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Abstract

Wireless mesh networks recently emerge as a flexible,
low-cost and multipurpose networking platform with wired
infrastructure connected to the Internet. A critical issue in
mesh networks is to maintain network activities for a long
lifetime with high energy efficiency. As more and more out-
door applications require long-lasting, high energy efficien-
t and continuously-working mesh networks with battery-
powered mesh routers, it is important to optimize the per-
formance of mesh networks from a battery-aware point of
view. Recent study in battery technology reveals that dis-
charging of a battery is nonlinear. Batteries tend to dis-
charge more power than needed, and reimburse the over-
discharged power later if they have sufficiently long recov-
ery time. Intuitively, to optimize network performance, a
mesh router should recover its battery periodically to pro-
long the lifetime. In this paper, we introduce a mathemat-
ical model on battery discharging duration and lifetime for
wireless mesh networks. We also present a battery lifetime
optimization scheduling algorithm (BLOS) to maximize the
lifetime of battery-powered mesh routers. Based on the B-
LOS algorithm, we further consider the problem of using
battery powered routers to monitor or cover a few hot spots
in the network. We refer to this problem as the Spot Cov-
ering under BLOS Policy problem (SCBP). We prove that
the SCBP problem is NP-hard and give an approximation
algorithm called the Spanning Tree Scheduling (STS) to dy-
namically schedule mesh routers. The key idea of the STS
algorithm is to construct a spanning tree according to the
BLOS Policy in the mesh network. The time complexity
of the STS algorithm is O(r) for a network with r mesh
routers. Our simulation results show that the STS algorithm
can greatly improve the lifetime, data throughput and power
consumption efficiency of a wireless mesh network.
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er scheduling, energy efficiency, battery models, battery-
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1 Introduction

Recently wireless mesh networks have emerged as a flex-
ible, low-cost extension to the wired network infrastructure
[1, 2, 3]. A mesh network is a hybrid network which con-
sists of a mix of fixed routers and mobile clients intercon-
nected via access points. For example, in MIT’s roofnet
mesh network [4], a neighborhood can easily build a com-
munity mesh network by setting up a few mesh routers with
flexible mesh connectivities among houses to support dis-
tributed storage, data access, and video streaming. Among
the applications of wireless mesh networks, one of the most
important applications is the outdoor mesh networks. Out-
door mesh networks are usually setup in Disneyland, out-
door assemblages and stadiums to reduce the cost of setting
up Ethernet cables [2].

In general, a wireless mesh network is composed of
three components: access points (AP), mesh routers and
mesh clients. Fig.1 illustrates the architecture of a wire-
less mesh network. Unlike a traditional ad hoc network,
which is an isolated self-configured wireless network, the
mesh network architecture introduces a hierarchy with wire-
less routers communicating between mesh clients and AP-
s [3]. A typical wireless mesh network usually has 30 to
100 mesh routers. The fixed APs are wired to connect to
the Internet to provide high-bandwidth connections to the
Internet backbone. The meshing among wireless routers
and APs creates a wireless backhaul communication system
[1]. The backhaul provides each mobile client with a lim-
ited number of entry points connected to the Internet [1].
These entry points, along with the APs, are usually referred
to as Hot Spots. As the middle layer between the APs and
mesh clients, mesh routers must cover all these hot spot-
s. Mesh clients have more varieties of devices compared
to mesh routers. These devices can be laptops, tablet PC-
s, PDAs, IP phones, RFID (Radio Frequency ID) readers,
BACnet (Building Automation and Control networks) con-
trollers, and many other types of widely used wireless de-
vices.

A critical issue in mesh networks is to maintain the
network activities for a long lifetime with high energy
efficiency. As more and more outdoor applications re-
quire long-lasting, high energy efficient and continuously-
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Figure 1. Architecture of a wireless mesh network.

working mesh networks with battery-powered mesh router-
s, it is important to prolong the lifetime of wireless router-
s and optimize their performance. Nowadays the batteries
on most mesh routers can work for at most a few hours.
As an example, the HotPort [5] series outdoor mesh router
can continuously work for about two hours on battery. On
the other hand, most outdoor applications, such as Disney-
land, require a mesh network with a fairly long lifetime.
Improving battery performance in mesh routers can greatly
improve the overall network communication performance.
Thus, carefully scheduling and budgeting battery power in
mesh networks has become an urgent and important issue
in mesh network design.

In this paper, we propose an approach to maximizing
the lifetime of mesh networks from a battery-aware point
of view. Recent study in battery technology helps us better
understand the battery behavior. Unlike what people used
to believe, the energy consumed from a battery is not equiv-
alent to the energy dissipated in the device. When discharg-
ing, batteries tend to consume more power than needed, and
can reimburse the over-consumed power later. The process
of the reimbursement is often referred to as battery recov-
ery. [6, 7, 8] conducted experiments on nickel-cadmium
battery and lithium-ion battery, which are two commonly
used types of batteries on wireless mesh routers. The results
show that the over-consumed energy might take up to 30%
of the total battery capacity. In other words, by carefully
capturing the behavior of batteries and employing battery-
aware mesh router scheduling algorithms, we may dramat-
ically increase the lifetime of mesh routers, and as a result,
the lifetime of wireless mesh networks. Therefore, the first
important issue here is how to precisely capture and predict
battery behavior with an accurate mathematical model.

Several analytical models on battery discharging behav-
ior have been developed in recent years [6, 9]. Although
these battery models are computational approaches and in-
dependent of battery chemistry, they are not quite suitable
for implementation in mesh networks due to their low accu-

racy and high computational complexity. More recently, an
on-line computable battery model was proposed in [7]. This
model gave a simple way to measure the battery discharg-
ing behavior by using the recovery length. However, so far
no study has been done on optimizing battery lifetime based
on the relationships between discharging time and total bat-
tery lifetime. In this paper, we study these relationships,
and present a battery lifetime optimization scheduling algo-
rithm (BLOS) to maximize the lifetime of battery-powered
mesh routers.

Based on the BLOS algorithm, we further consider the
problem of using battery powered routers to monitor or cov-
er hot spots. When all mesh routers follow the BLOS policy,
our goal is to keep the mesh network covering all hot spots
for as long as possible. We refer to this problem as the Spot
Covering under BLOS Policy problem (SCBP). We first re-
duce the SCBP problem to the Vertex Covering (VC) prob-
lem, and prove that the SCBP problem is NP-hard. We then
give an approximation algorithm to dynamically schedule
mesh routers. The key idea of the algorithm is to construct
a spanning tree in the mesh network to ensure all hot spots
covered. Thus the algorithm is referred to as the Spanning
Tree Scheduling (STS) algorithm. The time complexity of
the STS algorithm is O(r) for a network with r mesh router-
s. We also validate the algorithm through simulations. Our
results demonstrate that the STS algorithm can greatly im-
prove the lifetime, data throughput and power consumption
efficiency of a wireless mesh network.

2 Battery Discharging and Recovery

Nickel-cadmium and lithium-ion batteries are the most
commonly used batteries in wireless mesh routers and oth-
er outdoor computing and communication devices. Such
a battery consists of cells arranged in series, parallel, or a
combination of both. Two electrodes: an anode and a cath-
ode, separated by an electrolyte, constitute the active ma-
terial of each cell. When the cell is connected to a load,
a reduction-oxidation reaction transfers electrons from the
anode to the cathode. To illustrate this phenomenon, Fig.
2 shows a simplified symmetric electrochemical cell. In a
fully charged cell (Fig. 2(a)), the electrode surface con-
tains the maximum concentration of active species. When
the cell is connected to a load, an electrical current flows
through the external circuit. Active species are consumed
at the electrode surface and replenished by diffusion from
the bulk of the electrolyte. However, this diffusion pro-
cess cannot keep up with the consumption, and a concen-
tration gradient builds up across the electrolyte (Fig. 2(b)).
A higher load electrical current I results in a higher con-
centration gradient and thus a lower concentration of active
species at the electrode surface [10]. When this concen-
tration falls, the battery voltage drops. When the voltage
is below a certain cutoff threshold, the electrochemical re-



action can no longer be sustained at the electrode surface,
and the battery stops working (Fig. 2(e)). The electro ac-
tive species that have not yet reached the electrode are not
used. We refer to the unused charge as discharging loss.
The discharging loss is not physically “lost,” but simply u-
navailable due to the lag between the reaction and the dif-
fusion rates. Before the battery dies, if the battery current
I is reduced to zero or a very small value, that is, in bat-
tery recovery (Fig. 2(c)), the concentration gradient flattens
out after a sufficiently long time, reaching equilibrium a-
gain. The concentration of active species near the electrode
surface following this recovery period makes unused charge
available again for extraction (Fig. 2(d)). Effectively recov-
ering the battery can reduce the concentration gradient and
recover discharging loss, hence prolong the lifetime of the
battery (Fig. 2(f)). Experiments on nickel-cadmium battery
and lithium-ion battery show that the discharging loss might
take up to 30% of the total battery capacity [6]. Hence, pre-
cisely modeling battery behavior is essential for optimizing
system performance in wireless mesh networks.
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Energy fully consumed
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Figure 2. Battery operation at different states.

The key idea of battery awareness is to use a mathemati-
cal model to capture the special behavior of the battery, and
then schedule the battery-powered device according to its
discharging loss. By recovering the battery, we can reim-

burse the discharging loss and in turn improve the lifetime
of the device. Several mathematical battery models have
been introduced in recent years [6, 7, 8, 11, 12] to capture
the battery behavior. We will discuss the battery modeling
in the next section.

3 Modeling Battery Discharging Behavior

In this section we first briefly analyze and compare ex-
isting battery models. Then we introduce our battery model
based on the scenario of epoch time discharging and recov-
ery. We also give a method to simplify the computation of
discharging loss in the model.

Mathematical models that can capture the battery dis-
charging behavior have been developed [6, 7, 8, 11, 12].
These models are independent of battery chemistry. [11]
provided an abstract model to describe battery recovery be-
havior. This model treats discharging and recovery as a neg-
ative exponential function and represents them as a transient
stochastic process. However, as pointed out in [12], this
method requires considerable effort to configure, and its ac-
curacy and computational complexity are barely acceptable.
Therefore, it has limited utility for the implementation in
wireless mesh networks. [6] proposed an analytical battery
model which estimates the battery recovery behavior. The
analysis is based on a one-dimensional model of diffusion
in a finite region. However, this model is very complex and
requires long computing time. An on-line computable dis-
crete time battery model was introduced in [7, 8] for ad hoc
wireless networks, in which the battery lifetime is divided
into a sequence of discrete time slots with a fixed slot length.
This model can effectively capture the effect of battery dis-
charging and recovery.

Although all previous analytical battery models can fair-
ly describe the battery discharging behavior in mathemati-
cal expressions, none of them consider optimizing the bat-
tery lifetime based on the relationships among the discharg-
ing time, recovery time and overhead to switch the device
from active to idle. In this section, we give a battery model
based on continuous epoch time discharging and recovery
for optimization in mesh router scheduling.

Consider a scenario where a battery is turned active for
δi time, and then turned idle for τi time (i = 1, 2, . . . ). The
active-idle period is repeated until the battery dies. Note
that by turning a battery into idle, we let it “sleep” with
very low current on it. During its idling the battery recovers
its over-charged capacity.

In our battery model, battery is discharged in each du-
ration i with length δi, where δi may not be equal to δj if
i �= j. α is the initial battery capacity. A duration δi is
called an epoch. We use Ii, αi, α′

i and ζi to denote the dis-
charging current through the battery, the battery capacity at
the beginning of the ith epoch, the battery capacity at the
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Figure 3. (a) Discharging of a battery in δ1 and δ2 e-
pochs. Battery is idle between epochs. (b) The capacity
ζ1(t) is discharged in epoch δ1 and recovered gradual-
ly after that. ζ1(t) after time δ1 + τ1 is ignored. If this
battery dies at t0, ζ1(t0) is permanently lost.

end of the ith epoch, and the discharging loss in the ith e-
poch, respectively. We use T to denote the entire lifetime of
the battery. An epoch δi is followed with a recovery period
of length τi. Without loss of generality, we assume that the
discharging current I is a constant in a certain epoch.

The condition of a battery at the ith epoch is measured
by its discharging loss at that time. A high discharging loss
indicates a “fatigue” battery which needs some recovery,
while a battery with low discharging loss is well recovered.
Intuitively, an energy efficient scheduling algorithm should
always choose routers with well recovered batteries. There-
fore, a good battery model should be able to calculate the
discharging loss at any epoch.

The following analytical model can be used to compute
the battery discharging loss at an epoch. The model that
computes the energy dissipated by the battery during the
ith epoch [t, t + δi] is

αi − α′
i = Ii × F (T, t, t + δi, β) (1)

where

F (T, t, t + δi, β) = δi + 2
∞∑

m=1

[
e−β2m2t − e−β2m2(t+δi)

β2m2

]

This model can be interpreted as follows. The dissipated
energy during the ith epoch is α′

i − αi in (1). It contains
two components: The first term, Ii × δi, is simply the en-
ergy consumed in the device during [t, t + δi]. The second

term, 2Ii ×
∑∞

m=1

[
e−β2m2t−e−β2m2(t+δi)

β2m2

]
is the amount

of battery discharging loss in the epoch. It can be seen that

the discharging loss decreases as the lifetime T increases.
β (> 0) is a constant, which is an experimental chemical
parameter and may vary from battery to battery. The larger
the β, the faster the battery diffusion rate, hence the less the
discharging loss. Next we show how the model in (1) can
be used to calculate the discharging loss at a given epoch.

As defined earlier, ζi is consumed in the ith epoch and
recovered in the next τi time. Clearly,

ζi(t) = 2Ii ×
∞∑

m=1

[
e−β2m2(t+t) − e−β2m2(t+δi+t)

β2m2

]
(2)

where ζi(t) is the residual discharging loss at time t. It
should be mentioned that discharging loss ζi(t) is only a
potential type of energy. For example, in Fig. 3, if the bat-
tery dies at time t0, the battery permanently loses the energy
ζi(t0).

As can be observed, the recovery of ζi(t) continues from
t+δi to ∞. In practice, we can simplify the computation of
ζi as follows. Assume c is a fairly small constant, which is
the power to transmit a packet. By observing (2), if ζi(τi)
is less than c, we can ignore the discharging loss after time
t + δi + τi. Thus, after τi time of recovery, the battery can
be considered to be well-recovered.

In summary, in this section we first briefly summarize
and compare previous work on battery modeling. We then
introduce our battery model based on the δ epoch time dis-
charging and τ time recovery scenario. We also give a
method to simplify the computation of discharging loss ζ.
Next we will apply this model to battery lifetime optimiza-
tion in wireless mesh networks.

4 Battery Lifetime Optimization Scheduling
(BLOS)

As discussed earlier, given a battery with initial capac-
ity α discharged under current I from 0 to δ1, the battery
capacity decreases nonlinearly during time [0, δ1], and af-
terwards it gradually recovers the capacity to the value of
α − I × δ1 − ζ(t), where ζ(t) is the discharging loss at
time δ1 + t. By periodically recovering the battery, we can
reduce ζ(t), and in turn increase the battery lifetime. Fig.
4 gives an example that shows the simulated lifetime pro-
longed by considering the battery recovery. In this case we
assume the battery capacity is α = 4.5 × 104mAmin and
β = 0.4, which are typical values of a chemical battery [6].
The discharging current is Id = 900mA. Under the greedy
mode, the battery is continuously discharged until the bat-
tery dies. The total lifetime is 116 minutes. In the battery-
aware mode, the battery is discharged in each epoch, and
recovered in the next recovery period. The total working
time is increased by 14.7%.

Now given a battery, in order to optimize the battery life-
time we need to determine when an epoch should start and
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Figure 4. Simulated lifetime under the greedy mode
and battery-aware mode. The lifetime under the greedy
mode is 116 minutes. Under the battery-aware mode,
the battery is discharged in each epoch, and recovered
in the subsequent recovery time. The total working time
is increased by 14.7%.

how long the epoch should last. We adopt an iterative way
to find an optimal scheduling policy for battery-powered
mesh routers.

First consider a battery being discharged in [t, t+ δi], af-
ter that period it takes τi time to fully recover the discharg-
ing loss. From (2) we know the length of recovery time τi is
only dependent on δi if given α, I and β. Therefore, there
is a function to calculate τi, and we call it GetTau. That is,

τi = GetTau(α, I, β, δi)

Under the greedy mode, where the battery is continuously
discharged under current I until it dies, we define the total
lifetime function as

Lifetime(α, β, I)

This lifetime function can be easily obtained from (1). Now
let’s consider the battery discharging behavior. Our goal is
to maximize the total battery discharging time. We assume
the mesh router is turned active n times. Let δi be the length
of the ith active time, 1 ≤ i ≤ n. The problem can be for-
mulated as: Given an initial battery capacity, how to choose
the lengths of δ1, δ2, . . . , δn such that the battery has the
longest working time.

In mathematical terms, let T i =
∑n

j=i δj . A policy P is
defined as a schedule for a router. P describes the length-
s of time δ1, τ1, δ2, τ2, . . . until the battery is used up. An
optimal policy is a policy by which T 1 =

∑n
i=1 δi is maxi-

mized. Let αi be the residual charge at the beginning of the
ith active time. T i depends on αi and the policy P . Given

αi, let T i under the optimal policy be

T i = Pi(αi) (3)

Then what we need to find is P1(α1).
Suppose that Pi(αi) has been found, that is, for any giv-

en αi, we know the optimal lengths of δi, δi+1, . . . , δn such
that T i is maximized. Now we want to find Pi−1(αi−1).
Define the overhead to switch between active and idle is ε.
Note that

T i−1 = δi−1 + T i (4)

Also note that if αi−1, δi−1 and τi−1 are given, αi is deter-
mined and can be written as

αi = f(αi−1, I, δi−1, τi−1) − ε (5)

where function f(αx, I, δx, τx) describes the residual bat-
tery power after being discharged for δx time under current
I and being recovered for τx time.

In this case T i−1 can be maximized by adopting the op-
timal policy for the T i we have already found. From (4),
(3) and (5), we obtain the maximum value of T i−1

T i−1 = δi−1 + Pi(f(αi−1, I, δi−1, τi−1) − ε) (6)

Note that (6) is only a function of αi−1 and δi−1. By
varying δi−1, the maximum value of T i−1 under a given
αi−1 can be found, which is the Pi−1(αi−1) we want to
find. In practice, we can increase δi by a constant δ step
by step. Since after each τi time recovery, the battery is
well-recovered, function f has a very simple form

αi = f(αi−1, I, δi−1, τi−1) = αi−1 − I ∗ δi−1

Now we are in the position to describe the Battery Life-
time Optimization Scheduling (BLOS) algorithm. As de-
fined earlier, n is the number of epochs during the lifetime
of a battery. Clearly, T 1 is not maximized when n = 1,
because this is the greedy mode. As n increases, the bat-
tery periodically gets recovery, hence T 1 is also increased.
However, this increasing is not monotonic because the ac-
cumulation of overhead ε also increases. The accumulated
overhead in turn reduces T 1. Therefore, there must exist an
n such that T 1 obtains its maximum value. The BLOS algo-
rithm is used to find the optimum T 1. The algorithm can be
described as follows. Initially, we let n = 1, and calculate
the optimum policy for the given n. Each step we increase
n by 1, and calculate the new policy for this n until there is
an optimum T 1 with a peak value.

The BLOS algorithm employs an iterative approach to
finding P1(α1) for a given n. We call it GetBlos. Table
1 gives the details of the GetBlos procedure. At the be-
ginning, we find Pn(αn). In the subsequent steps, Pi(αi)



Table 1. Finding Optimal Policy P for Given n

Procedure GetBlos (α, i)
begin

if (i = n)
begin

δn = lifetime(α, β, I);
return δn;

end
else

begin
T = 0;
for j = 1 to � α

I×δ
�

begin
calculate δi+1, δi+2, . . . , δn

by calling GetBlos (α − j × δ × I − ε, i + 1);
Ti =

∑n
k=i+1 δk + j × δ;

if T < Ti then T = Ti;
end

return T ;
end

end

can be determined according to the results of Pi+1(αi+1).
This way we can finally find P1(α1). Since in the last active
time the battery works until exhausted and there is no policy
involved, it can be simply obtained from the battery model.

Finally, we give the complete BLOS algorithm based on
procedures GetBlos, GetTau and Lifetime. Table 2 de-
scribes the algorithm in pseudo-codes. From n = 1, 2, . . . ,
procedure GetBlos is called to calculate the optimal lifetime
T 1 for the given n, then n is increased until a peak value of
T 1 is obtained. The policy P at this n is the optimal poli-
cy we want. Finally we can use GetTau function to specify
each τi for δi, to ensure the battery is well recovered after
δi time discharging.

5 Hot Spot Covering Under BLOS Policy

In Section 4 we gave an optimal scheduling algorithm to
maximize the lifetime of mesh routers. In this section we
consider the problem of using battery powered mesh router-
s to monitor or cover hot spots. Our goal is to let routers
all follow the optimal battery active-idle policy, while keep-
ing all hot spots covered for as long as possible. We call
this problem the Spot Covering under BLOS Policy prob-
lem, and refer to it as the SCBP problem.

Like many other covering problems, the SCBP problem
is NP-hard. In the following we give a proof of it. We show
that even in the simplest case in which the optimal policy
is to “use till exhausted,” the decision version of the SCBP
problem is NP-hard.

The decision version of the SCOP problem can be for-

Table 2. Battery Lifetime Optimization
Scheduling (BLOS)
Procedure BLOS
begin

n = 0;
T = 0, T 1 = 0;
repeat

T = T 1;
n = n + 1;
calculate T 1 by calling GetBlos(α, n);

until T 1 < T ;
calculate τi by calling GetTau(αi, I, β, δi),
for i = 1, 2, . . . , n;

end

mally written as follows. Given a set of routers and a set of
spots, where each router may cover several spots and each
spot may be covered by several routers. If all routers have
the same battery life T , does there exist a schedule by which
all spots are covered in [0, t′], where t′ is a positive constan-
t? Such a schedule is called a valid schedule. Note that since
all routers, by the optimal policy, must work till the battery
is exhausted after turned on, the only thing we can control
is when to turn on each router.

Lemma 1 The decision version of the SCBP problem is e-
quivalent to the Subset Partition problem (SP).

Proof. First we give some properties of a valid schedule.
Since all spots must be covered at time 0, some routers must
have been turned on at time 0 and these routers must collec-
tively cover all spots. This can be seen without difficulty.
Now suppose under a valid schedule, a router is turned on
at time t where 0 < t < T . We can safely delay the turn
on time of this router to T , since all spots it covers must be
covered during [t, T ] by the routers turned on at time 0, and
all spots it covers during [T, T + t] are still covered by it-
self. As a result of this fact, if there is a valid schedule, there
will be a valid schedule by which all routers are turned on
at times which are multiples of T . Therefore, the problem
reduces to partitioning the routers into groups, where each
group should collectively cover all spots and the number of
groups multiplied by T must be larger than t′. Thus the
decision version of the SCBP problem is equivalent to the
following problem, which we call the Subset Partition prob-
lem (SP): Given a whole set (the spots) and some subsets
(the routers), can the subsets be partitioned into k groups
where each group of subsets covers all the elements in the
whole set?

Now we have proved that the SCBP problem is equiva-
lent to the SP problem. Next we show that the SP problem
is NP-hard, and as a result, the SCBP problem is NP-hard.



Lemma 2 The SP problem is NP-hard.

Proof. Consider the Vertex Covering problem which is
known to be NP-hard [14, 13]: Given a graph and k colors,
can each vertex be given a color such that no adjacent ver-
tices have the same color? The SP problem can be shown to
be NP-hard as follows.

Given any instance of the VC problem G, construct an
instance of the SP problem in 3 steps.

1. For each edge Ei in G, create an element called ei.

2. For each vertex Va in G, create a subset called Sa. Sub-
set Sa contains element ei if Va is incident to Ei in
G. Note that at this time each element is in exactly 2
subsets, i.e., covered by two subsets.

3. Then for each ei, create k − 2 identical subsets si
1, si

2,
. . . , si

k−2, where each of these subsets contains only
one element which is ei.

Note that now each element is covered by exactly k sub-
sets. If all the subsets created can be partitioned into k
groups where each group collectively covers all the ele-
ments, the subsets covering the same element must belong
to different groups. Give color Cj to vertex Va if subset Sa

is in the jth group in the partition. Apparently, two vertices
Va and Vb will be given different colors if they are adjacent
to each other in graph G. As a result, the partition deter-
mines a k-coloring in the VC instance.
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Figure 5. An example to show the SP instance for a
graph G. (a) Graph G. (b) SP instance for (a).

As an example, the SP instance for the graph shown in
Fig. 5(a) is given in Fig. 5(b). Letting k = 3, the subsets
in the SP instance can be partitioned into 3 groups where
subsets in the same group are shown in the same color:{
S1, S5, s

4
1, s

5
1

}
,

{
S2, S3, s

3
1, s

7
1

}
and

{
S4, s

1
1, s

2
1, s

6
1

}
. It

determines a valid 3-coloring in the VC instance, as shown
in Fig. 5(a).

Theorem 1 The SCBP problem is NP-hard.

Proof. Given the proofs of Lemma 1 and Lemma 2, we can
draw the conclusion that the SCBP problem is NP-hard.

Since there is no optimal SCBP decision in polynomi-
al time, in the next section, we will give an approximation
algorithm for the SCBP problem under BLOS scheduling.

6 Spanning Tree Mesh Router Scheduling
under BLOS Policy

In this section we present an approximation algorithm
to ensure wireless mesh routers to cover hot spots under
BLOS policy. The key idea of our algorithm is to construct
a spanning tree in the mesh network to ensure all spots to
be covered. The spanning tree is reconstructed periodically
according to the BLOS policy. A new tree is constructed
to recover the mesh routers in the old tree. We refer to this
algorithm as the Spanning Tree Scheduling (STS).

We assume that there are r mesh routers in the net-
work. The STS algorithm consists of two steps. First,
each mesh router computes its optimal policy by BLOS.
Then a spanning tree is constructed from all spots to be
covered. m1,m2, . . . ,ms are the s nodes selected in this
tree. They are turned to active for δ1 time, where δ1 =
min{δm1

1 , δm2
1 , . . . , δms

1 }. All other nodes are turned into
idle during this time. After δ1 time, a new tree is recon-
structed. The STS algorithm turns all nodes not on the s-
panning tree into idle for recovery. To avoid a router being
selected again in the next round, STS gives a weight to each
of them. When we select spanning tree nodes, a node with
lower weight has higher priority. Table 3 gives the STS al-
gorithm in detail. For a network with r routers, it is easy
to see that the time complexity to construct a spanning tree
is O(r). In order to verify whether a spanning tree is con-
structed in the STS algorithm, we let each node broadcast a
short packet via selected routers. Such packets overhead is
very minor considering the number of mesh routers is fairly
small (30 − 100), and the radius of a router is fairly long
(300 feet) in a mesh network [1, 2]. Fig. 6 gives an example
of how the STS algorithm works.

7 Performance Evaluations

In this section we evaluate the performance of the STS
algorithm under BLOS through simulations. The simula-
tion consists of two parts: stand-alone router performance



Table 3. Spanning Tree Scheduling Algorithm
(STS)

Procedure STS
begin

Initially each mesh router is assigned a weight;
τ = 0, h = 1;
Each mesh router computes its policy by BLOS;
repeat

Each hot spot is colored as a black node;
Each mesh router is colored as a white node;
while the spanning tree is not connected do
begin

Each black node k selects a white node i,
where Distance(i, k) <Radius(i),
and weight(i)=
min{weight(j)|distance(j, k) <Radius(j)};

i is colored black;
end
Obtain a spanning tree with s routers: m1,m2, . . . ,ms;
Mesh routers not in the spanning tree are
turned idle for recovery;

This spanning tree works for
max{τ,min{δm1

h , δm2
h , . . . , δms

h }} time;
τ = max{τm1

h , τm2
h , . . . , τms

h };
Each node ml(l = 1 . . . s) does:

Weight(ml)=Weight(ml)+δweight;
h = h + 1;

until no spanning tree can be constructed;
end

(Section 7.1), and mesh network performance (Section 7.2).
We evaluate the performance with respect to router lifetime,
data throughput, network lifetime and power consumption.

7.1 Stand-Alone Router Performance

In this subsection we evaluate the lifetime of a stand-
alone mesh router under BLOS policy. For comparison pur-
pose we also simulated two other battery scheduling algo-
rithms: Greedy Scheduling (GS) and Fixed-Time Schedul-
ing (FTS), on the same router battery. Under the GS a bat-
tery is discharged without recovery during its lifetime. On
the other hand, the FTS blindly turns the battery between
active and idle in simple fixed time slots. Our simulation
results show that these two algorithms are much less ener-
gy efficient than the BLOS algorithm. To further strengthen
our conclusion, we also evaluated battery lifetime perfor-
mance for different batteries with various initial capacity α,
chemical parameter β and discharging current I . Fig. 7
shows the results. As can be seen, battery lifetime can be
prolonged by up to 21% under BLOS.

R2
A

B

C

R1

R3

R5

R6

R7

4R

Figure 6. An example to show one step of construct-
ing a spanning tree under the STS algorithm. A, B and
C are the hot spots to be covered. Weight(R1) = 0,
Weight(R3) = 0, Weight(R4) = 10, Weight(R5) = 20,
and Weight(R6) = 10. At this step, R1, R3 and R6 are
selected based on their weights.

7.2 Mesh Network Performance

In this subsection we evaluate the performance of the
STS algorithm under BLOS in mesh networks. We consider
the number of alive nodes, network lifetime, power dissipa-
tion and data throughput in the simulation. We assume that
the mesh network is setup in a 150 × 150 field. Wireless
mesh routers and hot spots are randomly distributed in the
field. Fig. 8 shows an example network with 50 routers and
15 hot spots.

In our simulation we consider several possible mesh net-
works with different numbers of mesh routers and hot spots.
To model real-world applications, we also evaluated our al-
gorithm for heterogeneous mesh networks, that is, networks
with mesh routers having various initial battery capacity α
and various β. This may be the case when a mesh network
is implemented using mesh routers of different brands. The
routers from different companies come with very different
α and β values. For comparison purpose we implemented
two approaches: (i) Greedy Scheduling mode (GS), where
all routers are continuously discharged; (ii) Greedy Span-
ning Tree mode (GST), where a spanning tree is construct-
ed without considering their battery status. After at least
one router in the spanning tree exhausts its power, a new
spanning tree is constructed by alive routers. We evaluated
the performance in terms of alive routers, power dissipation
and data throughput.

Alive Routers. We first consider the number of alive
routers during the network lifetime. Since the BLOS al-
gorithm enables routers to use up battery power gradually,
there should be more alive routers. The decreasing of the
number of alive nodes is shown in Fig. 9 for various num-
bers of routers and hot spots, and α and β values. We can
see that since the battery-aware scheduling is sensitive to
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Figure 7. Simulated lifetime under BLOS, Greedy
Scheduling and Fixed-Time Scheduling for various α, β,
and I . (a) α = 4.5 × 104mAmin, β = 0.4, I = 900mA,
ε = 100mAmin; (b) α = 5 × 104mAmin, β = 0.4,
I = 900mA, ε = 100mAmin; (c) α = 4.5× 104mAmin,
β = 0.5, I = 900mA, ε = 100mAmin; (d) α = 4.5 ×
104mAmin, β = 0.4, I = 1300mA, ε = 100mAmin.

battery status, the decreasing under the STS is slower. Also
note that the network lifetime is extended as well.

Power Dissipation. We evaluated the network with var-
ious number of heterogeneous routers. Fig. 10 shows the
power distribution of the routers in the middle of network
transmission (at the 60thmin). The X and Y axes show the
geographic positions of routers in the network. The Z axis
stands for the residual battery power of routers. It can be
seen that by adopting the STS, routers can preserve higher
battery energy.

Data Throughput. We also evaluated the normalized
gross data throughput of the network under three scheduling
algorithms. We simulated two networks with different num-
bers of hot spots and β values. Fig. 11 shows the normal-
ized data throughput. As can be seen, The STS improves the
total data throughput because it prolongs the entire network
lifetime.

8 Conclusions

In this paper, we have addressed the energy efficien-
t router scheduling problem in wireless mesh networks from
a battery-aware point of view. We showed that in prac-
tice batteries tend to discharge more power than needed,
and reimburse the over-discharged power later if they have
sufficiently long recovery time. Given this fact, we stud-
ied the relationships between discharging duration and bat-
tery lifetime, and introduced a battery lifetime optimization
scheduling algorithm (BLOS) to maximize the lifetime of
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Figure 8. An example of a wireless mesh network with
50 mesh routers and 15 hot spots distributed.

battery-powered mesh router. Based on the BLOS algorith-
m, we further considered the SCBP problem for monitoring
or covering hot spots under BLOS algorithm. We proved
that the SCBP is NP-hard, and give an approximation al-
gorithm (STS) with time complexity of O(r) for a network
with r mesh routers. Our simulation results show that the
STS can greatly improve the lifetime, data throughput and
power consumption efficiency of a wireless mesh network.
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Figure 10. Power dissipation at the 60th minute. (a) 50
routers, STS algorithm; (b) 50 routers, GST algorithm;
(c) 100 routers, STS algorithm; (d) 100 routers, GST al-
gorithm; Mesh routers are heterogeneous with random
α and β values.

200

400

600

800

1000
Normalized Data Throughput

GST
STS

GS

200

400

600

800

1000
Normalized Data Throughput

GST
STS

GS

(a) (b)

200

400

600

800

1000
Normalized Data Throughput

GST

STS

GS

200

400

600

800

1000
Normalized Data Throughput

GST

STS

GS

(c) (d)

Figure 11. Normalized data throughput in the mesh
network. (a) 50 routers and 15 hot spots, routers have
identical α = 4.5 × 104mAmin and β = 0.5; (b) 50
routers and 15 hot spots, routers have identical α =
4.5 × 104mAmin and β = 0.4; (c) 50 routers and 20
hot spots, routers have identical α = 4.5 × 104mAmin
and β = 0.5; (d) 50 routers and 20 hot spots, routers
have identical α = 4.5 × 104mAmin and β = 0.4.
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