
1

Packet Scheduling in a Low-Latency Optical Interconnect with
Electronic Buffers

Lin Liu
Dept. Electrical & Computer Engineering

Stony Brook University

Stony Brook, NY 11794, USA

Zhenghao Zhang
Computer Science Department

Florida State University

Tallahassee, FL 30306, USA

Yuanyuan Yang
Dept. Electrical & Computer Engineering

Stony Brook University

Stony Brook, NY 11794, USA

ABSTRACT

Optical interconnect architectures with electronic buffers
have been proposed as a promising candidate for future high
speed interconnections . Out of these architectures, the Op-
Cut switch [1] achieves low latency and minimizes optical-
electronic-optical (O/E/O) conversions by allowing packets to
cut-through the switch whenever possible. In an OpCut switch,
a packet is converted and sent to the recirculating electronic
buffers only if it cannot be directly routed to the switch output.
In this paper, we study packet scheduling in the OpCut switch,
aiming to achieve overall low packet latency while maintain-
ing packet order. We first decompose the scheduling problem
into three modules and present a basic scheduler with satisfac-
tory performance. To relax the time constraint on computing a
schedule and improve system throughput, we further propose a
mechanism to pipeline packet scheduling in the OpCut switch
by distributing the scheduling task to multiple “sub-schedulers.”
An adaptive pipelining scheme is also proposed to minimize
the extra delay introduced by pipelining. Our simulation results
show that the OpCut switch with the proposed scheduling al-
gorithms achieve close performance to the ideal output-queued
(OQ) switch in terms of packet latency, and that the pipelined
mechanism is effective in reducing scheduler complexity and
improving throughput.
Index Terms: Optical interconnect, packet scheduling,
pipelined algorithm.

I. INTRODUCTION

In recent years, interconnects draw increasingly more atten-
tion due to the fact that they tend to become a bottleneck at all
levels: intra-chip, chip-to-chip, board level, and computer net-
works. There are many requirements posed on an interconnect,
such as low latency, high throughput, low error rate, low power
consumption, as well as scalability. Finding a solution that can
satisfy all these needs is a non-trivial task.

Optical fibers, featured with high bandwidth and low error
rate, are widely recognized as the ideal media for interconnects.
Some optical interconnect prototypes have been built and ex-
hibited, for example, the recent PERCS (Productive, Easy-to-
use, Reliable Computing System) project [14] and OSMOSIS
(Optical Shared Memory Supercomputer Interconnect System)
project [3][4][5] at IBM. It has gradually become consensus that

c©2012 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media, in-
cluding reprinting/republishing this material for advertising or promotional pur-
poses, creating new collective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in other works.

future high speed interconnects should exploit as many advan-
tages optics can provide as possible.

One of current major hurdles in optical interconnect design is
the absence of a component equivalent to the electronic random
access memory, or optical RAM. Currently the most common
approach to buffering in optical domain is by letting the signal
go through an extra segment of fiber, namely, the “fiber delay
line” (FDL). An FDL generates a fixed buffering delay for any
optical signal, which is in fact the propagation delay for the sig-
nal to transfer over the FDL. To provide flexible delays, FDLs
have to be combined with switches. Extensive research has been
devoted to the realization of large, powerful all-optical buffers
[9] [10] [11] but the random accessibility is still absent.

Alternatively, there are emerging techniques that aim at slow-
ing the light down, for example, [7][8]. While these researches
present interesting results towards implementing optical buffers
with continuous delay, so far it is still unclear whether slow light
can provide sufficiently large bandwidth and buffering capacity
for it to be used in practical systems. Therefore, currently elec-
tronic buffer seems to be the only feasible option to provide
practical buffering capacities.

Another core component of an interconnect is the packet
scheduler. The scheduling process introduces extra delay be-
cause the scheduling algorithm may need time to converge. In
addition, as the scheduler is usually located at the center of the
switch, if an input port must receive a grant from the scheduler
before sending packets, the round-trip delay between the input
port and the scheduler becomes significant in low latency ap-
plications. For example, it was estimated in [2], [5] that the
round-trip delay can be as long as 64 time slots, where a time
slot is about 50ns which is the time needed to transmit a packet.

To address these challenges, a low latency switching archi-
tecture that combines optical switching with recirculating elec-
tronic buffer was recently proposed in [1]. In the following, we
simply refer to it as the OpCut (Optical Cut-through) switch.
Fig. 1(a) shows a high-level view of the switch. The key feature
of the OpCut switch is that the arrived optical packets will be
routed to the output directly, or “cut through” the switch, when-
ever possible. Only those that cannot cut through are sent to the
receivers, converted to electronic signals and buffered, which
can be sent to the output ports later by the optical transmit-
ters. By allowing packets to cut through, the OpCut switch sig-
nificantly reduces both packet latency and O/E/O conversions.
Also, the OpCut switch does not hold any packet at the input
ports. It always sends packets to the switching fabric, because
with the number of receivers equal to the number of input ports,
there can always be found a receiver to “pick up” a packet that
needs to be buffered. Hence, the OpCut architecture eliminates

2

......

Packets
Optical

Packets
Optical

Fabric
Switching
Optical

Electronic
Buffer

Transmitters Receivers
(a)

...

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

...

: Splitter

: SOA gate

.

.

.

... ...

...

...

...

1 : Amplifier

: Coupler

: Receiver

: Transmitter

1

N N

1

N

(b)

Fig. 1. (a) A high level view of the OpCut switch. (b) A possible implementa-
tion of the OpCut switch.

the round-trip delay between the input ports and the scheduler.
Due to these reasons, the OpCut switch architecture holds the
potential of achieving very low latency. In addition, some re-
cent research, for example, [6], also shows that such hybrid
optical packet switching with shared electronic buffer could
lead to substantial saving in power and cost over all-optical
or electrical technologies.

The feasibility and the performance of the OpCut architecture
was studied in [1] under a simple random packet scheduling al-
gorithm. While the random algorithm is convenient for analyt-
ical modeling, it is impractical because it is difficult to imple-
ment random functions at high speed[16]. In addition, the ran-
dom scheduling algorithm cannot maintain packet order, which
is generally desired for switches [21], [13].

There has been a lot research on scheduling algorithms in
packet switches. One of the most extensively studied topics is
packet scheduling algorithms for the input-queued (IQ) switch.
The IQ switch is usually assumed to work in a time-slotted
fashion. Packets are buffered at each input port according to
their destined output port, or in virtual output queues (VOQ).
The scheduling problem for a time slot is formalized as a bi-
partite matching problem between the input ports and the out-
put ports of the switch. Existing scheduling algorithms for IQ
switches can be divided into two categories: maximum weighted
matching based optimal algorithms and maximal sized matching
based fast algorithms. The first category includes algorithms
such as Longest Queue First (LQF) and Oldest Cell First (OCF)
[12]. These algorithms have impractically high computing com-
plexity, but are of theoretical importance as they deliver 100%
throughput under virtually any admissible traffic. The second
category includes, for example, Round Robin Greedy Schedul-
ing (RRGS) [17], Parallel Iterative Matching (PIM) [15] and
iSLIP [16]. These algorithms only look for a maximal match-

ing in each time slot hence have practical time complexity. They
are therefore preferred in real systems, although they can only
give sub-optimal schedules.

However, in a high speed or ultra high speed system, even
these maximal matching scheduling algorithms may become a
potential problem. As the length of a time slot shrinks with
the increase in line card rate, it may become too stringent to
calculate a schedule in each single time slot. In such a case,
pipelining scheduling is needed to relax the time constraint. In
[17] a pipelined version of the RRGS algorithm was reported,
in which each input port is assigned a scheduler. The sched-
uler of an input port selects an idle output port, and passes
the result to the next input port. The process goes on until
all input ports have been visited. However, this approach in-
troduces an extra delay equal to the switch size. In [18] the
pipelined maximal-sized matching algorithm (PMM) was pro-
posed, which employs multiple identical schedulers. Each of
these schedulers independently works towards a schedule for
a future time slot. As pointed out in [19], PMM is “more a
parallelization than a pipeline” since there is no information ex-
change between schedulers. [19] further proposed to pipeline
the iterations of iterative matching algorithms such as PIM and
iSLIP by adopting multiple sub-schedulers, each of which tak-
ing care of one single iteration and passing the intermediate
result to the next sub-scheduler in the pipeline. One problem
with this approach is that it may generate grants for transmis-
sion to an empty VOQ since at any time a sub-scheduler has no
idea about the progress at other sub-schedulers and may try to
schedule a packet that has already been scheduled by other sub-
schedulers. As a result, the service a VOQ receives may exceed
its actual needs and is wasted.

In this paper, we will study the packet scheduling problem in
the OpCut switch. The rest of this paper is organized as follows.
Section II introduces the OpCut switch architecture. Section
III presents the basic packet scheduler for the OpCut switch.
Section IV proposes a mechanism to pipeline the scheduling
procedure, including an adaptive pipelining scheme. Section V
presents the simulation results. Section VI compares the Op-
Cut switch with some recently proposed architectures. Finally
Section VII concludes the paper.

II. THE OPCUT SWITCH

In this section we briefly describe the architecture of the Op-
Cut switch. The OpCut architecture may adopt any switching
fabric that provides non-blocking connections from the inputs
to the outputs. One possible switching fabric is shown in Fig.
1(b). It has N input fibers and N output fibers, numbered from
1 to N , and there is one wavelength on each fiber. In the follow-
ing, we interchangeably use input (output) fiber, input (output)
port, and input (output). Each input fiber is sent to an amplifier.
The amplified signal is broadcast to N output fibers under the
control of SOA gates. In addition, each signal is also broadcast
to N receivers. An output fiber receives the signal and routes
it to the processor or the next stage switch. A receiver converts
the optical packet into electronic forms and stores it in its buffer.
There is one transmitter per receiver buffer. A transmitter can
read the packets and broadcast the selected packet to the output
fibers, also under the control of SOA gates, such that the packets

3

in the buffer may be sent out.
In this paper, we follow the same assumptions as other optical

switch designs that the switch works in time slots, and packets
of fixed length fit in exactly a time slot. The length of a time slot
is about 50 ns, similar to that in the OSMOSIS switch [2], [5].
Before receiving the packets, the switch is informed about the
destinations of the packets. This can be achieved, for example,
by letting a group of processors share an electronic connection
to send the packet headers to the switch. The headers are sent to
the switch before the packet is sent to allow the switch to make
routing decisions and to configure the connections. Note that
the cost associated with this electronic connection is likely to
be small, because the link is shared by multiple processors and
the link speed can be much lower than the data link. At the be-
ginning of each time slot, up to one packet may arrive in optics
at each input port. We define a flow as the stream of packets
from the same input port and destined for the same output port.
Unlike other optical switches with electronic buffers in which
every packet goes through the O/E/O conversions, in the Op-
Cut switch packets are converted between optics and electronics
only when necessary. Whenever possible, arrived optical pack-
ets are directly sent to their desired output port, or, cut-through
the switch. A packet that cannot cut-through is picked up by one
of the receivers and sent to the electronic buffer. Later when its
destined output port is not busy, the packet can be fetched from
the electronic buffer, converted back into optics, and scheduled
to the switch output.

In each time slot, a receiver picks up at most one packet, and
a transmitter sends out at most one packet. In other words, there
is no speedup requirement. The cost of the OpCut switch is
mainly determined by the number of transmitters, the number
of receivers, and the size of the switching fabric. It can be seen
that the OpCut switch needs N transmitters and N receivers.
The switch fabric is N × 2N + N ×N , where the N × 2N
part connects the inputs to the outputs and receivers, while the
N ×N part connects the transmitters to the outputs. To connect
more processors, multiple OpCut switches can be connected ac-
cording to a certain topologies, similar to the Infiniband switch.

III. THE BASIC PACKET SCHEDULER FOR THE OPCUT
SWITCH

The key challenge to achieve low latency in a switch is the
design of the packet scheduling algorithm. Due to its feed-back
buffer structure, existing scheduling algorithms cannot be di-
rectly applied to the OpCut switch. Keeping packet order also
becomes more challenging in the OpCut switch. For example,
in input-queued switches, packets belonging to the same flow
are stored in the same Virtual Output Queue (VOQ), thus packet
order is preserved as long as each VOQ works as a FIFO. In the
OpCut switch, however, packets from the same flow may be
picked up by different receivers.

The scheduling algorithm for an OpCut switch should give
answers to the following three questions:

• Question 1. For the newly arrived packets, whether they
may go to the output port directly or they should be
buffered.

• Question 2. For a packet that should be buffered, which
receiver should be used to pick it up.

• Question 3. For the output ports that are not receiving the
new packets, which of the buffered packets may be sent to
the output port.

This section is organized around how the three questions can
be answered. We start with the notations and the basics of the
scheduler.

A. Notations and Basics of the Scheduler
In an OpCut switch, input i is denoted as Ii, output j is de-

noted as Oj , and receiver r is denoted as Rr. Flow ij is defined
as the stream of packets arrived at Ii destined to Oj . We also
refer to the time slot in which a packet arrives at the switch in-
put as the timestamp of that packet. Among all packets of a
flow currently at the switch input or in the buffer, the one with
the oldest timestamp is referred to as the head-of-flow packet.
Maintaining packet order means that a packet must be a head-
of-flow packet at the instant it is being transmitted to the switch
output.

The OpCut scheduler adopts round-robin scheduling when
the scheduler has multiple choices and has to choose one. Sim-
ilar to [16], the round-robin scheduler takes a binary vector
as input, and maintains a pointer to make the decisions. Let
[r1, r2, . . . , rN] be the input binary vector and let g be the cur-
rent round-robin pointer g where 1 ≤ g ≤ N . The scheduler
picks the highest priority element defined as the first ‘1’ en-
countered when searching the elements in the vector from rg in
an ascending order of the indices, while wrapping around back
to r1 when reaching rN . Incrementing the round-robin pointer
g by one beyond x means that g← x+1 if x < N and g← 1 if
x = N .

B. Queueing Management
For each output port, the scheduler of the OpCut switch keeps

the information of the packets that are in the buffer and are des-
tined to the output port in a “virtual input queue” (VIQ) style.
Basically, for output Oj , the scheduler maintains N queues de-
noted as Fij for 1 ≤ i ≤ N . For each packet arrived at Ii des-
tined for Oj and are currently being buffered, Fij maintains its
timestamp, as well as the index of the buffer the packet is in.
Note that Fij does not hold the actual packets.

Packets are stored at the receiver buffers. It would make the
scheduling much easier if each receiver maintains a dedicated
queue for each flow. However, this will result in N 3 queues over
all receivers and will lead to much higher cost which is unlikely
to be practical when N is large. Instead, no queue is main-
tained in any receiver buffer, and an auxiliary array is adopted
in each buffer to facilitate the locating of a specific packet. The
auxiliary array is indexed by (partial) timestamps to store the
location of packets in the buffer. Since in each time slot a re-
ceiver picks up at most one packet, it is able to locate a packet
in constant time given the timestamp of the packet and the aux-
iliary array. Note that some elements of the array may be empty
but the packets can always be stored continuously in the buffer.

As an implementation detail, the auxiliary array can be used
in a wrap-around fashion thus does not need to have very large
capacity. For instance, if the index of the array is 8-bit long, then
the array stores the location of up to 256 packets. Consequently,
only the lower 8 bits of the timestamp is needed to locate a

4

packet in the buffer. A conflict occurs only if a packet is routed
to a receiver, and another packet picked up by the same receiver
at least 256 time-slots earlier is still in the buffer. When this
is the case, it usually indicates heavy congestion. Hence it is
reasonable to discard one of the packets.

C. The Basic Scheduling Algorithm
Next we describe a basic scheduling algorithm for the OpCut

switch. To maintain packet order, the basic algorithm adopts a
simple strategy. Basically, it allows a packet to be sent to an
output only if this packet is a head-of-flow packet. The basic
algorithm consists of three parts, each for answering one of the
three questions.

C.1 Part I – Answering Question 1
For Question 1, the basic scheduling algorithm consists of

two steps.
• Step 1: Request. If a packet arrives at Ii destined to Oj , the

scheduler checks Fij . If it is empty, Ii sends a request to
Oj ; otherwise, Ii does not send any request.

• Step 2: Grant. If Oj receives any requests, it chooses one
to grant in a round-robin manner. That is, it will receive a
binary vector representing the requests sent by the inputs.
It picks the highest priority element based on its round-
robin pointer and grants the corresponding input. Then
it increments its round-robin pointer by one beyond the
granted input.

In each time slot, since there is at most one packet arriving
at each input, an input needs to send a request to at most one
output and will receive no more than one grant. Therefore, the
input will send the packet (or let the packet cut-through) as long
as it receives a grant. The entire cut-through operation can be
done by a single iteration of any iterative matching algorithm.

C.2 Part II – Answering Question 2
For question 2, the basic scheduling algorithm simply con-

nects the inputs to the receivers according to the following
schedule:

• At time slot t, the packet from Ii will be sent to Rr where
r = [(i + t) mod N] + 1.

Note that instead of a fixed one-to-one connection, the inputs
are connected to the receivers in a round-robin fashion for better
load balancing. As an example, according to our simulation, in
an 8 × 8 OpCut switch, when there is a fully-loaded input port,
the maximum overall throughput is around 0.85 if the inputs are
connected to the receivers in the above way, versus 0.70 with
fixed connection.

C.3 Part III – Answering Question 3
For Question 3, the scheduler requires one decision mak-

ing unit for each output and one decision making unit for each
buffer. It then runs the well-known iSLIP algorithm [16] be-
tween the receivers and the outputs. Each iteration of the algo-
rithm consists of three steps:

• Step 1: Request. Each unmatched output sends a request to
every buffer that stores a head-of-flow packet destined to
this output.

• Step 2: Grant. If a buffer receives any requests, it chooses
one to grant in a round-robin manner. That is, it will re-
ceive a binary vector representing the requests sent by the
outputs. It picks the highest priority element based on
its round-robin pointer and grants the corresponding out-
put. The pointer is incremented to one location beyond the
granted, if and only if the grant is accepted in Step 3.

• Step 3: Accept. If an output receives any grants, it chooses
one to accept in a round-robin manner. That is, it will re-
ceive a binary vector representing the grants sent by the
buffers. It picks the highest priority element based on its
round-robin pointer and accepts the grant from the corre-
sponding buffer. Then it increments its round-robin pointer
by one beyond the granted buffer.

At the end of the algorithm, the scheduler informs each buffer
which packet to transmit. It does so by sending the portion of
the packet’s timestamp that is needed for the buffer to locate the
packet. With that information, the targeted packet can be found
in constant time and sent through the transmitter. The switch
is configured accordingly to route the packets to their destined
output port.

IV. PIPELINING PACKET SCHEDULING

Our simulation results show that the basic scheduling algo-
rithm introduced above can achieve satisfactory average packet
delay. However, in a high speed or ultra high speed environ-
ment, it may become difficult for the scheduler to compute a
schedule in each single time slot. In such a case, we can pipeline
the packet scheduling to relax the time constraint. Further-
more, by pipelining multiple low-complexity schedulers, we
may achieve performance comparable to a scheduler with much
higher complexity. In this section we present such a pipeline
mechanism.

A. Background and Basic Idea
With pipelining, the computing of a schedule is distributed to

multiple sub-schedulers and the computing of multiple sched-
ules can be overlapped. Thus, the computing of a single sched-
ule can span more than one time slot and the time constraint can
be relaxed. Another consideration here is related to fairness. By
adopting the iSLIP algorithm in the third step (i.e., determining
the matching between electronic buffers and switch outputs),
the basic scheduling algorithm ensures that no connection be-
tween buffers and outputs is starved. However, there is no such
guarantee at the flow level. In addition, as mentioned earlier, a
packet that resides in the switch for too long may lead to packet
dropping. To address this problem and achieve better fairness, it
is generally a good idea to give certain priority to “older” pack-
ets during scheduling.

Combining the above two aspects, the basic idea of our
pipelining mechanism can be described as follows. We la-
bel each flow based on the oldness of its head-of-flow packet.
Among all flows destined to the same output, a flow whose
head-of-flow packet has the oldest timestamp is called the old-
est flow of that output. Note that there may be more than one
oldest flow for an output. Similarly, the flows with the ith oldest
head-of-flow packets are called the ith oldest flows. Instead of
taking all flows into consideration, we consider only up to the

5

outputs announce

St is excecuted

calculates

calculates

buffer states

S1

S2

ss1

ss2

t

t
time slot t−1

time slot t−2

time slot t

time

cut through
new packets

FDL delay

Fig. 2. Timeline of calculating schedule St for time slot t.

kth oldest flows for each output when scheduling packets from
the electronic buffer to the switch output. This may sound a lit-
tle surprising but later we will see that the system can achieve
good performance even when k is as small as 2. Then the pro-
cedure of determining a schedule is decomposed into k steps,
with step i handling the scheduling of the ith oldest flows. By
employing k sub-schedulers, the k steps can be pipelined. Like
the basic scheduling algorithm, the pipelined algorithm main-
tains packet order since only head-of-flow packets are qualified
for being scheduled.

Next we will present the pipeline mechanism in more detail.
Basically, like in prioritized-iSLIP [16], the flows are classi-
fied into different priorities. In our case the prioritization crite-
rion is the oldness of a flow. By pipelining at the priority level,
each sub-scheduler deals with only one priority level and does
not have to be aware of the prioritization. Furthermore, since
each sub-scheduler only works on a subset of all the schedul-
ing requests, on average it converges faster than a single central
scheduler. To explain how the mechanism works, we will start
with the simple case of k = 2, that is, using only the oldest flows
and second oldest flows when scheduling. We will also show
that when k = 2, a common problem in pipelined scheduling,
called duplicate scheduling, can be eliminated in our mecha-
nism. Later we will extend the mechanism to allow an arbitrary
k, and discuss potential challenges and solutions.

B. Case of k = 2

With k = 2, two sub-schedulers, denoted as ss1 and ss2 are
needed to pipeline the packet scheduling. ss1 tries to match
buffers with the oldest flows to the output ports, while ss2 deals
with buffers with the second oldest flows. The timeline of cal-
culating the schedule to be executed in time slot t, denoted as
St, is shown in Fig. 2. The calculation takes two time slots
to finish, from the beginning of time slot t− 2 to the end of
time slot t− 1. When time slot t starts, St is ready and will be
physically executed during this time slot. In time slot t− 2, the
cut-through operation for t is performed and the result is sent to
the sub-schedulers, so that the sub-schedulers know in advance
which output ports will not be occupied by cut-through packets
at time t. To provide the delay necessary to realize pipelining, a
fiber delay line with fixed delay of two time slots are appended
to each input port. As a result, newly arrived packets are at-
tempted for cutting-through at the beginning of time slot t− 2,

but they do not physically cut-through and take up correspond-
ing output ports until time slot t. Later in Section IV-D we will
discuss how this extra delay introduced by pipelining may be
minimized. As mentioned in Section III-C, since the calcula-
tion of cutting-through is very simple and can be done by iSLIP
with one iteration, or 1SLIP, there is no need to pipeline this
step.

At the same time of cutting-through operation, each output
port checks the buffered packets from all flows and finds its
oldest and second oldest flows, as well as in which buffer these
flows are stored. The outputs then announce to each buffer its
state. The state of a buffer consists of two bits and has the fol-
lowing possible values: 0 if this buffer contains neither oldest
nor second oldest flow for the output; 2 if the buffer contains
one second oldest flow but no oldest flow; 1 otherwise. A buffer
is said to contain an ith flow of an output if it contains the head-
of-flow packet of that flow. Note that the state being 1 actually
includes two cases, i.e. the buffer has an oldest flow only, or has
both an oldest and a second oldest flow. The point here is that
we do not need to distinguish between these two cases. This is
due to the fact that in a time slot at most one packet can be trans-
mitted from a buffer to the switch output. Then if a buffer has
an oldest flow for an output and a packet is scheduled from this
buffer to the output, no more packets from other flows can be
scheduled in the same time slot; on the other hand, if no packet
from the oldest flow is scheduled to the output, no packet from
the second oldest flows can be scheduled either since otherwise
a packet from the oldest flow should have been scheduled in-
stead. Thus as long as a buffer contains an oldest flow for an
output, we do not need to know whether it contains a second
oldest flow for that output or not.

Fig. 3 provides a simple example with N = 3 that shows
how the announcing of oldest and second oldest flows works.
In this example, we focus on one tagged output and three flows
associated with it. As shown in the figure, packets p1 and p2

arrive in the same time slot but from different flows. p3 arrives
following p2. A few time slots later, p4 belonging to flow 3
arrives. We assume that some time later p1, p2 and p4 become
the head-of-flow packet for the three flows, respectively. It can
be seen that flows 1 and 2 are the oldest flows, and flow 3 is
the second oldest flow. As shown in the figure, assume that p1

and p2 are stored in buffers 1 and 2, respectively, and both p3

and p4 are in buffer 3. Then the tagged output will make the
announcement as “1” to buffers 1 and 2, and “2” to buffer 3,
which informs the sub-schedulers that buffers 1 and 2 have an
oldest flow for this output , and buffer 3 has a second oldest flow
but no oldest flow for this output.

After receiving the result of cutting-through operation, and
the announcements from the outputs, sub-scheduler ss1 is now
set to work. Note that while the sub-schedulers work directly
with buffers, they essentially work with flows, in particular,
head-of-flow packets, since they are the only packets eligible for
transmission for the sake of maintaining packet order. Denote
the set of output ports that will not be occupied by cut-through
packets at time slot t as Ot. What ss1 does is to match the out-
put ports in Ot to the buffers containing an oldest flow of these
output ports. Theoretically, this process can be done by any bi-
partite matching algorithm. For simplicity, the iSLIP algorithm

6

2p
2p

p1

t

p3

�
�
�

3p4p

�
�
�

1p

p4

flow 1

flow 2

flow 3 2

1

1

buffer statuspacket arrivals announcement

Fig. 3. An example of how an output makes the announcement. The infor-
mation of all packets that are in the buffer and destined for the output port
is maintained for each output port. Based on that information, an output can
find the oldest and second oldest flows, and where the head-of-flow packets are
buffered. Then it can make the announcement accordingly.

is adopted. In each iteration of the iSLIP algorithm, if there
is more than one buffer requesting the same output port, ss1

decides which of them the output should grant. Then, in case a
buffer is granted by multiple output ports, ss1 determines which
grant the buffer should accept. The decisions are made based
on the round-robin pointers maintained for each output port
and buffer. The number of iterations to be executed depends
on many factors, such as performance requirement, switch size,
traffic intensity, etc. Nevertheless, as mentioned earlier, it can
be expected that the result will converge faster than that of a
single central scheduler since the sub-scheduler handles only a
subset of all the scheduling requests.

ss1 has one time slot to finish its job. At the beginning of
time slot t−1, ss1 sends its result to the output ports so that the
output ports can update the VIQs and announce the latest buffer
state. Meanwhile, ss1 relays the result to ss2. The functionality
of ss2 is exactly the same as ss1, i.e. matching output ports to
buffers according to some pre-chosen algorithm. The difference
is that, ss2 only works on output ports that are in Ot and are not
matched by ss1, and buffers that are announced with state 2 by
at least one of these output ports. When ss2 finishes the job
at the end of time slot t− 1, the matching based on which the
switch will be configured in time slot t is ready. Meanwhile the
packets that arrived at the beginning of time slot t−2 have gone
through the two-time-slot-delay FDLs and reached the switch
input. In time slot t, the buffers are notified which packet to
send, and the switch is configured accordingly. Packets are then
transmitted to the switch output, either directly from the switch
input or from the electronic buffer.

S2
2

...

...

...

...

...

...

...

...2
S

S S

S

S

SS

time slot 0 1 2 3 t t+1 t+2

ss

ss 2

1 1S
2

1S
3

1S
4

1S
5

2S
4

2S
3

3
Sschedule

t+2
1S

t+3
1

t+4
1
t+3
2

t+2
2
t+1

S
t+2

S
t

t+1
2

Fig. 4. The pipelined scheduling procedure for k = 2.

The complete picture of the pipeline packet scheduling for
k = 2 is shown in Fig. 4. As mentioned earlier, St is the sched-
ule executed in time slot t. St

i denotes the part of St that is
computed by sub-scheduler ssi during time slot t− i.

A potential problem with pipelined scheduling algorithms is
that it is possible for a packet to be included in multiple sched-

ules, or, being scheduled for more than once. This is called
duplicate scheduling. It could occur under two different con-
ditions: 1) in the same time slot, different schedulers may try
to include the same packet to their respective schedule, since
a scheduler is not aware of the progress at other schedulers in
the same time slot; 2) with pipelining, there is usually a delay
between a packet being included in a schedule and the sched-
ule being physically executed. During such interval the packet
may be accessed by another scheduler that works on the sched-
ule for a different time slot. In other words, a scheduler may
try to schedule a packet that was already scheduled by another
scheduler but has not been physically transmitted yet.

Duplicate scheduling of a packet leads to waste of bandwidth
resources, which consequently causes underutilization of band-
width and limits throughput. In an input-queued switch, when a
packet p is granted for transmission more than once by different
sub-schedulers, extra grants may be used to transmit the packets
behind p in the same VOQ if the VOQ is backlogged. On the
other hand, if the VOQ is empty, all but one grants are wasted.
With the OpCut switch architecture, the consequence of dupli-
cate scheduling is even more serious, in that extra grants for a
packet cannot be used to transmit packets behind it in the same
buffer. This is due to the fact that in an OpCut switch packets
from the same flow may be distributed to different buffers, and
a buffer may contain packets from different flows.

Duplicate scheduling is apparently undesirable but is usually
difficult to avoid in pipelined algorithms. For example, the algo-
rithms in [17] [18] [19] all suffer from this problem, even with
only two-step pipelining. It was proposed in [19] to use pre-
filter and post-filter functions to reduce duplicate scheduling.
However, on one hand, these functions are quite complex, and
on the other hand, the problem cannot be eliminated even with
those functions. The difficulty roots in the nature of pipelining,
that schedulers may have to work with dated information, and
the progress at one scheduler is not transparent to other sched-
ulers. Fortunately, as will be seen next, when k = 2 our mecha-
nism manages to overcome this difficulty and completely elim-
inates duplicate scheduling.

First of all, it is worth noting that the “oldness” of a flow is
solely determined by the timestamp of its head-of-flow packet.
Thus we have the following simple but important lemma.

Lemma 1: Unless its head-of-flow packet departs, a flow
cannot become “younger.”

Next we deal with the first condition that may lead to dupli-
cate scheduling. That is, we show that in any time slot the two
sub-schedulers will not include the same packet in their respec-
tive schedule. In fact we have a even stronger result here, as
shown by the following theorem:

Theorem 1: During any time slot, sub-scheduler ss1 and ss2

will not consider the same flow when computing their schedule.
In other words, if we denote F t

i as the set of flows that ssi takes
into consideration in time slot t, then F t

1 ∩F t
2 = ∅ for any t≥ 0.

Proof: First note that for t = 0 there is no second oldest flow,
F t

2 = ∅, thus the theorem holds. Now assume for some t > 0,
the theorem held up to time slot t− 1 but not in time slot t. In
other words, there exists a flow f such that f ∈ F t

1 and f ∈ F t
2 .

Note that f ∈ F t
2 indicates f was not an oldest flow at time t−1.

Thus at t− 1 there existed at least one flow that was older than

7

f and destined to the same output as f . Denote such an flow
as f ′, then f ′ ∈ F t−1

1 since it was an oldest flow at that time.
Besides, it can be derived that no packet from f ′ was scheduled
by ss1 in time slot t− 1. Otherwise, the corresponding output
port should be matched, and at time t ss2 would not consider
any flow associated with that output, including f .

Furthermore, since f ′ ∈ F t−1

1 , it follows that f ′ /∈ F t−1

2 ,
given that the theorem held in time slot t− 1. Then neither ss1

nor ss2 could schedule any packet belonging to f ′ in time slot
t−1. According to Lemma 1, f ′ is still older than f at time slot
t. Consequently, f is not an oldest flow at t, and f ∈ F t

1 cannot
hold, which contradicts the assumption. This implies that the
theorem must hold for time slot t if it held for time slot t− 1.
That proves the theorem for t≥ 0.

Next we consider condition 2. It is possible for condition 2
to occur between St

2 and St+1
2 due to the existence of a time

glitch: the buffer states based on which St+1
2 is calculated are

announced at the beginning of time slot t. At that time St
2 is not

calculated yet. Thus it is possible that a packet is included in
both St

2 and St+1

2 . In contrast, St
2 and St+1

1 can never overlap,
since the latter is calculated based on the information announced
after being updated with St

2. For the same reason, sub-schedules
St

i and St+x
j would never include the same packet for any t ≥

0, i, j ∈ {1,2}, as long as x > 1. Thus the task of eliminating
condition 2 reduces to making sure that St

2 and St+1

2 do not
overlap, which can be achieved as follows.

When an output makes its announcement, instead of three
possible states as introduced earlier in this section, each buffer
may be in a forth state denoted by value 3 (this is doable since
the state of a buffer is 2-bit long), which means that this buffer
contains a third oldest flow and no oldest or second oldest flow
for this output. Furthermore, we call a flow a solo flow if it is
the only ith oldest flow, and a buffer a solo buffer for an output
port if it contains a solo flow of that output port. Now suppose
ss2 matched an output port op to a buffer bf in St

2 based on
the announcements in time slot t− 2. Then when St+1

2 is being
computed, bf is excluded from St+1

2 if op again announced bf
as a state-2 buffer. On one hand, if there exists at least one buffer
other than bf that was announced with state 2 by op in time slot
t−1, ss2 will work with these buffers. On the other hand, if bf
was a solo buffer for op based on the announcement at time slot
t− 1, ss2 will work on state-3 buffers instead. Consequently,
we have the following theorem.

Theorem 2: The method introduced above ensures that St
2

and St+1

2 will not introduce duplicate scheduling of a packet.
Proof: First, St

2 and St+1

2 may include the same packet only
if ss2 matches a buffer to the same output port in both St

2 and
St+1

2 . Hence it is assumed that buffer bf is matched to output
port op in both time slots t− 1 and t by ss2 (As a reminder, St

2

is calculated in time slot t− 1 based on output announcements
made in time slot t− 2). For this to occur, the state of bf an-
nounced at time slot t− 1 can only be 3 according to the above
method. Besides, bf cannot be a state-1 buffer of op for time
slots t− 2 and t− 1, since otherwise bf should not be consid-
ered by ss2. Then the states of bf announced by op at time slots
t− 2 and t− 1, based on which St

2 and St+1

2 are calculated re-
spectively, have only two possible combinations: 2 at time slot
t− 2 and 3 at time slot t− 1 ({2, 3}), or 3 at time slot t− 2 and

3 at time slot t− 1 ({3, 3}). We will show that under neither of
the combinations could duplicate scheduling occur.

• {2, 3}: In this case, by matching bf to op, St
2 actually

schedules to op the head-of-flow packet of some second
oldest flow announced by op at time slot t− 2. The head-
of-flow packet is buffered in bf . Similarly, St+1

2 sched-
ules to op the head-of-flow packet of a third oldest flow
announced at time slot t− 1. Denote the two head-of-flow
packets as pa and pb, and the two flows as fa and fb. On
one hand, if flow fa and flow fb are different, packet pa

and packet pb must be different. On the other hand, if flow
fa and flow fb are the same flow, packet pa and packet pb

are still different according to Lemma 1, since the flow be-
comes “younger” (second oldest at time slot t−2 and third
oldest at time slot t− 1).

• {3, 3}: Given that the state of bf is announced as 3 at time
slot t− 1 but ss2 takes it into consideration when comput-
ing St+1

2 , it must be true that in St
2 ss2 grants a buffer with

a second oldest flow of op announced at time slot t−2 and
that buffer is a solo buffer of op, which cannot be bf whose
state announced at time slot t−2 is 3. This contradicts with
the assumption that bf is matched to output port op in both
time slots by ss2.

Combining the two cases, the theorem is proved.
By now, duplicate scheduling is completely ruled out in our

mechanism.
It is worth pointing out that the scheduler will not omit

any packet in the buffer. First, the scheduler always main-
tains packet order in a flow; therefore, a packet will not get
skipped within a flow and will eventually become the head-
of-flow packet. Second, a flow will either has its head-of-flow
packet scheduled, or as Lemma 1 indicates, will eventually be-
come an oldest flow. Since all oldest flows are serviced in
a round-robin manner, it is guaranteed that no flow will get
starved if the switch is not overloaded, and any head-of-flow
packet will be scheduled within one round-robin cycle.

C. Case of k > 2

We now extend our result for k = 2 to the case that k is an ar-
bitrary integer between 3 and N . The system performance can
be improved at the cost of extra subschedulers. While the basic
idea remains the same as k = 2, there are a few implementation
details that need to be addressed when k becomes large. Du-
plicate scheduling can no longer be eliminated with an arbitrary
k due to the increased scheduling complexity. Nevertheless we
will propose several approaches to reducing it.

The basic pipelined scheduling procedure is given in Fig. 5.
An FDL of length k is attached to each input port to provide the
necessary delay for computing the schedules. k identical sub-
schedulers, ss1, ss2, . . ., ssk are employed, ssi dealing with
buffers that contain an ith oldest flow of some output port. In-
termediate results are passed between adjacent sub-schedulers
and used to update the VIQ status. The computing of the sched-
ule to be executed in time slot t spans k time slots, from the
beginning of time slot t− k to the end of time slot t− 1. The
announcement of buffer states from an output port to the sub-
schedulers can be done exactly the same way as that for k = 2,
except that the state of a buffer for an output is now of length

8

...

1S
k+2

S
k+1
2

1S

2S
k

k+1
1S
k

...
...

S

1S
t+k+1

2S
t+k

kS
t+2

t+1

...

S

1S
t+k

2S

kS
t+1

t

t+k−1

time slot 0 k tk−1 t+1
ss1

ss2

ssk

21

k+1

2k−1

S
k
kS

2S

1S
2k2k−1

2k−2

k

1S

2S

S
k

schedule

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Fig. 5. Pipelined scheduling procedure for an arbitrary k.

log(k + 1) bits.
We have addressed the solo buffer problem for k = 2 to

eliminate duplicate scheduling. Namely, if sub-scheduler ss2

matched a buffer bf to an output port op in St
2, it will not con-

sider bf as a state-2 buffer for op when computing St+1
2 even

if it was announced so. In case bf is the solo buffer of op,
i.e. the buffer announced by op to contain the only second old-
est flow of it, ss2 will work on state-3 buffers for op trying to
keep work conserving. For an arbitrary k, the rule is still kept,
that if ssi matched a buffer bf to an output port op in St

i , it
will not consider bf as a state-i buffer for op when computing
St+1

i . However, if bf is the solo buffer of op, ssi will not turn
to buffers with state i+1. The reason is that, while this method
involves only ss2 when k = 2, it may cause a chain effect when
k > 2: if ssi sets to work on buffers with state i + 1 at some
time, then ssi+1 needs to work on buffers with state i + 2 for
the same schedule. In case there is only a solo buffer with state
i+1 and is matched by ssi again, then in the next time slot, ssi

may have to work on buffers with state i + 2 and ssi+1 has to
work on buffers with state i + 3. The process could go on and
become too complicated to implement. Therefore, if an output
announced the same buffer as the solo buffer in two consecu-
tive time slots, say, t− 1 and t, and ssi matched this buffer to
the output in St+k−i

i , it will not try to match the output to any
buffer in St+k+1−i

i . In other words, we will let ssi be idle for
the output in time slot t + i in that case.

By allowing a sub-scheduler to be idle for some output
port in certain time slot, we prevent the possibility that the
sub-scheduler schedules a packet that was already scheduled
and blocks other sub-schedulers behind it in the pipeline from
scheduling a packet to that output port. Unfortunately, the cost
is that Theorem 1 does not hold for k > 2. To see this, first note
that F t

i is essentially the set of the ith oldest flows of every out-
put port at the beginning of time slot t+1− i. For instance, F t

1

is the set of the oldest flows at time slot t and F t
3 is the set of the

third oldest flows at time slot t−2. If there is a flow f such that
f ∈ F t

i , then it is one of the ith oldest flows for some output
port at time slot t + 1− i. During the time interval, denoted as
T , from time slot t + 1− i to time slot t− j for some j < i, at
most i− j flows for that output can be scheduled. Therefore,
at time slot t + 1− j, f is at least the i− (i− j) = jth oldest
flow. If f is indeed the jth oldest flow, which can occur if and
only if i− j flows that are “younger” than f have been sched-
uled during T and all of them are solo flows, f ∈ F t

j holds.
In that case, f ∈ F t

i ∩ F t
j holds, and ssi and ssj may sched-

ule the same packet during time slot t. Nevertheless, as can be
seen, the possibility that F t

i overlaps with F t
j is rather small and

.
FDL

. .

Fig. 6. A possible implementation of an FDL that can provide flexible delays
to fit the needs of pipeline with different number of sub-schedulers. There are
blogKc+1 stages. The ith stage is able to provide either zero delay or 2i time
slot delay.

should not significantly affect the overall system performance.
In fact, if we let Pr denote the probability that an output port op
announces a buffer bf as the buffer which contains the solo sec-
ond oldest flow and bf is later matched to op by ss2 based on
the announcement, then according to our simulations for k = 4,
when the traffic intensity is as high as 0.9, Pr is less than 2%.
The probability for the case of multiple solo flows is roughly
exponential to Pr and thus is even smaller.

D. Adaptive Pipelining
We have discussed the mechanism to pipeline packet schedul-

ing in the OpCut switch for any fixed k. In the following we will
enhance it by adding adaptivity. The motivation is that, in our
mechanism, the extra delay introduced by pipelining is equal to
the number of active sub-schedulers, or k. When traffic is light,
a small number of sub-schedulers may be sufficient to achieve
satisfactory performance, or pipeline is not necessary at all. In
this case, it is desirable to keep k as small as possible to min-
imize the extra delay . On the other hand, when the traffic be-
comes heavy, more sub-schedulers are activated. Although the
delay of pipelining increases, now more packets can be sched-
uled to the switch output since more packets are taken into con-
sideration for scheduling due to the additional sub-schedulers.

The first step towards making the pipelined mechanism adap-
tive is to introduce flexibility to the FDLs attached to the switch
output ports. Since k sub-schedulers working in pipeline require
a k time slot delay of the newly arrived packets, the FDL needs
to be able to provide integral delays between 0 and K time slots,
where K is the maximum number of sub-schedulers that can be
activated. Clearly, K ≤N .

A possible implementation of such an FDL is shown in Fig.
6. The implementation adopts the logarithmic FDL structure
[22] and consists of blogKc+ 1 stages. A packet encounters
no delay or 2i time slot delay in stage i, depending on the input
port it arrives at the switch of stage i and the state of the switch.
Through different configurations of the switches, any integral
delay between 0 and K can be provided.

The number of packet arrivals in each time slot is recorded,
and the average over recent W time slots is calculated and
serves as the estimator of current traffic intensity. This aver-
age value can be efficiently calculated in a sliding window fash-
ion: let Ai denote the number of packet arrivals in time slot
i, then at the end of time slot t, A is updated according to
A = A− (At−w+1 −At)/W . An arbitrator decides whether
a sub-scheduler needs to be turned on or off based on A. If
during certain consecutive time slots, A remains larger than a
preset threshold for the current value of k, an additional sub-
scheduler will be put into use. Similarly, if A drops below some

9

ss2

...

...

...

...

...

ss3

ss3 turned on

...

...

...

...

...

ss3 turned off

...

...

...

...

...

S

j
j+3

S1

j+1
S3

j

time slot
ss1

schedule

2

1S
i+3

S
i+2

2S
i+1

S
i+1

S
i

i i+1

i+5
S2

i+6
S1

i+3
S

i+3

i+4
S3

i+4
S2

i+5
S1

i+2
S

i+2

i+3
S

i+2
S1

3

2

1S
j+3

S
j+2 j+3

S2

j+4
S1

S
j+1 j+2

S

j+1 j+2

S
j−1

j−1

j+1
S2

j
S3

Fig. 7. An example of sub-schedulers being turned on and off.

threshold and does not bounce back in certain time interval, an
active sub-scheduler can be turned off.

The value of W can be adjusted to trade-off between sensi-
tivity and reliability: if W is large, the averaging of traffic in-
tensity is over a relatively long time period, and it is less likely
that a small jitter will trigger the activation of an additional sub-
scheduler. However, more time is needed for it to detect a sub-
stantial increase in traffic intensity, and vice versa.

An example of adaptive pipelining is given in Fig. 7. The
basic idea is the same for any k value, thus we only show the
process from two sub-schedulers to three sub-schedulers and
then back to two to keep it neat. The “×” state in the figure
indicates the sub-scheduler is off, and a “∆” means the sub-
scheduler is on but will be idle in the time slot. The arrows
in the figure illustrate how the intermediate results are relayed
among sub-schedulers at transition points when a sub-scheduler
is being turned on or off.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the switch un-
der two widely used traffic models: the uniform Bernoulli traffic
and the non-uniform bursty traffic. Both models assume that the
arrival at an input port is independent of other input ports. The
uniform Bernoulli traffic assumes that the packet arrival at an
input port is a Bernoulli process and the destination of an ar-
rived packet is uniformly distributed over all output ports. The
non-uniform bursty traffic assumes that an input port alternates
between the “on” state and the “off” state, with the length of a
state following geometric distribution. If and only if in an “on”
state, a packet arrives at the input port at the beginning of every
time slot. Therefore traffic intensity is given by lon/(lon+loff),
where lon and loff denote the average length of on and off states
in terms of time slots, respectively. All packets arriving during
the same “on” period are destined for the same output port and
form a burst. Same as in [2], lon (or, equivalently, the average
burst length) is set to 10 in our simulations. A packet arrived at
Ii is destined to Oi with probability µ + (1−µ)/N and is des-
tined to Oj with probability (1−µ)/N for j 6= i, where µ is the
“unbalance factor” and is set to be 0.5 which is the value that re-
sults in the worst performance according to [20]. We have eval-
uated OpCut switches of different sizes with both non-pipelined
and pipelined schedulers. Each simulation was run for 106 time
slots.

We implemented two instances of the proposed pipelining
mechanism, denoted as p-k2-2SLIP and p-k4-2SLIP, respec-
tively. Both of them are built on sub-schedulers executing two

steps of iSLIP in each time slot. p-k2-2SLIP runs two such sub-
schedulers and covers up to the second oldest flows of each in-
put port, while p-k4-2SLIP runs four sub-schedulers and covers
up to the fourth oldest flows. For comparison purpose, we im-
plemented the basic non-pipelined scheduler running iSLIP as
well, denoted as np-iSLIP. Also included in the simulations are
the straightforwardly pipelined iSLIP scheduler (denoted as p-
iSLIP) - i sub-schedulers, each of which executes one iteration
of iSLIP in a time slot. Unlike the proposed pipelined sched-
ulers, the straightforward approach is not aware of the duplicate
scheduling problem.

A. Cut-Through Ratio
First we investigate the packet cut-through ratio, which indi-

cates how much portion of packets can cut-through the switch
without experiencing electronic buffering. Apparently, if only a
tiny portion of packets could cut-through, or packets could cut-
through only when the traffic intensity is light, the OpCut switch
would not be very promising. From Fig. 8, we can see that when
the load is light, the cut-through ratio is high with all schedulers
under both traffic models and switch sizes. However, For p-
iSLIP schedulers, the ratio drops sharply with the increment in
traffic intensity. For all the other simulated schedulers, the ratio
decreases much slower, and stays above 60% under Bernoulli
uniform traffic and 30% under bursty non-uniform traffic even
when the load rises to 0.9.

We notice that under Bernoulli uniform traffic, there is a
sharp drop in the cut-through ratio for both pipelined sched-
ulers. For the 16×16 switch, the drop occurs at 0.93 load for p-
k2-2SLIP and 0.95 load for p-k4-2SLIP. For the 64× 64 switch
it occurs at slightly higher loads. As will be confirmed shortly
by the average packet delay, these are the points at which the
OpCut switch is saturated with the respective pipelined sched-
uler. However, it is worth pointing out that higher cut-through
ratio does not necessarily imply better overall performance. In
particular, throughput is not directly related to cut-through ra-
tio, as packets can always be transmitted from the buffers to the
switch output. Thus while non-pipelined scheduler np-2SLIP
results in a higher cut-through ratio than p-k2-2SLIP and p-k4-
2SLIP under higher-than-0.93 uniform Bernoulli traffic, it can
be seen from Fig 9 that the pipelined schedulers actually achieve
better delay and higher throughput than np-2SLIP under that
traffic model.

An interesting observation is that for bursty non-uniform traf-
fic, such sharp drops in cut-through ratio do not exist. This is
likely due to the nature of non-uniform traffic that, except for
those hotspot flows, most flows contains much fewer packets.
For those packets, cutting-through becomes easier compared to
the uniform-traffic scenario, since whether a packet can cut-
through is independent of packets from other flows.

B. Average Packet Delay
Fig. 9 shows the average packet delay of the OpCut switch

under different schedulers, traffic models and switch sizes. The
ideal output-queued (OQ) switch is implemented to provide
the lower bound on average packet delay. It can be seen that
the straightforward pipelining approach, p-iSLIP, performs very
poor due to underutilization of bandwidth caused by the du-

10

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
t−

Th
ro

ug
h

Ra
tio

Traffic Intensity

N = 16; uniform Bernoulli traffic

p−2SLIP
p−4SLIP
np−2SLIP
np−4SLIP
p−k2−2SLIP
p−k4−2SLIP

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
t−

Th
ro

ug
h

Ra
tio

Traffic Intensity

N = 16; non−uniform bursty traffic

p−2SLIP
p−4SLIP
np−2SLIP
np−4SLIP
p−k2−2SLIP
p−k4−2SLIP

(a) 16× 16 switch

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
t−

Th
ro

ug
h

Ra
tio

Traffic Intensity

N = 64; uniform Bernoulli traffic

p−2SLIP
p−8SLIP
np−2SLIP
np−8SLIP
p−k2−2SLIP
p−k4−2SLIP

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
t−

Th
ro

ug
h

Ra
tio

Traffic Intensity

N = 64; non−uniform bursty traffic

p−2SLIP
p−8SLIP
np−2SLIP
np−8SLIP
p−k2−2SLIP
p−k4−2SLIP

(b) 64× 64 switch

Fig. 8. Packet cut-through ratio with non-pipelined and pipelined schedulers under different traffic models and switch sizes. p-iSLIP: pipelined iSLIP with i

sub-schedulers, each executing 1SLIP. np-iSLIP: non-pipelined scheduler executing iSLIP in each time slot. p-ki-2SLIP: pipelined scheduling that takes up to the
ith oldest flows into consideration, each sub-scheduler executing 2SLIP.

plicate scheduling problem. On the other hand, as instances
of the proposed pipelining mechanism, p-k2-2SLIP and p-k4-
2SLIP lead to substantially improved performance. The max-
imum throughput p-k2-2SLIP can sustain is about 0.93 under
uniform Bernoulli traffic and 0.9 under non-uniform bursty traf-
fic, which outperforms np-2SLIP by about 5% and 15%, respec-
tively. In other words, using the same 2-SLIP scheduler, the
system throughput can be improved through pipelining.

In fact, except for under light uniform Bernoulli traffic where
the extra delay introduced by pipelining is comparatively sig-
nificant (for which we have proposed the adaptive pipelining
scheme), the performance of p-k4-2SLIP is very close to that
of np-4SLIP when N = 8 and np-8SLIP when N = 64, which
is in turn very close to that of the OQ switch in terms of aver-
age packet delay. That is, the performance of a non-pipelined
scheduler that executes 8 iterations of iSLIP in each time slot
can be well emulated by four schedulers working in pipeline,
each of which executes 2-iteration iSLIP only. The time con-
straint on computing a schedule is relaxed by four times and the
system performance is hardly affected, which illustrates the ef-
fectiveness of the proposed pipelining mechanism in reducing
scheduler complexity.

C. Adaptive Pipelining
Next we examine the effectiveness of adaptive pipelining. To

illustrate the point, we consider a simple synthetic traffic model
given in Fig. 10(a). The performance of adaptive pipelining is
obtained and compared with that of non-pipelining and pipelin-
ing with a fixed number of sub-schedulers. All schedulers,
pipelined or not, are assumed to run 1SLIP. The average packet
delay is sampled every 100 time slots and is plotted against time
in Fig. 10(b). It can be seen that in the first 2× 104 time slots,
while non-pipelining and 2-subscheduler pipelining eventually
lead to very large delay, 3-subscheduler pipelining and adaptive
pipelining successfully sustain the increase in traffic intensity.
Moreover, when traffic intensity drops back to around 0.5, adap-
tive pipelining outperforms 3-subscheduler pipelining as it does
not have a fixed 3 time-slot pipelining delay. In fact, accord-
ing to Fig. 10(b), adaptive pipelining always has the minimum
delay among all of these schedulers regardless of the change in
traffic load. It achieves both high throughput under heavy traf-
fic and low pipelining delay under light traffic by adjusting the
number of sub-schedulers according to the traffic load.

VI. RELATED WORK AND COMPARISON

Building optical packet switches has attracted many interests
in recent years, see, for example, [5], [23], [24], [25]. In this
section we compare the OpCut switch with some recently pro-

11

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−1

100

101

102

103

Av
er

ag
e

Pa
ck

et
 D

el
ay

Traffic Intensity

N = 16; uniform Bernoulli traffic

p−2SLIP
p−4SLIP
np−2SLIP
np−4SLIP
p−k2−2SLIP
p−k4−2SLIP
OQ

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

101

102

Av
er

ag
e

Pa
ck

et
 D

el
ay

Traffic Intensity

N = 16; non−uniform bursty traffic

p−2SLIP
p−4SLIP
np−2SLIP
np−4SLIP
p−k2−2SLIP
p−k4−2SLIP
OQ

(a) 16× 16 switch

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−1

100

101

102

103

Av
er

ag
e

Pa
ck

et
 D

el
ay

Traffic Intensity

N = 64; uniform Bernoulli traffic

p−2SLIP
p−8SLIP
np−2SLIP
np−8SLIP
p−k2−2SLIP
p−k4−2SLIP
OQ

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

101

102

Av
er

ag
e

Pa
ck

et
 D

el
ay

Traffic Intensity

N = 64; non−uniform bursty traffic

p−2SLIP
p−8SLIP
np−2SLIP
np−8SLIP
p−k2−2SLIP
p−k4−2SLIP
OQ

(b) 64× 64 switch

Fig. 9. Packet delay with non-pipelined and pipelined schedulers under different traffic models and switch sizes. The notations of schedulers are the same as in
Fig. 8. OQ: ideal output-queued switch.

0 1 2 3 4 5
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr
af

fic
 In

te
ns

ity

Time Slot

Traffic intensity versus time

0 1 2 3 4 5
x 104

0

5

10

15

20

25

30

Av
er

ag
e

Pa
ck

et
 D

el
ay

Time Slot

Sampling of average packet delay over time

adaptive pipeline
non−pipeline
2−scheduler pipeline
3−scheduler pipeline

(a) (b)
Fig. 10. An example of adaptive pipeline. (a) The traffic model under which the traffic intensity changes with time. (b) Average packet delay over time under
different pipelining strategies.

posed architectures.
Earlier designs mainly focused on all-optical switches with

switching and buffering both in the optical domain, such as [25].
The performance of such designs are usually constrained by the
physical limit of fiber delay lines.

Recently, IBM has built some prototypes of optical intercon-
nects with tera bit switching capacity [2], [5]. The IBM PERCS
project [14] adopts optical circuit switching on fixed routes to
transfer long-lived bulk data packets. If data at a capacity of
a fraction of a wavelength’s granularity is to be carried, some

fiber capacity will be wasted. To overcome this problem, the
PERCS project uses electronic packet switching for short-lived
data exchanges. Thus, in this sense, it may be considered as
an intermediate feasible solution before more efficient optical
packet switching becomes reality.

Similar to the OpCut switch, the prototype switch of the IBM
OSMOSIS project [2], [5] also uses electronic buffer to over-
come the buffering problem in optical packet switching. The
OSMOSIS switch adopts an input-buffered architecture. At the
input ports, all packets are converted from optical to electrical to

12

be stored in electronic memory. The packets are then converted
back to optical before being switched. As a result, all pack-
ets experience the Optical-Electronic-Optical (OEO) conversion
delay. On the other hand, as the simulation results show, in the
OpCut switch a large percentage of the packets cut-through the
switch and do not experience such delay.

The idea of recirculating buffer can be traced back to the the
Starlite switch [29] and the Sunshine switch [30]. Both of them
are electronic switches based on banyan networks, and rely on
the combination of a Batcher sorting network, a trap network
and a concentrator to achieve internal nonblocking. Their draw-
back is that the size of the sorting network and the concentrator
needs to be very large for the switch to achieve low packet loss
when heavily loaded. In [26], [27], optical switches with “recir-
culating buffer” were proposed and analyzed. These switches
also allow the packets that cannot be sent to the output port to
be sent to a buffer inside the switch. However, the buffer is op-
tical and its size is limited by the size of the switching fabric.
More importantly, the problem of maintaining packet order was
not addressed in [26], [27] and packets may be out of order after
exiting the switch.

The two-stage switch in [28] bears some interesting similar-
ities to the OpCut switch. In a two-stage switch with N in-
puts and N outputs, there are two N ×N switches with buffers
sandwiched in between. The two switches follow a fixed con-
nection pattern to connect the inputs to the outputs: at time slot
t, input i is connected to output (i + t) mod N . Basically,
the first stage switch spreads the input packets evenly on the
buffers and the second stage switch sends the packets out in
a round-robin manner. Like in the OpCut switch, maintaining
packet order is challenging in the two-stage switch. To solve
this problem, the two-stage switch needs additional queueing
management such as the three-dimensional queue proposed in
[13], or a sophisticated mechanism to feedback packet departure
times to the inputs [21]. A potential problem with the two-stage
switch is that it results in long packet delays because a packet
may have to wait for N time slots before being sent out of the
switch, even when the traffic load is very light. On the other
hand, as we have seen, the OpCut switch maintains packet order
by simply scheduling head-of-flow packets only and achieves
very low latency by allowing packets to cut-through the switch.
Furthermore, the OpCut switch can adopt pipelined scheduling
adaptively to achieve the best balance between performance and
scheduler complexity.

VII. CONCLUSIONS

In this paper, we have considered pipelining the packet
scheduling in the OpCut switch. The key feature of the Op-
Cut switch is that it allows packets to cut-through the switch
whenever possible, such that packets experience minimum de-
lay. Packets that cannot cut-through are received by receivers
and stored in the electronic buffer, and can be sent to the out-
put ports by the transmitters. We have presented a basic packet
scheduler for the OpCut switch that is simple to implement and
achieves satisfactory performance. We then proposed a mecha-
nism to pipeline packet scheduling in the OpCut switch by em-
ploying k sub-schedulers. The ith sub-scheduler handles the
scheduling of the ith oldest flows of the output ports. We have

respectively discussed the implementation details for k = 2 and
an arbitrary k. For the case of k = 2, we have shown that our
mechanism eliminates the duplicate scheduling problem. With
arbitrary k, duplicate scheduling can no longer be eliminated,
but we have proposed approaches to reducing it. We have fur-
ther proposed an adaptive pipelining scheme to minimize the
extra delay introduced by pipelining. Our simulation results
show that the OpCut switch with the proposed scheduling al-
gorithms achieve close performance to the ideal output-queued
(OQ) switch in terms of packet latency, and that the pipelined
mechanism is effective in reducing scheduler complexity and
further improving switch throughput.

REFERENCES

[1] Z. Zhang and Y. Yang, “Performance analysis of optical packet switches
enhanced with electronic buffering,” Proc. of the 23th IEEE International
Parallel and Distributed Processing Symposium, Rome, Italy, May 2009.

[2] I. Iliadis and C. Minkenberg, “Performance of a speculative transmission
scheme for scheduling-latency reduction,” IEEE/ACM Trans. Networking,
vol. 16, no. 1, pp. 182-195, Feb. 2008.

[3] R.R. Grzybowski, B.R. Hemenway, M. Sauer, C. Minkenberg, F. Abel,
P. Muller and R. Luijten “The OSMOSIS optical packet switch for su-
percomputers: Enabling technologies and measured performance,” Proc.
Photonics in Switching 2007, pp. 21-22, Aug. 2007.

[4] C. Minkenberg, et. al, “Designing a crossbar scheduler for HPC applica-
tions,” IEEE Micro, vol. 26, pp. 58-71, May 2006.

[5] R. Hemenway, R.R. Grzybowski, C. Minkenberg and R. Luijten, “Optical-
packet-switched interconnect for supercomputer applications,” Journal of
Optical Networking, vol. 3, no. 12, pp. 900-913, Dec. 2004.

[6] J.-K.K. Rhee, C.-K. Lee, J.-H. Kim, Y.-H. Won, J. S. Choi and J. Y.
Choi, “Power and cost reduction by hybrid optical packet switching
with shared memory buffering,” IEEE Communications Magazine,
vol. 49, pp. 102-110, May 2011.

[7] F. Xia, L. Sekaric and Y. Vlasov, “Ultracompact optical buffers on a sili-
con chip,”, Nature Photonics 1, 2007.

[8] Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z. Zhu, A. Schweinsberg, D.J.
Gauthier, R.W. Boyd and A.L. Gaeta, “Tunable all-optical delays via Bril-
louin slow light in an optical fiber,” Phys. Rev. Lett., 94, 153902, 2005.

[9] T. Zhang, K. Lu and J.P. Jue, “Shared fiber delay line buffers in asyn-
chronous optical packet switches,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 4, pp. 118 - 127, April 2006.

[10] C.-S. Chang, Y.-T. Chen and D.-S. Lee, “Constructions of optical FIFO
queues,” IEEE/ACM Trans. Networking, vol. 14, pp. 2838-2843, 2006.

[11] A.D. Sarwate and V. Anantharam, “Exact emulation of a priority queue
with a switch and delay lines,” Queueing Systems: Theory and Applica-
tions, vol. 53, pp. 115-125, Jul. 2006.

[12] N. McKeown, A. Mekkittikul, V. Anantharam and J. Walrand, “Achieving
100% throughput in an input-queued switch,” IEEE Trans. Communica-
tions, vol. 47, no. 8, pp. 1260-1267, Aug. 1999.

[13] I. Keslassy and N. McKeown, “Maintaining packet order in two-stage
switches,” IEEE INFOCOM ’02, New York, June 2002.

[14] K.J. Barker, A. Benner, R. Hoare, A. Hoisie, A.K. Jones, D.J. Kerbyson,
D. Li, R. Melhem, R. Rajamony, E. Schenfeld, S. Shao, C. Stunkel and
P. Walker, “On the feasibility of optical circuit switching for high perfor-
mance computing systems,” Proc. ACM/IEEE Conference on Supercom-
puting (SC ’05), Seattle, WA, Nov. 2005.

[15] T. Anderson, S. Owicki, J. Saxe and C. Thacker, “High speed switch
scheduling for local area networks,” ACM Trans. Computer Systems, pp.
319-352, Nov. 1993.

[16] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Trans. Networking, vol. 7, no. 2, pp. 188-201, 1999.

[17] A. Smiljanic, R. Fan and G. Ramamurthy, “RRGS-round-robin greedy
scheduling for electronic/optical terabitswitches,” GLOBECOM 1999, pp.
1244-1250, 1999.

[18] E. Oki, R. Rojas-Cessa and H. Chao, “A pipeline-based approach for
maximal-sized matching scheduling in input-buffered switches,” IEEE
Communication Letters, vol. 5, pp. 263-265, Jun. 2001.

[19] C. Minkenberg, I. Iliadis and F. Abel, “Low-latency pipelined crossbar
arbitration,” Proc. IEEE GLOBECOM 2004, vol. 2, pp. 1174-1179, 2004.

[20] R. Rojas-Cessa, E. Oki, Z. Jing and H. Chao, “CIXB-1: Combined input-
one-cell-crosspoint buffered switch,” In Proc. 2001 IEEE Workshop on
High-Performance Switching and Routing (HPSR 2001), pp. 324-329,
Dallas, TX, May 2001.

13

[21] C.-S. Chang, D.-S. Lee, Y.-J. Shih and C.-L Yu, “Mailbox switch: a scal-
able two-stage switch architecture for conflict resolution of ordered pack-
ets,”IEEE Trans. Communications, vol. 56, no. 1, pp. 136-149, Jan. 2008.

[22] D.K. Hunter, D. Cotter, R.B. Ahmad, W.D. Cornwell, T.H. Gilfedder, P.J.
Legg, and I. Andonovic, “Buffered switch fabrics for traffic routing, merg-
ing, and shaping in photonic cell networks,” Journal of Lightwave Tech-
nology, vol. 15, pp. 86-101, Jan. 1997.

[23] B.E. Lemoff, et. al., “Demonstration of a compact low-power 250-Gb/s
parallel-WDM optical interconnect,” IEEE Photonics Technology Letters,
vol. 17, no. 1, pp. 220-222, Jan. 2005.

[24] J. Gripp, M. Duelk, J.E. Simsarian, A. Bhardwaj, P. Bernasconi, O.
Laznicka and M. Zirngibl, “Optical switch fabrics for ultra-high-capacity
IP routers,” J. Lightwave Technology, vol. 21, no. 11, pp. 2839-2850, Nov.
2003.

[25] S.L. Danielsen, C. Joergensen, B. Mikkelsen and K.E. Stubkjaer, “Analy-
sis of a WDM packet switch with improved performance under bursty traf-
fic conditions due to tunable wavelength converters,” J. Lightwave Tech-
nology, vol. 16, no. 5, pp. 729-735, May 1998.

[26] C. Develder, M. Pickavet and P. Demeester, “Assessment of packet loss
for an optical packet router with recirculating buffer,” Optical Network
Design and Modeling (ONDM) 2002, pp. 247-261, Torino, Italy, 2002.

[27] Z. Zhang and Y. Yang, “WDM optical interconnects with recirculating
buffering and limited range wavelength conversion,” IEEE Transactions
on Parallel and Distributed Systems, vol. 17, no. 5, pp. 466-480, May
2006.

[28] C.S. Chang, D.S. Lee, and Y.S. Jou, “Load balanced Birkhoff-von Neu-
mann switches, part I: one-stage buffering,” Computer Communications,
vol. 25, pp. 611-622, Apr. 2002.

[29] A. Huang and S. Knauer, “Starlite: A wideband digital switch,” Proc.
GOLBECOM ’84, Nov. 1984.

[30] J.N. Giacopelli, J.J Hickey, W.S. Marcus, W.D. Sincoskie and M. Lit-
tlewood, “Sunshine: A high-performance self-routing broadband packet
switch architecture,” IEEE Journal on Selected Areas in Communications,
vol. 9, no. 8, pp. 1289-1298, Oct. 1991.

