
Energy-Efficient Multihop Polling in Clusters of
Two-Layered Heterogeneous Sensor Networks

Zhenghao Zhang, Member, IEEE, Ming Ma, Student Member, IEEE, and

Yuanyuan Yang, Senior Member, IEEE

Abstract—In this paper, we study two-layered heterogeneous sensor networks where two types of nodes are deployed: the basic

sensor nodes and the cluster head nodes. The basic sensor nodes are simple and have limited power supplies, whereas the cluster

head nodes are much more powerful and have many more power supplies, which organize sensors around them into clusters. Such

two-layered heterogeneous sensor networks have better scalability and lower overall cost than homogeneous sensor networks. We

propose using polling to collect data from sensors to the cluster head since polling can prolong network life by avoiding collisions and

reducing the idle listening time of sensors. We focus on finding energy-efficient and collision-free polling schedules in a multihop

cluster. To reduce energy consumption in idle listening, a schedule is optimal if it uses the minimum time. We show that the problem of

finding an optimal schedule is NP-hard and then give a fast online algorithm to solve it approximately. We also consider dividing a

cluster into sectors and using multiple nonoverlapping frequency channels to further reduce the idle listening time of sensors. We

conducted simulations on the NS-2 simulator and the results show that our polling scheme can reduce the active time of sensors by a

significant amount while sustaining 100 percent throughput.

Index Terms—Sensor networks, heterogeneous networks, clusters, polling, multihop polling, scheduling.

Ç

1 INTRODUCTION AND BACKGROUND

THE introduction of wireless sensor networks will enable
a wide variety of applications, including environmental

monitoring, medical treatment, emergency response, outer
space exploration, and so forth. In a sensor network, a large
number of sensors are deployed in a large area, with each
sensor capable of collecting data and communicating with
each other wirelessly. The challenge in designing a sensor
network is that sensors must be organized into a robust
multihop wireless network that should be able to function
properly for a long period of time. This, in general, is a
difficult problem since sensors have limited computing
capabilities and very limited power supply. Recently, many
researchers have started to consider heterogeneity as a way
to solve this problem, that is, to deploy different types of
nodes in a network [12], [21], [22], [23], [34]. In a
heterogeneous sensor network, the basic sensors are simple
and perform the sensing task, while some other nodes, often
called the cluster heads, are more powerful and focus on
communications and computations. Basically, the cluster
head organizes the basic sensors around it into a cluster,
where sensors only send their data to the cluster head and
the cluster head carries out the long-range intercluster
communications. The concept of a heterogeneous sensor

network is shown in Fig. 1. The advantages of a hetero-
geneous sensor network include the following: First, it has
better scalability than a flat network without hierarchies;
second, the majority of nodes in the network, which are the
basic sensors, can be made very simple and inexpensive;
thus, the overall cost of the network can be greatly reduced.
Note that a unique feature of this type of network is that the
transmission in a cluster is asymmetrical: The message sent
by a cluster head can be received directly by all sensors in the
cluster, whereas the message sent by a sensor may have to be
relayed by other sensors, that is, to travel multiple hops, to
reach the cluster head. This is because the transmission
ranges of the basic sensors are short due to their limited
power supply, whereas the transmission range of the cluster
head can be much longer since it has a far richer or even
replaceable power supply. Also, note that the cluster heads
can communicate with each other by organizing themselves
into a wireless network consisting of only the cluster head
nodes, which will be referred to as the second layer of the
sensor network. Many existing results on wireless ad hoc
networks can be applied to the second-layer network and, in
this paper, we will mainly focus on the first layer, that is, the
operations within a cluster.

In addition to improving the scalability and reducing the

cost, introducing heterogeneousness will also help reduce

the power consumption of the sensors. In a sensor network,

it is usually assumed that sensors use contention-based

distributed MAC protocols for media access. Although such

protocols have advantages such as being robust and

requiring no central controller, from the energy point of

view, they are not the most efficient way since much energy

can be wasted in collision, overhearing, collision avoidance,

and idle listening. First, energy can be wasted in collisions

because several sensors may decide to send packets at the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008 231

. Z. Zhang is with the Department of Computer Science, Florida State
University, Tallahassee, FL 32306. E-mail: zzhang@cs.fsu.edu.

. M. Ma and Y. Yang are with the Department of Electrical and Computer
Engineering, State University of New York at Stony Brook, Stony Brook,
NY 11794. E-mail: {mingma, yang}@ece.sunysb.edu.

Manuscript received 10 May 2006; revised 31 May 2007; accepted 25 June
2007; published online 18 July 2007.
Recommended for acceptance by A. Zomaya.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0180-0506.
Digital Object Identifier no. 10.1109/TC.2007.70774.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

same time and all of these packets have to be retransmitted.
Second, energy can be wasted in overhearing because
sensors may have to decode packets not destined for them.
Third, energy can be wasted in collision avoidance because,
to avoid collision, sensors may have to use control packets
to coordinate with each other, which also consumes a
significant amount of energy. Finally, energy can be wasted
in idle listening because, when sensors send packets in a
random manner, sensors have to be awake to constantly
monitor the radio for possible data packets destined for
them. Note that the power consumption ratio for sleeping,
idle listening, receiving, and sending for typical sensors is
4.2 : 7.3 : 7.5 : 8.2 [10], which indicates that idle listening still
consumes a comparable amount of energy as other active
operations. Therefore, the contention-based MAC protocols
may be best suited for applications where the environments
can change rapidly due to their robustness. In other cases,
for example, when the environment and the sensors are
relatively static, for applications such as ground tempera-
ture monitoring, where the typical task of sensors is simply
to gather the raw data and send it to the outside observer,
other approaches are possible and have advantages in
saving energy, especially in a heterogeneous sensor net-
work with the presence of the powerful cluster head nodes.
In this paper, we propose using polling in heterogeneous
sensor networks for such applications to help reduce power
consumption. Polling is different from the contention-based
MAC protocols in that the packet sending is completely
controlled by a central controller, which, in our case, is the
cluster head: The cluster head sends out polling messages to
poll sensors and only the polled sensors can send packets.
Since the cluster head has full control of the cluster, energy
wasting can be minimized as the cluster head can ensure
that no collision and overhearing will occur and there will
be no control packets needed from the sensors. The cluster
head can also find a good polling schedule to collect data as
fast as possible to reduce idle listening and thus prolong the
lives of sensors. In this paper, we focus on finding fast
collision-free polling schedules. Note that the unique
challenge in finding polling schedules is that the cluster is
a multihop network, whereas most existing wireless net-
works that adopt polling are single hop. We will show that,
in a multihop cluster, the problem of completing polling in
minimum time is NP-hard. We will then give a fast online
algorithm to solve it which can also handle possible packet
loss. It should be mentioned that, although we study polling
in this paper, we are not overemphasizing the advantages
of polling or considering it as being able to replace the
contention-based MAC protocols completely; instead, we

are proposing it for some most suited applications, as
mentioned earlier.

The rest of the paper is organized as follows: Section 2
discusses some related work. Section 3 describes how a
cluster operates. Section 4 shows that completing polling in
minimum time in a multihop cluster is NP-hard and gives a
fast online algorithm. Section 5 gives simulation results
obtained by using the NS-2 simulator. Section 6 explores the
possibility of dividing a cluster into sectors to further
reduce the idle listening time of sensors. Section 7 considers
using multiple nonoverlapping frequency channels to
reduce the idle listening time of sensors. Finally, Section 8
concludes the paper.

2 RELATED WORK

Adopting hierarchies in sensor networks has been consid-
ered in many works in the literature, see, for example, [4],
[14], [24], [28], [35]. However, these works typically
consider a homogeneous sensor network, where all nodes
are identical, and focus on protocols for cluster forming and
cluster head selection. In this paper, we consider a
heterogeneous sensor network, where nodes are different,
and mainly focus on the operations inside a cluster. We
consider a heterogeneous sensor network because it has the
advantages mentioned in the previous section, whereas a
homogeneous network, although it can be more robust in
case of node failure, may have a higher cost since every
sensor can potentially be elected as the cluster head and,
thus, more transmitting and storage capabilities are needed
in every sensor. Also, note that cluster head selection is not
needed in a heterogeneous network since there are nodes
specifically designed as cluster head nodes.

Heterogeneous sensor networks have been considered in
[12], [21], [22], [23]; however, these works typically assume
that sensors use contention-based MAC protocols for media
access, whereas we use polling to improve energy effi-
ciency. Recognizing the need to reduce the idle listening
time to prolong battery life, Ye et al. [9] introduced a new
contention-based MAC layer protocol called SMAC in
which sensors can enter the sleep mode periodically to
save energy. However, as will be seen in the simulations
section of this paper, in SMAC, the energy spent in idle
listening is still quite significant as compared to the polling
scheme we propose.

Polling in wireless networks have long been studied and
used, for example, the 802.11 PCF and the Bluetooth network.
These networks are one-hop networks, that is, the master
node can reach the slave nodes with one hop and vice versa.
Polling in one-hop networks is simple, where the master polls
one slave at a time and the slave immediately replies in the
next time slot. One-hop networks can also use Time Division
Multiplexing (TDMA), where each node is given a unique
time slot for data transmission. In this paper, we consider
multihop networks in which sensors have to relay packets for
other sensors due to the low transmission power of sensors.
With lower transmission power, a multihop network has
advantages in 1) prolonging battery life and 2) reducing
intercluster interferences, thus improving the network-wide
throughput. Polling and data collection in multihop sensor
networks were studied, for example, in [16], [19]. However,

232 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

Fig. 1. A two-layered heterogeneous sensor network. The large nodes

are the cluster heads. The small nodes are the basic sensor nodes.

both assumed that the central controller has the same
transmission range as ordinary sensors, in other words, as
the sensor packets; the central controller’s message also
has to be relayed by sensors to reach sensors that are far
from it. Note that we assume that the cluster head has a
relatively high transmission power such that its polling
message can be heard by all sensors in the cluster. Our
assumption is quite reasonable and can greatly improve
the efficiency of polling, as well as reducing the power
consumption of sensors. Also, the problem of finding the
optimal polling strategy is completely different under our
assumption. In addition, only tree networks were con-
sidered in [19], whereas we consider general networks of an
arbitrary topology.

The problem of sending packets from sensors to a single
sink node with energy constraints has been studied in [31],
[33]. However, the difference between our work and those
in [31], [33] is profound. First, both [31] and [33] assume that
data should be gathered by a data-forwarding tree, whereas
it has been shown in [5] and [13] that a tree is not the best
structure for data gathering applications. The best structure
can be found by running a network flow algorithm, which
is what we will adopt in our work. Second, in essence, [31]
and [33] focus on traffic routing, whereas we consider both
traffic routing and media access control.

3 CLUSTER OPERATIONS

In this section, we describe how the sensor network is
organized and operated. Throughout this paper, we will
use S to denote a sensor and t to denote a cluster head. We
will assume that no node can send and receive at the same
time and one node can send or receive at most one packet at
a time.

3.1 Deployment

In heterogeneous sensor networks, the basic sensors can be
deployed randomly as in homogeneous sensor networks.
The cluster heads, on the other hand, should be more
carefully deployed to make sure all basic sensors are
covered, that is, each sensor can hear from at least one
cluster head. However, since the number of cluster heads is
small, their best locations can be found within a reasonable
amount of time and they can even increase their transmis-
sion power to cover remote sensors.

3.2 Cluster Partition

Initially, the sensor network should be partitioned into
clusters. This is called Cluster Partition and has been
extensively studied for homogeneous networks [6], [4],
[14] in which cluster head selection algorithms have been
given. However, in a heterogeneous network, the problem
of cluster partition is quite different. The main issues here
are letting the cluster head know which sensors are in its
cluster and letting the sensors know to which cluster they
belong. Since the main focus in the paper is the operation
within a cluster, in the following, we briefly describe a
simple method for cluster partition. Note that we assume
that cluster heads and sensors know their locations.

First, based on the IDs given to them, the cluster heads will
broadcast a message containing their location information in

turn, the cluster head with the lowest ID first. Note that this
can be done within a reasonable amount of time since the
number of cluster head nodes is relatively small. (For
example, in a network with 1,000 sensors and assuming that
each cluster has 50 sensors, there will only be 20 cluster
head nodes.) Each sensor will then make a list of cluster
heads it has heard from, that is, whose messages have been
correctly received by the sensor, according to the received
signal strength, largest signal strength first. After this, each
sensor will know to which cluster it may belong and will
choose the cluster head at the top of the list as its preferred
cluster head.

Then, in turn, the cluster head starts the “discovering
process,” that is, starts to find which sensors should be in its
cluster, in a way much like a Breadth-First Search. Since this
is the same for all clusters, we only explain it for cluster 1.
Cluster head 1, denoted as t1, will send a message saying
“all sensors that have chosen me as the preferred cluster
head and are within a distance of D to me should report to
me,” where D is chosen such that, with high probability, the
sensors can directly communicate with t1. Each qualified
sensor will then send a packet to t1 which includes its ID.
Since there may be more than one qualified sensor and t1
does not know them yet, sensors must use a contention-
based MAC protocol to communicate to t1 at this time. This
means that, although polling is mainly used, a MAC
protocol should also be installed in the sensors. However,
note that the contention-based MAC protocol need not be a
complex one and it is only needed when partitioning the
clusters and is never needed afterward. After waiting long
enough (that is, the channel idle time longer than the
maximum length of the contention window), t1 decides that
all such sensors have reported. It will add them to a list L
and broadcast an acknowledgment packet to them. t1 then
asks the sensor in L with the smallest ID, say, S1, to
broadcast a message that asks sensors to report to S1 if they
1) choose t1 as the preferred cluster head, 2) have heard this
message from S1, and 3) have not been acknowledged by t1.
All such sensors will regard S1 as their parent and S1 will
tell t1 about these sensors. t1 will add these newly
discovered sensors to L and then ask another sensor, say,
S2, to do the same as S1 did, and so on, until no new sensors
can be discovered. It can be verified that, after this, every
sensor that chooses t1 as the preferred cluster head and has
a path to reach to t1 by visiting only sensors that choose t1
as the preferred cluster head will have been discovered by
t1. Note that, since each sensor will have only one parent,
there is a unique path from each sensor to the cluster head,
along which packets can be forwarded. Also, to ensure
correctness, link-level retransmission may be needed to
prevent information loss.

After t1 has finished, t2 can discover its sensors in the
same way, then t3; t4; . . . , until the last cluster head. After
the last cluster head has finished, we say the first “round of
discovery” is completed. Note that, after the first round, it is
very likely that the majority of sensors have already been
discovered by the preferred cluster heads. However, some
sensor still may not have been discovered because it may
not have a path to its preferred cluster head. Such sensors
are called the “orphan sensors.” To help the orphan sensors

ZHANG ET AL.: ENERGY-EFFICIENT MULTIHOP POLLING IN CLUSTERS OF TWO-LAYERED HETEROGENEOUS SENSOR NETWORKS 233

find the cluster head, a second round of discovery is needed

in which each orphan sensor may broadcast a message,

according to the contention-based MAC protocol, saying

that “nonorphan sensor who heard this message may add

me to your cluster.” The nonorphan sensor who responded

first will be the parent of the orphan sensor and will report

this new discovery to the cluster head. After a sufficiently

long period of time, all sensors will be discovered.
As an example, a very simple network is shown in Fig. 2,

where there are two cluster heads, t1 and t2, and 10 sensors.

The communication range of the cluster heads is indicated

by the ellipses, that is, sensors S1 to S5 can only hear from t1
and sensors S7 to S10 can only hear from t2. S6 can hear from

both t1 and t2 and it is assumed that the signal strength

from t1 is stronger. If a sensor can send a packet to another

node, there is an edge between them.

At first, t1 and t2 will broadcast their messages in turn, as
shown in Fig. 3. After this step, S1 to S6 will choose t1 as the
preferred cluster head and S7 to S10 will choose t2 as the
preferred cluster head.

Next, t1 will try to discover sensors that can directly
communicate with it. It will send a message and S1 and S2

will respond because they are within distance D to t1, as
shown in Fig. 4a. After this, S1 will discover S3, S4, and S5,
as shown in Fig. 4b.

Next, t2 will discover sensors S7 to S10 in a similar way,
as shown in Fig. 5a. Note that S6 is an orphan because it
chose t1 as its preferred cluster head, but it cannot
communicate with any sensor who has a path to t1. Thus,
S6 will send a message and S7 will respond to add S2 to the
cluster of t2, as shown in Fig. 5b.

3.3 Connectivity and Compatibility

We can now focus on the operations inside a cluster. To
control sensors, the cluster head needs to know the
connectivity in the cluster, that is, a sensor can commu-
nicate with which other sensors. It should also know the
compatibility, that is, whether a group of transmissions can
occur simultaneously without interfering with each other.
We now describe how the cluster head acquires this
information.

Let P ðSi; SjÞ denote the signal strength received at
sensor Sj when Si is sending a packet. If the cluster head
knows P ðSi; SjÞ for all 1 � i, j � n, where n is the number of

234 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

Fig. 2. A simple network.

Fig. 5. (a) t2 discovers S7 to S10. (b) S6 joins the cluster of t2.

Fig. 4. (a) S1 and S2 respond to t1’s message. (b) S1 discovers S3, S4, and S5.

Fig. 3. t1 and t2 broadcast their messages in turn.

sensors in the cluster, it can find out the connectivity and
compatibility in the cluster as follows: To determine
whether Si can send a packet to Sj, the cluster head
compares the Signal-to-Noise Ratio (SNR) P ðSi; SjÞ=N0 with a
threshold �, where N0 is the typical noise power [2]. If the
SNR is larger than �, Si can send a message to Sj; otherwise,
Si cannot send a message to Sj. To determine whether
m transmissions, say, S01 ! S1; S

0
2 ! S2; . . . ; S0m ! Sm, are

compatible, the cluster head compares the Signal-to-Inter-
ference-and-Noise Ratio (SINR)

P ðS0i; SiÞPm
j¼1;j6¼i P ðS0j; SiÞ þN0

with � for all 1 � i � m and the transmissions are
compatible if the SINRs for all sensors are larger than � [2].

To obtain P ðSi; SjÞ, the cluster head can ask each sensor,
one at a time, to send a packet and ask all other sensors to
record the received signal strength. After all sensors have
finished sending, the cluster head can poll the sensors to ask
them to report the recorded information. Note that the
cluster head can only allow one transmission at a time since
it does not yet know the compatibility. The packet can be
sent along the path established earlier for cluster partition.
The size of the information that sensors need to report is
actually quite small. For example, suppose there are
50 sensors in a cluster, each sensor has a 16 bit ID, and
the received signal strength is measured in 8 bits. Then,
each sensor needs to report around 150 bytes of information
to the cluster head, which can be easily encapsulated in one
or two packets.

Note that, since the wireless channel can be time varying
and the noise power can fluctuate, the connectivity and
compatibility obtained above are at best an estimation of the
actual situation. However, it can be very accurate in a
relatively static environment. Although the process of
obtaining the connectivity and compatibility information
is the overhead of using polling, which is not required in
other approaches, it is needed only at the beginning phase
or when the environment significantly changes, which can
be expected to be quite rare in the applications we are
considering. Thus, this overhead of polling is small in the
long run. Also, note that, to get connectivity and compat-
ibility, we have used the measured signal strength and have
not used any models, which is because such models are best
suited for mathematical performance analysis but not for
protocol design. Neither have we used the location
information because the measured signal strength is much
more reliable in determining connectivity and compatibility
than location information. Aguayo et al. [1] have shown that
the connectivity cannot be directly determined by the
locations of the nodes in many cases and the signal power
received at a relatively long distance can be arbitrary due to
multipath fading. To make the network robust, in this
paper, we do not make any assumptions about the
connectivity and compatibility and treat them as arbitrary.

3.4 Data Relaying Path

After finding the connectivity and compatibility, the cluster
head will have enough information for controlling sensors
in the cluster. It will first find the data relaying path for each

sensor, which is the path by which the packets can be
forwarded to the cluster head. Note that the data relaying
paths are different from the paths established earlier when
partitioning the clusters because the latter is only used
temporarily to ensure that each sensor has a path to the
cluster head, whereas the former is more load balanced, that
is, there will be no sensors carrying too much traffic while
others are carrying too little. For example, in cluster 1 in
Fig. 5b, since S3, S4, and S5 all chose S1 as their parent, S1

will carry the traffic of three other sensors, whereas S2 does
not carry any additional traffic. However, we can change
the data relaying path of S3 to S3 ! S2 ! t1 so that the load
of S1 and S2 is more balanced, as shown in Fig. 6.

Since we target applications where the data generation
rate is low, sensors can sleep for most of the time and wake
up only for a short period to send the sensed data. The time
between two consecutive wake-ups is referred to as a cycle
and the time when sensors are active is referred to as a duty
cycle. To find the relaying paths, define the load of a sensor
as the average number of packets it needs to send out
during a duty cycle, including its own packets and the
packets from other sensors it relays. The problem of finding
a set of balanced relaying paths can be formalized as a min-
max problem: Find a routing strategy such that the
maximum load of sensors is minimized. Chang and
Tassiulas [5] and Bogdanov et al. [13] showed that it can
be solved in polynomial time by formalizing the problem
into a network flow problem, where either links or nodes
have limited capacities. To be self-containing, we briefly
explain the idea of the network flow formalization in the
simplest case when each sensor has exactly one packet to
send. For more information related to this issue, readers are
referred to [5], [13]. Consider a cluster with n sensors. We
draw a directed graph G according to the connectivities in
the cluster. Let the cluster head be node t, that is, the sink of
G. Each sensor, say, Si, corresponds to two nodes si and s0i
in G, which are the “input” node and “output” node of Si,
respectively. There is an arc from si to s0i with capacity �,
where � is a positive integer. If sensor Sj can hear the
message from Si, there is an arc from s0i to sj with infinite
capacity. Similarly, if the cluster head can hear Si, there is
an arc from s0i to t with infinite capacity. Also, add a source
node s to G, where there is an arc from s to si with unit
capacity for all 1 � i � n. We can see that, in this
construction, � limits the maximum load of sensors. After
running a maximum flow algorithm on G, for example, the
Ford-Fulkerson algorithm, if a flow of value n is found, the
relaying paths for each sensor have been found, and no
sensor’s load will exceed �. Therefore, we can start with a
small �, for example, 1, and then run the Ford-Fulkerson
algorithm. If the value of the resulting maximum flow

ZHANG ET AL.: ENERGY-EFFICIENT MULTIHOP POLLING IN CLUSTERS OF TWO-LAYERED HETEROGENEOUS SENSOR NETWORKS 235

Fig. 6. Data relaying paths in cluster 1 with a more balanced load.

found by the algorithm is less than n, increment � by one
and run the algorithm again until the value of the
maximum flow is n. The runtime of this method is Oðn3Þ.

Chang and Tassiula [5] and Bogdanov et al. [13] have
mainly focused on the theoretical part of the problem and,
in the following, we describe some implementation-related
issues in a heterogeneous cluster and our solutions. First, in
general, to find the relaying paths, the network flow
algorithm only needs to run occasionally by using the
average traffic intensity of sensors, which is the average
number of packets generated by a sensor in a cycle. Second,
sensors can use source routing to make sure that the packets
are sent along the right paths. However, to save energy, the
path need not be added to the data packets explicitly
because, equivalently, we can let each sensor remember a
one-hop routing table for all of its dependents, where a
dependent of sensor S is a sensor whose relaying path visits
S. Third, note that a sensor may have several relaying paths.
For example, if, on average, three packets are generated by
sensor S1 in a cycle, the maximum flow algorithm may find
two paths, with path 1 and path 2 carrying two units of flow
and one unit of flow, respectively. To simplify the control,
in a duty cycle, we would like sensors to send packets only
on one path. Thus, to balance the load, sensors can send
packets on these paths alternatively in proportion to the
units of flows the paths carry, whereas, in this example, S1

can send packets along path 1 for two duty cycles and along
path 2 for one duty cycle.

In the following sections, we will assume that the
relaying paths have been found and, in one duty cycle, a
sensor will send its packets along one fixed relaying path.

3.5 Polling

We can now describe the basic polling operations inside a
cluster. More details on polling, in particular, how the
polling schedule is found, are provided in later sections. First,
near the beginning of a duty cycle, sensors wake up and
enter the listening mode at the time specified by the cluster
head before they went to sleep in the last duty cycle. This
can be achieved by setting a timer in each sensor and letting
the sensor wake up when the timer expires. Due to possible
clock drifts, sensors may not wake up at exactly the same
instant; however, the differences should be small. Sensors
will then wait for a message broadcast by the cluster head
indicating the beginning of a duty cycle. In this way, the
initial synchronization between sensors and the cluster
head can be established. The cluster head will then poll the
sensors according to a polling schedule in a time-slotted
manner, where the length of a time slot is the time for
sending a packet. The beginning of a time slot is indicated
by a polling message broadcast by the cluster head that
contains the information about which sensors are polled
and which sensors should receive packets at this time slot.
After receiving this message, sensors that are polled will
send their packets; also, sensors that received packets from
other sensors in the previous time slot will relay such
packets to the next hop. Note that, since packets are relayed
immediately without delay, no queuing is needed in the
intermediate sensors, which greatly reduces the memory
size of the sensors. The cluster can thus be imagined as
similar to a pipelined system, where the polling message

acts as the clock. The polling continues until all packets
have been received by the cluster head. After this, the
cluster head will broadcast a message to set all sensors to
the sleep mode and also inform them of the next wake-up
time. Note that, to reduce the length of a time slot, no link-
level retransmission is used: If a packet is lost, the cluster
head will poll the sensor again.

3.6 Fault Detection

In the case when sensors or cluster heads fail, the network
must have a mechanism to detect the faulty nodes and
recover from the failure. We focus on the failure of sensors
since the cluster head is much less likely to fail. Even if
there is such a failure, it is much easier to detect and repair
as the cluster heads themselves constitute a more intelligent
network and are closer to the outside human observer and
thus can be repaired or replaced even manually.

The cluster head detects a faulty sensor in its cluster
when it fails to receive the packet after polling some
sensors. For example, in cluster 1 in Fig. 5b, a packet
relaying path is S4 ! S1 ! t1. Suppose t1 polls S4. If S4

fails, S1 will not be able to hear from it. In this case, we can
let S1 send its own packet in the next time slot, which will
be received by t1. When t1 receives the packet and finds out
that it is from S1, it knows that something is wrong with the
link between S4 and S1. It can poll S4 several more times
and, if still nothing is received from S4, it will determine
that S4 has died. When a sensor dies, the cluster head will
run the algorithm for finding data relaying paths again and
tell all sensors the new paths.

If a sensor, say, Si, cannot find a path to the cluster head
due to the failure of some sensors, the cluster head can tell
Si to join its next preferred cluster, say, cluster 2. t1 can tell
t2 about the joining of Si and t2 can ask Si to send a packet
and let all other sensors in cluster 2 measure the signal
strength to update the connectivity and compatibility in
cluster 2.

3.7 Removing Intercluster Interference

In practice, there may be many clusters in a wireless sensor
network. With the proposed polling scheme, sensors in the
same cluster do not interfere with each other. However, at
the boundaries of the clusters, sensors belonging to
different clusters may still do so if their cluster heads
decide to poll them at the same time. This is called the
intercluster interference.

The simplest way to remove intercluster interference is to
allow data transmission in only one cluster at a time. It
works for the case when the number of clusters is not large
and when the data transmission within a cluster can be
completed in a relatively short time period as compared to a
cycle. Another more efficient way is to let sensors in nearby
clusters operate in different radio channels. Regarding a
radio channel as a color, this problem is equivalent to giving
interfering clusters different colors. Denoting each cluster as
a vertex and using an edge to connect two vertices if the two
clusters will cause interference with each other, the problem
is reduced to the standard vertex-coloring problem. Many
algorithms can be applied to find practically good coloring
schemes, in particular, if the graph is planar, it is known
that four colors or four radio channels will be sufficient [15].

236 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

4 POLLING IN MULTIHOP CLUSTERS

In this section, we address the main issue of this paper,

which is to find a polling schedule in a cluster. To reduce

energy consumption, we study the problem of finding the

optimal polling schedule, which is a schedule using the

minimum time. We show that this problem is NP-hard and

then give a fast online algorithm to solve it approximately.

4.1 An Example of Polling in a Multihop Cluster

The major difference between single-hop polling and

multihop polling (MHP) is that, in multihop clusters, the

cluster head can poll more than one sensor simultaneously

if their packet transmissions do not cause collision. As a

simple example, consider cluster 1 in Fig. 6. In this cluster,

the relaying paths are S1 ! t1, S2 ! t1, S3 ! S2 ! t1,

S4 ! S1 ! t1, and S5 ! S1 ! t1. Suppose, at the beginning

of a duty cycle, t1 knows that, in this duty cycle, every

sensor has one packet to send. Since the packets from S3, S4,

and S5 have to use two hops to reach t1, if only one sensor is

polled at a time, that is, a sensor is polled only after the

packet from the sensor polled previously has been received

by t1, eight time slots are needed in total. However,

suppose, based on the reported measured signal strength,

t1 knows that transmissions S1 ! t1 and S2 ! t1 are

compatible with other transmissions. t1 can then poll the

sensors in the schedule shown in Fig. 7, which needs only

five time slots, as explained in the following:

. Time slot 1. t1 polls S2 and S4, which results in two
transmissions, S2 ! t1 and S4 ! S1. Since the two
transmissions are compatible, after this time slot,
both packets will be correctly received, that is, t1 will
have S2’s packet, and S1 will have S4’s packet.

. Time slot 2. S1 must forward S4’s packets to t1,
which means that there will be transmission S1 ! t1
since we do not allow packets to be queued at
intermediate sensors. However, since S1 ! t1 is
compatible with S3 ! S2, t1 can also poll S3 at this
time slot. After this time slot, t1 will have collected
the packets from S2 and S4, whereas S2 will have
S3’s packet.

. Time slot 3. S2 must forward S3’s packets to t1. t1
can also poll S5 at this time slot. After this time slot,
t1 will have collected the packets from S2, S3, and S4,
whereas S1 will have S5’s packet.

. Time slot 4. S1 forwards S5’s packets to t1. After this
time slot, t1 will have collected the packets from S2,
S3, S4, and S5.

. Time slot 5. t1 polls S1. After this time slot, t1 will
have collected all of the packets.

Note that, in this example, the cluster head knows how
many packets each sensor has, that is, has the packet number
information. This could be true in many applications, for
example, in ground temperature monitoring in which each
sensor samples data periodically, generates data at a fixed
rate, and sends exactly one packet in each cycle. However,
in some other applications, the cluster head may not have
such information and some sensor may have no packet to
send, while others may have more than one packet to send.
In the following, we will start with the case when the cluster
head has the packet number information and move on to
the more complicated case later.

4.2 Polling with Packet Number Information

We first consider polling when the cluster head knows how
many packets each sensor has before a duty cycle. We study
the problem of finding the optimal polling schedule, that is,
the schedule that finishes the polling in minimum time. We
say a sensor is in level i if its hop count is i, that is, is i hops
away from the cluster head. If all sensors are in level 1, the
scheduling reduces to the single-hop polling and is trivial.
We call the problem of finding the optimal polling schedule
when some sensors are in levels higher than 1 the MHP
problem. We will show that the MHP problem is NP-hard
under virtually all scenarios, which will justify our use of a
simple greedy algorithm for finding the polling schedule.

4.2.1 MHP Problem

We first study the MHP problem when the number of
packets can be arbitrary. To see that the MHP problem is
NP-hard in this case, we first consider a special structure
called “two-level star with relaying only sensors in the first
level,” which is referred to as TSRF. TSRF is a tree whose
root is the cluster head. There are branches connected to the
root, where each branch consists of two sensors. Fig. 8a
shows a TSRF with five branches. More specifically, let t be
the root. Sensors denoted by S1; S2; S3; . . . are connected to
t, that is, are in the first level, and sensors denoted by
S01; S

0
2; S

0
3; . . . are in the second level, where S01 is only

connected to S1, S02 is only connected to S2, and so forth.
Each sensor in the second level has exactly one packet to
send and sensors in the first level have no packet to send.
The relaying path for S0i is S0i ! Si ! t. Some transmissions,
say, S01 ! S1 and S3 ! t, can occur at the same time if they
do not cause collision.

The problem is given as follows: Given a TSRF and the
compatibility, does there exist a schedule by which all
packets can be received by the cluster head by time slot k,
where k is a given positive integer? We call it the TSRF
Polling problem and sometimes simply refer to it as the
TSRFP problem.

Lemma 1. The TSRFP problem is NP-complete.

Proof. It is clear that this problem belongs to NP. To see that
it is NP-complete, we reduce the well-known NP-
complete Hamiltonian Path (HP) problem to it.

ZHANG ET AL.: ENERGY-EFFICIENT MULTIHOP POLLING IN CLUSTERS OF TWO-LAYERED HETEROGENEOUS SENSOR NETWORKS 237

Fig. 7. A polling schedule for cluster 1, shown in Fig. 5b, when each

sensor has exactly one packet.

Given any instance of the undirected HP problem, an

instance of the TSRFP problem can be constructed as

follows: Denote the graph of the HP problem as G and

denote the vertices in G as v1; v2; v3; Each node in G

corresponds to a branch of the TSRF. For example, the

TSRFP instance for the graph shown in Fig. 8b is the one

in Fig. 8a, where v1 corresponds to branch S01 ! S1 ! t,

v2 corresponds to branch S02 ! S2 ! t, and so forth. If

two vertices are adjacent, for example, v1 and v2,

transmissions S1 ! t and S02 ! S2 are compatible, and

so are transmissions S2 ! t and S01 ! S1. Otherwise,

these two pairs of transmissions are not compatible. k is

set to be nþ 1, where n is the number of vertices in G.

Note that, in a schedule that needs only nþ 1 time

slots, the transmissions must be back to back: All sensors

in the second level must start to send in consecutive time

slots with no “pause” in between. Sensors S0i and S0j can

start in consecutive time slots if and only if Si ! t and

S0j ! Sj are compatible. In this case, by our construction,

there is an edge connecting vi to vj in G. Therefore, this

schedule determines an HP in G. For example, as Fig. 8c

shows, a polling schedule using six time slots for the

TSRF shown in Fig. 8a determines an HP v1 ! v2 !
v3 ! v5 ! v4 in Fig. 8b. Similarly, it can be verified that

an HP in G can always be used to determine a polling

schedule that needs only nþ 1 time slots. Thus, the

TSRFP problem is NP-complete. tu
Since any algorithm that solves the MHP problem can

solve the TSRFP problem, we have the following:

Theorem 1. The MHP problem is NP-hard.

Note that, in the proof, we constructed a TSRF whose

compatibility is determined by an arbitrary graph. A

natural question is whether the compatibility in a TSRF

can indeed be arbitrary. We verify this with the following

interference model, which is the physical model in [18]

without the power-law signal decay assumption. We

assume that, in the TSRF, two transmissions, say, S0i ! Si
and Sj ! t, do not interfere with each other if and only if

the following two inequalities hold:

P ðS0i; tÞ < �P ðSj; tÞ
P ðSj; SiÞ < �P ðS0i; SiÞ;

�

where � is a positive constant. In wireless environments, the

received signal power can be arbitrary [1]. Thus, we can let

P ðSj; tÞ� be larger than any P ðS0i; tÞ for all i and j. Also, let

P ðS0i; SiÞ ¼ � for all i. If there is an edge between vi and vj,

let P ðSj; SiÞ < ��; otherwise, let P ðSj; SiÞ > ��. This will

produce the desired compatibility. It can be shown that the

needed compatibility can be constructed for other proofs

used in this paper in a similar manner.
So far, we have shown that the MHP problem is NP-hard

when the number of packets can be arbitrary. However, as

mentioned earlier, in some applications, sensors sample

data periodically and generate exactly one packet per cycle.

Thus, a special case of the MHP problem needs to be

studied in which each sensor has exactly one packet to send.

We call it Exact One Packet MHP problem and abbreviate it

as the X1MHP problem. We now show that this problem is

still NP-hard.

Theorem 2. The Exact One Packet Multihop Polling problem is

NP-hard.

Proof. We prove this by reducing TSFRP to it. Given any

instance of TSFRP, we construct an instance of X1MHP

as follows:
For each branch in the TSFRP instance, say,

S01 ! S1 ! t, we add another auxiliary branch, as shown
in Fig. 9. The relaying path for U 0001 is U 0001 ! U 001 ! U 01 ! t.
The relaying path for U 001 is U 001 ! U1 ! t. U 01 and U1 send
their packets directly to t. Transmission U 001 ! U 01 is
compatible with S1 ! t. Other transmissions in this
auxiliary branch are not compatible with any other
transmissions.

In any optimal solution to the X1MHP problem,
suppose sensor U 0001 starts to send its packet at time slot �.
At time slot �þ 1, U 001 will relay this packet to U 01. If
sensor S1 is not sending its packet to t at time slot �þ 1,
we can “move” it to this time slot since U 001 ! U 01 is
compatible with S1 ! t and the resulting schedule
should still be optimal. After pairing them up, we move
them to the beginning of the schedule, that is, let U 0001 start
to send at time slot 1 and let S1 start to send at time slot 2.
The resulting schedule should still be optimal since
U 0001 ! U 001 and U 01 ! t are not compatible with any other
transmissions and thus are not occurring at the same
time with any other transmissions in the optimal
schedule. For the same reason, U 001 , U 01, and U1 can also
be moved to the front, that is, start to send at time slots 4,
6, and 7, respectively. S1 and sensors in its auxiliary

238 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

Fig. 8. (a) A TSRF with five branches. (b) A graph with five vertices. (c) A

polling schedule for Fig. 8a with compatibility defined by Fig. 8b. This

schedule corresponds to the Hamiltonian Path v1 ! v2 ! v3 ! v5 ! v4.

Fig. 9. The auxiliary branch for branch S01 ! S1 ! t.

branch will have finished sending by time slot 7. Then,
similarly, we can pair up S2 with its auxiliary branch and
move them to the beginning of the schedule, starting at
time slot 8. The same can be done to S3; S4; . . . ; Sn, where
n is the number of branches in the TSRF. Si and sensors
in its auxiliary branch will start sending at time slot 7ði�
1Þ þ 1 and will finish sending at time slot 7i.

As a result, the optimal schedule will consist of two
parts. The first part is from time slot 1 to time slot 7n,
which is for sensors S1; S2; . . . ; Sn and sensors in their
auxiliary branches. Following the first part, the second
part starts at time slot 7nþ 1, which must be an optimal
schedule for the TSFRP instance. tu

4.2.2 An Online Polling Algorithm

In this section, we focus on finding an algorithm that gives
suboptimal contention-free polling schedules. Note that,
since successful packet delivery is not guaranteed in
wireless communications, the algorithm should also be
able to handle possible packet loss. The cluster head knows
that a packet is lost somewhere along the path if it did not
receive the packet after polling the sensor. To solve this
problem, the cluster head can simply poll the sensor again.
Therefore, the scheduling algorithm should be an online
algorithm since new polling requests may come (actually
the old ones come again) when the polling is going on.

The NP-hardness of the problem and the online require-
ment left us no other choices but to adopt a very simple
algorithm, described in Table 1. We call a packet a sensor
intends to send a request. The input to the algorithm is all of
the requests. Initially, all requests are set to be active and are
stored in a list. Before each time slot, the algorithm scans the
list for active requests according to an arbitrary order and
grants a request, that is, allows the packet to be sent at this
time slot, if its transmissions in this and the following time
slots are compatible with all other already granted
transmissions. When the maximal number of requests has
been granted, the algorithm halts and waits for the next
time slot. After a request is granted, it becomes idle and will
be deleted from the list after the packet has been received. If
the packet has not been received, the request will become
active again.

At a time slot, say, �, to see whether a request can be
granted, suppose the source sensor’s hop count is c. The
algorithm will check whether the c transmissions of this

request are compatible with the transmissions in the
existing schedule from time slot � to �þ c� 1. Let m be
the number of requests that have been granted earlier
whose packets are still on their way to the cluster head.
There will be at most m granted transmissions in each time
slot from � to �þ c� 1. To see the compatibility of the new
request at any time slot, the cluster head can use the method
described in Section 3.3 based on the received signal
strength that takes OðmÞ time. Thus, OðmcÞ time is needed
to check whether a request is compatible or not with
already granted requests.

4.3 Polling with No A Priori Packet Number
Information

We can now discuss the problem of polling when the
cluster head does not know the number of packets each
sensor has before a duty cycle. Note that, with or without
the packet number information, the cluster head has to poll
some sensor first. A sensor who has to forward another
sensor’s packet may append its ID and its packet number
information to the packet. Therefore, for example, if the
relaying path for Si is Si ! Sj ! t, after polling Si, the
cluster head will have the packet number information of
both Si and Sj. In light of this fact, we propose polling the
sensors in two phases. In the first phase, the cluster head
polls a subset of sensors, denoted by �, under the constraint
that the union of the relaying paths of sensors in � must
cover all sensors in the cluster. Therefore, after the first
phase, in addition to getting some data packets, the cluster
head will also have all of the packet number information.
Then, in the second phase, the cluster head will be able to
poll the sensors as discussed in Section 4.2, according to the
algorithm in Table 1.

Note that, in the first phase, the cluster head can poll the
sensors by assuming that each sensor in � has exactly one
packet. Of course, it may happen that some sensor in �, say,
Si, does not have a packet. In this case, Si can send an
“empty” packet and Sj can take this chance to send its
packet to the cluster head, if it has one, again assuming that
the relaying path for Si is Si ! Sj ! t. Clearly, the cluster
head will fail to get a data packet after polling a sensor in �
only if all sensors in the relaying path have no packet to
send. Since the number of packets in the sensors can be
arbitrary, the cluster head may not be able to guarantee that
it can get a packet after polling a sensor. Therefore, to
optimize the operations in the first phase, it is reasonable to
consider the problem of finding � and a polling schedule
such that the first phase can be finished in minimum time.
However, it is not hard to see that this problem is still NP-
hard because, clearly, in the TSRF shown in Fig. 8a, � must
be the sensors in the second level and the problem reduces
to finding a minimum time polling schedule in a TSRF,
which has been proven to be NP-hard. We therefore
propose solving the problem in two steps, that is, breaking
the problem of jointly finding � and the polling schedule
into two subproblems and solving them one by one, where
the first subproblem is to find � and the second subproblem
is to find a polling schedule after � has been given. Since the
second subproblem can be solved by the algorithm in
Table 1, we need only focus on finding �.

ZHANG ET AL.: ENERGY-EFFICIENT MULTIHOP POLLING IN CLUSTERS OF TWO-LAYERED HETEROGENEOUS SENSOR NETWORKS 239

TABLE 1
The Polling Algorithm

A “good”� should likely result in a short polling schedule.

We therefore propose using the following criterion: Choose �

such that the relaying paths cover all sensors in the cluster

and have minimum total hop counts. To solve it, each

sensor can be regarded as an element and each relaying

path can be regarded as a subset, where an element is in a

subset if the relaying path covers the sensor. Also, each

subset has a cost equal to the hop count of the relaying path.

The problem can then be formalized as finding a group of

subsets that cover the whole set with minimum total cost.

This problem is a case of the Weighted Set Cover Problem and

is also NP-hard, but suboptimal solutions can be found by a

fast greedy algorithm. This greedy algorithm iteratively

chooses a subset that has the minimum covering cost, where

the covering cost of a subset is defined as the ratio of the

cost of the subset divided by the number of currently

uncovered elements it contains, until all elements have been

covered.

4.4 Discussions

Note that we have treated the problems related to

heterogeneous sensor networks separately, that is, we first

partition the network into clusters, then find the relaying

paths, and then find the polling schedules. It may be

tempting to consider them jointly since this allows more

flexibility and possibly will result in better solutions.

However, this approach is impractical since it is clearly

NP-hard because the polling problem in a single TSFR,

which is NP-hard, is a special case of it, which is why we

have chosen to break it into several subproblems and solve

them one by one in a greedy way. Also note that we have

mainly considered the case when the packets are not

queued at the intermediate sensors, that is, after receiving a

packet, a sensor will forward the packet to the next hop in

the next time slot immediately and will not temporarily

store it in its buffer. As mentioned earlier, the advantage of

it is that it requires less memory in the sensors and thus

may reduce the cost. In addition, as the Appendix shows,

allowing the queuing of packets will not make the polling

problem easier, which is another reason why we have

adopted the current approach.

5 PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the proposed
polling scheme based on the results obtained by the NS-2
simulator. We assume that all sensor nodes are uniformly
deployed within a 200� 200 m2 2D square and the cluster
head is located at the center of the square. A two-ray
propagation model is used to describe the feature of the
physical layer. With the maximum transmission power
0:858 mW , each node can communicate with other nodes as
far as 40 m away. The radio bandwidth is 200 Kbps. CBR
traffic on top of UDP is generated to measure the
throughput. Each packet has a fixed size of 80 bytes,
including header and payload. The simulation runs for
1,000 sec, which contains a 100 sec warm-up period. All
simulation data are collected from 100 to 1,000 sec.

5.1 Percentage of Active Time

The major goal of our polling scheme is to reduce the active
time of sensors. Fig. 10a shows the percentage of active time
needed to ensure that all packets are received by the cluster
head, where the number of sensors in a cluster ranges from
10 to 100 and the data generating rate ranges from 10 to
80 Bps. We can see that, in a modest-sized cluster with
30 sensors, when the data generating rate is 60 Bps, sensors
only need to be active for about 30 percent of the time.

It can also be seen that, when the number of sensors
increases or when the data generating rate increases, the
active time of sensors will increase to ensure packet
delivery. Note that, for a given data generating rate, for
example, 80 Bps, when the number of nodes increases to 90,
all sensors in the cluster must be active for all time. This
implies that, under a certain data generating rate, there is a
maximum size of a cluster above which packets will be lost.
Thus, the size of a cluster should be carefully chosen such
that no packets are lost and sensors can also enjoy long
sleeping time.

5.2 Comparison with SMAC

To show the effectiveness of the proposed polling scheme,
we compare its performance with an energy-efficient MAC
protocol, named SMAC [9]. Similar to our polling scheme,
SMAC also allows sensors to sleep periodically to save
energy. We will mainly compare the throughput of the two

240 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

Fig. 10. (a) Percentage of active time of sensors as a function of cluster size and data generating rate when polling is used. (b) Throughput of the

cluster with 30 sensors as a function of total offered load.

schemes, which is defined as the average number of packets
received by the cluster head in a given time period. Since
SMAC is only for the MAC layer, to find the relaying path
for each sensor, we use the Ad Hoc On-Demand Distance
Vector (AODV), which is an efficient topology-based
routing protocol. The simulations for SMAC were carried
out with the code contributed by the designer of SMAC,
available on the Web.

Fig. 10b shows the throughput of a cluster with
30 sensors, when the total offered load is 210, 750, and
1,200 Bps (correspondingly, the data generating rates at
individual sensors are 7, 25, and 40 Bps, respectively). It can
be seen that, under all offered loads, our polling scheme
achieves 100 percent throughput, that is, all packets
generated by sensors are correctly received by the cluster
head. We also measured the throughput of SMAC+AODV,
when the active time of sensors is configured as 30 percent,
50 percent, 70 percent, 90 percent, and 100 percent. Quite
surprisingly, as can be observed from the figure, the
throughput of SMAC+AODV is far less than the total
offered load when the active time is not 100 percent. Note
that the percentage of the active time of sensors under the
polling scheme is less than 20 percent, as can be derived
from Fig. 10a, which is much less than the active time of
SMAC. Thus, we can conclude that our polling scheme has
much better throughput performance than SMAC, even
with much shorter sensor active time.

One of the major reasons for the poor performance of
SMAC+AODV is that many control packets were gener-
ated for routing since sensors must frequently use AODV
to find relaying paths as the path used previously may no
longer be valid after some sensors along the path have
entered the sleeping mode. This large number of control
packets will reduce throughput and increase collision.
Another reason is that, unlike the centralized polling,
SMAC allows sensors to compete for channel access
randomly. As the data rate increases, more and more
collisions will occur due to this random channel access
competing, which will also reduce the total throughput.
This is why, even when sensors are fully active, the
throughput of SMAC+AODV is still not 100 percent when
the total offered traffic rate becomes as high as 1,200 Bps.
Overall, the inefficiency of SMAC+AODV is due to the
fact that they are designed for random traffic, whereas the
traffic in a cluster is not completely random, for example,
all traffic is destined for the cluster head. For such
applications, polling has a clear advantage.

6 PARTITIONING A CLUSTER INTO SECTORS

Fig. 10a shows that the active time is longer in a larger
cluster than in a smaller cluster. This leads us to further
consider partitioning a cluster into smaller sectors and
letting each sector wake up and do data transmission in
turn to reduce the active time of sensors. Note that, since
sectors can be considered as small clusters, their routing
and polling mechanisms are the same as for the clusters
described in previous sections.

6.1 Optimal Sector Partition

Define the polling time of a sector as the time needed for the
cluster head to finish polling. The lifetime of a sensor is
determined by its transmission load and the polling time of

the sector. We can assume that the lifetime of sensor Si is
reversely proportional to the power consumption rate
�Ri þ �T , where Ri is the transmission load of Si, T is the
polling time, and � and � are constants. Since our primary
goal is to prolong sensor lifetime, we may want to find a
partition by which the maximum power consumption rate
of sensors can be minimized. However, the problem is NP-
hard by this criterion since finding the optimal polling
schedule is NP-hard. Another criterion that makes sense is
given as follows: A partition is optimal if the maximum
pseudopower consumption rate is the minimum. The pseudo-
power consumption rate of Si is defined as �Ri þ �0L,
where Ri is the load of Si and L is the number of sensors in
the sector Si belongs to since the polling time is roughly
proportional to the number of sensors involved. Unfortu-
nately, even when reduced to this, the optimal partitioning
problem is still NP-hard.

The problem is given as follows: Given a cluster and its
connectivity, does there exist a partition such that
maxf�Ri þ �0Lg � � for a given �? We call it the Cluster
Partition problem and refer to it as CPAR.

Theorem 3. The CPAR problem is NP-complete.

Proof. The CPAR problem clearly belongs to NP. To see that
it is NP-complete, we use the following Partition
problem: Given a set of positive integers fB1; B2; . . .g,
can the integers be partitioned into two subsets where
the sums of the numbers in the two subsets are equal?

Given any instance of the Partition problem, we
construct an instance of the CPAR problem as follows:
Draw two sensor nodes, S1 and S2, which are connected
to the cluster head t. For the ith integer in the set denoted
as Bi, draw Bi sensors denoted as Si1 to Si�, where � ¼ Bi.
These � sensors are in the same branch in which Sij is
connected only to Sij�1 for 1 < j � � and Si1 is connected
to both S1 and S2. � is set to be ðn=2þ 1Þð�þ �0Þ, where
n ¼

P
Bi. For example, the construction for set {3, 2, 1, 2}

is shown in Fig. 11.
Note that this cluster can be divided into at most two

sectors since there are only two sensors, S1 and S2, that
can directly communicate with the cluster head. Also
note that the cluster cannot be a single sector since, if it is,
the pseudopower consumption rate of either S1 or S2 will
exceed �. Thus, if there is a partition satisfying �, the
cluster must be divided into two sectors, with S1 and S2

in different sectors. In each sector, S1 and S2 must have
exactly n=2 dependents. Therefore, the partition of the
sector gives a solution to the Partition problem. It can be

ZHANG ET AL.: ENERGY-EFFICIENT MULTIHOP POLLING IN CLUSTERS OF TWO-LAYERED HETEROGENEOUS SENSOR NETWORKS 241

Fig. 11. The construction of the CPAR problem for set {3, 2, 1, 2}.

easily verified that the reverse is also true. For example,
for the cluster shown in Fig. 11, we can let the first and
third branches be in the same sector as S1 and let the
second and fourth branches be in the same sector as S2,
which is to partition set {3, 2, 1, 2} into {3, 1} and {2, 2}.tu

6.2 Heuristic for Sector Partition

We now describe a heuristic for partitioning a cluster into
sectors. Since the length of a duty cycle is short as compared
to the length of a cycle, it is not necessary to set a limit on
the number of sectors in a cluster. First, in the simplest case,
if the union of the optimal relaying paths found by the
maximum flow algorithm is a tree, we can let each first-
level branch be a sector, where a first-level branch is
defined as a sensor that is one hop away from the cluster
head and all of its dependents. After this partition, the load
of sensors remains the same and the numbers of sensors in
all of the sectors are likely to be evenly distributed.
However, more commonly, the union of the optimal
relaying paths is not a tree. In this case, we modify the
relaying paths into a tree and then let each first-level branch
be a sector. Note that, when the union of the relaying paths
is not a tree, there must be flow-splitting sensors, that is,
sensors sending packets not only to one sensor but to
multiple sensors. We can modify the relaying paths of such
sensors to let them send packets to only one sensor or force
them to “choose a parent.” This is referred to as “flow
merging.” A flow-splitting sensor chooses a particular sensor
as its parent if the maximum load of sensors along the path
from the chosen parent to the cluster head is the minimum. To
make sure that there are no flow-splitting sensors along this
path, flow merging can start at flow-splitting sensors closest
to the cluster head. After all flow-splitting sensors have
chosen parents, the union of the relaying paths will become a
tree and we can let each first-level branch be a sector. This
method is conceptually simple and practically effective, as
will be shown by our simulations.

6.3 Effects of Dividing a Cluster into Sectors

We studied the lifetime of a cluster both when divided into
sectors and when not divided into sectors, while sustaining
100 percent throughput, and the lifetime ratio of the former
over the latter is shown in Fig. 12. The settings of the
simulations are the same as in Section 5. It can be seen that
the ratio is always larger than 1, which means that, by
dividing a cluster into sectors, the sensor lifetime will
always increase. Also, because, usually, larger clusters can
be divided into more sectors, the increase in lifetime is
greater for larger clusters.

7 MULTICHANNEL POLLING

Another way to reduce the polling time is to use multiple
interference-free radio channels within a cluster or a sector. If
a transmission causes large interferences in one frequency
channel, it can be scheduled at another channel. Thus, with
multiple frequency channels, more simultaneous transmis-
sions can be supported and the polling time can be reduced.
Note that the same mechanism for multichannel polling can
be applied to either a cluster or a sector and, in the following,
we will describe it as applied to a cluster without sectors.

Our algorithm for determining the polling schedule for
multichannel polling is very much the same as that for

single-channel polling, except that, to see whether a

transmission can be scheduled, the scheduler will try more

than one frequency channel. If there are a total of

f channels, F1; F2; . . . ; Ff , the scheduler will check them in

turn until the new transmission can be fitted in one of the

channels without changing the current schedule.

7.1 Channel Assignment Problem

Note that, to see whether a request can be granted, we require

no changes to the current schedule, which means that all

transmissions that have been scheduled will stay in the

frequency channel assigned to them. Fixing channels for

scheduled transmissions will turn down some requests that

can otherwise be granted. For example, suppose there are two

channels, F1 and F2. Suppose in a time slot there are three

transmissions in the schedule,S01 ! S1 andS02 ! S2 inF1 and

S03 ! S3 in F2. Suppose the new transmission S04 ! S4 causes

large interferences toS02 ! S2 inF1 and toS03 ! S3 inF2. If the

current schedule cannot be changed, S04 ! S4 cannot be

scheduled. However, if the current schedule can be changed

and if S01 ! S1 and S04 ! S4 do not interfere with each other

in F1 and S02 ! S2 and S03 ! S3 do not interfere with each

other in F2, S04 ! S4 can be scheduled to F1.
The reason for us to fix the channel assignment is its

simplicity and the intractability of a decision problem we

have to face otherwise.

Theorem 4. Given a group ofm transmissions and f channels, it is

NP-complete to determine whether there is an assignment such

that all transmissions can be scheduled in the same time slot.

Proof. We will use the NP-complete Vertex Coloring (VC)

Problem: Given a graph G, do there exist f colors such

that every vertex in G can be given a color and no

adjacent vertices are given the same color?
Given a graph G which is an instance of the VC

problem, for each vertex vi in G construct a transmission
S0i ! Si. A group of transmissions is compatible in a
frequency channel if and only if, among the correspond-
ing vertices, no two vertices are adjacent in G. It is then
clear that there exists an f-coloring in G if and only if the
transmissions can be fitted into f channels. tu

242 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

Fig. 12. Lifetime ratio of a cluster when divided into sectors versus when

not divided into sectors.

7.2 Simulation Results for Multichannel Polling

Fig. 13 shows the percentage of active time needed to
ensure that all packets are received by the cluster head,
where the number of sensors in a cluster ranges from 10 to
100 and the data generating rate is 50 Bps. The percentages
of active time when there are 1, 2, 3, and 20 frequency
channels are shown in the figure, where the bandwidth of
each channel is 200 Kbps. Note that the percentage of active
time is reduced by half when the number of channels
increases from 1 to 2. However, when the number of
channels keeps increasing to 3 and, finally, to 20, the
percentage of active time has relatively little improvement.
This is because, when the number of channel increases to 2,
most cochannel interferences have been resolved. However,
there is still node conflict, which means that transmissions
cannot be scheduled in the same time slot if they are
sending to or receiving from the same sensor. When there is
more than one channel, node conflict becomes dominant
that it cannot be resolved by adding more channels.

7.3 Optimal Number of Frequency Channels with
Limited Frequency Resource

From the above discussions, we know that if the number of
frequency channels keeps increasing, the percentage of
active time can always be reduced. However, the total
frequency resource that can be used by sensors may be
limited in some situations. In other words, the product of
the number of channels and the bandwidth of each channel
should be fixed. In this scenario, we assume that the entire
available frequency resource is equally divided into
C channels and, for simplicity, we ignore the bandwidth
of guard bands between frequency channels. Apparently, as
the number of channels increases, the active time of sensors
will likely decrease due to the reduction of interference.
However, if the number of channels keeps increasing, the
benefit of having more channels will decrease and, more-
over, the time needed to send a packet will increase since
the bandwidth of a channel is now small, which will cause
the active time of sensors to increase. Therefore, it is worth
studying the optimal trade-off between the number of
channels and the bandwidth of a channel to achieve the
minimum active time.

We assume that the total available frequency bandwidth
for a cluster is 1 Mbps, which will be divided equally into a
number of channels. To see the effect of the density of the

nodes, 30, 60, and 90 sensors are deployed in the field. In
Fig. 14, we can observe that the percentage of active time for
30 nodes increases monotonously as the number of
frequency channels increases, whereas the curves for 60
and 90 nodes decrease a little at the beginning and achieve
the minimum value when the number of frequency
channels is 2. The reason for this is that, when sensors are
deployed sparsely in the field, interference is not the
dominant factor and, if the limited frequency resource is
divided into C channels, at any time, only 1

C of the total
bandwidth can be used by a one-hop transmission. Thus,
the transmission is slowed down and the percentage of
active time goes up. However, when sensors are densely
deployed, interference becomes dominant; thus, there is
some gain by dividing the frequency bandwidth into two
channels. After that, node conflict becomes the major
conflict in the cluster and increasing the number of channels
cannot solve the conflict and will only slow down the
transmission.

7.4 Multichannel Polling in Clusters with Sectors

Both using multiple channels and partitioning clusters into
sectors can improve the lifetime of sensors. In fact, these
two methods can be combined to achieve even better
results. Fig. 15 shows the lifetime ratio of a cluster
partitioned into sectors with two channels versus a cluster
not partitioned into sectors with only one channel. It can be
seen that the lifetime is greatly improved by using multiple
channels and partitioning. For example, in a cluster with
30 sensors, the lifetime ratio is about 2.45. Comparing with
Fig. 12, which shows the lifetime ratio of a cluster
partitioned into sectors versus a cluster not partitioned into
sectors when both use only one channel, the advantage of
using multiple channels can also clearly be seen. For
example, in a cluster with 30 sensors, the lifetime ratio in
Fig. 12 is only about 1.55. Therefore, we expect both of these
two methods be incorporated in sensor network design.

8 CONCLUSIONS

In this paper, we have studied two-layered heterogeneous
sensor networks, where the network is partitioned into
clusters and a powerful cluster head controls all sensors in a
cluster. We mainly focused on the energy-efficient design

ZHANG ET AL.: ENERGY-EFFICIENT MULTIHOP POLLING IN CLUSTERS OF TWO-LAYERED HETEROGENEOUS SENSOR NETWORKS 243

Fig. 13. Percentage of active time versus the number of nodes.
Fig. 14. Percentage of active time versus the number of frequency

channels.

within a cluster to prolong network lifetime. We used polling
to collect data from sensors instead of letting sensors send
data randomly so that less energy is consumed. We showed
that the problem of finding a contention-free polling schedule
that uses the minimum time is NP-hard and then gave a fast
online algorithm to solve it approximately. We also con-
ducted simulations on the NS-2 simulator and the results
show that our polling scheme achieves 100 percent through-
put even when the sensor active time is not long. We have also
introduced two other methods, namely, partitioning clusters
into sectors and using multiple frequency channels, to further
improve the network lifetime.

APPENDIX

In this appendix, we show that the MHP problem is still

NP-hard when packets can be queued at intermediate

sensors. We first consider the case when the number of

packets in sensors is arbitrary.

Theorem 5. The MHP problem is still NP-hard even when

packets can be queued at intermediate sensors.

Proof. It suffices to show that the following decision

problem is NP-complete: Given a multihop cluster, does

there exist a polling schedule by which all packets can be

received before a given time slot when packets can be

queued? We will use the NP-complete VC problem:

Given a graph G with n vertices, do there exist k colors

such that every vertex in G can be given a color and no

adjacent vertices are given the same color?
Given any VC instance, we construct an instance of the

MHP problem as follows: For each vertexvi inG, 1 � i � n,
construct a branch with two sensors S0i ! Si ! t. All such
branches are called the primary branch. Transmissions
Si ! t and S0i ! Si will be referred to as a “first-level
transmission” and a “second-level transmission,” respec-
tively. Transmission Si ! t is not compatible with any
other transmissions. Transmission S0i ! Si is compatible
with S0j ! Sj if vi and vj are not adjacent in G. There are
also k auxiliary branches with only one sensor each,
denoted by Ui ! t for 1 � i � k. Transmission Ui ! t is
compatible with all transmissions. Each S0i for 1 � i � n
and each Ui for 1 � i � k has one packet and each Si for

1 � i � n has zero packets. For example, the constructed
instance for Fig. 16a is shown in Fig. 16b.

We claim that, if there is a schedule that finishes
polling by time slot nþ k in the constructed instance,
there is a k-coloring in G. To see this, note that, if such a
schedule exists, in each time slot there must be a sensor
sending a packet to the cluster head since there are a total
of nþ k packets and the cluster head can receive at most
one packet per time slot. Since first-level transmissions in
the primary branches are not compatible with any other
transmissions, second-level transmissions in the primary
branches must have been scheduled to occur at the same
time slot with some of the transmissions in the auxiliary
branches, that is, be “fitted” into k time slots. Since
second-level transmissions in the primary branches can
be scheduled at the same time slot if and only if there is
no edge between any of the corresponding vertices in the
VC instance G, the schedule determines a k-VC G. For
example, Fig. 16c shows a schedule with eight time slots
in which the first three time slots determine the three-VC
in Fig. 16a. On the contrary, it can also be easily verified
that, if there is a k-coloring in G, there is a schedule that
finishes polling by time slot nþ k. This completes the
proof. tu

Similarly, it can be shown that:

Theorem 6. The Exact One Packet Multihop Polling problem is
NP-hard even when packets can be queued at intermediate
sensors.

ACKNOWLEDGMENTS

This research work was supported in part by US National
Science Foundation Grants CCR-0207999 and ECS-0427345
and US Army Research Office Grant W911NF-04-1-0439.

244 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 2, FEBRUARY 2008

Fig. 15. Lifetime ratio of a cluster partitioned into sectors with two

channels versus a cluster not partitioned into sectors with only one

channel.

Fig. 16. (a) A graph with five vertices. It has a three-coloring. (b) The

constructed MHP instance. (c) A polling schedule.

REFERENCES

[1] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-
Level Measurements from an 802.11b Mesh Network,” Proc. ACM
SIGCOMM, 2004.

[2] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge Univ. Press, 2005.

[3] A. Woo and D.E. Culler, “A Transmission Control Scheme for
Media Access in Sensor Networks,” Proc. ACM MobiCom, 2001.

[4] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
Efficient Communication Protocols for Wireless Microsensor
Networks,” Proc. 33rd Ann. Hawaii Int’l Conf. System Sciences, 2000.

[5] J.H. Chang and L. Tassiulas, “Energy Conserving Routing in
Wireless Ad-Hoc Networks,” Proc. IEEE INFOCOM, 2000.

[6] A. Amis, R. Prakash, D. Huynh, and T. Vuong, “Max-Min D-
Cluster Formation in Wireless Ad Hoc Networks,” Proc. IEEE
INFOCOM, 2000.

[7] Y.-D. Lin and Y.-C. Hsu, “Multihop Cellular: A New Architecture
for Wireless Comm.,” Proc. IEEE INFOCOM, 2000.

[8] S. Banerjee and S. KhullerA, “Clustering Scheme for Hierarchical
Control in Multi-Hop Wireless Networks,” Proc. IEEE INFOCOM,
2001.

[9] W. Ye, J. Heidemann, and D. Estrin, “An Energy-Efficient MAC
Protocol for Wireless Sensor Networks,” Proc. IEEE INFOCOM,
2002.

[10] V. Raghunathan, C. Schurgers, S. Park, and M.B. Srivastava,
“Energy-Aware Wireless Microsensor Networks,” IEEE Signal
Processing Magazine, vol. 19, no. 2, pp. 40-50, 2002.

[11] V. Kawadia and P. Kumar, “Power Control and Clustering in
Ad Hoc Networks,” Proc. IEEE INFOCOM, 2003.

[12] J. Chou, D. Petrovic, and K. Ramchandran, “A Distributed and
Adaptive Signal Processing Approach to Reducing Energy
Consumption in Sensor Networks,” Proc. IEEE INFOCOM, 2003.

[13] A. Bogdanov, E. Maneva, and S. Riesenfeld, “Power-Aware Base
Station Positioning for Sensor Networks,” Proc. IEEE INFOCOM,
2004.

[14] O. Younis and S. Fahmy, “Distributed Clustering in Ad-Hoc
Sensor Networks: A Hybrid, Energy-Efficient Approach,” Proc.
IEEE INFOCOM, 2004.

[15] D.B. West, Introduction to Graph Theory. Prentice Hall, 1996.
[16] X. Hong, M. Gerla, H. Wang, and L. Clare, “Load Balanced,

Energy-Aware Communications for Mars Sensor Networks,” Proc.
IEEE Aerospace Conf., 2002.

[17] W. Hu, N. Bulusu, and S. Jha, “A Communication Paradigm for
Hybrid Sensor/Actuator Networks,” Proc. 15th Ann. IEEE Conf.
Personal, Indoor and Mobile Radio Comm., 2004.

[18] P. Gupta and P.R. Kumar, “The Capacity of Wireless Networks,”
IEEE Trans. Information Theory, vol. 46, no. 2, pp. 388-404, 2000.

[19] C. Florens, M. Franceschetti, and R.J. McEliece, “Lower Bounds on
Data Collection Time in Sensory Networks,” IEEE J. Selected Areas
in Comm., vol. 22, no. 6, pp. 1110-1120, 2004.

[20] “The Network Simulator—NS-2,” http://www.isi.edu/nsnam/
ns/, 2007.

[21] M. Yavis, N. Kushalnagar, H. Singh, A. Rangarajan, Y. Liu, and S.
Singh, “Exploiting Heterogeneity in Sensor Networks,” Proc. IEEE
INFOCOM, 2005.

[22] V.P. Mhatre, C. Rosenberg, D. Kofman, R. Mazumdar, and N.
Shroff, “A Minimum Cost Heterogeneous Sensor Network with a
Lifetime Constraint,” IEEE Trans. Mobile Computing, vol. 4, no. 1,
pp. 4-15, Jan./Feb. 2005.

[23] S. Rhee et al., “Techniques for Minimizing Power Consumption in
Low Data-Rate Wireless Sensor Networks,” Proc. IEEE Wireless
Comm. and Networking Conf., 2004.

[24] S. Bandyopadhyay and E.J. Coyle, “An Energy Efficient Hier-
archical Clustering Algorithm for Wireless Sensor Networks,”
Proc. IEEE INFOCOM, 2003.

[25] W.-P. Chen, J.C. Hou, and L. Sha, “Dynamic Clustering for
Acoustic Target Tracking in Wireless Sensor Networks,” IEEE
Trans. Mobile Computing, vol. 3, no. 3, pp. 258-271, July-Sept. 2004.

[26] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed
Diffusion: A Scalable and Robust Communication Paradigm for
Sensor Networks,” Proc. ACM MobiCom, 2000.

[27] Y. Xu, J. Heidemann, and D. Estrin, “Geography-Informed Energy
Conservation for Ad Hoc Routing,” Proc. ACM MobiCom, 2001.

[28] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A Two-Tier Data
Dissemination Model for Large-Scale Wireless Sensor Networks,”
Proc. ACM MobiCom, Sept. 2002.

[29] M. Bhardwaj and A. Chandrakasan, “Bounding the Lifetime of
Sensor Networks via Optimal Role Assignments,” Proc. IEEE
INFOCOM, 2002.

[30] D.M. Blough and P. Santi, “Investigating Upper Bounds on
Network Lifetime Extension for Cell-Based Energy Conservation
Techniques in Stationary Ad Hoc Networks,” Proc. ACM
MobiCom, 2002.

[31] Y. Yu, B. Krishnamachari, and V.K. Prasanna, “Energy-Latency
Tradeoffs for Data Gathering in Wireless Sensor Networks,” Proc.
IEEE INFOCOM, 2004.

[32] H. Li, P. Shenoy, and K. Ramamritham, “Scheduling Messages
with Deadlines in Multi-Hop Real-Time Sensor Networks,” Proc.
11th IEEE Real-Time and Embedded Technology and Applications
Symp., 2005.

[33] W. Liang and Y. Liu, “Online Data Gathering for Maximizing
Network Lifetime in Sensor Networks,” IEEE Trans. Mobile
Computing, vol. 6, no. 1, pp. 2-11, Jan. 2007.

[34] M. Ma and Y. Yang, “Adaptive Triangular Deployment Algorithm
for Unattended Mobile Sensor Networks,” IEEE Trans. Computers,
vol. 56, no. 7, pp. 946-958, July 2007.

[35] M. Ma and Y. Yang, “SenCar: An Energy Efficient Data Gathering
Mechanism for Large Scale Multihop Sensor Networks,” IEEE
Trans. Parallel and Distributed Systems, vol. 18, no. 10, Oct. 2007.

Zhenghao Zhang received the BEng and MS
degrees in electrical engineering from Zhejiang
University, China, in 1996 and 1999, respec-
tively, and the PhD degree in electrical engineer-
ing from the State University of New York at
Stony Brook, in 2006. From 1999 to 2001, he
worked in the industry as an embedded system
engineer. From 2006 to 2007, he worked as a
postdoctoral research fellow in the Computer
Science Department at Carnegie Mellon Uni-

versity. He is now an assistant professor in the Computer Science
Department at Florida State University. His research interests include
network security, computer systems, scheduling algorithm design,
performance analysis, optical networking, and wireless networking. He
is a member of the IEEE.

Ming Ma received the BEng degree in electrical
engineering from the University of Science and
Technology of China, Hefei, China, in 2002.
Since then, he has been working toward the PhD
degree in the Department of Electrical and
Computer Engineering at the State University
of New York at Stony Brook. His research
interests include wireless sensor networks,
wireless mesh networks, and wireless local area
networks. He is a student member of the IEEE,

the IEEE Computer Society, and the IEEE Communications Society.

Yuanyuan Yang received the BEng and MS
degrees in computer science and engineering
from Tsinghua University, Beijing, and the MSE
and PhD degrees in computer science from
Johns Hopkins University, Baltimore, Maryland.
She is a professor of computer engineering and
computer science at the State University of New
York at Stony Brook. Her research interests
include wireless networks, optical networks,
high-speed networks, and parallel and distribu-

ted computing systems. Her research has been supported by the US
National Science Foundation and the US Army Research Office. She
has published more than 180 papers in major journals and refereed
conference proceedings and holds six US patents in these areas. She is
currently an editor of the IEEE Transactions on Computers and the
Journal of Parallel and Distributed Computing and was as an editor of
the IEEE Transactions on Parallel and Distributed Systems. She has
also served on program/organizing committees of numerous interna-
tional conferences in her areas of research. She is a senior member of
the IEEE and a member of the IEEE Computer Society.

ZHANG ET AL.: ENERGY-EFFICIENT MULTIHOP POLLING IN CLUSTERS OF TWO-LAYERED HETEROGENEOUS SENSOR NETWORKS 245

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

