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Abstract—All optical networking is a promising candidate for supporting high-speed communications because of the huge bandwidth

of optics. In this paper, we study optimal scheduling in buffered WDM interconnects with limited range wavelength conversion

capability. We formalize the problem of maximizing network throughput and minimizing total delay as a problem of finding an optimal

matching in a weighted bipartite graph. We then give a simple algorithm, called the Scan and Swap Algorithm, that finds the optimal

matching in OðkBÞ time, where k is the number of wavelengths per fiber and B is the buffer length, as compared to directly adopting

other existing algorithms that need at least Oðk2N2 þ k2BNÞ time, where N is the number of input fibers.

Index Terms—Wavelength-division-multiplexing (WDM), packet scheduling, wavelength conversion, limited range wavelength

conversion, optical packet switching, optical interconnects, optical switching networks, optical buffering, packet loss probability.
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1 INTRODUCTION AND BACKGROUND

ALL-OPTICAL networking with wavelength-division-multi-
plexing (WDM) has been proposed as a promising

candidate for supporting high-speed communications [8],
[4], [7] because of the huge bandwidth of optics. In WDM,
the bandwidth of a fiber is divided into a number of
independent channels, with each channel on a different
wavelength. Several different technologies have been
developed for transmitting data over WDM [8], such as
broadcast-and-select, wavelength routing, optical packet
switching (OPS), and optical burst switching (OBS). Broad-
cast-and-select networks and wavelength routing networks
have been extensively studied. Optical packet switching
and burst switching, especially optical packet switching,
though still in the research phase, are attracting more and
more interests because of their better flexibilities in utilizing
the bandwidth [8]. In this paper, we focus on WDM packet
switched networks.

In a WDM optical packet switched network, a data
packet is modulated on a wavelength and may visit several
intermediate nodes before reaching the destination. In each
intermediate node, an interconnect (or a switch) is used to
direct the incoming packets to the correct output fiber links.
In an interconnect, there can be many input and output
fiber links and, on each link, there can be multiple
wavelength channels. Output contention arises when some
packets on the same wavelength are destined for one output
fiber at the same time. In general, there are three ways to
combat output contention: deflection routing, buffering,
and exploiting the wavelength domain [8]. Deflection

routing is to send the contending packet to some other
output link (which may or may not have a route to the
destination). Buffering is to send the contending packet to
some fiber delay lines in which the packet is delayed for a
certain amount of time before being transmitted. Exploiting
the wavelength domain is to convert the wavelength of a
packet to some idle wavelength (if there is any) on the
output fiber. In the first method, deflection routing,
although the packet is not dropped, the end-to-end delay
may be long and the packets arriving at the destination may
be out of order. Therefore, in this paper, we study the
combination of the second and the third method: buffering
and exploiting the wavelength domain.

To translate a signal on one wavelength to another,
wavelength converters are needed. If a wavelength converter
is capable of converting a wavelength to any other
wavelength in the optical system, it is called a full range
wavelength converter. However, a full range wavelength
converter is quite difficult and expensive to implement [9],
[6]. Thus, to save the cost, it has been suggested that a shared
converter pool can be used. A shared converter pool consists
of a limited number of full range wavelength converters
that can be accessed by all inputs. In this way, due to
statistical multiplexing, fewer converters are needed in an
interconnect. However, since it is difficult to convert a
wavelength to another wavelength that is far apart from it,
it may be suitable only for some applications and, in cases
where the number of wavelengths is large and the
wavelengths are far apart from each other, a more realistic
wavelength converter is the limited range wavelength con-
verter, which is only able to convert a given wavelength to a
limited number of wavelengths. It was shown through
analytical models and simulations that, in wavelength-
routing networks as well as in OPS networks, with limited
range wavelength converters, the network performance is
close to those with full range wavelength converters even
when the conversion degree is very small [9], [6], [10], [7].
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Thus, limited range converters can be considered as a
practical, cost-effective choice for providing wavelength
conversion ability and will be the main focus of this paper.
It should be mentioned that full range wavelength con-
verters can be considered as a special case of limited range
wavelength converters.

Similarly to [8], [4], [7], we assume that the durations of
optical packets are all one time slot long and the packets
arrive at the interconnect at the beginning of time slots. In
such an interconnect, a scheduling algorithm is needed to
smartly assign the wavelength channels to the incoming
packets to achieve high throughput and low packet delay.
Note that if the wavelength conversion is full range, the
scheduling is trivial because, in this case, the wavelengths
of the packets do not affect the scheduling as full range
wavelength converters are capable of converting any
incoming wavelength to any outgoing wavelength. When
the wavelength conversion is limited range, the scheduling
becomes more complicated. The problem of maximizing
network throughput in an unbuffered WDM interconnect
with limited range wavelength converters was studied in
[12]. In this paper, we study the more complex and difficult
case when the interconnect is buffered. We show that the
problem of maximizing network throughput and minimiz-
ing total delay in such an interconnect can be formalized as
the problem of finding an optimal matching in a weighted
bipartite graph called request graph and give an efficient
algorithm called the Scan and Swap Algorithm that solves this
problem in OðkBÞ time, where k is the number of
wavelengths per fiber and B is the buffer length.

Extensive research has been conducted on scheduling
algorithms for electronic interconnects in the literature, for
example, the well-known iSLIP algorithm [15] for input-
buffered electronic interconnects in which the scheduling
was carried out by augmenting a matching in parallel.
However, this method cannot be applied to our problem
since it is for input-buffered interconnects, while the
interconnect considered in this paper is output-buffered.
Moreover, in the output buffer, not all buffer locations can
be assigned to a packet due to the constraint of limited
wavelength conversion. In the past, buffered WDM inter-
connects with full range wavelength converters were
studied and their performances were evaluated with
analytical models by [4], [13]. Shen et al. [7] first considered
buffered WDM interconnects with limited range wave-
length converters and suggested to “store a packet in the
output buffer that has the smallest number of packets”
when contention arises. However, no proof was given as to
whether this will either achieve maximum throughput or
minimum total delay. In this paper, we consider the same
interconnect as in [7], but will prove that our algorithm
gives an optimal schedule that both maximizes network
throughput and minimizes total delay.

Finally, it should be mentioned that the work in this
paper is by no means an extension of the earlier work for
unbuffered WDM interconnects [12] because, first, the
objectives to be optimized are different, e.g., packet delay
is a main concern in a buffered interconnect while there is
no delay in an unbuffered interconnect. As a result, the
optimal method developed for the latter cannot be used for

the former. In particular, we consider optimal matchings in
weighted bipartite graphs, while the earlier work [12]
considered maximum matchings in unweighted bipartite
graphs. An optimal matching must be a maximum
matching, but the reverse may not be true. Finding an
optimal matching is considerably harder than finding a
maximum matching. In fact, many problems on weighted
structures have completely different and, often, more
complex algorithms than their unweighted versions.

The rest of this paper is organized as follows: Section 2
gives some basic terminologies on limited range wave-
length conversion and the interconnect model. Section 3
gives the formalization of the scheduling problem. Section 4
briefly reviews the properties of request graphs. Section 5
presents the Scan and Swap Algorithm for finding optimal
matchings in request graphs. Section 6 presents the
simulation results. Finally, Section 7 concludes the paper.

2 PRELIMINARIES

2.1 Wavelength Conversion

All-optical wavelength conversion is usually achieved by
conveying information from the input light signal to a probe
signal [18]. The probe signal is generated by a tunable laser
tuned to the desired output wavelength. The tuning range of
the laser is continuous, but, under limited range wavelength
conversion, it is only part of the whole spectrum because of
constraints such as tuning speed, loss, etc.

We can see that a wavelength can be converted to an
interval of wavelengths because the tuning range of the
laser covers an interval of wavelengths. Also, note that if the
laser for the conversion of �1 can be tuned to �3, then the
laser for the conversion of �2 should also be able to be tuned
to �3 since �2 is closer to �3 than �1 is. Thus, we have the
following two observations on wavelength conversion:

Observation 1. Wavelengths that can be converted from
�i for i 2 ½1; k� can be represented by interval
½BeginðiÞ; EndðiÞ�, where BeginðiÞ and EndðiÞ are
positive integers in ½1; k� and BeginðiÞ � i � EndðiÞ.
Wavelengths that belong to this interval are the
adjacency set of �i.

Observation 2. For two wavelengths �i and �j, if i < j,
BeginðiÞ � BeginðjÞ and EndðiÞ � EndðjÞ.

We call this type of wavelength conversion “ordered
interval” because the adjacency set of a wavelength can be
represented by an interval of integers and the intervals for
different wavelengths are “ordered.” This type of wave-
length conversion was also used in other research works,
for example, [16], [17]. The cardinality of the adjacency set is
called the conversion degree of the wavelength. The conversion
distance of a wavelength is defined as the largest difference
between a wavelength and a wavelength that can be
converted from it.

Wavelength conversion can be visualized by a bipartite
graph in which left side vertices represent input wave-
lengths and right side vertices represent output wave-
lengths and input wavelength �i is connected to output
wavelength �j if �i can be converted to �j. For example,
Fig. 1 shows such a graph for k ¼ 6. In the example, the
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adjacency set of �1 can be represented as ½1; 2� and the

conversion distance is 2� 1 ¼ 1. The conversion distances

are the same for all wavelengths in this example; however,

this is not required in our scheduling algorithms.

2.2 Interconnect Model

The WDM interconnect we consider is shown in Fig. 2. It has

N input/output fibers and, on each fiber, there are

k wavelengths that carry independent data. The wavelength

channels on the input fibers are first demultiplexed, then each

input channel is fed into a limited range wavelength

converter to be converted to a proper wavelength. The output

of the wavelength converter is then split intoN copies of itself,

one for each output fiber. The split signal is further split into

Bþ 1 copies, one to each of the Bþ 1 optical delay lines

(ODL) in front of the output fiber. The SOA gate following the

splitter controls whether the signal can reach the ODL. The

Bþ 1 ODLs for each output fiber are capable of delaying the

optical packet for 0; 1; 2; . . . ; B time slots, respectively, and,

similarly to the input/output fiber, a delay line can hold

multiple signals if they are on different wavelengths. The

outputs of these Bþ 1 delay lines are directly combined

together and sent to the output fiber.
Fig. 2 only shows the switching fabric for data packets.

The WDM interconnect also has a control component,

though not shown in the figure, which makes the decision
of whether an incoming packet can be accepted or not and,
if accepted, which wavelength on which ODL it should be
directed to. The switching fabric will be configured
according to these decisions. The data packet has a header
field preceding the data field, which contains the informa-
tion of the destination of the packet. The packet header is
converted to an electronic signal and sent to the control
component. The data payload is not converted and remains
in optical form; however, it will experience a fixed delay to
give enough header processing time for the control
component.

3 PROBLEM FORMALIZATION

In this section, we show how the problem of maximizing
network throughout and minimizing total delay in the
WDM interconnect can be formalized into a weighted
bipartite graph matching problem.

Consider the optical packets that have arrived at the
WDM interconnect at a time slot. They can be partitioned
into N subsets according to their destination fibers. Note
that the decision of accepting or rejecting a packet in one
subset does not affect the decisions for other subsets; hence,
the scheduling for one output fiber can be done indepen-
dently of other output fibers and, from now on, we will
explain our algorithm for one output fiber only. The input
to the scheduling algorithm is the packets destined to this
fiber at this time slot. The output of the algorithm is the
decisions of which packets are accepted and assigned to
which wavelength channels on which ODLs.

At first, before the scheduling, the algorithm should find
the available wavelength channels, which are the wavelength
channels that can be assigned to the packets which have
arrived at this time slot. At first glance, since there are Bþ 1
ODLs and, on each ODL, there are k wavelengths, there
should be, in total, kðBþ 1Þ available wavelength channels.
However, this is not true since not all of these kðBþ 1Þ
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Fig. 1. Wavelength conversion on an optical fiber with six wavelengths.

Fig. 2. A buffered wavelength convertible WDM interconnect.



channels are available. From Fig. 2, we can see that the
outputs of the Bþ 1 ODLs are combined and sent to the
output fiber. Hence, there should be no two packets on the
same wavelength coming out of these ODLs at the same
time slot; otherwise, collision will occur. For example, at the
beginning of a time slot, if there is a packet coming out of
ODL 1 on wavelength �1, channel �1 in ODL 0 should not be
assigned to any newly arrived packets. More precisely, let
�Ii represent wavelength channel �i on ODL I, for 1 � i � k
and 0 � I � B. At a time slot, channel �Ii is available if and
only if there is no packet on wavelength �i that will come
out of an ODL after I time slots. For example, �B�1

i is not
available if a packet was directed to ODL B at the previous
time slot and �B�2

i is not available if a packet on �i was
directed to ODL B� 1 at the previous time slot or to ODL B
two time slots ago.

Given the buffer occupancy state, the set of available
wavelength channels can be found in linear time. After this,
we can draw a bipartite graph, which will be referred to as a
request graph, as follows: In the request graph, left side vertices
represent the arrived packets destined to this output fiber at
this time slot. The vertices are sorted according to their
wavelengths, lower wavelengths first. There might be several
packets coming from different input fibers on the same
wavelength and, in this case, their orders are arbitrary. The
right side vertices represent the available wavelength
channels, also sorted according to their wavelengths. There
may also be more than one available wavelength channels on
different ODLs of the same wavelength. In this case, we put
the wavelength channel with a shorter delay in a higher
position (though it is not necessary). Each vertex is given an
index according to its position in the graph. A left side vertex
will be denoted as au and a right side vertex will be denoted as
bi, where u and i are the indices of the vertices. There is an
edge connecting a left side vertexau and a right side vertex bi if
the wavelength of the packet represented by au can be
converted to the wavelength represented by bi. Such a request
graph is shown in Fig. 3, where N ¼ 4 and there are three
ODLs and the wavelength conversion is as defined in Fig. 1.

In a request graph G, let E denote the set of edges. Any
wavelength assignment can be represented by E0, which is a

subset of E, where edge aubi 2 E0 if wavelength channel bi is
assigned to packet au. Under unicast traffic, any packet needs
only one output channel. Also, an output channel can be
assigned to only one packet. It follows that the edges inE0 are
vertex disjoint orE0 is a matching inG since, if two edges share
a vertex, either one packet is assigned to two wavelength
channels or one wavelength channel is assigned to two
packets. For a given set of packets, to maximize network
throughput, we should find a maximum cardinality match-
ing in the request graph. This problem for a bufferless WDM
interconnect was studied and solved in [12].

However, in a buffered interconnect, although a max-
imum cardinality matching maximizes network through-
put, it may not be a good schedule since the packet delay
time should also be considered. Note that, in [12], the
network is bufferless and there is no packet delay since a
packet is either immediately transmitted or rejected. In the
buffered interconnect, a packet that is granted, i.e., not
dropped, may be able to be assigned to several ODLs and it
is naturally preferred to assign it to the one with the shortest
delay time. When considering all the arrived packets
together, the total delay time of the granted packets should
be minimized. Note that this is under the precondition that
the maximum number of packets are granted since,
otherwise, we can simply reject all arrived packets and
the total delay time of the granted packets would be zero.
Thus, the optimal schedule should have the following two
properties: 1) The number of granted packets is maximum
and 2) the total delay of the granted packets is minimum
among all possible schedules where the same number of
packets are granted.

To solve this problem, we can introduce weights to the
right side vertices. We give weight B� I þ 1 to right side
vertices representing wavelength channels on ODL I, for
0 � I � B. The weight of a matching then is defined as the
total weight of the right side vertices it covers. We claim
that a matching M with maximum weight will be the
optimal schedule. This is because, first, M must be a
maximum cardinality matching and, thus, the maximum
number of packets is granted. If not, by graph theory, there
must be an M augmenting path with which a new matching
M 0 can be obtained which covers one more right side vertex
than M while keeping all right side vertices covered by M
still covered [20]. As a result, M 0 will have a larger weight
than M since the weights of vertices are all positive, which
contradicts the fact that M has maximum weight. Second,
among all maximum matchings, M will give the smallest
total delay time since, for a right side vertex, the larger the
weight, the shorter the delay. For this reason, we will call M
the optimal matching and will focus on methods for finding
such optimal matchings in request graphs.

4 PROPERTIES OF REQUEST GRAPHS

Before moving on to solving the problem formalized in the
previous section, we first briefly describe some properties of
request graphs that have been shown in [12].

Property 1. The adjacency set of any right side vertex is an
interval. In the following, we use interval ½beginðbiÞ; endðbiÞ�
to represent the adjacency set of a right side vertex bi and will
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call the left side vertices in this interval the neighbors of bi.
The first and the last left side vertex in the adjacency set are
called the “begin neighbor” and “end neighbor,” respectively.

Property 2. I f i < j, then beginðbiÞ � beginðbjÞ and
endðbiÞ � endðbjÞ.

Property 3. If edge aubi 2 E, avbj 2 E while i < j, u > v, then
avbi 2 E, aubj 2 E.

Property 4. Properties 1 and 2 also hold for left side vertices.

Property 5. Removing any vertex from the request graph, all the
above properties still hold.

The first two properties come directly from the observa-
tions of ordered interval wavelength conversion. (However,
note that the intervals here are for the indices of the vertices,
not for the wavelengths.) The fourth property says that left
side vertices have the same properties as right side vertices.
The fifth property says that any vertex induced subgraph
has the same properties as the original request graph.

The third property can be called the crossing edge property,
which will be frequently used in proving other properties of
request graphs in this paper. It is so called because, if i < jand
u > v, aubi and avbj will appear crossing each other in the
request graph. A direct consequence of this property is that
there must be a maximum matching of a request graph with
no crossing edges since any pair of crossing edges in the
matching, say, aubi and avbj, can be replaced with avbi and
aubj, which do not cross each other. Such a matching is called a
noncrossing matching, in which the ith matched left side
vertex is matched to the ith matched right side vertex.

A simple algorithm called the First Available Algorithm,
described in Table 1, can be used for finding a maximum
cardinality matching in a request graph. In the description
of the algorithm, n is the number of right side vertices. This
algorithm scans the right side vertices from the first to the
last and matches a right side vertex to its first unmatched
neighbor. This can be imagined as picking the “top” edge in
the request graph and adding it to the matching in each
iteration. Zhang and Yang [12] gave a proof for the
following theorem.

Theorem 1. The First Available Algorithm finds a maximum
matching in a request graph.

The time complexity of this algorithm is OðnÞ, where n is
the number of right side vertices, since the loop is executed
n times and, by keeping a pointer, the work in the loop can
be done in constant time [12]. It can also be shown that the

matching found by the First Available Algorithm is
noncrossing. Since the left side vertices have the same
properties as the right side vertices, this algorithm can also
scan the left side vertices or “run on the left side.”

5 THE SCAN AND SWAP ALGORITHM

In this section, we give a new algorithm, called the Scan and
Swap Algorithm, for finding an optimal matching in the
request graph or, equivalently, an optimal schedule for the
buffered WDM interconnect.

5.1 Matroid Greedy Algorithm

Before presenting our algorithm, we first describe an
algorithm for finding optimal matching in arbitrary
bipartite graphs, which will be referred to as the matroid
greedy algorithm since it can be derived from the matroid
theory [19]. The matroid greedy algorithm serves as a
guideline for finding optimal matching in all bipartite
graphs. The Scan and Swap Algorithm can be regarded as
an algorithm based on the matroid greedy algorithm
specifically designed for request graphs.

A matroid is a structure defined on a finite whole set S
and a family of subsets of S, with property usually referred
to as independence defined on the elements of the subsets
[19], [5]. For example, in a graph, the set of all vertices can
be the whole set. A proper subset, which is a subset
belonging to the matroid, is a group of vertices that can be
covered by a matching. These vertices are said to be
independent of each other in the matroid theory. Greedy
algorithms can be used to find optimal solutions for
problems defined on a matroid.

The idea of the matroid greedy algorithm is actually very
simple. It will try to find a set of vertices that can be covered
by an optimal matching by checking the weighted vertices
one by one according to their weights, vertices with larger
weights first. A vertex is added to the set if it can be covered
along with vertices already in the set. To elaborate, the
algorithm starts with an empty set �. In Step s, it will check
the weighted vertex with the sth largest weight, say, b. It
checks whether there is a matching covering b and all the
vertices added to � previously. If yes, b will be added to �
and we say b is selected; otherwise, b is left uncovered.
Update s sþ 1 and repeat until all vertices have been
checked. When the algorithm terminates, � stores weighted
vertices that can be covered by an optimal matching.

In general bipartite graphs, finding an optimal matching
with the matroid algorithm needs Oðn3Þ time since
Oðn2Þ time is needed to determine whether a vertex can
be covered with the previously selected vertices by growing
alternating paths, where n is the number of vertices. In
bipartite graphs with some additional properties, other
faster methods can be found to determine whether a vertex
can be covered to reduce the complexity. For example, [23]
showed that, in convex bipartite graphs, the optimal
matching can be found in Oðmðmþ nÞÞ time where a
bipartite graph is convex if it satisfies Property 1 in Section 4
and m is the number of left side vertices and n is the
number of right side vertices. The algorithm for convex
bipartite graphs can be directly applied to our request
graphs as well. However, since there can be up to
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Nk vertices on the left side and ðBþ 1Þk vertices on the
right side of a request graph, the running time will be
Oðk2N2 þ k2BNÞ, which may be too long and may not be
suitable for a WDM interconnect. Next, we present a
completely new algorithm, the Scan and Swap Algorithm,
which can reduce the complexity to OðBkÞ by taking
advantage of the unique properties of the request graphs.
Some of the symbols used in the following sections are
listed in Table 2.

5.2 Scan and Swap Algorithm

Consider the matroid greedy algorithm when applied to the
request graph. As mentioned earlier, it will check the
weighted vertices one by one according to their weights. We
say the matroid greedy algorithm is working on “stage I”
when it is checking vertices representing channels on ODL I
or with weight B� I þ 1, for 0 � I � B. Let �I be the set of
vertices the algorithm has selected when it has finished
working on stage I. Note that, by the matroid theory, when
finished with stage I, the algorithm should have added the
maximum number of vertices with weight B� I þ 1 to �I�1

to obtain �I . Also note that the order by which the matroid
greedy algorithm checks the vertices with the same weight
does not change the outcome. Thus, an algorithm is
functionally equivalent to the matroid greedy algorithm at
stage I if it can find the maximum number of vertices with
weight B� I þ 1 that can be covered by a matching along
with �I�1.

From now on, we will focus on finding such an
algorithm. At stage I, we call vertices in �I�1 the compulsory
vertices because all these vertices must be still covered after
stage I. All vertices with weight B� I þ 1 are called the
noncompulsory vertices because some of them can be left
uncovered. The algorithm works on a subgraph of the
request graph G, denoted as GI , with the left side vertices
being all the left side vertices in G and the right side vertices
being the union of the compulsory and noncompulsory
vertices. For presentational convenience, if there are n right
side vertices in GI , we label the right side vertices in GI as
b1 to bn, based on the values of their indices in G. The
algorithm should find a matching that covers the maximum
number of noncompulsory vertices under the constraint
that all the compulsory vertices are still covered. The
algorithm is called the Scan and Swap Algorithm and is
described in Table 3. The output of the algorithm, which is
the set of selected noncompulsory vertices, is stored in set �.

The algorithm works as follows: Initially, � is empty and
all the left side vertices are not marked. Then, it starts to
scan the right side vertices from the first to the last and will
mark some left side vertices if needed. At Step i, when

scanning to vertex bi, it checks whether there is an
unmarked neighbor of bi. If yes, it will mark such a left
side vertex with the smallest index and add bi to � if bi is a
noncompulsory vertex. If all bi’s neighbors have been
marked, if bi is a noncompulsory vertex, it will proceed to
the next vertex. Otherwise, i.e., if bi is a compulsory vertex,
it will swap out the noncompulsory vertex with the largest
index in �.

To use this algorithm for finding an optimal matching in
the original graph, we need to run this algorithm Bþ 1
times, one for each stage. When stage I finishes, let
�I ¼ �I�1 [ �. When stage B finishes, the output �B is
the set of the weighted vertices that can be covered by an
optimal matching.

As an example, Fig. 4 and Fig. 5 show how the Scan and
Swap Algorithm finds an optimal matching in the request
graph in Fig. 3. In the figures, the compulsory vertices and
noncompulsory vertices are shown in black and white,
respectively. Fig. 4a shows stage 0, in which there are no
compulsory vertices, and the three noncompulsory vertices
denoted as b1, b2, and b3 are the vertices representing
wavelength channels on ODL0. (In Fig. 3, they are denoted
as b1, b4, and b7, respectively.) According to the algorithm,
they will mark a1, a2, and a4, respectively, and, since they
all have marked some left side vertices, they will be added
to � and will be the compulsory vertices of the next stage.
Fig. 4b shows stage 1, in which the compulsory vertices are
�0 ¼ b1; b3; b4f g ( b1; b4; b7f g in Fig. 3) and the three non-
compulsory vertices are b2; b5; b6f g ( b2; b8; b11f g in Fig. 3).
When scanning the right side, the algorithm finds that they
will mark a1 to a6 and, thus, all noncompulsory vertices will
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be added to �. Fig. 5 shows stage 2, in which the

compulsory vertices are �1 ¼ b1; b2; b4; b7; b8; b11f g and the

noncompulsory vertices are b3; b5; b6; b9; b10; b12f g (the in-

dices are the same as in Fig. 3). Note that, in the previous

two stages, no vertex added to � was swapped out.

However, such a swap occurs at Step 3 and Step 4 in

stage 2, as shown in Fig. 5a and Fig. 5b. Fig. 5a shows Step 3

when the algorithm scans to b3 and finds that a3 is adjacent to

b3 and is not marked and, therefore, marks a3 and adds b3 to�.

Fig. 5b shows Step 4 when the algorithm finds that all vertices

adjacent to compulsory vertex b4 have been marked and

swaps b3 out of� since it is the noncompulsory vertex in�with

the largest index. When stage 2 finishes, � ¼ b10; b12f g, and

�2 ¼ b1; b2; b4; b7; b8; b10; b11; b12f g, as shown in Fig. 5c. In fact,

the edges in Fig. 5c are the optimal matching for the request

graph in Fig. 3.

5.3 Correctness Proof of the Scan and Swap
Algorithm

We now prove the correctness of the Scan and Swap
Algorithm, i.e., that it finds the maximum number of
noncompulsory vertices that can be covered along with all
the compulsory vertices.

Some notions used in this section are defined as follows:
After the algorithm has checked bi, the set of vertices in � is
denoted as �ðiÞ. The set of marked left side vertices will be
referred to as � and vertices in � after Step iwill be denoted as
�ðiÞ. As will soon be seen, there exists a matching, denoted as
Mi, that matches vertices in �ðiÞ to vertices in �ðiÞ and all the
compulsory vertices with indices no more than i. The set of
vertices matched to �, including both the compulsory and
noncompulsory vertices, will be referred to as � and the set of
vertices in � after Step iwill be denoted as �ðiÞ. We will also
interchangeably use the terms “mark a left side vertex” and
“add a left side vertex to �.”

In most cases, our theoretical results are simpler to state
using set � than using � because of the one to one matching
between vertices in � and �. Therefore, in this section, we
will mainly use � instead of � except for a few cases.
Accordingly, the Scan and Swap Algorithm can be
considered as working in the following way, which is
equivalent to what was described in Section 5.2: Initially, �
is empty and no left side vertices are marked. Then, the
algorithm starts scanning the right side vertices from the
first one to the last. At Step i, when scanning bi, it checks
whether there is an unmarked neighbor of bi. If yes, add bi
to � and mark such neighbor with the smallest index.
Otherwise, it checks whether bi is a compulsory vertex and,
if so, it will add bi to � and swap out a noncompulsory
vertex in � with the largest index. Then, it will proceed to
the next vertex until all vertices have been scanned.

We claim that, after any Step i of the algorithm, the
following three invariants hold:

1. There is a perfect matching from vertices in �ðiÞ to
vertices in �ðiÞ, i.e., there is a matching that matches
all vertices in �ðiÞ to all vertices in �ðiÞ.
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Fig. 4. Stages 0 and 1 of the Scan and Swap Algorithm when applied to

the request graph in Fig. 3. Noncompulsory vertices are shown in white.

The parenthesis to the right of the vertices contains the original notations

for the same vertices in Fig. 3. (a) Stage 0. (b) Stage 1.

Fig. 5. Stage 2 of the Scan and Swap Algorithm when applied to the request graph in Fig. 3. Noncompulsory vertices are shown in white. (a) After

Step 3. (b) After Step 4. (c) After stage 2 is finished.



2. All compulsory vertices with indices no more than i
are in �ðiÞ. In addition, the maximum number of
noncompulsory vertices with indices no more than i
that can be covered by a matching along with these
compulsory vertices is also in �ðiÞ.

3. Let au be the marked left side vertex with the largest
index. Suppose there is another matching M 0 that
covers all the compulsory vertices and j�ðiÞj non-
compulsory vertices among right side vertices with
indices no more than i (where j�ðiÞj is the cardinality
of �ðiÞ). Among all left side vertices that are matched
to right side vertices with indices no more than i
under M 0, let au0 be the one with the largest index.
We have u � u0.

The first invariant guarantees that the vertices added to
� can be matched. The second invariant guarantees that the
maximum number of noncompulsory vertices have been
added to �. If these two invariants are true, the Scan and
Swap Algorithm must be correct. The third invariant says
that the algorithm will not mark a left side vertex if it can
mark another vertex with a smaller index and is used in the
proof for the second invariant.

We will show the invariants are true by induction on i,

the steps of the algorithm. Note that if the first right side

vertex is isolated, it can be removed from the graph, hence,

from now on, we only consider request graphs where the

first right side vertex is not isolated. In this case, it is clear

that, after the first step, the three invariants are true. Thus,

we will assume they are true for all steps before i. Also note

that, due to the crossing edge property of the request graph,

we can assume matching M1;M2; . . . ;Mi�1 are all noncross-

ing. That is, for any j < i, under Mj, the vertex in �ðjÞ with

the lth smallest vertex is matched to the vertex in �ðjÞ with

the lth smallest vertex.
The following propositions can be obtained without

much difficulty:

Proposition 1. If au was added to � before av, then u < v.

Proposition 2. The indices of left side vertices matched to the
same right side vertex will not increase. That is, suppose, at
Step j, bj is added to � and is matched to au under Mj. If bj is
not swapped out in later steps, under Mjþ1;Mjþ2; . . . ; bj will
only be matched to vertices with indices no more than au.

Proposition 3. The indices of right side vertices matched to the
same left side vertex will not decrease.

We also have:

Lemma 1. Suppose, after Step i� 1, au�1 is not marked but au is
marked and au is matched to bj under Mi�1. Then, au must be
the begin neighbor of bj.

Proof. By contradiction. If au is not the begin neighbor of bj,
bj is adjacent to au�1. Consider when bj was first added to
� at Step j. Since au�1 is not marked, there must be some
unmarked neighbor of bj with an index less than au�1

since, otherwise, the algorithm will mark au�1. Suppose
the one with the smallest index is av, then, under Mj, bj
was matched to av. By Proposition 2, u � v. But, this
contradicts the fact that u� 1 > v. tu

We are now in a position to show that the invariants are

true.

Lemma 2. The first invariant of the Scan and Swap Algorithm is

true after Step i.

Proof. At Step i, the algorithm checks bi. First, consider

when bi has some unmarked neighbor. In this case, bi can

be added to � and the algorithm will mark one of its

neighbors, which will be added to �. Since one vertex is

added to � and � each and these two vertices can be

matched to each other, the invariant is true.
If all bi’s neighbors have been marked and bi is a

noncompulsory vertex, bi will not be added to � and �
will not be changed, thus the invariant is still true.
Hence, we only need to consider when all bi’s neighbors
have been marked while bi is a compulsory vertex. In this
case, we prove the invariant is true by establishing an
Mi�1 alternating path starting at bi and ending at bq,
where bq is the noncompulsory vertex in �ði� 1Þ with
the largest index. An Mi�1 alternating path is a path that
alternates between edges in Mi�1 and not in Mi�1. If such
a path can be found, we can do a “flip” operation to the
edges in the alternating path, that is, remove the edges
that are in Mi�1 and add in edges that are not in Mi�1.
After doing this change to Mi�1, the new matching
covers bi and all vertices that were covered by Mi�1

except bq. Thus, if the alternating path can be found, the
invariant will still be true. As an example, Fig. 6 shows a
possible alternating path, where the solid lines are edges
in Mi�1 and dashed lines are edges not in Mi�1. Clearly,
if the vertices are matched according to the dashed
edges, bi will be matched and bq will not.

We now show that such an alternating path must
exist. Suppose there are l right side vertices in �ði� 1Þ
between bq and bi, denoted as bP1; bP2; . . . ; bPl. In Fig. 6,
l ¼ 3. By the choice of bq, they must all be compulsory
vertices. Also suppose, under Mi�1, bq is matched to ax.
Suppose the end neighbor of bi is az. az must have been
marked and, due to Property 2 of the request graph, az is
the marked vertex with the largest index.

We first claim that left side vertices with indices in
interval ½x; z� are all marked after Step i� 1. To see this,
suppose there are some unmarked vertices among them
and let ay be the one with the largest index. Note that,
due to the choice of ay, ayþ1 must be marked and suppose
it is matched to bPh under Mi�1. By Lemma 1, ayþ1 is the
begin neighbor of bPh. Let Vl be the set of left side vertices
with indices in interval ½yþ 1; z�. Let Vr be the set of right
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Fig. 6. A possible Mi�1-alternating path, where the solid lines are edges

in Mi�1 and dashed lines are edges not in Mi�1. The black nodes are

vertices in �ði� 1Þ and �ði� 1Þ.



side vertices in �ði� 1Þ with indices no less than bPh. Let
Ar be the union of the adjacency sets of vertices in Vr.
Note that vertices in Vl are all marked and that they are
only matched to right side vertices with indices no less
than bPh since Mi�1 is noncrossing, therefore Vl � Ar. On
the other hand, since ayþ1 is the begin neighbor of bPh
and az is the end neighbor of bi, Vl � Ar. Thus, Ar ¼ Vl.
However, if Ar ¼ Vl, there cannot be a matching covering
all vertices in V 0r ¼ Vr [ bif g, which contradicts the fact
that such a matching must exist since vertices in V 0r are
all compulsory vertices.

As a result of this fact, az must be axþl and axþw must
be matched to bPw for all 1 � w � l. Using a similar
method, we can also show that bPw must be adjacent to
axþw�1 for all 1 � w � l. Thus, the alternating path can be
bi; axþl; bPl; axþl�1; . . . ; ax; bq, as shown in Fig. 6. tu

Lemma 3. Invariant 2 of the Scan and Swap Algorithm is true

after Step i.

Proof. First, consider when not all bi’s neighbors are
marked. If bi is a noncompulsory vertex, it can be added
to �. Invariant 2 is true since, otherwise, there is another
matching that covers more than j�ði� 1Þj þ 1 noncom-
pulsory vertices from b1 to bi and the same matching
must cover more than j�ði� 1Þj noncompulsory vertices
from b1 to bi�1, which is a contradiction to our inductive
hypothesis that Invariant 2 is true after Step i� 1. For
similar reasons, if bi is a compulsory vertex, Invariant 2 is
also true.

Therefore, we only need to consider when all bi’s
neighbors are marked. In this case, if bi is a noncompul-
sory vertex, it cannot be added to �. If Invariant 2 is not
true, then there exists a matching that covers all
compulsory vertices from b1 to bi and more than j�ðiÞj
noncompulsory vertices from b1 to bi. For any such
matching M 00, consider a subset of it denoted as M 0,
where an edge in M 00 is also in M 0 if it covers a right side
vertex with an index no more than bi. Note that M 0 must
cover bi since, otherwise, Invariant 2 cannot be true after
Step i� 1. Let au be the end neighbor of bi and, first,
suppose it is matched under M 0. Let the vertices matched
to au and bi under M 0 be bj and av, respectively. Note that
j < i and u > v, therefore, due to the crossing edge
property, we can match av to bj and match au to bi. After
this change to M 0, all right side vertices covered by M 0

with smaller indices than bi are matched to left vertices
with smaller indices than au. But, this contradicts the
inductive hypothesis that Invariant 3 is true after
Step i� 1. A similar contradiction can be found if au is
not matched under M 0. Therefore, Invariant 2 is true after
Step i if bi is a noncompulsory vertex. Similarly, it can be
shown that Invariant 2 is true if bi is a compulsory
vertex. tu

Lemma 4. Invariant 3 of the Scan and Swap Algorithm is true

after Step i.

Proof. To show that Invariant 3 is true after Step i, we need
to use the fact that Invariants 1 and 2 are true, that is,
after Step i, the Scan and Swap Algorithm finds a
matching Mi that covers the maximum number of

noncompulsory vertices from b1 to bi and all the

compulsory vertices from b1 to bi. Let au be the left side

vertex covered by Mi with the largest index. This
situation is shown in Fig. 7.

Note that if all left side vertices from a1 to au are
marked after Step i, the invariant is obviously true.
Hence, from now on, we only consider when some left
side vertices with indices between 1 and u are not
marked at Step i. Among such vertices, let av�1 be the
one with the largest index. Suppose the vertex following
av�1, av, was first marked at Step t, when the algorithm
scanned to bt. We claim that the vertices added to � prior
to bt, i.e., vertices in �ðt� 1Þ, will not be swapped out of
� after Step t� 1.

This claim is true because of two facts. First, due to
Proposition 3, av will only be matched to a vertex with an
index no smaller than bt in Mt;Mtþ1; . . . ;Mi. Second, due
to Lemma 1, av must be the begin neighbor of bt. As a
result of these two facts, after Step t, when a compulsory
vertex needs to swap out a noncompulsory vertex, the
alternating path will never reach right side vertices with
indices less than bt. The claim is thus proven.

Suppose the invariant is not true, then there is
matching M 0, as described in the invariant, that satisfies
u0 < u, where au0 is the left side vertex with the largest
index that is matched to a right side vertex with an index
no more than i under M 0. Note that, after Step i, vertices
from av to au are all marked. In Mi, they are matched to
some of the right side vertices from bt to bi, hence, in Mi,
there are u� vþ 1 matched vertices from bt to bi.
Suppose, among these vertices, X are noncompulsory
vertices (from previous discussions, we know that
X ¼ j�ðiÞj � j�ðt� 1Þj). Note that, in M 0, there must be
less than X matched noncompulsory vertices from bt to bi
because only vertices from av to au�1 can be matched to bt
to bi, thus, from bt to bi, M

0 covers at most u� v vertices.
As a result, from b1 to bt�1, there must be more vertices
covered by M 0 than by Mi. But, this contradicts the fact
that, after Step t� 1, �ðt� 1Þ contains the maximum
number of noncompulsory vertices from b1 to bt�1 that
can be covered and they will not be swapped out of �
later. That completes our proof. tu

Combining these lemmas, we have:
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Fig. 7. Illustration of Lemma 4. The lines are edges in Mi. Black nodes

are vertices in �ðiÞ and �ðiÞ. av to au are all marked. av was first marked

by bt. In this example, bt was swapped out later and av is matched to btþ1

in Mi.



Theorem 2. The Scan and Swap Algorithm finds the maximum
number of noncompulsory vertices that can be covered along
with all the compulsory vertices in a request graph.

5.4 Implementation Issues and Complexity Analysis

In this section, we discuss the implementation and
complexity of the Scan and Swap Algorithm. Note that,
according to Table 3, the complexity of the Scan and Swap
Algorithm should be OðBkÞ, where B is the number of
ODLs and k is the number of wavelengths. However, we
will show in this section that, by using some special
techniques and data structures, it can be reduced to OðkÞ.

The input to the Scan and Swap Algorithm is the set of
compulsory vertices, the set of noncompulsory vertices, and
the set of left side vertices. They can be represented by 1� k
vectors, where component i in the vector is the number of
vertices on wavelength �i. From now on, they will be
referred to as the “compulsory vector,” the “noncompulsory
vector,” and the “left side vector” and be denoted as C, N ,
and L, respectively. Accordingly, their components will be
written as ci, ni, and li, respectively. For example, corre-
sponding to Fig. 5, C ¼ ½2; 1; 0; 2; 0; 1�, N ¼ ½1; 1; 1; 1; 1; 1�,
and L ¼ ½1; 2; 0; 1; 1; 4�. Note that the noncompulsory vector
must be a binary vector.

A stack can be used to store the indices of vertices in �.
When a noncompulsory vertex is added to �, its index will be
pushed into this stack. Later, some of the vertices might have
to be swapped out. Based on the algorithm, they will be the
ones that were most recently added to �, therefore they are at
the top of the stack and to swap them out is simply to perform
several pop operations. Note that a vertex that is swapped out
of � will never be added to � again. Thus, the overall time
spent in stack operations is OðkÞ.

The key observation concerning the complexity of the
algorithm is that the vertices on the same wavelength need
not be treated one by one because they have the same
connection patterns. As a result, rather than scanning the
individual vertices, the algorithm only needs to scan the
wavelengths one by one, i.e., scan the 1� k vectors, which
leads to the OðkÞ time complexity. To elaborate, suppose the
algorithm is scanning the compulsory vertices on �i. A
pointer p pointing to �p will be maintained, where �p can be

converted to �i and is the first such wavelength on which
there are some unmarked left side vertices. Let l0p be the
number of unmarked left side vertices on �p. According to
the algorithm, the first ci unmarked left side vertices need to
be found for the ci compulsory vertices on �i. It can be done
by adding l0p with lpþ1; lpþ2; . . . ; lq until the summation result
exceeds ci or until �q is the last wavelength convertible from
�i. In the latter case, some vertices should be popped out of
the stack. Then, update p and l0p accordingly, which is
equivalent to marking some left side vertices. The non-
compulsory vertex on �i can be treated in a similar way.
Note that l0p needs to be updated no more than 2k times and
a component in L can be involved in the addition no more
than once. Thus, the complexity of the algorithm is OðkÞ.
After finishing stage I, to get �I , one simply increments
some components in the compulsory vector according to
the content of the stack, which also takes OðkÞ time.

In our applications, the Scan and Swap Algorithm needs
to run Bþ 1 times. Thus, when using this algorithm for
optimal matching, OðkBÞ time is needed, where B is the
length of the longest delay line and k is the number of
wavelengths per fiber. Note that the complexity is linear to
the input size, thus the algorithm has the lowest possible
order of complexity since any algorithm needs to scan the
input at least once. Also note that the Scan and Swap
Algorithm is very simple and can be implemented in
hardware. These features make it a practical algorithm for
optical interconnects.

6 SIMULATION RESULTS

We implemented Scan and Swap Algorithm in software and
conducted simulations. The interconnect in simulations has
16 input fibers and 16 output fibers with 16 wavelengths on
each fiber. An input channel alternates between two states,
the “busy” state and the “idle” state. When in the “busy”
state, it continuously receives packets and all the packets,
called a “burst,” go to the same destination; when in the
“idle” state, it does not receive any packets. The length of
the busy and idle periods follows geometric distribution.
For each experiment, the simulation program was run for
100,000 time slots.
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Fig. 8. Packet loss probability of the WDM interconnect under bursty traffic. The load is � ¼ 0:8. (a) Average burst length is five time slots. (b) Average

burst length is 40 time slots.



Fig. 8 shows the packet loss probability as a function of

the number of fiber delay lines when the traffic load is

� ¼ 0:8. The average burst lengths in Fig. 8a and Fig. 8b are

five time slots and 40 time slots, respectively. As expected,

packet loss probability decreases as the number of delay

lines increases. For example, in Fig. 8a, for conversion

distance d ¼ 2, when B ¼ 0 (no buffer), the packet loss

probability is about 10�1:3; however, when B ¼ 4, it is

reduced to about 10�3. As the traffic becomes more bursty,

i.e., as the average burst length increases, the packet loss

probability decreases much more slowly with the buffer

depth, as can be observed in Fig. 8b, where the curves are

almost flat. This is because, when the burst is too long, the

buffer capacity will always be exceeded.
It can also be seen that, with the same buffer length, a

larger conversion distance always results in a smaller

packet loss probability. Also, when the burst is too long,

increasing buffer length does not yield too much benefit,

but increasing conversion distance always does. For

example, in Fig. 8b, when d ¼ 1, increasing buffer length

does not reduce much of the packet loss probability, but,

when d is increased to 2, the packet loss probability drops

by almost 10�0:4. This suggests that wavelength conversion

ability is more important than buffering in a WDM
interconnect. However, we observe that only a relatively
small conversion distance is needed to achieve good
performance. As can be seen in Fig. 8, the packet loss
probability for d ¼ 3 is already very close to that for d ¼ 16
(full range conversion). This is exactly the reason to use
limited range wavelength converters instead of full range
wavelength converters.

Fig. 9 shows the average delay of a packet as a function
of the number of fiber delay lines, where the traffic is the
same as in Fig. 8. It can be seen that, as the buffer length
increases, the average packet delay also increases since
fewer packets are dropped and, thus, more are directed to a
buffer before being actually transmitted. For the same
buffer size, a larger conversion distance results in a shorter
average delay. As in Fig. 9a, when B ¼ 4, the average delay
for d ¼ 1 is about 0:9 time slot and the average delay for
d ¼ 3 is only about 0:3 time slot.

Fig. 10 shows the packet loss probability and average delay
as a function of the traffic load when B ¼ 4 and the burst
length is 40. Similar facts can be observed as in the previous
figures, that is, increasing the conversion ability will greatly
improve the performance and good performance can be
achieved with a relatively small conversion distance.
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Fig. 9. Average delay of the WDM interconnect under bursty traffic. The load is � ¼ 0:8. (a) Average burst length is five time slots. (b) Average burst

length is 40 time slots.

Fig. 10. Packet loss probability and average delay under different traffic load when the average burst length is 40. (a) Packet loss probability.

(b) Average delay.



7 CONCLUSIONS

In this paper, we have studied optimal scheduling in buffered

WDM optical interconnects with limited range wavelength

conversion ability. We formalized the problem as a weighted

bipartite graph matching problem and showed that max-

imum network throughput and minimum delay can be

achieved by finding an optimal matching in the bipartite

graph. We gave the Scan and Swap Algorithm for finding the

optimal matching in OðkBÞ time, where k is the number of

wavelengths per fiber andB is the buffer length, compared to

Oðk2N2 þ k2BNÞ time by directly adopting other existing

algorithms for more general weighted bipartite graphs where

N is the number of input fibers.
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