performance of
k-fold multicast networks under Poisson traffic. We first gave
the stationary distribution of network states, and then derived
the throughput and blocking probability of the network. We have
also conducted simulations to validate the analytical model, and
the results show that the analytical model is very accurate under
the assumptions we made. From the analytical and simulation
results, we can see that by increasing the fold of the network,
network throughput increases very fast when the fanout of mul-
ticast connections are relatively small, compared with the net-
work size. Our future work includes generalizing the model to
other traffic distributions and other types of multicast networks.
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