
1

Efficient Software Partial Packet Recovery in
802.11 Wireless LANs

Jin Xie, Wei Hu, and Zhenghao Zhang, Member, IEEE

F

Abstract—In 802.11 wireless LANs, partial packets are often re-
ceived which usually contain only a few errors. According to the cur-
rent 802.11 standard, such packets have to be retransmitted. Much
effort has been invested recently in repairing such packets without
retransmitting the entire packet, e.g., by using error correction (EC)
code or retransmitting only the corrupted blocks. In this paper, we
study software partial packet recovery and propose a comprehensive
scheme called UNITE with the following key features. First, UNITE
supports both the EC-based and block-based methods, because
they are suited for different scenarios and can complement each
other to achieve higher performance. Second, UNITE employ AMPS,
an error estimator designed by us, which is capable of estimating
the error condition in each individual partial packet and providing
key information for repairing the packet. Third, UNITE selects the
repair method for each packet to optimize the link performance
under configurable system resource constraint, such as CPU or
power. We implement UNITE on the Madwifi open-source driver. Our
experiments show that UNITE outperforms other recovery schemes
while not over-consuming the system resources.

Index Terms—Partial packet recovery, 802.11, Device driver.

1 INTRODUCTION

802.11 Wireless Local Area Networks (LAN) are widely
deployed for convenient access to the Internet. It is well
known that wireless transmissions may result in partial
packets, i.e., packets that have errors but still contain much
correct information. Many recent works [14], [8], [18],
[12], [10], [9] attempt to exploit partial packets for higher
link efficiency. An appealing approach for 802.11 LANs,
given the abundance of the already deployed hardware, is
to extend the software [14], [9] or firmware [8] to handle
partial packets. Existing solutions fall into two categories:
those based on error correction code (EC-based) and those
based on block retransmission (block-based). In the EC-
based approach, the sender divides the packet into blocks;
if the data is corrupted, the sender encodes each block
into codewords according to an error correction code and
transmits the parity bytes for each block to correct the
errors. In the block-based approach, the sender divides
packets into blocks and retransmits the corrupted blocks,
where a block is found to be corrupted if it fails the
checksum test.

J. Xie and W. Hu were with the Computer Science Department, Florida
State University, Tallahassee, FL 32306 during this work. Z. Zhang is with
the same department. Email: {xie,hu,zzhang}@cs.fsu.edu.

In this paper, we study software-only partial packet
recovery and propose a comprehensive scheme called
UNITE, motivated by the following observations. First,
the EC-based and the block-based approaches are not
mutually exclusive; rather, they complement each other in
many ways. A combined approach should achieve better
performance than each of the individual approaches, and
should not incur high complexity because the individual
approaches are both simple in nature. Second, error es-
timators can estimate the number of errors in a received
packet and provide key information for repairing the packet;
such information was not available to the earlier partial
packet recovery schemes because error estimators were
only proposed recently. Third, the existing repair schemes
may consume a large amount of system resource such as
the CPU and power; a practical scheme, on the other hand,
should avoid over-consuming the system resources.

The key features of UNITE include the following. First,
UNITE supports three repair methods, which are best suited
for packets with different numbers of errors. The methods
include Holistic-EC (HEC) and block-retran, which are
the standard error correction and block-based approaches,
respectively, as well as a new method called Target-EC
(TEC), which is specifically designed for packets with
very few errors because such packets often exist. Second,
UNITE employs AMPS, an error estimator proposed by
us, and gets an estimate of the error number in each partial
packet which guides the selections of the repair methods
and repair parameters. Third, UNITE may operate under
configurable CPU and power constraints, and employs
an algorithm that optimizes link performance under such
constraints. We implement UNITE based on the Madwifi
[2] open-source driver. We test UNITE with extensive
experiments and compare it with other drivers, including the
original 802.11 driver, a two-round retransmission driver,
a pure block-based driver, and a pure EC-based driver
enhanced with AMPS. We find that in the majority of the
cases, UNITE achieves higher performance than all other
drivers. In addition, UNITE consumes the system resources
under the specified constraint.

The rest of the paper is organized as follows. Section
2 discusses related work. Section 3 describes the protocol
according to which UNITE transmits and repairs packets.
Section 4 describes AMPS. Section 5 describes the system
resources usage models. Section 6 describes the algorithms

2

for repair method selection under configurable resource
constraints. Section 7 describes the experiments and eval-
uation. Section 8 discusses possible extensions. Section 9
concludes the paper.

2 RELATED WORK

Partial packet recovery has drawn much attention in recent
years. UNITE is built on the foundation of the earlier works,
with key distinctions discussed in this section.

ZipTx [14] proposes an EC-based recovery scheme on
the Madwifi driver. The key differences between UNITE
and ZipTx include the following. First, UNITE supports
more repair methods, which helps achieving higher per-
formance. Second, UNITE is capable of limiting its CPU
or power consumption under given constraints. This is
motivated by our experiments which show that software
decoding can consume a large amount of CPU as well as
power. ZipTx, on the other hand, does not have this mecha-
nism. In ZipTx, power consumption was not considered and
it was argued that the CPU load will not be high; however,
we note that the experiments in ZipTx were carried out
in high end machines which may underestimate the CPU
load in low end machines such as smartphones and tablets.
Third, UNITE employs AMPS for error estimation which
provides valuable information that can be used to select the
optimal repair method and parameters, while the advanced
error estimators were not available to ZipTx.

The block-based approach has been implemented in the
Madwifi dirver [9] and in firmware [8]. For example, in
Maranello [8], a negative-ACK (NACK) is sent in the place
of an ACK when the packet is corrupted. The NACK
contains the checksums of the blocks in the packet, with
which the sender can immediately determine which block
to retransmit. We note that UNITE combines both the EC-
based and block-based approach and can achieve higher
performance. We also note that UNITE is a software-
based solution that can be applied to many platforms;
firmware solution such as Maranello needs to modify the
wireless card firmware which may become a limiting factor
in deployment because not all wireless card manufactures
expose the firmware design.

Many other partial packet recovery schemes have also
been proposed. PPR [10], SOFT [18], and MIXIT [12]
recover corrupted packet with the assistance of the physical
layer, i.e., the physical layer is modified to report additional
information about the received bits, such as the confidence
levels of the bit values, to allow the upper layers to locate
the corrupted sections of the packet or to better determine
the bit values by a soft combining of multiple copies of
the packet. While these approaches may efficiently recover
corrupted packets, they rely on specialized hardware and
thus are not applicable to the existing devices. In [17],
[16], [6], opportunistic overhearing at third-party nodes is
exploited for packet recovery. For example, in PRO [16],
a relay node will retransmit a lost packet on behalf of
the source node if the relay node has a better link to the
destination node. In this paper, we focus on the recovery

between two nodes, and leave the extension to multiple
nodes to future work.

UNITE was first presented in [20]; in this paper, we have
enhanced our earlier work with substantial new materials
and new results, including detailed description of AMPS,
the power consumption model, and many improvements in
the implementation.

3 THE UNITE PROTOCOL

In this section, we discuss the protocol used by UNITE. We
begin with a high-level overview of the packet transmission
procedure.

3.1 Packet Transmission Procedure
In the initial transmission, the sender sends only the data
bytes. Depending on the outcome:

• If the packet is received correctly, it is delivered to
the upper layer immediately. The transmission of this
packet finishes.

• If the packet is received partially, the receiver com-
putes AMPS samples. It also divides the packet into
blocks and calculates the checksums of these blocks.
When the receiver gets the opportunity to send, it
sends a feedback to the sender containing the sequence
number, the AMPS samples and the block checksums
for the partial packet. After the sender receives the
feedback, it runs the error estimator to find the number
of errors, as well as comparing its local block check-
sums with the received block checksums to find the
corrupted blocks. The sender selects a repair method
and sends the repair data, which is either the parity
bytes or the corrupted blocks.

• If the packet is erased, detected by the receiver ac-
cording to the absent sequence number, the sender is
informed and may retransmit the packet up to three
times until the packet is received correctly or becomes
a partial packet.

When the receiver receives the repair data for a partial
packet, it attempts to repair the packet:

• If the repair succeeds, the packet is delivered to
the upper layer and the transmission of this packet
finishes.

• If the repair fails:
– If the packet is repaired with block-retran, it is

repaired with block-retran again for a maximum
of two times.

– If the packet is repaired with HEC or TEC, it will
be repaired with block-retran for a maximum of
three times.

3.2 Code Block, Interleaving, and Checksum
Block
To support multiple repair methods, UNITE organizes the
data in multiple manners, namely the code block and the
checksum block, which also involves interleaving. These
concepts are explained in the following:

3

4 5 6 70 1 2 3

1 7 3 0 5 2 4 6

0 1 2 3 4 5 6 7

1 7 4 63 0 5 25 2 4 61 7 3 0

Sender Receiver

Code
Block

Data Packet

Interleaving

De−interleaving

0 1 2 3 4 5 6 7

Checksum
Block

Fig. 1. A simple illustration of the code block, interleav-
ing, and checksum block. The shaded boxes represent
corrupted bytes.

• Code Block: To support HEC, UNITE divides a packet
into code blocks. Data bytes in the same code block
can be encoded into one codeword according to the
Reed-Solomon (RS) code, where a codeword is the
original data bytes followed by parity bytes. In our
current implementation, the maximum length of a
codeword is 255 bytes and the size of the code blocks
is 150 bytes, except that the last block may be less
depending on the size of the packet. If encoding is
needed, all code blocks are encoded with the same RS
code. The RS code is used because of its strong error
correction capability [15], as well as the availability
of software implementations [11].

• Interleaving: When transmitting the original data
packet, the packet undergoes an interleaving proce-
dure, in which each byte is relocated to a random
location based on a random permutation. At the re-
ceiver side, the packet undergoes an deinterleaving
procedure, which is the reverse of the interleaving,
such that the bytes are mapped to their original loca-
tions. Interleaving is a common technique in wireless
communications to cope with bursty errors. As errors
in a wireless frame tend to be clustered in a few
locations [17], without interleaving, it could happen
that there are many errors in one received code block
while very few in others. The interleaving procedure
spreads the errors evenly across all codewords and
significantly reduces the probability of such events.

• Checksum Block: To support block-retran, UNITE also
divides a data packet into checksum blocks. In our
current implementation, each checksum block is 64
bytes; the last block may be less depending on the
size of the packet. Note that the error correction code
prefers the errors to be spread out evenly in the packet,
while the block-retran prefers the errors to be clustered
in as few blocks as possible, such that less blocks need
to be retransmitted. Therefore, the checksum blocks
are defined based on the packet after the interleaving
step.

For example, Fig. 1 illustrates the definitions of the blocks,
as well as the effectiveness of interleaving in spreading

errors, for a packet with 8 bytes indexed from 0 to 7.

3.3 Three Repair Methods

UNITE supports three repair methods, namely block-retran,
HEC, and TEC. In this section, we discuss the repair
methods in details. We use Y and Z to denote the number
of error bytes in a packet and the maximum number of error
bytes in a code block among all code blocks, respectively.
Y and Z are unknown to the receiver and their estimates
provided by AMPS are denoted as Ŷ and Ẑ , respectively.

3.3.1 Block-Retran

The block-retran is the simplest among the three meth-
ods: the sender simply retransmits the corrupted checksum
blocks. For the sender to locate the corrupted blocks, the
receiver computes the checksums of the received partial
packet and sends them to the sender in the feedback. The
sender computes the checksums of the same blocks based
on the correct packet in its buffer and locates a corrupted
block if the two checksums do not match. Block-retran is
the fallback repair method in UNITE; all packets can be
repaired with block-retran.

In our current implementation, the checksum is 16 bits
according to the generator polynomial x16 + x15 + x2 + 1
with the implementation available in the Linux kernel.
We did not use the more popular 32-bit CRCs which
have stronger error detection capabilities, due to the better
tradeoff between detection probability and overhead of the
16-bit CRC.

3.3.2 HEC

With HEC, the sender sends parity bytes for the code
blocks. The number of errors among the code blocks may
be different; however, after interleaving, the variance should
have been minimized. For simplicity, the same number of
parity bytes are sent for all the code blocks. To ensure
that all codewords can be decoded correctly, the number
of parity bytes should be sufficient for the most corrupted
block; therefore, the number of parity bytes is determined
according to Ẑ . After receiving the parity bytes, the receiver
runs the decoding algorithm for each code block.

To be more specific, the sender encodes a code block
into a codeword according to the (255, 255-2Ẑ) RS code
and transmits 2Ẑ parity bytes as the repair data. With 2Ẑ
parity bytes, the RS code guarantees to correct any no more
than Ẑ errors in the received data bytes and parity bytes.
Choosing the code adaptively based on the number of errors
minimizes the transmission time and the decoding time. If
the codeword can accommodate more data bytes than the
size of the code block, the codeword is shortened, i.e., when
encoding, dummy 0s are added to the beginning of the data
bytes while such 0s do not need to be transmitted.

In our current implementation, a 1500-byte packet is
qualified for HEC if Ŷ < 100. Only packets with less
than 100 estimated error bytes qualify for HEC, because for
packets with more errors, the variance of AMPS’s output is

4

larger which leads to more underestimations. Underestima-
tion causes insufficient number of parity bytes to be sent,
which results in decoding failure, wasted CPU time, wasted
energy, and additional rounds of transmissions. Setting a
threshold at 100 can significantly reduce the probability of
underestimation. The threshold can be empirically chosen
for packets of other sizes.

3.3.3 TEC
With TEC, the sender locates the corrupted checksum
blocks by comparing the checksums, and transmits parity
bytes to correct errors in these blocks. TEC is targeted
for packets with very few errors clustered in few blocks
for which neither HEC nor block-retran is efficient. For
example, if there is only one error byte, HEC still has to
run the decoding algorithm for all codewords and block-
retran has to retransmit an entire checksum block; on the
contrary, TEC only sends a few parity bytes and decodes
one codeword.

In our current implementation, a 1500-byte packet is
qualified for TEC if Ŷ < 15 and the number of corrupted
checksum blocks is no more than 3. As the size of the
checksum block is small, all corrupted checksum blocks
are grouped together and encoded into one codeword. If
5(t − 1) ≤ Ŷ < 5t where t ∈ {1, 2, 3}, 10t parity
bytes are transmitted. The number of transmitted parity
bytes are more than the required number of parity bytes
according to Ŷ , because this reduces the repair failure
probability without significantly increasing the overhead.
The parameters can be empirically chosen for packets of
other sizes.

3.4 The Link Layer Protocol
The details of the link layer protocol are described in the
following.

3.4.1 Sender Queue and Receiver Queue
The sender considers a packet delivered when it receives an
802.11 ACK from the hardware or a software ACK which
is the success repair status in a feedback frame. The sender
maintains a queue of packets that have been sent but have
not been delivered. If the queue is not full, the sender may
keep sending new packets from the upper layer; otherwise,
the sender stops sending any new packets. To cope with
feedback loss and packet erasure, the sender retransmits
packets in the queue if the queue is full for a certain amount
of time while no feedback is received; the threshold is set
to be 20 ms in our current implementation.

At the receiver, packets received correctly are delivered
to the upper layer immediately. The partial packets and the
sequence numbers of the detected erasure packets are stored
in a queue. There may be several partial packets and erasure
packets in the queue, because, for example, the sender may
send several packets before receiving a feedback.

The length of the sender queue is the same as the
length of the receiver queue, set to be 32 in our current
implementation.

U the number of data bytes in a packet
B the number of code blocks in a packet
K the number of selected bytes for a sample
S the number of samples
X the number of error samples
Y the number of error bytes in the packet
Z the maximum number of errors in a code block

among all transmitted code blocks

TABLE 1
List of notations for AMPS

3.4.2 Feedback
The aggregated feedback mechanism in UNITE is very
similar to that in ZipTx [14]. The receiver sends feedback
about packet reception and repair status to the sender.
To reduce the overhead of sending individual feedbacks,
the receiver may aggregate multiple feedbacks into one
feedback frame. In our current implementation, the receiver
sends a feedback frame in three cases, whichever occurs
first:

• When the receiver has received ϕ partial or erasure
packets, where ϕ is set to be 8 in our current imple-
mentation.

• T1 after receiving a partial or an erasure packet. This
can reduce the packet delivery latency for strong signal
channels that need a long time to accumulate enough
number of partial packets or erasure packets. T1 is set
to be 10 ms in our current implementation.

• T2 after the previous feedback is sent, while no
corresponding repair data is received. This happens
when the previous feedback is erased or corrupted in
the transmission. Therefore, the receiver need to re-
transmit the feedback. In our current implementation,
T2 is set to be 20 ms.

In order to increase the probability of correctly delivering
the feedback frame, it is always transmitted at two rates
lower than the current data transmission rate; if no such
rate exists, the lowest data rate.

4 AMPS – THE ERROR ESTIMATOR

We design AMPS for error estimation, which is based
on the idea of Amplified Sampling. It is well-known that
most partial packets have very few errors, which poses a
challenge because an error estimator may not encounter an
error byte. AMPS computes a sample with multiple bytes,
which amplifies the raw byte error ratio into a much larger
sample error ratio, such that it may better detect the error
condition in the packet.

4.1 AMPS Design
In our current implementation, AMPS is invoked for each
new data packet that has been received partially. We denote
the size of the packet as U . The receiver randomly samples
K data bytes, and computes their parity bit; each parity
bit is a sample. The probability that the sample’s parity
is flipped is much larger than the probability that a byte
is corrupted; for example, if the data byte error ratio is
0.01 and K = 25, the probability that the sample’s parity

5

is flipped is approximately (1 − 0.9925)/2 = 0.11. The
receiver sends the AMPS samples in the feedback and
the sender calculates the samples in exactly the same way
based on the original packet. The sender’s samples may be
different from the receiver’s samples, because the receiver’s
samples are calculated from the corrupted data. We call
a mismatching sample an error sample. We denote the
number of error samples as X , which is used as the input
to AMPS. As mentioned earlier, AMPS estimates Y , the
number of error bytes in the packet, as well as Z, the
maximum number of errors in a code block among all
transmitted code blocks. Table 4.1 lists the main notations
related to AMPS.

4.1.1 Estimation of Y

AMPS outputs Ŷ as the estimate of Y , if Ŷ maximizes
the conditional probability P (X = x|Y = Ŷ) under the
constraint that Ŷ is no more than R, where R denotes the
maximum number of errors in a packet.

To see why AMPS adopts this policy, we note that in the
ideal case, Ŷ should maximize P (Y = Ŷ|X = x), which
can be easily found to be equivalent to maximizing P (X =
x|Y = Ŷ)P (Y = Ŷ). P (X = x|Y = Ŷ) can be calculated;
however, the practical challenge is that the prior distribution
P (Y = Ŷ) can be costly to obtain in practice because it
is different in different channels. However, we find that
the numbers of corrupted bytes and in the vast majority of
partial packets are typically below a threshold which we
denote as R; for example, we find that a reasonable R is
200 for packets of 1500 bytes. Therefore, in AMPS, we
basically apply a very simple prior distribution which is
uniform from 0 to R and is 0 for other values.

Calculating P (X = x|Y = y): We note that the error bytes
are randomly distributed in the packet after interleaving. We
assume that the error bytes take random values. Therefore,
the probability that a sample is an error sample when there
are y error bytes, denoted as ηy , is

ηy = [1−
(
U − y

K

)
/

(
U

K

)
]/2. (1)

For simplicity, we treat the samples as independent. As a
result, the probability that there are x error samples follows
the Binomial distribution:

P (X = x|Y = y) =

(
S

x

)
ηy

x(1− ηy)
S−x. (2)

Obtaining Ŷ: According to our policy, Ŷ = min{ŷ, R}
where ŷ is the value that maximizes Eq. 2. In the following,
we focus on finding ŷ. When x < S

2 , ŷ should be

ŷ ≈ (1− K

√
1− 2x

S
)U. (3)

To see this, we note that Eq. 2 is the standard Binomial
distribution and is maximized when ηy = x

S for given x.

Therefore, ŷ satisfies

x

S
= [1−

(
U − ŷ

K

)
/

(
U

K

)
]/2

≈ [1− (1− ŷ

U
)K]/2

with which Eq. 3 can be derived. When x ≥ S
2 , Eq. 2 is

still maximized when ηy = x
S ; however, such values of

ηy cannot be taken because ηy < 1
2 according to Eq. 1.

Therefore, when x ≥ S
2 , ŷ approaches U and corresponds

to a ηy as close to 1
2 as possible; such values will not be

used because of the cap at R.

4.1.2 Estimation of Z
Z is estimated based on the conditional probability P (Z =
z|Y = y). We calculate it iteratively on the number of code
blocks. To be more specific, we use Pi(Z = z|Y = y) to
denote the probability that Z = z when there are i code
blocks. By definition, P (Z = z|Y = y) = PB(Z = z|Y =
y). First, when there is only one code block, clearly,

P1(Z = z|Y = y) =

{
1 z = y

0 otherwise.

For notational simplicity, we use δy,it to denote the probabil-
ity that among the y error bytes, t bytes are in one particular
code block when there are i code blocks. Because the error
bytes are randomly distributed,

δy,it =

(
y

t

)
(
1

i
)
t

(1− 1

i
)
y−t

.

Given Pi(Z = z|Y = y), Pi+1(Z = z|Y = y) can be
found by conditioning on the number of error bytes in a
particular code block. That is, we single out one code block,
called the tagged code block, and check the number of error
bytes in this code block. The event that Z = z occurs
when the tagged code block has less than z errors while
the maximum number of errors in a code block among the
remaining code blocks is exactly z, or when the tagged code
block has exactly z errors while the maximum number of
errors in a code block among the remaining code blocks is
no more than z. Therefore,

Pi+1(Z = z|Y = y) =
z−1∑
t=0

δy,it Pi(Z = z|Y = y − t)

+ δy,iz

z∑
z′=0

Pi(Z = z′|Y = y − z).

After getting Ŷ , AMPS outputs Ẑ such that P (Z ≤
Ẑ|Y = Ŷ) is greater than a threshold, set to be 0.95 in
our implementation.

4.2 Choices of Parameters
The key parameters of AMPS are S and K. We discuss the
choice of S and K for packets of size 1500 bytes as an
example; the same method can be easily applied to other
packet sizes.

6

The values of S and K are both related to the number
of errors in the packet. S is the number of samples, and
is the overhead of AMPS measured in bits. A system
prefers overhead as small as possible; on the other hand,
the number of samples must allow a reasonable granularity
of estimate. Given the condition that R = 200, we choose
S = 64, i.e., the overhead of AMPS is only 8 bytes.
K determines the amplifying factor. It is desired to

choose K to minimize a certain cost function; however,
we note that a meaningful cost function cannot be defined
because it must involve the prior distribution of Y which
varies depending on the particular channel condition and
the wireless card. Therefore, we choose K such that the
maximum number of estimated errors matches R. From
earlier discussions, it can be found that the largest estimate
corresponds to that when x = S

2 − 1. According to Eq. 3,
the maximum number of estimated error is:

(1− K

√
1− 1

2S
)U,

and to match it with R, K should be determined by

K ≈
ln 1

2S

ln (1− R
U)

. (4)

It can be found that K is 25 when U = 1500 and R = 200.

4.3 Table Lookup Implementation
We note that both P (X = x|Y = y) and P (Z = z|Y = y)
can be precomputed. To reduce the computation complexity
in real time, we precompute the tables for the estimation
of Y and Z such that the estimates can be obtained by
a simple table lookup in constant time. We note that the
sizes of the tables are very small, because Y and Z are
determined by lookups on X and Y , respectively, while X
and Y both have no more than S+1 distinct values in our
system. To handle more frame sizes, tables can be built for
a set of representative frame sizes; for a received frame of
any size, the table for the closest frame size can be used.

4.4 AMPS Performance
We discuss the performance of AMPS in this section.

4.4.1 Comparing with EEC and the Pilot Method
Error estimation can also be achieved by the simple pilot
method, i.e., by inserting pilot bits and using the fractions
of flipped pilot bits as the estimate of bit error ratio, as
well as by EEC [4], which is another recently proposed
error estimator. We compare the performance of AMPS
with these methods and show the results in Fig. 2, where
the performance is measured by the estimation error, i.e.,
the difference between the estimated and the actual number
of errors. As AMPS and EEC/pilot estimate byte and bit
errors, respectively, we consider 1500-byte and 1500-bit
packets for AMPS and EEC/pilot, respectively. We use
simulations to obtain the results for AMPS and EEC and
derive the results for the pilot method mathematically. In

20 40 60 80 100
0

20

40

60

80

Error

EEC
AMPS
Pilot

Fig. 2. Comparison between AMPS and EEC.

the simulations, we inject random byte and bit errors into
the packets where the errors range from 1 to 100 bytes/bits
at a step of 1 byte/bit. For each error number, we run the
simulation 10,000 times. For the pilot method, we note that
if there are U data bits and S pilot bits in the packet, given
there are Y flipped bits, the mean estimation error is

min(Y,S)∑
e=0

(
U

Y − e

)(
S

e

)
(
U + S

Y

) |round((U + S)e

S
)− Y |. (5)

Based on Section 3.5 of [4], EEC needs 7 sample levels
from level 3 to level 10; therefore, EEC has 28 bytes of
samples. For the pilot method, we set the number of pilot
bits to be 64 such that it has the same overhead as AMPS.
Fig. 2 suggests that AMPS outperforms EEC because the
estimation error of AMPS is only about half of EEC in
all cases, while the overhead of AMPS is only 8 bytes
compared to the 28 bytes of EEC. We can also see that
performance of the pilot method is poor when the number
of errors is small but improves when the number of errors
increases; this is expected because the main problem of the
pilot method is that it may fail to sample any error bits
when the number of errors is small.

4.4.2 AMPS in Real Channels
We also run AMPS for 1,500-byte packets in real-world ex-
periments and show the probability density function (PDF)
of estimation errors in Fig. 3. We show two versions of
AMPS, one denoted as AMPS and is the AMPS estimator
described in this paper, the other denoted as eAMPS and
is AMPS enhanced with more accurate prior distribution of
Y and is expected to perform better. The two versions of
AMPS differ only in the estimation of Y ; after obtaining an
estimate of Y , the same method is used for the estimation
of Z. The details of the eAMPS are described in [19] and
are not included in this paper due to the limit of space.

We can see that AMPS performs reasonably well; the
average overestimation and underestimation of Y are about
5 bytes and 1.5 bytes, respectively, and the average over-
estimation and underestimation of Z are about 3.9 bytes
and 0.07 bytes, respectively. We can also see that the
performance of the AMPS is reasonably close to that of
eAMPS. We prefer the AMPS over eAMPS because AMPS
does not require accurate prior distribution of Y which may
be costly to obtain.

7

−40 −30 −20 −10 0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

Over Estimated Bytes

AMPS
eAMPS

(a)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

Over Estimated Bytes

AMPS
eAMPS

(b)

Fig. 3. AMPS performance in real wireless channels.
(a). PDF of AMPS’s Estimate of Y . (b). PDF of AMPS’s
Estimate of Z.

0 20 40 60
0

0.2

0.4

0.6

0.8

1

CPU Usage (%)

Fig. 4. The CPU usage estimation.

5 RESOURCE USAGE MODELS

We develop models to understand the resource usage caused
by the repair methods, which enable the correct choice of
repair methods under various constraints.

5.1 CPU Usage

The EC-based methods use significant CPU time in de-
coding the codewords; the block-retran hardly uses any
significant CPU time due to its simplicity. Therefore, we
use the total decoding time of the error correction code to
estimate the CPU time usage in the partial packet recovery.
To illustrate the accuracy of the estimation, we show the
estimated CPU usage and the CPU usage measured with the
Linux vmstat tool which reports the CPU usage percentage
in a 350-second experiment. We divide the experiment trace
into one-second segments, and show the cumulative dis-
tribution function (CDF) of the absolute estimation errors
in Fig. 4. We can see that the simple estimation method
is reasonably accurate; for example, the median of the
estimation error is only 3%.

5.2 Power Usage

We measure the power consumption of the machine with
an external power meter Wattsup [3]. Wattsup reports the
wattage value every second and is accurate to 1.5% + 0.3
Watts of the load [3]. For example, the load for our machine
without running any application and wireless driver is about
39 Watts; at such load, the meter’s displayed value should
be between 38.1 - 39.9 Watts. However, we find that without
resetting the power meter, the displayed value of the power
meter is stable for the same power load.

For simplicity, we adopt a linear model, i.e., we assume
the power consumption can be represented as a linear
combination of certain parameters. To learn the power
consumption model, we obtained a total of 1200 one-
second experimental results. We use half of the results
to learn a multiple linear regression model [5], and test
the learned model on the other half. We evaluate the
following 3 models, which differ in the numbers and types
of parameters:

• Model 1 which uses the CPU time consumption as the
only parameter.

• Model 2 has 21 parameters:
– The number of received packets, including all

correct packets, partial packets and packets with
corrupted MAC headers.

– The number of sent packets.
– The number of packets repaired by block-retran.
– The number of packets repaired by TEC, in total

3 parameters, one for each possible number of
parity bytes.

– The number of packets repaired by HEC, in total
15 parameters, one for each possible number of
parity bytes. The possible number of parity bytes
is 15 because Ẑ ≤ 15 when Ŷ < 100 according
to AMPS.

• Model 3 has two parameters: the CPU time consump-
tion and the total number of packets, including the
transmitted packets and the received packets.

Fig. 5 shows the CDF of the estimation errors of the three
models. We can see that Model 1 is the least accurate,
while the other two models are almost identical. We note
that Model 2 exhausts all possible parameters known to the
partial packet recovery scheme and represents the upper
limit of the estimation accuracy. Considering that Model
3 achieves a very similar performance as Model 2 while
using much less parameters, we use Model 3 as our power
consumption model.

6 CHOICE OF REPAIR METHODS

The EC-based repair methods usually need a less amount
of repair data than the block-based repair methods, but
may consume more system resources. On devices with
weaker CPU or run on battery power, the system resource
consumption must be considered and limited under certain
constraints. In this section, we study the choice of the repair
methods under given constraints. We begin by considering

8

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Power Usage (Watts)

Model1

Model2

Model3

Fig. 5. The power consumption estimation.

0 1 2 3 4 5
0

100

200

300

Time (sec)

N
um

be
r

of
 E

rr
or

s

Total: 5737, Partial: 1732

Fig. 6. The number of error bytes in one experiment.

only the CPU constraint, then argue that the power con-
straint is equivalent to the CPU constraint based on our
model in practical systems.

We note that UNITE selects repair method for each
individual packet, because the best repair method is mainly
determined by the number of errors in the packet, while the
number of errors may vary significantly even in consecutive
packets. We collected data on 54 Mbps links for 1500-
byte packets, and Fig. 6 shows the high variance in one
typical experiment, in which a point (x, y) represents a
packet received at time x with y errors. We note that it
is affordable to select the best repair method for individual
packet because the decision is made by a simple algorithm
described in the following.

6.1 Scheduling with the CPU Constraint
For CPU usage, we select the repair method such that the
CPU time consumed by UNITE does not exceed a threshold
configured by the user, denoted by β, which is the fraction
of CPU time used in partial packet recovery. With such
constraint, it may not be possible to decode all partial
packets. It would be naturally more advantageous to use
TEC or HEC for packets requiring less decoding time, and
use block-retran for packets requiring more decoding time.
As the packets may have arbitrary numbers of errors and
corrupted checksum blocks, an algorithm is needed to find
the best repair method for each partial packet.

In our current implementation, the algorithm runs at
the sender every time a feedback frame is received and
determines the repair methods for the packets in this
feedback frame. It takes an input W as the current decoding
time budget, which is the total CPU time allowed for
decoding these packets. For a packet, it takes the following
parameters as input:
• g: the decoding time if repaired by TEC.

• q: the number of required parity bytes of TEC.
• d: the decoding time if repaired by HEC.
• r: the number of required parity bytes of HEC.
• b: the total size of the corrupted checksum blocks.

The decoding time budget W is determined by the CPU
constraint β. To get W , at the receiver, we maintain γ which
is the average time that the receiver encounters a partial
packet. If the receiver receives a partial packet and the last
partial packet was received t seconds before, γ is updated
as γ ← (1 − a)γ + at where a = 0.01 in our current
implementation. Note that γ is an estimate of the maximum
CPU time the receiver can spend on the decoding of a
partial packet. As the decoding should not take more than
β fraction of the CPU time, we let W ← βMγ where M
is the total number of partial packets in this feedback.

It is clear that the decisions are easy for some packets.
First, if a packet is not qualified for TEC and HEC, it
can only be repaired with block-retran. Second, if a packet
requires more data transmission time with HEC or TEC
than with block-retran, it should be repaired with block-
retran as block-retran requires no decoding time. Therefore,
the algorithm first filters such packets out as block-retran
packets. Suppose there are a total of n remaining packets
where we denote a packet as Pi for 1 ≤ i ≤ n.

We note that although there are three repair methods, for
any packet, there are actually only two options. Depending
on whether a packet is qualified for TEC or not:

• If yes, it should not be repaired with HEC because
HEC will require more data transmission time and
more decoding time, hence the packet is repaired either
with TEC or block-retran.

• If not, it cannot be repaired with TEC and clearly can
only be repaired with HEC or block-retran.

As a result, the algorithm makes binary decisions for
each packet between using block-retran or one of the
error correction methods. We therefore introduce a binary
variable xi for packet Pi where xi = 0 means it should use
block-retran and 1 otherwise. For packet Pi, we define its
value and weight denoted as vi and wi, respectively: if Pi

is qualified for TEC, vi = bi − qi and wi = gi; otherwise,
vi = bi − ri and wi = di. Note that the value is the extra
number of bytes in the repair data if block-retran is used
instead of TEC or HEC. The total number of transmitted
bytes, given {xi}i, is

n∑
i=1

xi(bi − vi) +
n∑

i=1

(1− xi)bi =
n∑

i=1

bi −
n∑

i=1

xivi

As we want to minimize the total number of bytes under
the CPU constraint, the problem can be formalized as
max

∑n
i=1 xivi under the constraint that

∑n
i=1 xiwi ≤W.

This is exactly the Knapsack problem which is NP-hard [7].
We therefore employ a greedy algorithm: in every iteration,
we select the packet that has the smallest weight over value
ratio, and mark it as using TEC or HEC, until the decoding
time exceeds W or until all packets have been marked.

9

6.2 Equivalency of CPU and Power Constraints
Our power consumption model in Section 5.2 indicates that
the power consumption can be predicted by the CPU usage
and the number of packets. The partial packet recovery
scheme should only control the power consumed by itself,
but not the power consumed by the upper layers or the
applications. While it is possible to control the additional
CPU consumption as in Section 6.1, controlling the number
of additional packets can be challenging, because it is
related to the manner the upper layers and the applications
generate packets. We note that the additional packets sent
by the recovery scheme are the feedbacks which are usually
a small number because UNITE aggregates multiple feed-
backs in one frame in many cases. On the other hand, it can
be argued that UNITE does not receive additional packets
compared to when no recovery scheme is used, because the
partial packets are produced by the wireless channel and
UNITE will only reduce the number of packets transmitted
to recover the partial packets. Therefore, for simplicity, a
practical choice to control the power consumption is to only
control the CPU usage; in this sense, the CPU and the
power constraints are equivalent and we will only consider
the CPU constraint in the rest of the paper.

7 EXPERIMENTS AND EVALUATION

We modify the open-source Madwifi driver [2] to im-
plement UNITE and other compared schemes. We run
experiments on two Toshiba Satellite U405D-S2910 laptop
computers with 2.2GHz CPU running Ubuntu 10.04 LTS
with kernel version 2.6.32.18. The wireless card we use is
the Cisco Aironet 802.11a/b/g wireless cardbus adapter [1]
based on the Atheros 5212 chipset.

7.1 Comparing with Other Drivers
We first compare UNITE with other drivers. We set the
CPU constraint β and the feedback aggregation threshold
ϕ for UNITE to be 0.2, and 8, respectively; other drivers
do not have any constraint on CPU usage.

7.1.1 Compared Drivers
The compared drivers include:

• ORIG: The original unmodified Madwifi driver, with
hardware retransmission enabled.

• BLCK: The modified Madwifi driver that uses block-
retran as the only repair method.

• EOLY: The modified Madwifi driver that uses HEC as
the only repair method.

• 2RND: The modified Madwifi driver enhanced with
a two-round, fixed packet repair scheme according to
the descriptions in [14].

BLCK, EOLY and 2RND are implemented on the same
code base as UNITE, and adopt a similar link layer
protocol. In BLCK, the feedback only contains the block
CRCs. In EOLY, the feedback only contains AMPS sam-
ples. 2RND implements the two-round fixed transmission
scheme suggested in Section 5.2 of [14]: for a partial

packet, in the first round, the sender transmits parity bytes
7% of the codeword size; if the first round fails, in the
second round, the sender transmits the rest parity bytes
which is 18% of the codeword size. The receiver can use the
parity bytes sent in both rounds to decode the partial packet.
If both rounds of repair fail, this packet is retransmitted
and error correction may be attempted again. Pilot bits are
embedded in the data with which the Bit Error Ratio (BER)
is estimated; packets with high BER, more than 0.3 in
our implementation, are not repaired with error correction.
The 2RND driver is optimal for the trace collected in [14]
when no information about the error number in the packet
is available. It is not the ZipTx driver which dynamically
chooses the number of parity bytes [14]. We do not have a
replica of the ZipTx driver because it is unclear to us how
to determine the number of parity bytes based on the BER
estimation of the current packet and the measured BERs of
earlier packets described in Section 6.1(b) of [14].

Unless otherwise specified, we disable the hardware
retransmission in the Madwifi driver because the hardware
retransmission may be redundant. This may lead to an
additional boost of performance except to ORIG because of
the absence of additional exponential backoff upon a loss
event; however, our main focus is the gain of UNITE over
other drivers that also disable hardware retransmissions.

7.1.2 Experiment Setup and Methodology
We use one laptop acting as the sender and one laptop
acting as the receiver. All our experiments are done in
indoor environments. We randomly choose 40 sender and
receiver locations; for each location, each driver runs for
60 seconds at 54 Mbps. The results of other data rates are
not shown because they tend to have fewer partial packets
than 54 Mbps at the locations we have chosen and basically
duplicate the results of 54 Mbps at low partial packet ratio.
The sender use Click [13] to generate 3000 UDP packets
per second, where each packet is 1500 bytes. The generated
load is slightly higher than the maximum data rate that can
be supported by the link to saturate the link.

Ideally, the comparison between the drivers should be
carried out under the same channel condition. This is a
challenge in practice because the wireless channel con-
stantly fluctuates even when the sender and receiver are
stationary, and it is impossible to repeat the channel condi-
tion experienced by one driver to another driver. Therefore,
we can only compare the drivers when they are under
similar channel conditions. To obtain more samples for
each channel condition, we divide an experiment trace into
one-second segments and classify each segments according
to the channel condition in this second. As the wireless
channel may fluctuate, the experiment in one sender and
receiver location contributes to measurements under mul-
tiple channel conditions. We refer to the fractions of the
erasure packets and the partial packets as the erasure ratio
and the partial ratio, respectively, which are used as the
metric of channel conditions in our evaluation. We show
detailed analysis of the channels with erasure ratio no more
than 0.1, because a higher erasure ratio represents a very

10

(0, 20] (20, 40] (40, 60] (60, 80]
Partial Ratio (%)

ORIG
2RND
BLCK
EOLY
UNITE

Fig. 7. The measured link throughput.

weak channel unlikely to be selected by the rate selection
algorithm.

7.1.3 Throughput Comparison
Fig. 7 shows the average throughput for various partial ratio
ranges. We can see that UNITE has higher throughput than
other drivers at all partial ratio ranges. Employing better
repair methods, the gain is higher when the partial ratio is
higher, except for EOLY. EOLY has a close performance
as UNITE because it also uses error correction code for
packet recovery, while not under any CPU constraint.

Fig. 8 shows more detailed information about the
throughput of the drivers, which compares the throughput
of each one-second segment with regard to the partial ratio.
For better visibility, each plot shows the performance of
UNITE with one other driver. It can be seen that the
performance of ORIG decreases almost linearly with the
partial ratio, which is because to ORIG, a partial packet is a
lost packet and must be retransmitted. 2RND only achieves
good performance when the partial ratio is very small, e.g.
around 5%; as the partial ratio increases, its performance
drops sharply. The reason is that the 2RND receiver may
spend an excessive amount of time in decoding the partial
packets such that it cannot send the feedbacks in time; as
a result, the sender cannot receive the feedbacks in time
to clear packets in its queue and will be stalled when the
queue is full. BLCK performs reasonably well when the
partial ratio is low; however, as the partial ratio increases to
more than 50%, its performance drops quickly. The reason
is that with high partial radios, the retransmissions are more
likely to fail. EOLY is better than these drivers but is still
outperformed by UNITE in most cases.

7.1.4 Throughput Gain Analysis
We give more detailed discussions of the throughput gain

achieved by UNITE in the following.
(1) Sending Speed. One determining factor of the

throughput is the activeness of the sender. We find that
except ORIG, all other drivers may be forced to be idle
for some time before being able to send packets again. The
main reasons for the stall of the sender are the loss and
delay of the feedback, because all drivers except ORIG
have the sender queue and will not send packets if the
sender queue is full, which may happen when the feedback
cannot be received in time to clear the buffer. The other
reason is that the sender may have to wait for the receiver

0 20 40 60 80
0

10

20

30

Partial Ratio (%)

ORIG
UNITE

(a)

0 20 40 60 80
0

10

20

30

Partial Ratio (%)

2RND
UNITE

(b)

0 20 40 60 80
0

10

20

30

Partial Ratio (%)

BLCK
UNITE

(c)

0 20 40 60 80
0

10

20

30

Partial Ratio (%)

EOLY
UNITE

(d)

Fig. 8. Throughput comparison of UNITE with other
drivers.

to complete the transmission of the feedback frame. The
straightforward metric for the level of activeness of the
sender is the sending speed, defined as the average number
of MAC layer frames transmitted per second, which is
shown in Fig. 9. We can see that the sending speed of
ORIG is relatively stable. The sending speeds of UNITE,
ELOY, and BLCK drop gradually with the partial ratio,
which is mainly because feedback loss increases as partial
ratio increases. The sending speed of UNITE and ELOY are
lower than BLCK, which is mainly because they require
additional decoding time. The sending speed of 2RND,
on the other hand, is pathological, because it drops very
sharply when the partial ratio is more than 10% and is
much lower than other drivers; the reason is that its repair
parameters are not chosen optimally, leading to unnecessary

11

0 20 40 60 80
0

1000

2000

3000

Partial Ratio (%)

ORIG
2RND
BLCK
EOLY
UNITE

Fig. 9. The average sending speed.

0 20 40 60 80
0

0.1

0.2

0.3

0.4

Partial Ratio (%)

2RND
BLCK
EOLY
UNITE

Fig. 10. The amount of repair data.

long decoding delays.
(2) Repair Data. The frames sent by the sender may

contain new packets or repair data. Fig. 10 shows the
fraction of time consumed in transmitting the repair data.
We can see that in most cases, UNITE sends the minimum
amount of repair data, which is because many packets can
be repaired with TEC and the size of TEC repair data is
very small. Also worth noting is that the repair data of
BLCK increases sharply as the partial ratio increases, which
is because the retransmission failures increase significantly,
leading to more rounds of repair.

(3) Overhead. Except ORIG, all drivers incur protocol
overhead, including the frame headers in the frames sent by
the sender and the feedbacks sent by the receiver. Fig. 11
shows the fraction of the air time in sending the sender
frame header. We can see that the frame header overhead
is very small for all drivers and should have minimum
impact on the throughput. 2RND has the largest sender
frame header overhead because each sender frame in 2RND
includes 100 pilot bits. Fig. 12 shows the fraction of the
time in sending the feedbacks. UNITE has the largest
feedback overhead because the feedback in UNITE includes
both AMPS samples and block checksums. We note that the
feedback overhead reduces the throughput by consuming
the air time and reducing the sending speed; therefore, the
measurement of the sending speed has included the impact
of the feedback overhead on throughput.

(4) Delivery Ratio. We define the delivery ratio as the
percentage of packets that can be delivered to the upper
layer among all received packets. Some packet may never
be delivered because it was corrupted but the repair eventu-
ally failed. Fig. 13 shows the delivery ratio with regard to
the partial ratio. The delivery ratio of ORIG is basically the
fraction of correct packets, therefore it drops almost linearly

0 20 40 60 80
0

0.005

0.01

0.015

0.02

Partial Ratio (%)

 2RND
BLCK
EOLY
UNITE

Fig. 11. The average sender frame header overhead.

0 20 40 60 80
0

0.02

0.04

0.06

0.08

0.1

Partial Ratio (%)

2RND
BLCK
EOLY
UNITE

Fig. 12. The average feedback overhead.

with the partial ratio. The delivery ratios of the other drivers
depend on the failure ratios of the adopted repair methods.
As the partial ratio increases, the delivery ratio of BLCK
drops quickly. UNITE has the highest delivery ratio, which
is because the repair failure ratio of UNITE is low.

The above analysis explains why UNITE has higher
throughput than other drivers. We note that roughly speak-
ing, the throughput is proportional to the product of the
sending speed, one minus the repair data fraction, and the
delivery ratio. Clearly, the throughput of 2RND is limited
by its low sending speed, and the throughput of ORIG is
limited by its low delivery ratio. UNITE has lower sending
speed than BLCK, but has much less repair data fraction
and much higher delivery ratio. UNITE has similar sending
speed and repair data fraction as ELOY, but has higher
delivery ratio.

7.1.5 CPU Load Comparison
We measure the CPU load of the receiver for different
drivers during the experiments with the Linux vmstat tool.
Similar to ZipTx [14], we use the total CPU load as an
estimate of the CPU load caused by the drivers, as no
other application is running during the experiment and the
operating system typically dose not consume significant

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Partial Ratio (%)

ORIG
2RND
BLCK
EOLY
UNITE

Fig. 13. The average delivery ratio of various drivers.

12

0 20 40 60 80
0

20

40

60

80

100

Partial Ratio (%)

 ORIG
2RND
BLCK
EOLY
UNITE

Fig. 14. Measured CPU load.

CPU time. When the receiver receives the first packet, a
signal is sent to the program that collects the CPU load to
synchronize the driver and the CPU load measurement.

Fig. 14 shows the average CPU load for various drivers
with regard to the partial ratio. We can see that the CPU
load of UNITE first increases as the partial ratio increases,
then stabilizes at 20%. This confirms that UNITE is capable
of exploiting the available CPU resources but will not over-
consume the CPU. As expected, ORIG and BLCK have
the smallest CPU load, both around 2% or 3%, which is
because they do not require any software decoding. The
CPU load of EOLY normally does not exceed 45% because
excessively corrupted packets are not repaired by HEC.
2RND’s CPU load, however, is much higher than other
drivers, which is because its error correction parameters
are not adjustable and tend to be overly conservative for
the channel; it also confirms that the software decoding
may consume high CPU resources in practical settings.

7.1.6 Power Consumption Comparison

We measure the power consumption of the receiver for
different drivers during the experiments with the power
meter Wattsup [3]. The machine has a baseline power
consumption of 39 Watts even when there is no other
running application.

Fig. 15 shows the average power consumption for various
drivers with regard to the partial ratio. ORIG and BLCK
have the smallest power consumption, both around 41
Watts, which is about 5% more than the baseline power
consumption. The power consumption of UNITE is limited
by its CPU time constraint. The power consumption of
EOLY is normally around 45 Watts, which is about 15%
more than the baseline power consumption. Similar to CPU
usage, 2RND’s power consumption is much higher than the
rest of the drivers, which is because power consumption is
heavily relevant to the CPU usage.

7.1.7 Delay Comparison

We also measure the delivery latency for different drivers
during the experiments. We define the delivery latency as
the time since a packet is realized by the receiver to the time
the packet is correctly delivered to the upper layer. Note that
the delivery latency is only for partial packets and erasure
packets. Since ORIG uses the hardware retransmissions to
recover packets that are not ACKed, we do not have a

0 20 40 60 80
40

45

50

55

60

65

Partial Ratio (%)

 ORIG
2RND
BLCK
EOLY
UNITE

Fig. 15. Measured power consumption.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Delay (ms)

2RND

BLCK

EOLY

UNITE

Fig. 16. CDF of average delivery latency.

method to measure its delivery latency. Therefore, we only
consider the delivery latency of the other four drivers.

Fig. 16 shows the CDF of average delivery latency of
various drivers. We can see that the latencies of UNITE,
BLCK, and EOLY are close. As expected, 2RND has
the largest delivery latency, which is because the average
decoding time in 2RND is the largest.

7.1.8 Repair Methods Failure Ratio of UNITE
We measure the average repair failure ratio of the three
repair methods in UNITE. Fig. 17 shows the average
percentage of HEC, TEC and block-retran that failed on
the first repair attempt in UNITE for various partial ratio
ranges. TEC is the most efficient among all the three repair
method; its failure ratio never goes beyond 5%.

7.2 UNITE under Different CPU Time Constraint

UNITE’s performance is determined by the amount of
system resources it is allowed to consume. We run a set of
experiments in which the CPU constraint β is set to be 0.05,
0.1, 0.15, 0.2, and unlimited, at the same set of locations

(0,20] (20,40] (40,60] (60,80]
0

0.1

0.2

0.3

0.4

Partial Ratio (%)

HEC
TEC
BLCK

Fig. 17. The average percentage of HEC, TEC and
block-retran in UNITE that failed on the first repair
attempt.

13

(0, 20] (20, 40] (40, 60] (60, 80]
0

10

20

30

Partial Ratio (%)

 5%
10%
15%
20%
UNLIMITED

Fig. 18. Throughput when varying the CPU constraint.

(0, 20] (20, 40] (40, 60] (60, 80]
0

10

20

30

40

Partial Ratio (%)

5%
10%
15%
20%
UNLIMITED

Fig. 19. CPU load when varying the CPU constraint.

as the experiments in Section 7.1.1 at 54 Mbps. When β
is set to be unlimited, there is no scheduling algorithm;
all packets qualified for TEC are repaired with TEC, other
packets, if qualified for HEC, are repaired with HEC.

Fig. 18 and Fig. 19 show the average throughput and the
average measured CPU load for different CPU constraints,
respectively. We can see that when the channel is good,
i.e., the partial ratio is no more than 20%, the throughputs
are similar. However, when partial ratio is higher, a larger
CPU time constraint generally leads to a larger throughput,
which is mainly because with a larger CPU constraint, more
packets are repaired by HEC than by block-retran while
HEC is more efficient than block-retran. This confirms that
UNITE is capable of capitalizing the allowed CPU resource
for higher link throughput. The average measured CPU load
does not exceed the constraint value, which confirms that
UNITE is capable of limiting the CPU load. The CPU load
of the unlimited is never higher than 40%, because the
heavily corrupted packets are not qualified for HEC or TEC
and are repaired with block-retran, such that the demand of
the decoding time is limited.

One of the key features of UNITE is that it supports
multiple repair methods and makes dynamic selections of
the repair methods. Fig. 20 shows the number of packets
repaired by different methods per second for various partial
ratio ranges and various CPU constraints. We can see that
a large portion of partial packets are repaired by TEC even
with the lowest β. With a larger β, more partial packets are
repaired with HEC which is more time consuming.

8 DISCUSSIONS AND EXTENSIONS

Currently, UNITE is implemented on the MadWifi driver.
UNITE can also be implemented on other platforms as long
as the hardware can deliver partial packets to the driver. The
design of UNITE need not be changed; UNITE only needs

5 10 15 20 UNLIMITED
0

50

100

150

200

250

CPU Contraint (%)

HEC

TEC

BLCK

(a)

5 10 15 20 UNLIMITED
0

200

400

600

800

CPU Contraint (%)

HEC

TEC

BLCK

(b)

5 10 15 20 UNLIMITED
0

200

400

600

800

1000

1200

CPU Contraint (%)

HEC

TEC

BLCK

(c)

5 10 15 20 UNLIMITED
0

200

400

600

800

1000

1200

CPU Contraint (%)

HEC

TEC

BLCK

(d)

Fig. 20. The choice of repair methods in different
partial ratio ranges. (a). Partial ratio (%) (0, 20]. (b).
Partial ratio (%) (20, 40]. (c). Partial ratio (%) (40, 60].
(d). Partial ratio (%) (60, 80].

to calibrate the CPU and power estimation models for the
new platform. We note that the CPU model estimates the
CPU usage based on the software decoding time, which
can be measured by the driver when the driver is installed.
The power consumption model is a linear model with
multiple parameters. In this paper, we have learned the
coefficients of the parameters with measurements on the
power meters. Without a power meter, a possible approach
is to build the power consumption models for various
hardware configurations and choose a suitable model based
on the configuration of the machine.

UNITE is a software solution largely independent of the
physical layer. Currently, UNITE is implemented and tested
on 802.11a. We note that UNITE will still run on faster

14

links with 802.11n or the future 802.11ac. The main chal-
lenge with faster links is the increased decoding demand,
as more packets are transmitted in the same amount of
time and more may require decoding. We note that this
will likely be addressed by exploiting additional computing
capacity in multi-core processors which are widely used
today. One possible scenario, for example, is to implement
the decoding job in a thread and run it in one of the cores
that may otherwise be idle.

9 CONCLUSIONS

In this paper, we study software partial packet recovery
in 802.11 wireless LANs. Our main contributions include
the following. First, we propose to employ both the EC-
based and block-based repair methods, as well as a novel
repair method, TEC, which is very efficient for recovering
a large number of packets with very few errors. With
multiple options, UNITE can use the best repair method
to match the error condition of the packet under the system
resource constraints. Second, we design an error estimator,
AMPS, to estimate the number of errors in a partial packet
to assist intelligent decisions on packet recovery. AMPS
has an overhead of only 8 bytes per partial packet and
can be implemented with simple table lookup. Third, we
propose the CPU usage and power usage models for partial
packet recovery. Fourth, we design an algorithm to make
selections among the repair methods based on the error
estimate and the system resource constraint, such that
UNITE will not over-consume the CPU or power. We
implement UNITE on the MadWifi open-source driver. Our
experiments confirm that UNITE outperforms all existing
schemes while consuming the system resources under the
specified constraints.

REFERENCES

[1] Cisco aironet 802.11a/b/g wireless cardbus adapter.
http://www.cisco.com/.

[2] The madwifi project. http://madwifi-project.org/.
[3] The wattsup power meter. https://www.wattsupmeters.com/.
[4] B. Chen, Z. Zhou, Y. Zhao, and H. Yu. Efficient error estimating

coding: feasibility and applications. In ACM SIGCOMM, pages
3–14, New Delhi, India, 2010.

[5] J. Cohen, P. Cohen, S.G. West, and L.S. Aiken. Applied multiple
regression/correlation analysis for the behavioral sciences.
Routledge Academic, 2002.

[6] H. Dubois-Ferrière, D. Estrin, and M. Vetterli. Packet combining
in sensor networks. In ACM SenSys, pages 102–115, San Diego,
CA, USA, 2005.

[7] M. R. Garey and D. S Johnson. Computers and Intractability, a
Guide to the Theory of NP-Completeness. W. H. Freeman and
Company, 1979.

[8] B. Han, A. Schulman, F. Gringoli, N. Spring, B. Bhattacharjee,
L. Nava, L. Ji, S. Lee, and R. Miller. Maranello: Practical partial
packet recovery for 802.11. In USENIX NSDI, San Jose, CA,
USA, 2010.

[9] A.P. Iyer, G. Deshpande, E. Rozner, A. Bhartia, and L. Qiu. Fast
resilient jumbo frames in wireless LANs. In IEEE IWQoS,
Charleston, SC, USA, June 2009.

[10] K. Jamieson and H. Balakrishnan. PPR: Partial packet recovery for
wireless networks. In ACM SIGCOMM, pages 409–420, Kyoto,
Japan, 2007.

[11] P. Karn. DSP and FEC Library. http://www.ka9q.net/code/fec/.

[12] S. Katti, D. Katabi, H. Balakrishnan, and M. Medard.
Symbol-level network coding for wireless mesh networks. In ACM
SIGCOMM, pages 401–412, Seattle, WA, USA, 2008.

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The click modular router. ACM Trans. Comput. Syst.,
18(3):263–297, August 2000.

[14] K. C.-J. Lin, N. Kushman, and D. Katabi. Ziptx: Harnessing
partial packets in 802.11 networks. In ACM MobiCom, pages
351–362, San Francisco, CA, USA, 2008.

[15] S. Lin and D. J. Costello. Error Control Coding: Fundamentals
and Applications. Prentice Hall, 2004.

[16] M.-H. Lu, P. Steenkiste, and T. Chen. Design, implementation and
evaluation of an efficient opportunistic retransmission protocol. In
ACM MobiCom, pages 73–84, Beijing, China, 2009.

[17] A. Miu, H. Balakrishnan, and C. E. Koksal. Improving loss
resilience with multi-radio diversity in wireless networks. In ACM
MobiCom, pages 16–30, Cologne, Germany, 2005.

[18] G. R. Woo, P. Kheradpour, D. Shen, and D. Katabi. Beyond the
bits: Cooperative packet recovery using physical layer information.
In ACM Mobicom, pages 147–158, Montreal, QC, Canada, 2007.
ACM.

[19] J. Xie. Design, implementation, and Evaluation of an Efficient
Software Partial Packet Recovery System in 802.11 Wireless LANs
with Configurable Resource Usage. PhD thesis, Florida State
University, 2012.

[20] J. Xie, W. Hu, and Z. Zhang. Revisiting partial packet recovery in
802.11 wireless LANs. In ACM MobiSys, pages 281–292,
Bethesda, MD, USA, 2011.

J in Xie received
her B.E. degree in Computer Science
and Technology from China University
of Petroleum, Beijing, China, in 2005,
and her M.S. degree in Applied Mathematics
from Zhejiang University, China,
in 2007. She received her Ph.D. degree
in Computer Science from Florida State
University in 2012. Her research interest
is in wireless networks. Currently, she
is a Software Engineer at Aruba Networks.

W ei Hu received his B.S. degree and
M.Eng. degree from Huazhong University
of Science and Technology in 2005 and
2007, respectively. He received his Ph.D.
degree in Computer Science from Florida
State University in 2012. His research
interest is in wireless networks. Currently, he
is a Software Engineer at Aruba Networks.

Zhenghao Zhang (M’02)
received his B.Eng. and M.S. degrees
in electrical engineering from Zhejiang
University, Hangzhou, China, in 1996 and
1999, respectively. He received his Ph.D.
degree in electrical engineering from the
State University of New York at Stony Brook
in 2006. From 1999 to 2001, he worked in
industry as an embedded system Software
Engineer. From 2006 to 2007, he was
a Postdoctoral Researcher in the Computer

Science Department at Carnegie Mellon University. Currently, he is
an Assistant Professor in the Computer Science Department at
Florida State University, Tallahassee, FL. His research interests
include wireless networks, network security, and high speed optical
networks.

