
Practical Opportunistic Routing in High-Speed Multi-Rate
Wireless Mesh Networks

Wei Hu, Jin Xie, Zhenghao Zhang
Computer Science Department

Florida State University
Tallahassee, FL 32306, USA

{hu,xie,zzhang}@cs.fsu.edu

ABSTRACT
Opportunistic Routing (OR) has been proven effective for wireless
mesh networks. However, the existing OR protocols cannot meet
all the requirements for high-speed, multi-rate wireless mesh net-
works, including: running on commodity Wi-Fi interface, support-
ing TCP, low complexity, supporting multiple link layer data rates,
and exploiting partial packets. In this paper, we propose Practical
Opportunistic Routing (POR), a new OR protocol that meets all
above requirements. The key features of POR include: packet for-
warding based on a per-packet feedback mechanism, block-based
partial packet recovery, multi-hop link rate adaptation, and a novel
path cost calculation which enables good path selection by consid-
ering the ability of nodes to select appropriate data rates to match
the channel conditions. We implement POR within the Click mod-
ular router and our experiments in a 16-node wireless testbed con-
firm that POR achieves significantly better performance than the
compared protocols for both UDP and TCP traffic.

Categories and Subject Descriptors
C.2.2 [Computer-Communications Networks]: Network Proto-
cols – Routing protocols

General Terms
Algorithms, Design, Performance

Keywords
Opportunistic routing; Multi-rate; Partial packet recovery.

1. INTRODUCTION
Wireless mesh network is an attractive solution to extend net-

work coverage at low cost. In this paper, we consider mesh net-
work that consists of stationary mesh routers communicating with
each other via wireless links. The challenge in such networks is
to offer high performance over wireless links that are far less reli-
able than wired links due to noise, interference, and fading. It has

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MobiHoc’13, July 29–August 1, 2013, Bangalore, India.
Copyright 2013 ACM 978-1-4503-2193-8/13/07 ...$15.00.

been known that packet overhearing can be exploited to improve
the network performance, because the packet forwarding path can
be cut short when a packet is opportunistically received by nodes
closer to the destination. In the literature, this is often referred to as
Opportunistic Routing (OR).

To date, although many OR protocols have been proposed, such
as MORE [3], ExOR [5], MIXIT [4], SOAR [6], Crelay [27], none
can meet all the following five requirements we identify for wire-
less mesh networks.
Working with Existing Hardware: For practical reasons, a wireless
mesh network prefers existing technologies, such as Wi-Fi. Pro-
tocols that require specialized hardware such as MIXIT may have
weaker applicability.
Supporting TCP: Many important aspects of TCP, such as conges-
tion control, are optimized under the assumption that the lower
layer forwards individual packets. Therefore, protocols that send
packets in batches, including ExOR, MORE, and MIXIT, have in-
herent difficulty in supporting TCP [7]. We believe it is important
for a protocol to efficiently support TCP, given the ubiquitous de-
ployment of TCP and the practical infeasibility of modifying the
TCP implementations at end devices.
Low Complexity: To support high link layer data rates, the packet
processing in an OR protocol should preferably be simple. Pro-
tocols such as MORE, MIXIT, and Crelay have high computation
complexities in packet processing due to network coding or error
correction and cannot support high data rates.
Multi-Rate Support: A wireless link layer usually supports multi-
ple data rates; typically, lower data rates result in longer range and
better reception. The actual speed of the network is often largely
determined by a good rate selection algorithm. However, existing
OR protocols often overlook the rate issue and assume a single op-
erating rate.
Partial Packet Recovery: Partial packets, i.e., packets that contain
just a few errors, often exist in wireless transmissions. By default,
such packets are retransmitted; however, it is clearly more efficient
to repair such packets with partial packet recovery schemes. The
existing OR protocols with partial packets recovery are MIXIT and
Crelay; however, as mentioned earlier, both suffer high computa-
tion complexity.

In this paper, we propose Practical Opportunistic Routing (POR),
a new OR protocol which meets all the above requirements. POR
achieves this by adopting a software solution that intelligently for-
wards individual packets with a simple yet efficient per-packet feed-
back mechanism, augmented by block-based partial packet recov-
ery, efficient rate selection, and a novel path calculation method.
We implement POR in the Click modular router [23] and test it in a

c©ACM, 2013. This is the authors’ version of the work. It is posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version is published in Mobihoc 2013.

runs on TCP low com- multi- partial
Wi-Fi friendly plexity rates packets

MORE
√ × × × ×

ExOR
√ × √ × ×

MIXIT × × × × √

SOAR
√ √ √ × ×

Crelay
√ √ × × √

POR
√ √ √ √ √

Table 1: Protocols on practical requirements of OR.

16-node wireless testbed. Our results show that POR achieves sig-
nificantly better performance than other compared protocols. We
also demonstrate running TCP on top of POR, which, to the best
of our knowledge, is the first demonstration of unmodified TCP on
top of an OR protocol.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 gives an overview of POR. Section 4 de-
scribes the packet forwarding protocol. Section 5 describes routing.
Section 6 describes rate selection. Section 7 describes our experi-
mental evaluation. Section 8 concludes the paper.

2. RELATED WORK
In recent years, various OR protocols have been proposed and

implemented, e.g., MORE [3], ExOR [5], MIXIT [4], SOAR [6],
and Crelay [27]. We summarize the core differences between POR
and the existing protocols in Table 1. OR has also been studied the-
oretically, such as in [15] [16]. We note that our focus is the design
and implementation of a practical network protocol, which is dif-
ferent from finding theoretical network capacities [16]. The routing
algorithm proposed for anypath in [15] provides valuable insights;
however, the algorithm relies on the assumption that the packet re-
ceiving information at a node is known to every node, which can
be difficult to implement in practical networks.

Partial packet recovery has attracted much attention in recent
years [1, 2, 26]. We note that the existing works are typically devel-
oped for one-hop links while POR is developed for multi-hop net-
works. Rate selection is a classic topic in wireless networks. One of
the major components of POR is also handling multiple data rates.
However, POR is designed for multi-hop networks, therefore is dif-
ferent from rate selection algorithms for single-hop links such as
[10, 11, 12, 13, 14]. Rate selection for multi-hop networks has been
studied in [17, 18, 19] with focus on isolating collision loss from
channel loss; we note that POR solves many additional problems
in addition to rate selection and the solutions in [17, 18, 19] should
complement POR. Like OR, network coding is another interest-
ing approach that can improve the performance of wireless mesh
networks. Schemes such as COPE [8] have been proposed which
combine multiple packets from separate flows into one packet to
reduce the number of transmissions. We note that network coding
typically depends on the existence of multiple flows intersecting at
a common node to create coding opportunities, while OR schemes
such as POR can support both single flow and multiple flows be-
cause OR is based on packet overhearing. It is possible to combine
POR with network coding, which we leave to future works due to
the limit of space. It has also been proposed to adopt Time Division
Multiple Access (TDMA) in the Medium Access Control (MAC)
layer for mesh networks, which has shown notable performance
improvements over the Carrier Sensing Multiple Access (CSMA)
protocol adopted by Wi-Fi [9]. We note that POR mainly functions
in the network layer and can work in collaboration with the new
TDMA MAC to achieve even higher performance.

3. OVERVIEW
In POR, a packet is forwarded along a path, which is an ordered

list of nodes. Any POR path must satisfy the feedback constraint;
that is, any node on the path must be able to receive from its next
hop node to ensure the correct reception of possible feedbacks from
its downstream nodes. For simplicity, POR adopts source rout-
ing, i.e., the complete path is specified in the header of a packet.
Packet in POR is divided into blocks; the checksum of each block
is transmitted along with the packet such that a node can determine
whether or not a received block is corrupted. A node may attempt to
transmit blocks in a packet if none of its downstream nodes has re-
ceived such blocks; the received blocks are not transmitted. A node
announces the receiving status of a packet in a feedback frame; to
avoid transmitting a packet that has been overheard, a node will not
start to transmit a packet until a feedback from its downstream node
has been received or until a timeout. With POR, nodes learn the link
qualities at different data rates where the link quality is represented
by the Block Receiving Ratio (BRR) defined as the fraction of cor-
rectly received blocks in a packet. A node may send small probe
packets at selected rates such that its neighbors may discover the
link qualities at such rates and report them back. Based on the link
qualities, a node chooses the best data rate to minimize the packet
delivery time of a path. The path is selected according to a greedy
algorithm.

4. PACKET FORWARDING
The core of POR is its packet forwarding protocol discussed in

this section. The goal of the protocol is to achieve high perfor-
mance by exploiting packet overhearing and partial packets, and
the challenge is to achieve this goal at low complexity, low over-
head, while being friendly to TCP. To this end, we adopt a simple
solution in which nodes send individual packets and determine the
best strategy to forward each packet based on the per-packet feed-
back received from their downstream nodes. We discuss the details
of the protocol in the following; for each aspect, we first describe
the policy then add remarks to explain the policy. We refer to a
source and destination pair as a flow.

4.1 Dividing Packets into Blocks
Policy: The source node divides a packet into blocks and calculates
the checksums of the blocks which are transmitted in the frame
header along with the packet. In our current implementation, each
block is 150 bytes; the last block may be less depending on the
size of the packet. When a received packet passes the packet level
checksum test, there is no need to check the checksum for each
block; otherwise, the packet is a partial packet and the node com-
putes the checksums with the received blocks and compares them
with those received in frame header to locate the corrupted blocks.
In our current implementation, the checksum is 16 bits defined by
x16 + x15 + x2 + 1,
Remark: We note that dividing the packets into blocks allows POR
to exploit the partial packets. POR does not use 32-bit checksum
due to the better tradeoff between overhead and detection capability
of the 16-bit checksum.

4.2 Sending a Packet at a Forwarder
Policy: A forwarder refers to a node on the path that is not the
source or the destination. When a forwarder receives a packet with
a sufficient amount of correct blocks, set as 50% in our current im-
plementation, it adds the correct blocks of the packet to its queue.
The node will not transmit the packet immediately because one of
its downstream nodes may have received the packet or some blocks

of the packet correctly. Therefore, it will wait for a feedback of
the packet for up to a timeout, which is set to be 20 ms in our
current implementation, before sending any block of the packet.
If the node receives the feedback from the downstream nodes and
if the feedback indicates that it has all the blocks currently miss-
ing at the downstream nodes, it will schedule a transmission with
such blocks; it removes the packet if the feedback indicates that
the downstream nodes have no missing blocks. If it does not re-
ceive any feedback before the timeout, it will schedule a transmis-
sion for the entire packet if it received the packet correctly. The
node retransmits a packet or blocks in a packet when a retransmis-
sion timer expires if it has not been informed by the downstream
nodes that the packet or the blocks have been received correctly;
each retransmission is separated by at least 15 ms and a packet is
retransmitted up to 5 times, after which it is dropped.
Remark: We note that the key element of POR to exploit overhear-
ing is to hold a packet and wait for the feedback. Although a node
may hold a packet for up to 20 ms, in many cases, it may have re-
ceived a feedback and can send the packet much earlier. In addition,
through private communication with Madcity, a mesh network ser-
vice provider, a path in a mesh network typically has no more than
4-5 hops, such that holding a packet for 20 ms will not increase the
network delay excessively as the Internet packet delay is often in
the order of 100 ms. We also note that a node does not keep packets
with too few correct blocks because it will have to send feedbacks
for such packets; our current policy is a simple heuristic to reduce
the amount of overhead.

4.3 Exploiting Link Layer ACKs
Policy: In POR, when a packet is transmitted, it is encapsulated
into a frame with the MAC address of the next hop node as the
destination such that the next hop node may reply with a link layer
ACK if the packet is received correctly. If a node receives an ACK
for a packet, it immediately removes the packet from the queue;
otherwise, the node will start the retransmission timer.
Remark: The key advantage of exploiting the link layer ACK is
that it is sent immediately after the packet such that the node can
determine whether the packet has been received correctly much
faster than relying on the feedbacks. We note that encapsulating
a packet in a frame with a specific MAC address does not prevent
any other downstream nodes from overhearing the packet because
the nodes process all overheard packets regardless of the MAC ad-
dress. One potential problem may arise when a node receives a
packet correctly and automatically sends the link layer ACK, but
then is forced to drop the packet because the buffer is full. In this
case, the sender of the packet has also removed the packet and the
packet may be lost in the network. POR solves this problem by
making sure that the buffer is rarely full with the congestion con-
trol mechanism described in Section 4.6.

4.4 Sending Feedback
Policy: In POR, a node may schedule a feedback when: 1) it has
received a partial packet and is the next hop of the sender, or 2)
it has received either a complete or a partial packet but is not the
next hop of the sender. The feedback of a packet is 8 bytes con-
taining the packet source node and desalination node IDs both in 2
bytes, the sequence number in 2 bytes, and a bitmap of the received
blocks in 2 bytes where a bit ‘1’ indicates that the corresponding
block has been received correctly. A feedback may be sent imme-
diately or may be combined with other feedbacks belonging to the
same flow, in a feedback frame, to reduce the overhead. A feedback
frame contains only feedbacks and is addressed to the previous hop
node. A feedback frame may be sent under the following condi-

tions: 1) 15 ms since a feedback was scheduled, or 2) 8 new feed-
backs have been scheduled. A feedback frame may be acknowl-
edged in the link layer; POR does not have other acknowledgment
mechanisms for the feedback frames. To improve the reception, a
feedback frame is always transmitted twice and may be sent at a
lower rate than the data packets; in our current implementation, the
rate is highest rate with Packet Receiving Ratio (PRR) no less than
0.8 on the link to the previous hop node. A node also “propagates
the good news” when needed; that is, if the node receives a feed-
back from its downstream node, it will do a bitwise or with its own
bitmap of the packet and use the new bitmap as the feedback.
Remark: A node does not schedule feedback to its previous hop
node for complete packets because it should have sent the link layer
ACK. A node waits for up to 15 ms before sending the feedback
because its previous hop node holds the packet for up to 20 ms
before transmitting the packet.

4.5 Buffer Management
Policy: In POR, a node keeps a single buffer which holds packets
of all flows. In our current implementation, the buffer can hold 40
packets. In the buffer, packets belong to different flows are served
round-robin. Packets belong to the same flow are served according
to the sequence numbers, i.e., the packet with smallest sequence
number will be sent first. If a node received a link layer ACK or
a feedback for a packet indicating the downstream nodes have ob-
tained all the blocks, it removes the packet from the buffer.
Remark: POR has a shallow buffer because a large buffer may lead
to very long delay at the bottleneck links; the best action when con-
gestion occurs should be reducing the sending speed at the source.
POR sends packets with smaller sequence numbers first because
this helps reducing the out-of-order delivery which may reduce the
performance of TCP; we note that packets with larger sequence
numbers may be received first due to overhearing.

4.6 Congestion Control
Policy: In POR, if the queue length exceeds a threshold, set to
be half of the buffer size in our current implementation, the node
will set a “congestion” bit in the feedback frame and the upstream
node will cease to transmit any new packet to this node if it is the
next hop. The upstream nodes are still allowed to transmit blocks
for partial packets. Once the queue length is below the threshold,
the node may send a feedback again to allow the upstream node to
transmit.
Remark: This simple mechanism basically allows the node to
drain its queue before its buffer overflows. The congestion bit will
propagate from the bottleneck link back to the source because the
upstream nodes will experience the congestion condition in turn
when they cannot send packets to their downstream nodes.

5. ROUTING
POR adopts a customized routing module primarily because the

path cost metric with POR is different from the existing metrics
with its per-packet feedback and multiple data rates. We assume
the link quality information of all links in the network at all rates
are available to a node when it calculates paths, noting that the
link quality information can be propagated by solutions such as
that in OSLR [20]. Every node should compute the same path for
each source and dentation pair if the nodes have consistent link
quality information; as a protection against possible inconsistent
link quality information due to packet loss, POR still embeds the
entire path calculated by the source node in the header, which will
not incur too much overhead as the paths are typically not very

long in mesh networks. We note that the routing module involves
non-trivial calculations but will not hurt the overall simplicity of
the POR protocol because routes are updated infrequently.

5.1 Path Metric
The path metric used in POR is different from existing path met-

rics such as ETT and ETX with two key distinctions. First, POR
considers both the forward cost for sending data and backward cost
for sending feedback, because the feedback cost in POR is not neg-
ligible. Second, we note that the links can be of different qualities
at different times due to channel fluctuation. In this paper, we re-
fer to each quality as a state of the link. The path metric in POR
can capture the capability of nodes to adapt to the link qualities by
changing rates, while existing metrics typically assume the rates
are fixed.

We consider a given path denoted as (v1, v2, ..., vL). The path
cost calculation is carried out iteratively, starting from the node
closest to the destination. Therefore, when calculating the cost
of path (v1, v2, ..., vL), the forward and backward costs of path
(vi, vi+1, ..., vL) are known for 2 ≤ i ≤ L, denoted as Cvi

and
Bvi

, respectively.

5.1.1 Path Cost in Given State
We begin by finding the path cost when the links involving v1

are in a certain given set of states denoted as τ .
Forward cost: We first consider the forward cost, denoted as Cτ

v1
,

which is defined as the consumed air time in data transmission in
order to deliver a unit size block to the destination when the links
are in state τ . The cost of delivering a packet is clearly propor-
tional to the forward cost defined for a block. We assume the feed-
back is perfect and no node sends duplicate data. We denote the
BRR of link v1 → vi at rate ρj as µ

ρj ,τ

i . We use Cτ
v1,ρj

to denote
the air time consumed to deliver a unit size block to vL follow-
ing path (v1, v2, ..., vL), under the condition that v1 transmits at
rate ρj . Let ρ∗ denote the rate such that Cτ

v1,ρ∗ ≤ Cτ
v1,ρj

for any
j, which is clearly the optimal rate v1 should use. Assuming ρ∗

can be found by the rate selection algorithm, Cτ
v1

is clearly just
Cτ

v1,ρ∗ . We note that when v1 sends a block, if vi receives the
block correctly and is the one with the largest index, which occurs
with probability µ

ρj ,τ

i

QL

t=i+1
(1 − µ

ρj ,τ

t), vi will take over the
responsibility of forwarding the block to the destination; if none of
the downstream nodes of v1 receives the block, which occurs with
probability

QL

i=2
(1 − µ

ρj ,τ

i), v1 must repeat the process. There-
fore,

C
τ
v1,ρj

=
L

X

i=2

µ
ρj ,τ

i

L
Y

t=i+1

(1 − µ
ρj ,τ

t)(
1

ρj

+ Cvi
)

+
L

Y

i=2

(1 − µ
ρj ,τ

i)(
1

ρj

+ C
τ
v1,ρj

),

which can be reduced to

C
τ
v1,ρj

=

1

ρj
+

PL

i=2
µ

ρj

i

QL

t=i+1
(1 − µ

ρj

t)Cvi

1 −
QL

i=2
(1 − µ

ρj

i)
. (1)

Clearly, ρ∗ and Cτ
v1

can be found by a linear search.
Backward cost: We next consider the backward cost at v1, which
is denoted as Bτ

v1
and is defined as the consumed air time in feed-

back transmission in order to deliver a packet to the destination
when the links are in state τ . The backward cost should be con-
sidered because the routing algorithm may otherwise select a path
with too many nodes that may generate too many feedbacks. There

are two differences between the forward and backward costs calcu-
lation. First, for the backward cost, only the complete packets are
considered, because the feedback generating mechanism in POR is
complicated for partial packets and the partial packet percentage is
usually not very large. We note that with this simplification, the
PRR is the same as the BRR. Second, unlike the forward cost that
considers only the data transmission time, the backward cost con-
siders the transmission time of the entire frame, because the feed-
backs are small such that overhead such as frame header becomes
significant. Note that when v1 sends a packet P at rate ρ∗, if no
downstream node receives P, no feedback is sent. If at least one
of the downstream nodes receives P, the probability that vi is the
node with the largest index that receives P is

γi =
µ

ρ∗,τ

i

QL

t=i+1
(1 − µ

ρ∗,τ
t)

1 −
QL

i=2
(1 − µ

ρ∗,τ
i)

.

If i = 2, no feedback frames will be generated because v2 will
send a link layer ACK; otherwise, each of v3 to vi will generate a
feedback and v2 will generate a feedback in case it did not receive
P correctly with probability 1 − µ

ρ∗,τ
2 . Therefore, the backward

cost can be calculated according to

B
τ
v1

= γ2Bv2
+

L
X

i=3

γi[Bvi
+ (1 − µ

ρ∗,τ
2)η2 +

i
X

t=3

ηt] (2)

where ηt denotes air time vt uses to send one feedback. ηt can be
calculated according to the simplifying assumption that each feed-
back frame contains exactly 8 feedbacks, such that ηt is simply
one-eighth of the feedback frame duration. We note that the feed-
back constraint of POR is enforced by the backward cost calcula-
tion, because ηt will be very large for some node vt if vt cannot
find a good rate to send feedback.

5.1.2 Combining Path Cost in Multiple States
As mentioned earlier, a link may be of different qualities at dif-

ferent times and we call each quality a state. Eq. 1 and Eq. 2 find
the path cost when the links involving v1 are in a specific set of
states. The actual cost of the path is simply the weighted average
of the path costs in all possible sets of the link states, where the
weight of a set is simply the probability that the links are in this
particular set of states. If the probability that any individual link is
in any state is known, the probability that the links are in a set of
states can be calculated as the product of the individual link state
probabilities by assuming the links are independent.

A practical challenge is to limit the computation complexity, as
the number of sets can be very large. Therefore, in our current
implementation, we make two simplifications. First, we assume v1

can only reach nodes v2, v3, and v4 when applying Eq. 1 and Eq. 2.
Second, we assume each link has up to 3 states. Therefore, the total
number of sets is capped at 27.

We note that the first assumption is a simple heuristics that usu-
ally works reasonable well in practice because overhearing at more
than 3 hops away is usually rare. We support the second simplifi-
cation by experimental data. In our experiments, we first measure
the link qualities in 1-second intervals and generate for each link a
vector where each element represents the BRR of one rate in this
interval. In total, we measure 10 intervals, i.e., we have 10 vectors
for each link. We note that if a link has only one state, all 10 vec-
tors should be similar; otherwise, the vectors may appear as several
clusters where each cluster corresponds to one state. To verify this,
we run a clustering algorithm on the vectors. We define the clus-
tering distance as the total distance between the vectors and the
centers of the clusters they belong to. Fig. 1 shows the clustering

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

Distances

Cu
m

ul
at

ive
 F

ra
ct

io
n

of
 L

in
ks

1 Cluster
2 Clusters
3 Clusters
4 Clusters
5 Clusters
10 Clusters

Figure 1: CDF of clustering distance.

distance when we set the maximum number of clusters to be 1 to
10, where 10 has the minimum clustering distance because there
are only 10 vectors. We can see that: 1) the clustering distance can
be quite large for many links when the number of cluster is 1, which
means that many links have more than one state, and 2) the cluster-
ing distances are very small if the maximum number of clusters is
3 or above, which means that the links typically have no more than
3 states. The same clustering algorithm is used in POR implemen-
tation to classify the link states; we note that the probability that a
link is in a certain state can be determined by the number of vectors
in the cluster.

5.2 Finding the Path
We define the Optimal Practical Opportunistic Routing (OPOR)

problem as finding a path with minimum cost according to the cost
defined in Section 5.1. We report our findings about the theoret-
ical aspects of the OPOR problem in [28]. In this paper, due to
the limit of space, we describe the simple greedy routing algorithm
we adopt, which is inspired by the Dijkstra’s algorithm. The algo-
rithm maintains a set π which contains the nodes whose paths to
the destination have been determined; the set of nodes not in π is
denoted as π̃. Each node keeps up to w candidate paths, where w

is a constant set as 20 in our current implementation. Initially, π

contains only the destination node. The algorithm iterates until all
nodes have been added to π. In iteration i:

1. A node denoted as vi is added to π, if vi was previously in π̃

but has a candidate path with the least cost among all nodes
in π̃.

2. The candidate paths for all nodes in π̃ are updated. That is,
for a node in π̃ denoted as vj , the algorithm evaluates its old
candidate paths as well as new paths which starts with the
link vj → vi then reach the destination following the can-
didate paths of vi, and keeps w candidate paths with lowest
costs.

6. RATE SELECTION
POR employs a novel rate selection module to select the data

rate a node should use for a given path. The rate selection module
considers the link qualities of multiple hops, instead of considering
only the link to the next hop node, because a packet may be received
by multiple downstream nodes in POR. One challenge, therefore,
is to design the protocol to track the link qualities of multiple links.
We note that while a node may be able to track the link qualities to
its next hop node based on link layer ACKs, it may not be able to
track the link qualities to nodes further on the downstream directly.
Therefore, in POR, a node sends small dummy packets as probes
at selected data rates and the neighboring nodes can measure the

link qualities and report them back in special feedback frames. The
key distinction between path calculation and rate selection is that
the rate selection adapts to the instantaneous states of the links. A
node may carry traffic for multiple flows; however, as each flow
follows the same set of rules for rate selection, in the following, we
will describe rate selection for one flow. The only additional issue
with multiple flows is that the set of probed rates is the union of the
probed rates of all flows.

6.1 Candidate Rates
Policy: We refer to the rates that should be probed as the candidate
rates. The policies for determining the set of candidate rates at any
moment are:

1. A rate in hiatus is not eligible, where a rate is in hiatus if it
has been probed within the last 2 seconds.

2. A rate is eligible if the path cost according to its estimated
BRRs is lower than the current path cost. For a rate, we de-
fine its lower neighbors as the rates lower than itself. We
define the immediate lower neighbor as the highest lower
neighbor currently in hiatus. If the immediate lower neigh-
bor exists, the estimated BRRs are set as those of the imme-
diate lower neighbor; otherwise, the estimated BRRs to the
next two hops are assumed to be 1 and others 0. To calculate
the path cost at any rate, the link BRRs of the target rate are
plugged into Eq. 1 and Eq. 2; we note that the calculation
does not have to iterate through multiple link states because
the path cost for rate selection is the cost under the instanta-
neous link state.

3. If there are multiple eligible rates, the lowest 3 rates are
added to the candidate set.

Remark: We make the following observations about candidate se-
lection.
Observation 1. The hiatus mechanism prevents repeatedly probing
a same rate.
Observation 2. If a rate is not in hiatus, its estimated BRRs are
likely better than its actual BRRs because the estimated BRRs are
either assumed to be the BRRs of the lower rates or simply 1 to
nearby nodes. As a result, the path cost of the optimal rate based
on its estimated BRRs are lower than the actual cost, which will
ensure that it will be probed.
Observation 3. When determining the estimated BRRs for a rate
without an immediate lower neighbor, a node assumes ideal BRRs
only 2 hops away, because overhearing at more than 2 hops away is
very rare if the path has been selected correctly; on the other hand,
assuming ideal BRRs at nodes further downstream may be overly
optimistic and may result in more unnecessary candidate rates.
Observation 4. No more than 3 rates are probed at any time to limit
the overhead in probing. The probed rates will be in hiatus and
eventually all eligible rates will be probed.
Observation 5. Adding the lowest 3 rates to the candidate set is
a simple heuristic based on the following observation. We note
that rate change is needed when channel changes. If the channel
condition deteriorates, the optimal rate should be lower than the
current rate and giving lower rates higher priority is clearly correct.
If the channel condition improves, the optimal rate is higher than
the current rate; in this case, the BRRs of the current rate are likely
very good such that many lower rates will not appear better than
the current rate, therefore not eligible, even when assuming ideal
BRRs.

Observation 6. We define the tracking time as the time the node
switches to the optimal rate when channel changes. We argue that
the tracking time is fast when the channel condition deteriorates
and is bounded when the channel condition improves, which is the
desired behavior. We note that

• If the optimal rate is not in hiatus when the channel changes,
as explained earlier, it will be probed, and will appear better
than the current rate. In POR, the optimal rate is probed after
a delay in the order of 100 ms. The node may spend time on
rates that appear better than the optimal rate based on mea-
surements taken before the channel change; however, it will
soon realize that such rates are worse than the optimal rate.
Therefore, the tracking time in this case is in the order of 100
ms.

• If the optimal rate is in hiatus when the channel changes,
there are two cases. If the channel condition deteriorates, the
path cost based on the old measurements will be better than
the true path cost of the optimal rate; therefore, the optimal
rate will be set as the current rate even before its measure-
ments expires, and the tracking time should be small. If the
channel condition improves, it may happen that the old mea-
surements of the optimal rate do not indicate that it is a good
rate; however, it will likely be probed after it comes out of
the hiatus, such that the tracking time, although longer, is
still bounded.

6.2 Probing
Policy: In our current implementation, a node transmits probe pack-
ets which contain one block at each candidate rate every 5 ms; for
each probed rate, it sends a total of 20 probe packets each with a
unique sequence number, after which it stops probing and will be
expecting a special type of feedback called the link quality feed-
back. A node sends a link quality feedback every 100 ms, which
contains all the measured BRRs from all links collected in the last
100 ms. A node will update the link quality records after receiving
the feedback; it assumes the BRR is 0 if it cannot receive any feed-
back for a rate to another node 200 ms after it sends the first probe
packet.
Remark: The probe packets have sequence numbers and are sent at
fixed intervals; therefore, a node knows when the probing finishes
and can send the feedback in time, even when it fails to receive the
last probe packet in the batch. A node waits for 200 ms for a link
quality feedback because by this time, it should have received the
feedback unless the other node did not send the feedback or the
feedback was lost, in either case an assumption of 0 as the BRR
is reasonable. We experimentally evaluate the overhead of POR
including probing in Section 7.

6.3 Rate Update
Policy: POR constantly monitors the link qualities at the current
rate and updates the current rate if its path cost is higher than an-
other rate currently in hiatus. POR updates the BRR of the current
rate on the link to the next hop based on feedbacks and the link
layer ACKs. POR updates the BRRs of the current rate on links to
nodes further downstream based on the feedbacks from such nodes.
The path cost of the current rate is reevaluated every time the BRR
entries for the current rate is updated. The set of candidate rates is
also refreshed every time the path cost of the current rate is updated.

6.4 Tests in Emulated Wireless Channel
We did a separate set of experiments specifically for the rate se-

lection module because rate selection is difficult to evaluate in real-

0 500 1000 1500 2000 25000

0.2

0.4

0.6

0.8

1

Tracking Time(ms)

Cu
m

ul
at

ive
 F

ra
ct

io
n

of
 F

lo
ws

Case 1
Case 2
Case 3
Case 4

Figure 2: CDF of tracking time in 4 different cases.

world wireless channels. We note that the rate selection module can
be verified if it can be shown that the node always converges to the
optimal rate in a timely manner. The challenge is that the wireless
channels may constantly fluctuate such that it is often not possible
learn the actual optimal rates during the experiments. Therefore,
we design emulated channel experiments in which the nodes are
very closely located such that real packet losses are rare; artifi-
cial packet losses and partial packets are introduced by inserting
errors to certain packets according to the emulated channel condi-
tions. We deploy a 3-node path and investigate the rate selection at
the source node, because packet overhearing at nodes more than 2
hops away are rare such that rate selection is mainly dependent on
the link qualities to the next 2 hops. Initially, the emulated chan-
nels are set at certain qualities and each node is set to run at the
optimal rate under such link qualities; the link qualities are then
changed randomly at a random time and stays the same for the rest
of experiment.

We show in Fig. 2 the CDFs of tracking time in 4 cases:

• Case 1: The channel becomes better while the optimal rate is
not in hiatus at the change. The tracking time is reasonably
small, i.e., less than 300 ms, which is because the rate selec-
tion module will likely probe the optimal rate shortly after
the channel change if the optimal rate is not in hiatus.

• Case 2: The channel becomes better while the optimal rate
is in hiatus at the change. The tracking time is much larger
and can be as large as around 2000 ms, which is because the
optimal rate will be probed after it comes out of hiatus, while
it can stay in hiatus for as long as 2000 ms after the channel
change.

• Case 3: The channel becomes worse while the optimal rate
is not in hiatus at the change. The tracking time is similar
to Case 1 because rate selection module will likely probe the
optimal rate shortly after the channel changes.

• Case 4: The channel becomes worse while the optimal rate is
in hiatus at the change. It is interesting to notice that the track
time is much smaller than that in Case 2. This is because at
the time of the channel change, the existing record of the
optimal rate, which was taken before the channel change, is
better than its actual condition; as a result, the optimal rate
will appear as a good rate to be attempted and will be subse-
quently set as the current rate before it comes out of hiatus.

Overall, we can see that the experiments confirm our observation
that the rate selection module will converge to the optimal rate af-
ter a channel change, while the convergence is much faster if the
channel becomes worse.

7. EVALUATION
We implement POR within the Click modular router [23]. In

this section, we describe our experimental results under single-flow
UDP, multi-flow UDP, and TCP. We compare POR with two other
schemes with the implementation from [24]: MORE, which is the
benchmark OR protocol, and SPP, which is the traditional short-
est path routing protocol without exploiting overheard packets and
partial packets.

7.1 POR for A Single UDP Flow
7.1.1 Experiment Setup

Our testbed consists of 16 nodes which are laptop computers
with the Cisco Aironet wireless card [22], scattered in one floor
of a university building as shown in Fig. 3. We set wireless card
in the 802.11a 5 GHz band where is no other traffic. To reduce the
communication range and create multi-hop networks, we set the
transmission power to be the minimum at 1 dBm and allow link
rate at 24 Mbps or higher; we note that the experiments still cover a
wide range of data rates from 24 Mbps to 54 Mbps. We connect all
nodes with an additional Ethernet network which is a requirement
to run MORE and SPP [24]. As MORE does not support multiple
data rates, we set all nodes at the same rate of 24 Mbps in MORE
experiments, because the results in earlier experiments with similar
setup show that 24 Mbps tends to be the best among all rates for
single rate networks. For SPP, we enable the auto-rate algorithm of
the Madwifi driver [21] to adapt to the best rate of individual link.
In each experiment, we send UDP packets of 1500 bytes from a
source to a destination, referred to as a flow. We collect the results
of 105 flows with path length no less than 2 according to POR; the
number of flows with path lengths from 2 to 7 are 40, 32, 18, 8,
4, and 3, respectively. Each experiment lasts 65 seconds. Before
running an experiment, we collect measurements of link quality,
which are fed to SPP, MORE, and POR for routing computations.

(a)

(b)

Figure 3: (a). The layout of the testbed. (b). Testbed in the
hallway.

7.1.2 Throughput Comparison
We run SPP, MORE and POR in turn for the selected flows.

Fig. 4 shows the scatter plot of POR v.s. SPP and POR v.s. MORE,
where each data point represents a flow with the throughputs of
POR and the compared scheme as the y-coordinate and x-coordinate,
respectively. We can see that POR is significantly better than SPP
or MORE in most flows.

0 200 400 600 800 10000

200

400

600

800

1000

SPP Throughput [pkt/s]

PO
R

Th
ro

ug
hp

ut
 [p

kt
/s

]

0 200 400 600 800 10000

200

400

600

800

1000

MORE24 Throughput [pkt/s]

PO
R

Th
ro

ug
hp

ut
 [p

kt
/s

]

Figure 4: Scatter plot of the flow throughput.

0 200 400 600 800 10000

0.2

0.4

0.6

0.8

1

Throughput [pkt/s]

Cu
m

ul
at

ive
 F

ra
ct

io
n

of
 F

lo
ws

SPP
MORE24
POR24
POR

Figure 5: CDF of the flow throughput with POR24.

7.1.3 Throughput Analysis
The throughput gain of POR may be due to many reasons, such

as exploiting overheard packets, supporting multiple rates, partial
packet recovery, and better path selection. To verify the sources of
the gain, we run more experiments with different configurations of
POR.

First, we configure POR to run at a fixed rate of 24 Mbps, same
as MORE, referred to as POR24. Fig. 5 shows the CDF of the
throughputs of SPP, MORE, POR24, and POR. We observe that: 1)
POR achieves significant gain due to good rate selection, which is
evident from the performance difference between POR and POR24,
and 2) POR efficiently exploits overheard packets with its feed-
back mechanism because POR24 can still achieve notable gains
over MORE under the same rate.

Second, we run a modified version of POR referred to as cpPOR,
which disables the reception of partial packets, where ‘cp’ stands
for complete packet. Fig. 6 shows the CDF of the throughputs of
SPP, MORE, cpPOR, and POR. We observe that partial packets
recovery leads to significant gain, which is evident from the perfor-
mance difference between POR and cpPOR.

Third, we run POR_M, in which the path cost is calculated as-
suming each link has only one state. Fig. 7 shows the through-
puts of SPP, MORE, POR_M, and POR. We can see that when the
throughput is high or low, POR_M performs similar as POR; in be-
tween, POR achieves higher throughput than POR_M. We believe

0 200 400 600 800 10000

0.2

0.4

0.6

0.8

1

Throughput [pkt/s]

Cu
m

ul
at

ive
 F

ra
ct

io
n

of
 F

lo
ws

SPP
MORE24
cpPOR
POR

Figure 6: CDF of the flow throughput with cpPOR.

0 200 400 600 800 10000

0.2

0.4

0.6

0.8

1

Throughput [pkt/s]

Cu
m

ul
at

ive
 F

ra
ct

io
n

of
 F

lo
ws

SPP
MORE24
POR_M
POR

Figure 7: CDF of the flow throughput with POR_M.

this is because links have fewer states when they are either very
good or very bad; in between, they have more states and POR can
better capture the true cost of such links and find better paths.

7.1.4 Various Aspects of POR
We also process the log files to examine various aspects of POR.

Overhead: POR’s overhead include the following. First, the op-
portunistic routing coordination overhead, which is mainly the feed-
back frames. Second, the multi-rate probe overhead, which is mainly
the probe packets. Third, the partial packet recovery overhead,
which includes the headers and checksums in POR data packets.
To quantitatively measure the overhead, we define the overhead
percentage of a flow as the total air time all nodes transmit the over-
head over the total air time all nodes transmit packets. We note that
this takes into account the possibility that two nodes may transmit
simultaneously due to spatial multiplexing. Fig. 8 shows the CDF
of the overhead percentage of POR for each flow, where we can see
that the overhead is reasonably low with a median of 10.36%.
Duplicate Percentage: We say the transmission of a data block is
a duplicate if at least one of the downstream nodes has received
the block correctly. To measure the duplicate percentage, in the

5 10 15 20 25 300

0.2

0.4

0.6

0.8

1

Overhead Percentage

Cu
m

ul
at

ive
 F

ra
ct

io
n

of
 F

lo
ws

Figure 8: CDF of the overhead percentage.

0 2 4 6 8 10 12 140

0.2

0.4

0.6

0.8

1

Duplicate Percentage

Cu
m

ul
at

ive
 F

ra
ct

io
n

of
 F

lo
ws

Figure 9: CDF of the duplicate percentage.

H2 H3 H4 H5 or more0

0.05

0.1

0.15

0.2

0.25

Lo
st

 R
at

io
Figure 10: Packet lost ratio.

experiments, each node increments a counter when it receives a
block, and increments another counter when the received block is
already in the buffer. To avoid a transmission being counted more
than once, a node only increments the counters for transmissions
from its previous hop node. In the end, we sum up the two counters
of all nodes and use the ratio as an approximation of the fraction
of the duplicate. Fig. 9 shows the CDF of the duplicate percent-
age, where we can see that POR achieves a very small duplicate
percentage with a median of 3.29%. This further confirms that the
feedback mechanism is effective and allows nodes to avoid unnec-
essary transmissions.
Packet Loss: Fig. 10 shows the boxplot of the end-to-end packet
lost ratio of each flow classified according to path lengths. We
can see that POR maintains a low end-to-end packet lost ratio: the
median of the lost ratio is less than 1% when the number of hops is
no more than 3, and is less than 5% when the number of hops is 4.
We note that in practical mesh networks, paths of length more than
4 are rare because such paths cannot sustain high throughput. In
addition, we find that the longer paths in our experiments usually
contain very bad links and loss is in some sense inevitable. Fig. 11
shows the relation between packet lost ratio and path cost when the
hop count of path is 4. The results indicate that packet lost ratio
increases when the path cost increases, which is because high cost
paths may include some very bad links.
Packet Delay: Fig. 12 shows the boxplot of end-to-end packet de-
lays of POR classified according to path lengths. We can see that
the packet delays are typically around 100 ms and the variance is
reasonably small for short paths.
Queue Length: Fig. 13 shows the CDF of the average node queue
length for nodes on the packet forwarding path in each experiment.
We can see that in most cases, the buffers are not full and the queue
lengths are around 10 packets, which confirms that the congestion
control mechanism works reasonably well.

0 0.05 0.1 0.15 0.20

0.05

0.1

0.15

0.2

Path Cost

Lo
st

 R
at

io

Figure 11: Packet lost ratio and path cost.

H2 H3 H4 H5 or more0

100

200

300

400

500

De
la

y
pe

r F
lo

w
[m

s]

Figure 12: Packet delay.

7.2 POR for Multiple UDP Flows
We also run experiments to demonstrate the capability of POR to

support multiple flows in a testbed similar to that for the single-flow
UDP experiments. Since the MORE implementation at [24] does
not support multiple flows, we compare POR only with SPP. We run
40 experiments by randomly choosing source and destination pairs,
varying the number of random active flows in the network from 2
to 4. Fig. 14 show the average per-flow throughput as a function
of the number of flows. The throughput of multiple flows depends
on many issues out of the scope of this work, such as network-
wide load-balancing; still, we can see that POR achieves higher
throughput than SPP.

7.3 TCP Performance with POR
We also run TCP experiments on top of POR. To the best of our

knowledge, prior to this, no demonstration has been made to run
TCP on top of an OR protocol, because many existing OR protocols
require packet batching and many will disrupt packet order. In the
single UDP flow experiments, we have demonstrated that POR can
achieve low end-to-end loss and delay, which should allow POR to
support TCP. To verify this, we implement a standard TCP with the

0 10 20 30 400

0.2

0.4

0.6

0.8

1

Queue Length

Cu
m

ul
at

ive
 F

ra
ct

io
n

of
 F

lo
ws

Figure 13: CDF of the average queue length.

2 3 40

100

200

300

400

500

Number of Flows

Th
ro

ug
hp

ut
 [p

kt
/s

]

SPP
POR

Figure 14: Average flow throughput with multiple flows.

0 200 400 600 800 1000 12000

0.2

0.4

0.6

0.8

1

Throughput [KB/S]

Cu
m

ul
at

ive
 F

ra
ct

io
n

of
 F

lo
ws

SPP
PORTCP
PORUDP

Figure 15: CDF of the TCP throughput on top of SPP and POR
and UDP throughput on top of POR.

available code from [25] within the Click modular router [23]. We
run TCP on top of POR and SPP in a testbed similar to that for the
single-flow UDP experiments for 46 flows. We also run UDP on
top of POR during the experiments to find the upper bound of the
throughput.

Fig. 15 shows the CDF of the TCP throughput on top of SPP and
POR, as well as the CDF of UDP throughput on top of POR. We can
see that POR achieves a sizable gain over SPP for TCP. We believe
this is the first real-world demonstration of unmodified TCP over
an OR protocol with a performance gain. The TCP throughput
of POR is less than UDP, which is partly because TCP has both
the forward flow for data and the backward flow for TCP ACKs,
partly because TCP responds to packet loss and packet reordering
by cutting down the sending rate.

Fig. 16(a) shows the CDF of the average number of TCP time-
outs per second in our experiments. We can see that TCP has less
timeouts when running on top of POR than on SPP. This is be-
cause in SPP, congestion collapse can also trigger the timeout; on
the contrary, POR adopts a congestion control mechanism to pre-
vent congestion in the network. Fig. 16(b) shows the CDF of the
average number of TCP fast retransmissions per second in our ex-
periments. We can see that TCP tends to have more fast retrans-
missions on top of POR than on SPP. In POR, packets within the
same TCP flow may travel through different nodes toward the des-
tination, resulting in out-of-order reception at the destination. Such
out-of-order reception is undesirable because TCP may interpret an
out-of-order reception as a lost packet, and invoke fast retransmis-
sion to resend the packet as well as reducing the congestion window
size. In an OR protocol, out-of-order receptions are inevitable be-
cause overheard packets, by their nature, arrive out-of-order. POR
controls out-of-order reception by forwarding packets with smaller
sequence number first; we can see that the number of actual fast re-
transmissions is reasonably small with a median around 5. More
importantly, POR compensates for the performance loss due to

0 20 40 60 800

0.2

0.4

0.6

0.8

1

Number of Timeouts per Second

Cu
m

ul
at

ive
 F

ra
ct

io
n

of
 F

lo
ws

SPP
POR

(a)

0 5 10 15 200

0.2

0.4

0.6

0.8

1

Number of Fast Retransmissions per Second

Cu
m

ul
at

ive
 F

ra
ct

io
n

of
 F

lo
ws

SPP
POR

(b)

Figure 16: (a). CDF of TCP timeouts per second. (b). CDF of
TCP fast retransmissions per second.

out-of-order receptions with other mechanisms and still achieves
throughput gain over SPP.

8. CONCLUSIONS
In this paper, we propose POR, a new Opportunistic Routing

(OR) protocol for high-speed, multi-rate wireless mesh networks
that runs on commodity Wi-Fi interface, supports TCP, has low
complexity, supports multiple link layer data rates, and is capable
of exploiting partial packets for high efficiency. We believe POR is
the first OR protocol that meets all such requirements, and thus sig-
nificantly advances the practicability of OR protocols. POR adopts
a per-packet feedback mechanism in packet forwarding to avoid
sending data that has been received by the downstream nodes. POR
also incorporates a block-based partial packet recovery scheme, a
multi-hop link rate adaptation scheme, and a novel path cost calcu-
lation method which enables good path selection. We implement
POR within the Click modular router. Our experiments in a 16-
node testbed confirm that POR achieves significantly better perfor-
mance than the compared protocols. We also demonstrate running
unmodified TCP on POR, which is the first demonstration of un-
modified TCP on an OR protocol with performance gain over tra-
ditional routing protocol to the best of our knowledge. Our future
work includes extending POR to exploit features in 802.11n and
802.11ac networks.

9. REFERENCES
[1] K. Lin, N. Kushman, and D. Katabi, “ZipTx: Harnessing partial

packets in 802.11 networks,” in ACM Mobicom, 2008.
[2] B. Han, A, Schulman, F. Gringoli, N. Spring, B. Bhattacharjee, L.

Nava, L. Ji, S. Lee, and R. Miller, “Maranello: Practical partial
packet recovery for 802.11,” in USENIX NSDI, 2010.

[3] S. Chachulski, M. Jennings, S. Katti and D. Katabi, “Trading
structure for randomness in wireless opportunistic routing,” in ACM
Sigcomm, 2007.

[4] S. Katti, D. Katabi, H. Balakrishnan and M. Medard, “Symbol-level
network coding for wireless mesh networks,” in ACM Sigcomm,
2008.

[5] S. Biswas and R. Morris, “Opportunistic routing in multi-hop
wireless networks,” in ACM Sigcomm, 2005.

[6] E. Rozner, J. Seshadri, Y. A. Mehta, and L. Qiu. “SOAR: Simple
opportunistic adaptive routing protocol for wireless mesh networks,”
IEEE Transactions on Mobile Computing, vol. 8, no. 12, pp,
1622-1635, 2009.

[7] T. Li, D. Leith, and L. Qiu, “Opportunistic routing for interactive
traffic in wireless networks,” in IEEE ICDCS, 2010.

[8] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“XORs in the air: Practical wireless network coding,” in ACM
Sigcomm, 2006.

[9] V. Sevani, B. Raman and P. Joshi, “Implementation based evaluation
of a full-fledged multi-hop TDMA-MAC for WiFi mesh networks",
IEEE Transactions on Mobile Computing, to appear.

[10] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Predictable 802.11
packet delivery from wireless channel measurements,” in ACM
Sigcomm, 2010.

[11] G. Judd, X. Wang, and P. Steenkiste, “Efficient channel-aware rate
adaptation in dynamic environments,” in ACM MobiSys, 2008.

[12] S. Sen, N. Santhapuri, R. R. Choudhury, and S. Nelakuditi,
“AccuRate: Constellation based rate estimation in wireless
networks,” in USENIX NSDI, 2010.

[13] M. Vutukuru, H. Balakrishnan, and K. Jamieson, “Cross-layer
wireless bit rate adaptation,” in ACM Sigcomm, 2009.

[14] S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust rate
adaptation for 802.11 wireless networks,” in ACM MobiCom, 2006.

[15] R. Laufer, H. D.-Ferrière, and L. Kleinrock, “Polynomial-time
algorithms for multirate anypath routing in wireless multihop
metworks,” IEEE/ACM Transactions on Networking, vol. 20, no. 3,
pp. 743-755, Jun. 2012.

[16] K. Zeng, W. Lou, and H. Zhai, “Capacity of opportunistic routing in
multi-rate and multi-hop wireless networks,” IEEE Transactions on
Wireless Communications, vol. 7, no. 12, pp. 5118-5128, Dec., 2008.

[17] P. A.K. Acharya, A. Sharma, E. M. Belding, K. C. Almeroth, and K.
Papagiannaki, “Rate adaptation in congested wireless networks
through real-time measurements,” IEEE Transactions on Mobile
Computing, vol. 9, no. 11, pp. 1535-1550, Nov., 2010.

[18] E. Ancillotti, R. Bruno, and M. Conti, “Experimentation and
performance evaluation of rate adaptation algorithms in wireless
mesh networks,” in Proceedings of the 5th ACM symposium on
performance evaluation of wireless ad hoc, sensor, and ubiquitous
networks (PE-WASUN ’08), pp. 7-14, 2008.

[19] J. C. Park and S. K. Kasera, “Reduced packet probing multirate
adaptation for multi-hop Ad Hoc wireless networks,” IEEE
Symposium on World of Wireless, Mobile and Multimedia Networks,
June 2009.

[20] Optimized Link State Routing Protocol (OLSR),
http://www.ietf.org/rfc/rfc3626.txt.

[21] The MadWifi Project, http://madwifi-project.org/.
[22] Cisco Aironet 802.11a/b/g wireless cardbus adapter,

http://www.cisco.com/.
[23] The Click Modular Router, http://read.cs.ucla.edu/click/.
[24] http://people.csail.mit.edu/szym/more/README.html.
[25] D. Levin, H, Schioberg, R. Merz and C. Sengul, “TCPSpeaker:

Clean and dirty sides of the same slate,” Mobile Computing and
Communications Review, vol. 14, no. 4, pp. 43-45, 2010.

[26] J. Xie, W. Hu, and Z. Zhang, “Revisiting partial packet recovery in
802.11 wireless LANs,” in ACM Mobisys, 2011.

[27] Z.Zhang, W. Hu, and J. Xie, “Employing coded relay in multi-hop
wireless networks,” in IEEE Globecom, 2012.

[28] W. Hu, J. Xie, and Z. Zhang, “The complexity of the routing
problem in POR,” Technical Report TR-130611, Computer Science
Department, Florida State University, 2013.

