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ABSTRACT
In wireless LANs, partial packets are often received which usually
contain only a few errors. According to the current 802.11 stan-
dard, such packets have to be retransmitted. Much effort has been
invested recently in repairing such packets without retransmitting
the entire packet, e.g., by using error correction (EC) code or re-
transmitting only the corrupted blocks. In this paper, we revisit this
problem, and propose Unite, a framework for more efficient par-
tial packet recovery. Unite is motivated by two key observations.
First, the two repair methods, i.e., the EC-based and block-based,
are not mutually exclusive and can be combined to achieve higher
performance. Second, the recently introduced error estimators can
be utilized to determine the optimal repair method depending on
the condition of each partial packet. The combined method should
achieve better performance than each individual method; in addi-
tion, it should remain low in complexity because the EC-based and
block-based method are both simple in nature. Unite uses AMPS,
a recently proposed estimator, for error estimation. We implement
Unite on the Madwifi open source driver, and our experiments show
that Unite outperforms other recovery schemes.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Computer-Communications
Networks

General Terms
Algorithms, Design, Performance

Keywords
Partial packet recovery, 802.11, Device driver

1. INTRODUCTION
Wireless Local Area Networks (LAN) are widely deployed for

convenient access to the Internet. It is well known that wireless
transmissions may result in partial packets, i.e., packets that have
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errors but still contain much correct information. Many recent
works [3, 14, 5, 11, 4, 19] attempt to exploit partial packets for
higher link efficiency. An appealing approach for 802.11 LANs,
given the abundance of the already deployed hardware, is to ex-
tend the software [3, 19] or firmware [14] to handle partial packets.
Existing solutions fall into two categories: those based on error cor-
rection code (EC-based) and those based on block retransmission
(block-based). In the EC-based approach, the sender divides the
packet into blocks and encodes each block into codewords accord-
ing to an error correction code, and transmits parity bytes for each
block to correct the corrupted data bytes. In the block-based ap-
proach, the sender divides packets into blocks and retransmits only
the corrupted blocks, where a block is found to be corrupted if it
fails the checksum test.

In this paper, we also focus on software extensions on top of
commodity hardware for the exploitation of partial packets. We
revisit this problem, because of two key observations. First, the
EC-based and the block-based approaches are not mutually exclu-
sive; rather, they should complement each other in many ways. A
combined approach should achieve better performance than each
of the individual approaches, and should not incur high complexity
because the individual approaches are both simple in nature. Sec-
ond, very recently, error estimators such as EEC [12] and AMPS
[20] have been proposed that can estimate the number of errors in
a received packet. The estimator provides key information which
was not available to the earlier partial packet recovery schemes, and
can be used to improve the performance by making intelligent deci-
sions on the selection of the repair methods and repair parameters.
For example, typically, a large percentage of partial packets have
few corrupted blocks where each block has very few errors. In the
block-based approach, the sender can locate the corrupted blocks
and retransmit such blocks, in which often as high as 95% of the
retransmitted bytes are unnecessary. An EC-based approach, with
no knowledge of the error locations, will have to transmit parity
bytes for all codewords and decode all codewords, while the major-
ity of the transmission and decoding are unnecessary. Combining
them, also assisted by the error estimator, leads to optimized repair
method for such packets. To be more specific, if the estimated num-
ber of errors is small, the sender can locate the corrupted blocks by
the checksum test and send parity bytes only for such blocks to cor-
rect errors in them. This saves both the amount of the transmitted
data and the decoding time.

More fundamentally, the block-based approach may only be able
to reap part of the potential gain [3] because it is still based on rep-
etition coding which is inferior to more advanced coding schemes
[1]. For example, the retransmitted blocks are still subject to the
same channel condition and may be corrupted. The EC-based ap-



proach has the potential of achieving higher gain [3]; however, we
find through our experiments that the computational resource may
become the bottleneck, especially at high data rates because the
decoding of an error correction code is computational intensive.
Therefore, we propose Unite, a framework for optimized partial
packet recovery considering the CPU load. Unite supports three
repair methods. Among them, Targeted Error Correction (TEC)
is described earlier, i.e., sending parity bytes only for the targeted
erroneous blocks when the number of errors is low. If the number
of errors is higher, Unite may use Holistic Error Correction (HEC)
which first spreads errors evenly in the packet through interleav-
ing then sends just enough parity bytes to correct errors in each
codeword. As the decoding of error correction code may exceed
the computational capacity of the host CPU, Unite may also resort
to Block Retransmission (block-retran), which is basically the stan-
dard block-based approach.

Unite works under a CPU time constraint for decoding to avoid
consuming excessive CPU resources. The key problem in the im-
plementation is to determine the best repair method for the par-
tial packets to minimize the number of transmitted bytes under
this CPU constraint. The choice depends on many issues, such as
the number of errors in the packet, the distribution of errors in the
packet, the receiver’s CPU load, etc. In addition, some of the in-
formation is only an estimate and cannot be known exactly, such as
the number of errors. To this end, we design a practical algorithm
that makes such decisions based on the feedback from the receiver.

We implement Unite based on the Madwifi [9] open source driver.
We adopt AMPS [20] as the error estimator, because AMPS has a
good accuracy and a small overhead of 8 bytes per packet. We test
Unite with extensive experiments and compare it with other drivers,
including the original Madwifi driver, a two-round retransmission
driver, a pure block-based driver, and a pure EC-based driver en-
hanced with AMPS. We found that for the majority of the times,
Unite achieves higher performance than all other drivers. In addi-
tion, Unite consumes CPU resources under the specified constraint.

The rest of the paper is organized as follows. Section 2 discusses
related works. Section 3 describes the design of Unite. Section 4
briefly describes AMPS. Section 5 describes the link protocol we
implement to evaluate Unite. Section 6 describes the experiments.
Section 7 discusses possible extensions and future works. Section
8 concludes the paper.

2. RELATED WORKS
Partial packet recovery has drawn much attention in recent years.

Unite is built on the foundation of the earlier works, with key dis-
tinctions discussed in this section.

ZipTx [3] proposes an EC-based recovery scheme on the Mad-
wifi driver. The key differences between Unite and ZipTx include
the following. First, Unite supports more repair options, which
helps achieving higher performance. Second, Unite considers the
computational constraint and ZipTx does not. This is motivated by
our experiments which show that software decoding can be compu-
tational intensive in a number of cases. More importantly, we note
that the link speed in the physical layer is fast increasing, e.g., the
speed in 802.11n is as high as 300 Mbps, while the network may
host devices with less computational power, e.g., tablets and smart
phones. The experiments in [3] were based on a maximum speed of
54 Mbps on a 3 GHz dual core CPU, which may underestimate the
CPU load at future higher data rates and slower CPUs. Unite, by
taking the computational resources into account, may be applicable
to more scenarios. Third, Unite employs AMPS for error estima-
tion which provides valuable information that can be used to select
the optimal repair method and parameters, while the advanced er-

ror estimators were not available to ZipTx. Fourth, Unite uses in-
terleaving which randomly distributes errors across the packet such
that each codeword receives similar number of errors, while ZipTx
does not process packets to cope with bursty errors.

Maranello [14] adopts the block-based approach by modifying
the firmware in the wireless card driver. A negative-ACK (NACK)
is sent in the place of an ACK when the packet is corrupted. The
NACK contains the checksums of the blocks in the packet, with
which the sender can immediately determine which block to re-
transmit. Maranello uses only the block-based approach while Unite
uses both the EC-based and block-based approach. Unite is a soft-
ware implementation while Maranello needs to modify the wireless
card’s firmware. Noting that not all wireless card manufactures ex-
pose the firmware design, software-based solution like Unite can
be applied to more platforms and bring immediate benefits.

Many other partial packet recovery schemes have also been pro-
posed. The block-based approach has been implemented in [19].
PPR [4], SOFT [5], and MIXIT [11] rely on physical layer hint for
recovering the corrupted sections of the packet. The limiting factor
is that not all physical layers report such hints to the upper layers.
In [7, 8, 6], opportunistic overhearing at third-party nodes is ex-
ploited for packet recovery. In this work, we focus on the recovery
between two nodes, and leave the extension to multiple nodes to
the future work.

In [12], an error estimation coding (EEC) scheme was proposed,
and was also incorporated into the Madwifi driver to assist rate se-
lection. Basically, EEC reports the error ratio of a data rate, and the
autorate algorithm selects one rate that optimizes the throughput.
The modified driver in [12] is very different from Unite, because
it does not repair partial packets and relies on the upper layers to
carry out the error correction. On the other hand, Unite hides the
partial packet recovery from the upper layers. As not all upper lay-
ers handle partially correct data, Unite can work more seamlessly
with the upper layers.

3. UNITE DESIGN
We discuss the design of Unite in this section. We begin with a

high-level overview of the packet transmission procedure.

3.1 Packet Transmission Procedure
A packet transmission procedure may consist of a maximum of

three rounds:

1. In the first round, the sender sends only the data bytes. If
the received packet passes the packet level checksum test, it
is delivered to the upper layer immediately and the transmis-
sion of this packet finishes. If the packet is erased in this
round, i.e., no information is received or the header is cor-
rupted, the packet transmission fails. Otherwise, it is a par-
tial packet and the receiver runs the error estimator to find the
number of errors in the packet, and also calculates the check-
sums of the checksum blocks which will be defined shortly in
Section 3.2. When gets the opportunity to send, the receiver
sends a feedback to the sender containing the estimated num-
ber of errors and the checksums.

2. In the second round, the sender selects a repair method and
sends the repair data, either the parity bytes or certain check-
sum blocks. The receiver attempts to repair the packet based
on the repair data. If the repair is successful, the packet is de-
livered to the upper layer and the transmission of this packet
finishes. Otherwise, if the repair method is block-retran, the
packet transmission fails. If the repair method is TEC or



HEC, the receiver sends another feedback and asks for a third
round of transmission.

3. In the third round, the sender retransmits the corrupted check-
sum blocks according to block-retran. After receiving the re-
pair data, the receiver attempts to repair the packet. If the
repair is successful, the packet is delivered to the upper layer
and the transmission of this packet finishes. Otherwise, the
packet transmission fails.

A packet may attempt the above procedure three times, after which
it is dropped.

3.2 Code Block, Interleaving, and Checksum
Block

To support multiple repair methods, Unite organizes the data in
multiple manners, namely the code block and the checksum block,
which also involves interleaving. These concepts are explained in
the following:

• Code Block: To support HEC, Unite divides a packet into
code blocks. Data bytes in the same code block can be en-
coded into one codeword according to the Reed-Solomon
(RS) code, where a codeword is basically the original data
bytes followed by parity bytes. Code blocks should be of the
same size, 150 in our current implementation, except that the
last block may be less depending on the size of the packet.
If encoding is needed, all code blocks are encoded with the
same RS code. The RS code is used because of its strong
error correction capability [2], as well as the availability of
software implementations [13].

• Interleaving: In the first round, the fresh data undergoes an
interleaving procedure, in which each byte is relocated to a
random location based on a random permutation. At the re-
ceiver side, before attempting to run the estimator, the bytes
undergo deinterleaving, i.e., the reverse of the random per-
mutation, and are mapped to their original locations. Inter-
leaving is a common technique in wireless communications
to cope with bursty errors. As the errors in a wireless frame
tend to be clustered in a few locations, without interleaving,
it could happen that there are many errors in one received
code block while very few in others. The interleaving pro-
cedure spreads the errors evenly across all codewords and
significantly reduces the probability of such events.

• Checksum Block: To support block-retran and TEC, Unite
divides a data packet into checksum blocks. In our current
implementation, each checksum block is 64 bytes; the last
block may be less depending on the size of the packet. Note
that unlike the HEC which prefers the errors to be spread out
evenly in the packet, TEC and block-retran prefer the errors
to be clustered in as few blocks as possible, such that less
parity bytes or less blocks need to be retransmitted. There-
fore, the checksum blocks are defined based on the packet
after the interleaving step.

For example, Figure 1 illustrates the definitions of the blocks, as
well as the effectiveness of interleaving in spreading errors, for a
packet with 8 bytes indexed from 0 to 7.

3.3 CPU Decoding Time Constraint
One of the key features of Unite is that it considers the constraint

of CPU load. As a simple, qualitative test, we use the RS code im-
plementation at [13] and measure the decoding time of RS codes
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Figure 1: A simple illustration of the code block, interleaving,
and checksum block. The shaded boxes represent bytes that
have been corrupted.
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Figure 2: The average decoding time of RS code.

with code block size 255 and various number of parity checking
bytes (PCB) on the Toshiba Satellite U405D-S2910 laptop with
Dual Core 2.2GHz CPU running the Linux real time kernel, when
there is no other application running on the machine. The average
decoding time is shown in Figure 2, where it is clear that software
decoding can be time consuming. The exact decoding time varies
depending on the individual machine configurations; we provide a
quantitative measure of CPU resource usage in Section 6.

3.4 Notations
We use β to denote upper limit of CPU time used in decoding.

We use Y to denote the number of error bytes in a packet, and
use Z to denote the maximum number of error bytes in a code
block among all code blocks. Y and Z are random numbers, and
their estimations are denoted as ŷ and ẑ, respectively. The main
notations are listed in Table 1.

3.5 Three Repair Methods
We have mentioned that Unite supports three repair methods.

After giving the definitions of code block and checksum block, we
now discuss these methods in more details.

3.5.1 Block-Retran



β threshold of the CPU decoding time
Y number of error bytes in a packet
ŷ AMPS’s estimate of Y

Z maximum number of error bytes in a code block
ẑ AMPS’s estimate of Z

Table 1: List of Notations

The block-retran is the simplest among the three methods: the
sender simply retransmits the corrupted checksum blocks. For the
sender to locate the corrupted blocks, the receiver computes the
checksums of the checksum blocks in the received packet, and
sends them to the sender in the feedback. The sender computes
the checksums of the same blocks based on the correct packet in its
buffer, and locates a corrupted block if the two checksums do not
match.

In our current implementation, the checksum we use is x16 +
x15 + x2 + 1 with the implementation available in the Linux ker-
nel. We do not use the more popular and stronger 32-bit CRCs,
because the 16-bit CRC has a reasonable error detection capabil-
ity while requiring much less overhead. Note that a false negative
in the block checksum test is not disastrous: even if an erroneous
block passes the block checksum test, the reassembled packet still
cannot pass the packet level checksum test and a retransmission
can be attempted to recover the packet. Given that the false nega-
tive ratio of the 16-bit CRC is reasonably low, e.g., no more than
10−5 based on our tests, the amount of data saved by using the 16-
bit CRC instead of the 32-bit CRC is far more than the amount of
retransmitted data due to a false negative of the block checksum
test.

3.5.2 HEC
With the HEC method, the receiver obtains ẑ by AMPS, the es-

timate of the maximum number of errors in the code blocks, and
sends it in a feedback. Based on ẑ, the sender sends parity bytes
for the code blocks. The number of errors among the code blocks
can be different; however, after interleaving, the variance should be
minimized. Therefore, for simplicity, the same number of parity
bytes are sent for all code blocks. After receiving the parity bytes,
the receiver runs the decoding algorithm for each code block and
reassembles the packet.

To be more specific, after getting ẑ, a code block is encoded
into a codeword according to the (255, 255− 2ẑ) RS code and the
2ẑ parity bytes are transmitted as the repair data. With 2ẑ parity
bytes, the RS code guarantees that any no more than ẑ errors in the
received data bytes and parity bytes can be corrected. Choosing
code adaptively based on the number of errors minimizes the time
for decoding, because the decoding time monotonically increases
with the number of parity bytes. It is likely that the codeword can
accommodate more data bytes than the size of the code block; in
this case the codeword is shortened, i.e., when encoding, dummy
0s are added to the beginning to the data bytes which need not be
transmitted.

AMPS first obtains ŷ, then obtains ẑ with a table look up. In our
current implementation, a 1500-byte packet is qualified for HEC
only if ŷ ≤ 47. This is because with more errors, the variance
of AMPS’s output is larger, which leads to more underestimations,
which in turn leads to decoding failure, wasted CPU time and ad-
ditional rounds of transmissions. Setting such a threshold can sig-
nificantly reduce the underestimation. In addition, for a 1500-byte
packet to be repaired with HEC, we further process the output of
AMPS according to Table 2 where we inflate ŷ in some cases, as

ŷ ≤ 13: ŷ ← 13 ŷ ∈ [14, 18]: ŷ ← 18
ŷ ∈ [19, 23]: ŷ ← 23 ŷ ∈ [24, 29]: ŷ ← 29
ŷ ∈ [30, 35]: ŷ ← 35 ŷ ∈ [36, 47]: ŷ unchanged

Table 2: Processing ŷ

this does not increase much transmitted data but helps reducing un-
derestimation.

3.5.3 TEC
If TEC is used, the sender locates the corrupted checksum blocks

by comparing the checksums, and transmits parity bytes only for
such blocks. The receiver receives the parity bytes and runs the de-
coding algorithm to repair the corrupted blocks. The TEC method
is targeted for packets with very few errors clustered in few blocks.
In our current implementation, a 1500-byte packet is qualified for
TEC if ŷ ≤ 3. TEC is introduced because as shown in [3, 14],
a large percentage of partial packets contain very few error bytes.
For such packets, both HEC and block-retran are not efficient. For
example, if there is only one error byte, HEC still has to run the
decoding algorithm for all codewords while only one code block
is corrupted; block-retran has to retransmit one entire checksum
block in which only one byte is necessary. However, TEC needs
only transmit few parity bytes to correct one error and run decod-
ing for only one codeword.

The simplest TEC would be to encode each corrupted check-
sum block into one codeword. However, as the checksum block is
small and the number of errors is likely small, multiple blocks can
be grouped together and encoded into one codeword. In our cur-
rent implementation, up to three corrupted checksum blocks may
be grouped together into one codeword.

The number of parity bytes to be sent for each codeword de-
pends on the estimated number of errors, and is a tradeoff between
reducing decoding time and reducing the failure probability. The
challenge is that the estimated number of errors may be different
from the actual number of errors, even with the best estimator. In
our current implementation, if ŷ ≤ 1, each codeword has 10 parity
bytes; else each codeword has 20 parity bytes. The codeword is
shortened when necessary.

3.6 Choice of Repair Methods
With the CPU time constraint, it may not be possible to decode

all partial packets, and it would be naturally more advantageous
to use TEC or HEC for packets requiring less decoding time, and
use block-retran for packets requiring more decoding time. As the
packets may have arbitrary numbers of errors and corrupted blocks,
an algorithm is needed to find the best repair method for each partial
packet to optimize the system performance. The two resources to
be managed are the data transmission time and the CPU time. The
algorithm must take advantage of the fact that the packet reception
and the decoding run in parallel at the wireless card and the host
CPU, respectively. The challenge is that the number of errors in a
partial packet is only an estimate and may not be the actual number
of errors.

3.6.1 The Algorithm
In our current implementation, the algorithm is run at the sender

every time a feedback is received and determines the repair meth-
ods for the packets in this feedback. It takes an input W as the
current decoding time budget, which is the total CPU time allowed
for decoding these packets. For a packet, it takes the following
parameters as input:

• g: the decoding time if repaired by TEC, if the packet quali-
fies for TEC.



• q: the number of required parity bytes of TEC, if the packet
qualifies for TEC.

• d: the decoding time if repaired by HEC, if the packet quali-
fies for HEC.

• r: the number of required parity bytes of HEC, if the packet
qualifies for HEC.

• b: the total size of the corrupted checksum blocks.

We suppose all inputs are given for now and will discuss how to
obtain them in Section 3.6.2.

It is clear that the decisions are easy for some packets. First,
if a packet is not qualified for HEC, it can only be repaired with
block-retran. Second, if a packet is qualified for HEC but not for
TEC, while its repair data transmission time with HEC is greater
than that with block-retran, it obviously should be repaired with
block-retran as block-retran requires no decoding time. Therefore,
the algorithm first filters such packets out as block-retran packets.
Suppose there are a total of n remaining packets where we denote
a packet as Pi for 1 ≤ i ≤ n.

We note that although there are three repair methods, for any
packet, there are actually only two options, which simplifies the
scheduling algorithm design. Note that a packet is either qualified
for TEC or not:

• If qualified, it should not be repaired with HEC because HEC
will require more data transmission time and more decoding
time, hence the packet is repaired either with TEC or block-
retran.

• If not qualified, it cannot be repaired with TEC and clearly
can only be repaired with HEC or block-retran.

As a result, the algorithm should make binary decisions for each
packet between using error correction or block retransmission. We
therefore introduce a binary variable xi for packet Pi where xi = 0
means it should use block-retran and 1 otherwise.

For packet Pi, we define a value and a weight denoted as vi and
wi, respectively. If Pi is qualified for TEC, vi = bi − qi and
wi = gi; otherwise, vi = bi − ri and wi = di. Note that the value
is basically the extra number of bytes in the repair data if block-
retran is used instead of TEC or HEC. The total number of bytes,
given {xi}i, is

n
X

i=1

xi(bi − vi) +

n
X

i=1

(1− xi)bi =

n
X

i=1

bi −

n
X

i=1

xivi.

As we want to minimize the total number of bytes under the CPU
time constraint, the problem can be formalized as

max
n

X

i=1

xivi

under the constraint that
n

X

i=1

xiwi ≤W.

This is exactly the Knapsack problem which is NP-hard. We there-
fore employ a greedy algorithm: in every iteration, we select the
packet that has the largest ratio of value over weight, and mark it as
using TEC or HEC, until the decoding time exceeds W , or until all
packets have been marked.

3.6.2 Obtaining the Input Parameters
The decoding time budget W is determined by the CPU time

constraint β. To get W , at the receiver, we maintain γ which is
the average time that the receiver encounters a partial packet. If
the receiver receives a partial packet and the last partial packet is
received t seconds ago, γ is updated as

γ ← (1− a)γ + at

where a = 0.01 in our current implementation. Note that γ is
basically an estimate of the maximum CPU time the receiver can
spend to cope with a partial packet by decoding. As the decoding
should not take more than β fraction of the CPU time, we let

W ← βNγ

where N is the total number of partial packets in this feedback. W

is sent by the receiver to the sender in the feedback.
Finally, note that for a packet, q, r and b can be found based on

the size of the repair data. The decoding time g and d depend on
the number of parity bytes as well as the speed of the receiver. The
number of parity bytes is known. When installing the driver, the
receiver can measure the decoding time for all possible number of
parity bytes. This table can be sent to the sender during the associ-
ation phase, such that given the number of parity bytes, the sender
can find the decoding time with a table look up. The measurement
should be carried out when the receiver is not running other appli-
cations, in which case the average decoding time is a good upper
bound of the CPU time used in decoding.

4. THE ERROR ESTIMATOR
The error estimator is crucial to Unite. To date, there are two er-

ror estimators proposed, AMPS [20] and EEC [12]. We use AMPS,
because it has a very low overhead of 8 bytes per 1500-byte packet,
and is reasonably accurate based on our experiments. We also made
comparisons between AMPS and EEC, which show that AMPS
outperforms EEC for estimating the number of errors in a packet
at a lower overhead [20].

For completeness, we give a brief description of AMPS; the de-
tails can be found in [20]. AMPS is based on the idea of Amplified
Sampling. Basically, the sender finds the parity bit of multiple ran-
domly selected bytes, and uses it as a sample. Multiple samples
are computed, which are sent along with the data packet, guarded
by CRC such that they are error-free if received. The received data
may contain errors. The receiver recomputes the samples based on
the received data and finds X , the number of mismatches between
the locally computed samples and the transmitted samples. AMPS
estimates Y based on the observed value of X using the maximum
a posteriori (MAP) estimation. That is, it selects ŷ that maximizes
P (Y = ŷ|X = x) among all possible values Y for a given obser-
vation X = x. Given ŷ, AMPS also computes an estimate of Z.
The estimate is selected such that P (Z ≤ ẑ|Y = ŷ) is greater than
a threshold, set to be 0.95 in our current implementation. In total,
AMPS uses 64 samples packed into 8 bytes. All the major steps
are precomputed and stored in tables such that with the value of
X , both ŷ and ẑ can be obtained with a constant time table lookup.
The size of the table has been optimized to meet the requirements
of Linux kernel code.

5. THE LINK LAYER PROTOCOL
We adopt a link layer protocol similar to that in [3] to evaluate

Unite, described in the following.



5.1 Aggregated Feedback
The receiver sends feedback about packet reception status to the

sender. To reduce the overhead of sending individual feedbacks,
the receiver may aggregate multiple feedbacks into one feedback
frame. In our current implementation, by default, the receiver sends
a feedback in three cases, whichever occurs earlier: (1) when re-
ceived 8 partial or erasure packets, (2) 10 ms after sending the last
feedback while received a partial packet or an erasure packet in
this interval or (3) 20 ms after the previous feedback is sent while
received no response for the feedback. These thresholds can be
configured. To increase the probability of correctly delivering the
feedback frame, it is always sent at two rates lower than the current
data rate; if no such rate exists, the lowest data rate.

5.2 Sender Queue and Receiver Queue
The sender considers a packet delivered when it receives an 802.11

ACK from the hardware or a software ACK from the receiver in the
feedback frame. The sender maintains a queue of packets that have
been sent but have not been ACKed. Whenever the queue is not
full, the sender may keep sending packets. If the queue is full, the
sender retransmits packets in the queue if no feedback is received
after a configurable timeout, 20 ms in our current implementation.

At the receiver, packets that are received correctly are delivered
to the upper layer without delay. The received partial packets are
stored in a queue. The receiver may have several partial packets
in the queue because the sender may send several packets before
receiving a feedback.

5.3 Sender Frame Format
The frame sent by the sender is referred to as the sender frame,

the format of which shown in Figure 3(a). After the MAC header
are the sender header, two CRCs, the information of the repair data,
AMPS samples for the full data packet, the repair data, and the full
data packet. If the size of the repair data field is too large, the frame
may not have the AMPS and the full data packet field.

The details of the fields are explained in the following:

• In the sender header, the type field contains information such
as the type of repair data in this frame and whether the frame
contains a full data packet. The feedback sequence number
field indicates for which feedback this frame is generated.
The sequence number field is the sequence number of the
full data packet in this frame, if any. The repair informa-
tion number field indicates the number of partial packets to
be repaired by this frame. The retransmission counter field
indicates the number of times the full data packet, if any, has
been retransmitted.

• In the repair information field, the packet sequence number
is the sequence number of the packet that needs the repair
data. It also contains the information of the repair method of
this packet, such as the decoder to be employed for the er-
ror correction code, or the bitmap of the corrupted checksum
blocks.

• CRC1 is the checksum of the MAC header and the sender
header. CRC2 is the checksum of the repair information and
AMPS samples. A frame failed either of the CRCs will be
considered an erasure.

5.4 Feedback Frame Format
The feedback frame format is shown in Figure 3(b). After the

MAC header are the feedback header field, the information of the

repair method and parameter, and a list of checksums for each par-
tial packet.

The details of the fields are explained in the following:

• In the feedback header, first is the type field indicating that
the frame is a feedback frame, followed by the feedback
sequence number, then followed by the number of packets
whose information is carried in this frame, then followed by
the decoding time budget for the packets in this frame.

• In the repair information field, the packet sequence number
is the sequence number of the packet that needs repairing. It
also contains information such as the estimated number of
byte errors.

...

...

MAC Header

Header
CRC1
CRC2

Pkt Seq #

Sender
Type

Seq #

Retran #

AMPS
Samples

Repair Data 1

Repair Info 2
Repair Info 1

Fb Seq #

Repair Info #

Repair Data 2

Decoder,
bitmap, ...

Full Pkt

(a)

...

...
Pkt CRC 1

Pkt CRC 2

Pkt Seq #Repair Info 1
Repair Info 2

Est Error

MAC Header
Feedback
Header

Type
Seq #

Repair Info #
Seq #

Decode bdgt

(b)

Figure 3: Frame format. The shaded fields are mandatory, oth-
ers are optional. (a) Sender frame. (b) Feedback frame.

6. EXPERIMENTS
We implement Unite on the open source Madwifi driver [9] with

the RS code implementation at [13]. The wireless card we use is the
Cisco Aironet 802.11a/b/g wireless cardbus adapter[10]. We set the
Madwifi driver in the monitor mode to allow the raw data frames
to be delivered. The machines we use are two Toshiba Satellite



Figure 4: The sender and the receiver locations in four experi-
ments. Circle: sender. Square: receiver.

U405D-S2910 laptop computers with 2.2GHz CPU with one core
enabled. We classify packets as erasures, partial packets, and cor-
rect packets, the percentages of which are referred to as the erasure
ratio, partial ratio, and correct ratio, respectively.

6.1 Comparing with Other Drivers
We first compare Unite with other drivers.

6.1.1 Compared Drivers
The compared drivers include:

• ORIG: The original Madwifi driver, with link retransmission
enabled.

• BLCK: The original Madwifi driver enhanced with block-
retran.

• EOLY: The original Madwifi driver enhanced with HEC and
AMPS under the CPU time constraint.

• 2RND: The original Madwifi driver enhanced with a two-
round, fixed packet repair schedule according to [3], with no
CPU time constraint.

Among the compared schemes:

• BLCK is our implementation of the block-based driver.

• EOLY is an HEC-only driver complying with the CPU time
constraint. It represents our approximation of the ZipTx driver
[3] enhanced with AMPS under the CPU time constraint. It
adopts two repair methods, either HEC or complete packet
retransmission. A greedy scheduling algorithm similar to the
scheduling algorithm used by Unite is used to select the re-
pair method under the CPU time constraint: the packet with
the largest ratio of packet size over the decoding time is se-
lected for HEC in each iteration, until no packets are left or
until the CPU time constraint is reached.

• 2RND implements the two-round fixed transmission sched-
ule suggested in Section 5.2 of [3]: for a partial packet, in
the first round, the sender transmits parity bytes 7% of the
code block size; if the first round fails, in the second round,
the sender transmits parity bytes 25% of the code block size.
If both rounds of repair fail, this packet is retransmitted and
error correction may be attempted again. Pilot bits are em-
bedded in the data with which the Bit Error Ratio (BER) is
estimated and packets with high BER (more than 0.3 in our
current implementation) are not repaired with error correc-
tion. The 2RND driver is optimal based on the trace analysis
in [3] when no information about the error number is avail-
able. It is, however, not the ZipTx driver which dynamically
chooses the number of parity bytes [3].

Unless otherwise specified, the retransmission at the link layer
is disabled because they are not as efficient as other repair meth-
ods. This may lead to an additional boost of performance except
to ORIG because of the absence of additional exponential backoff
upon a loss event; however, our main focus is the gain of Unite over
other drivers that also disable link layer retransmission.

Figure 5: The measured link throughput of various drivers
when the erasure ratio is no more than 0.2.

Figure 6: CPU load when the erasure ratio is no more than 0.2.

6.1.2 Experiment Setup and Methodology
We use one laptop acting as the sender and one laptop acting as

the receiver where the receiver runs the real time kernel. We ran-
domly choose 60 sender and receiver locations; for each location,
each driver runs for 45 seconds at 54 Mbps. The sender and receiver
locations in the some of the experiments, for example, are shown in
Figure 4. The results of other data rates are not shown because they
tend to have fewer partial packets than 54 Mbps, and basically du-
plicate the results of low partial ratio at 54 Mbps. The sender gen-
erates 3000 packets per second, where each packet is 1500 bytes.
The generated load is slightly higher than the maximum data rate
that can be supported by the link, after considering the overhead
such as SIFS, DIFS, etc., to saturate the link. In this set of exper-
iments, β is set to be 0.2. ORIG sometimes collapses under high
partial ratios; we collect data for ORIG when its throughput is not
zero.
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Figure 7: Throughput comparison of Unite with other drivers when the erasure ratio is no more than 0.2.

Ideally, the comparison between the drivers should be carried out
under the same the channel condition. This is a challenge in prac-
tice because the wireless channel constantly fluctuates even when
the sender and receiver are stationary, and it is impossible to re-
play the channel condition experienced by one driver to another
driver. Therefore, we can only compare the drivers when they are
under similar channel conditions. To obtain more samples for each
channel condition, we divide an experiment trace into one-second
segments and classify each segment according to the channel con-
dition in this second. As the wireless channel may be fluctuating,
the experiment in one sender and receiver location contributes to
measurements under multiple channel conditions. Another practi-
cal challenge is the metric of the channel condition. It should be
related to the physical layer characteristics; however, the wireless
card we use reports only RSSI which is important but is known to
be insufficient as the metric of the channel condition for data de-
livery with OFDM [16]. We note that the channel conditions most
relevant to the performance of the repair schemes are the erasure
ratio and partial ratio, which can be measured by the driver itself.
The erasure ratio and the partial ratio are therefore used as the met-
ric for channel conditions.

We classify channels into two bins, one with erasure ratio no
more than 0.2 and the other with erasure ratio more than 0.2. We
show more detailed analysis of the first bin because the second bin
represents highly corrupted channels for the rate and is unlikely to
be used by the rate selection algorithm. The measurement in the
second bin is shown in Section 6.2.

6.1.3 Throughput Comparison
Figure 5 shows the average throughput for various partial ratios

when the erasure ratio is no more than 0.2. We can see that Unite
has higher throughput than other drivers in all partial ratios, and the
gain is higher when the partial ratio is higher. This confirms that

Unite achieves higher performance than other recovery schemes by
better exploiting partial packets.

6.1.4 CPU Load Comparison
We also measure the CPU load of the receiver for different drivers

during the experiment with vmstat. Similar to [3], we use the total
CPU load as an estimate of the CPU load caused by the drivers,
as no other application is running during the experiment and the
operating system typically does not consume significant CPU time.
When the receiver receives the first packet, a signal is sent to the
program that collects the CPU load to synchronize the driver and
the CPU load measurement.

Figure 6 shows the average CPU load for various partial ratios
when the erasure ratio is no more than 0.2. As expected, ORIG and
BLCK have the smallest CPU load, both around 17%, because they
do not require any software decoding. Unite’s average CPU load
is below 31.4%. EOLY’s average CPU load is below 35.8%. This
suggests that Unite complies with the CPU time constraint which
is set to be 0.2 in this set of experiments, noting that the constraint
is only for the decoding time while the driver also needs CPU for
other tasks which will consume similar CPU resources as ORIG.
2RND’s CPU usage, however, is much higher than the rest of the
drivers, which confirms that the software decoding may consume
high CPU resources in practical settings.

6.1.5 Fine-grained Throughput Comparison
Figure 7 shows more detailed information about the throughput

of the drivers when the erasure ratio is no more than 0.2, where we
show the throughput of each one-second segment with regarding
to the partial ratio. For better visibility, each plot shows the per-
formance of Unite with one other compared driver. It can be seen
that the performance of ORIG decreases almost linearly with the
partial ratio, which is because to ORIG, a partial packet is a lost
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Figure 8: Throughput comparison of Unite with other drivers when the erasure ratio is more than 0.2.

packet and must be retransmitted. 2RND achieves much better per-
formance than ORIG when the partial ratio is small, e.g., around
5%, because most partial packets have very few errors in this range
which can be efficiently repaired by 2RND. However, as the partial
ratio increases, the performance of 2RND drops sharply, which is
because its fixed repair schedule cannot cope with the highly dy-
namic nature of the error distribution in the partial packets. BLCK
performs reasonably well when the partial ratio is low; however, as
the partial ratio increases, it drops very sharply. Note that the prob-
ability that the repair data is corrupted increases with the partial
ratio. EOLY is better than these drivers but is still outperformed by
Unite. Note that Unite adopts more repair methods than EOLY and
TEC is much more efficient than HEC such that Unite can repair
more partial packets with error correction.

6.2 Measurements when Erasure Ratio is More
Than 0.2

Our experiments also include cases when the erasure ratio is
more than 0.2, which are shown in Figure 8. As mentioned earlier,
this represents channels that are highly corrupted. We collected a
reasonable amount of data for Unite but not for some of the other
drivers. In general, Unite still outperforms other drivers. It can
be observed that in some cases, the throughput increases with the
partial ratio, which is because an increase of the partial ratio likely
means a decrease of the erasure ratio. This is not observed in Fig-
ure 7 because the erasure ratio there is bounded from above and an
increase of the partial ratio likely means a decrease of the correct
ratio.

6.3 Repair Method Failure Ratio of Unite
A repair attempt may fail due to a number of reasons. For block-

retran, it is mainly due to the corruption of repair data. For HEC

and TEC, it may be due to the underestimation of the number of
errors such that the sender sends an insufficient number of parity
bytes, or due to the corruption of repair data beyond the correction
capability of the transmitted parity bytes. Figure 9 shows the frac-
tion of partial packets repaired by HEC, TEC and block-retran that
fail in the first repair attempt collected in the same set of data as in
Section 6.1. We can see that the failure ratios of HEC and TEC are
usually low, e.g., no more than 5%, except when the partial ratio
is above 60%, in which case they are still no more than 10%. This
implies that AMPS gives good estimations. Block-retran has the
highest failure ratio, which is because it has no protection for the
repair data while the methods based on error correction are more
resilient to the errors in the repair data.

To verify the error estimation accuracy, we collected data for
the packets repaired with HEC. We denote the actual maximum
number of errors among the code blocks as z. An underestimation
is defined as the event when ẑ < z, and the overestimate number
is defined as ẑ − z when ẑ ≥ z. We find that the underestimation
percentage is 2.52%. Figure 10 shows the PDF of the overestimate
number, where we can see that the overestimate number is also very
small in most cases with a median of 3.

6.4 Unite under Different CPU Time Constraint
Unite’s performance is determined by how much recourse it is

allowed to consume. We conduct another set of experiments when
the CPU time threshold β is set to be 0.1, 0.2, 0.3, 0.4, and unlim-
ited at same set of locations as the experiments in Section 6.1 at
54 Mbps. When the load is unlimited, no scheduling algorithm is
run and all packets qualified for TEC are repaired with TEC; other
packets, if qualified for HEC, are repaired with HEC.

Figure 11 and Figure 12 show the throughput and measured CPU
load for different β, respectively. We can see that when the partial



Figure 9: The percentage of HEC, TEC and block-retran that
failed in the first attempt.
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Figure 10: PDF of overestimated number of errors.

Figure 11: Throughput when varying the CPU time constraint
for Unite.

Figure 12: CPU load measurement when varying the CPU time
constraint for Unite.

ratio is no more than 40%, the throughputs are similar which is
because the demand for CPU time is still below the lowest thresh-
old: as can be seen in Figure 12, the CPU loads for different β are
similar. When the partial ratio is higher, larger β leads to larger
throughput and also more CPU load. This confirms that Unite is
capable of capitalizing the allowed CPU resource for higher link
throughput. The measured CPU load is never higher than 50%
even for the unlimited, because the heavily corrupted packets are
not qualified for HEC or TEC and are repaired with block-retran,
such that the demand of the decoding time is not excessively high.

The key feature of Unite is that it supports multiple repair meth-
ods and makes dynamic selections of the repair methods. Figure 13
shows the number of packets repaired by different methods per sec-
ond for various partial ratios and various β. We can see that when
partial ratio is no more than 40%, the majority of packets are re-
paired by TEC, and the selections under different β are similar.
This is again because the demand of the decoding time is low such
that the CPU time is not yet a constraint. For a partial ratio higher
than 40%, with a larger β, more partial packets are repaired and
more packets are repaired with HEC which is more time consum-
ing. It can also been seen that as channel gets worse, more packets
are repaired with block-retran.

6.5 Unite under Different Feedback Frequency
We conduct another set of experiments to find the impact of the



Figure 13: The choice of repair method of Unite under different partial ratio and CPU time constraint.

feedback frequency. We define the delivery latency as the time
since a packet is realized by the receiver to the time the packet is
correctly delivered. Intuitively, a higher feedback frequency should
reduce the delivery latency; on the other hand, it leads to more feed-
backs thus more overhead and a lower throughput. The most effec-
tive way of controlling the feedback frequency is to set the packet
count threshold, which is the number of encountered partial and
erasure packets to trigger a feedback. Figure 14 shows the through-
put and the average delivery latency in one-second segments as a
function of the partial ratio, when packet count threshold is 4, 8, and
16 in the same set of locations as the experiments in Section 6.1.
Figure 15 shows the corresponding CDFs. We can see that vary-
ing the packet count threshold does have impact on the throughput;
however, somewhat surprisingly, the throughputs are similar when
the threshold is 4 and 8, while the throughput is actually smaller
when the threshold is 16 when the partial ratio is higher than 40%.
This suggests that under high partial ratios, more frequent feedback
is actually preferred. It can also been seen that setting the threshold
to 16 also leads to the highest delivery latency. It is worth noting
that under all threshold values, the latency is less than 10 ms when
the partial ratio is no more than 60%. For example, when the partial
ratio is around 20%, the delivery latency is around 7ms.

7. DISCUSSIONS AND FUTURE WORK
In this section, we discuss possible extensions and future works.

7.1 Extensions to Firmware/Hardware Imple-
mentation

Unite is currently implemented in software as a driver. The ad-
vantage of the software implementation, as mentioned earlier, is
that it allows more ubiquitous deployment than firmware imple-
mentations. It also possible to extend the idea of combining EC-

based with block-based approach of Unite to firmware implemen-
tations. Basically, when receiving a partial packet, the checksum
calculation and AMPS estimation can be carried out by the micro-
processor on the wireless card. A negative-ACK can be sent im-
mediately with the estimated number of errors and the checksums.
The sender, when receives this NACK, chooses a repair method.
The receiver, when receives the repair packet, recovers the origi-
nal packet. The implementation will result in similar throughput
performance as Unite; however, it has less jitter in packet latency
because every partial packet is repaired immediately,

One issue, however, is that the decoding of error correction code
requires a computational power that most likely exceeds the capac-
ity of the microprocessor on the wireless card; therefore, this ap-
proach cannot be implemented in the existing wireless cards. It is
still possible, however, if the decoding can be carried out by hard-
ware. The wireless card can incorporate some additional hardware
decoders, each capable of decoding up to certain number of errors
per codeword. The complexity of the decoding circuit increases
with the number of errors; fortunately, most partial packets contain
very few errors, such that there is no need to allocate decoders for
a large number errors. In case a partial packet contains too many
errors, it can be repaired with block-retran. To further reduce hard-
ware cost, it is also not necessary to allocate a decoder for each
possible number of errors. Several decoders with suitable spacings
can be allocated, and a partial packet can be sent to the smallest de-
coder capable of correcting all errors, at a cost of slightly increased
number of transmitted parity bytes. For example, we may employ
3 decoders capable of decoding 3, 6, and 10 errors per codeword,
respectively. The scheduling algorithm may have to be modified
considering the decoding speed of the hardware decoders.

7.2 Unite and Rate Selection
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Figure 14: Varying feedback frequency. (a) Throughput. (b).
Average delivery latency.

Unite provides novel packet repair methods which has implica-
tions on rate selection. The rate selection algorithm determines the
best data rate under a channel condition. With Unite, the rate selec-
tion algorithm may be able to select a higher rate than with other
drivers because Unite can function at such rate while others cannot.

Rate selection is an important topic of its own, and many algo-
rithms have been proposed [18, 17, 16]. Our focus in this paper
is the repair method for partial packets at any given data rate. The
major challenge for rate selection is that it is difficult to estimate the
packet delivery time of a rate when operating at another rate, be-
cause many issues influence the actual delivery time, including the
number of errors, the location of the errors, and even the schedul-
ing algorithm. One promising direction is to look into the physical
layer information. Recent works show that the autorate algorithms
can benefit significantly in terms of converging speed by using the
channel state information reported by the 802.11n cards [16]. We
will investigate how to incorporate the physical layer information
into Unite for rate selection in our future work.

8. CONCLUSIONS
In this paper, we propose Unite, a framework for efficient partial

packet recovery in 802.11 LANs. Unite combines the EC-based
and block-based repair method, and uses an error estimator to assist
intelligent selection among the methods. Our main contributions
include the following. First, we propose to combine the EC-based
and block-based repair methods and in particular, a novel repair
method, namely TEC. Second, we design an algorithm to make
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Figure 15: Varying feedback frequency. (a) CDF of through-
put. (b). CDF of average delivery latency.

selections among the repair methods, based on the error estimate
and also considering the host’s CPU load. We implement Unite
on the Madwifi and our experiments show that Unite outperforms
other recovery schemes.
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