
Enhancing Downlink Performance in Wireless Networks by
Simultaneous Multiple Packet Transmission ∗

Zhenghao Zhang and Yuanyuan Yang
Department of Electrical and Computer Engineering, State University of New York, Stony Brook, NY 11794, USA

Abstract

In this paper we consider using simultaneous Multiple
Packet Transmission (MPT) to improve the downlink per-
formance of wireless networks. With MPT, the sender can
send two compatible packets simultaneously to two distinct
receivers and can double the throughput in the ideal case.
We formalize the problem of finding a schedule to send out
buffered packets in minimum time as finding a maximum
matching problem in a graph. Since maximum matching al-
gorithms are relatively complex and may not meet the tim-
ing requirements of real time applications, we give a fast ap-
proximation algorithm that is capable of finding a matching
at least 3/4 of the size of a maximum matching in O(|E|)
time where |E| is the number of edges in the graph. We
also give analytical bounds for maximum allowable arrival
rate which measures the speedup of the downlink after en-
hanced with MPT and our results show that the maximum
arrival rate increases significantly even with a very small
compatibility probability. We also use an approximate an-
alytical model and simulations to study the average packet
delay and our results show that packet delay can be greatly
reduced even with a very small compatibility probability.
Index Terms: Multiple packet transmission, wireless LAN,
matching, approximation algorithm, maximum allowable
arrival rate, delay.

1 Introduction

Wireless access networks have been more and more
widely used in recent years since comparing to the wired
networks, wireless networks are easier to install and use.
Due to the tremendous practical interests, much research ef-
fort has been devoted to wireless access networks and great
improvements have been achieved in the physical layer by
adopting newer and faster signal processing techniques, for
example, the data rate in 802.11 wireless LAN (Local Area
Network) has increased from 1Mbps in the early version
of 802.11b to 54Mbps in 802.11a [8]. We have noted that

∗The research work was supported in part by NSF grant numbers CCR-
0207999 and ECS-0427345 and ARO grant number W911NF-04-1-0439.

Access
Point

Figure 1. Multiple packet transmission – The access
point can send two packets to two users simultaneously.

in addition to increasing the point to point capacity, new
signal processing techniques have also made other novel
transmission schemes possible which can greatly improve
the performance of wireless networks. In this paper, we s-
tudy Multiple Packet Transmission (MPT), with which the
sender can send more than one packets to distinct users si-
multaneously.

Traditionally, in wireless networks, it is assumed that one
device can send to only one other device at a time. Howev-
er, this restriction is no longer true if the sender has more
than one antennas. By processing the data according to the
channel state, the sender can make the data for one user
appear as zero at other users such that it can send distinct
packets to distinct users simultaneously. We call it Multi-
ple Packet Transmission (MPT) and will explain the details
of it in Section 2. For now, we want to point out the pro-
found impact the MPT technique has on wireless LANs. A
wireless LAN is usually composed of an Access Point (AP)
which is connected to the wired network and several users
which communicate with the AP through wireless channel-
s. In wireless LANs, the most common type of traffic is
the downlink traffic, i.e., from the AP to the users when the
users are browsing the Internet and downloading data. In to-
day’s wireless LAN, the AP can send one packet to one user
at a time. However, if the AP has two antennas and if MPT
is used, the AP can send two packets to two users whenever
possible, thus doubling the throughout of the downlink in
the ideal case.

MPT is feasible for the downlink because it is not d-
ifficult to equip the AP with two antennas, in fact, many
wireless routers today have two antennas. Another advan-

1-4244-0054-6/06/$20.00 ©2006 IEEE

tage of MPT which makes it very commercially appealing
is that although MPT needs new hardware at the sender, it
does not need any new hardware at the receiver. This means
that to use MPT in a wireless LAN, we can simply replace
the access point and upgrade software protocols in the user
devices without having to change their wireless cards, and
thus incurring minimum cost.

In this paper we study problems related to MPT and pro-
vide our solutions. We formalize the problem of sending
out buffered packets in minimum time as finding a maxi-
mum matching in a graph. Since maximum matching algo-
rithms are relatively complex and may not meet the speed
of real time applications, we consider using approximation
algorithms and present an algorithm that finds a matching
with size at least 3/4 of the size of the maximum match-
ing in O(|E|) time where |E| is the number of edges in the
graph. We then study the performance of wireless LAN en-
hanced with MPT and give analytical bounds for maximum
allowable arrival rate. We also use an analytical model and
simulations to study the average packet delay.

Enhancing wireless LANs with MPT requires the Medi-
a Access Layer (MAC) to have more knowledge about the
states of the physical layer and is therefore a form of cross-
layer design. In recent years cross-layer design in wireless
networks has attracted much attention because of the great
benefits in breaking the layer boundary. For example, [5, 6]
considered packet scheduling and transmission power con-
trol in cross-layer wireless networks. However, to the best
of our knowledge, packet scheduling in wireless networks
in the context of multiple packet transmission has not been
studied before. [3, 4] have considered Multiple Packet Re-
ception (MPR) which means the receiver can receive more
than one packets from distinct users simultaneously. MPR
is quite different from MPT since MPR is about receiving
multiple packets at one node while MPT is about sending
multiple packets from one node to multiple nodes.

2 Multiple Packet Transmission

In this section we briefly explain the MPT technique. As
mentioned earlier, to use MPT, the sender makes the da-
ta sent for one user appear as zero at other users. This is
possible if the sender has more than one antennas. With
multiple antennas, the sender can adjust the amplitude and
phase of the transmitted signals on different antennas such
that the signals will add up constructively or destructively
as desired. The following is a more detailed explanation
which follows Chapter 10 in [1].

Wireless channels can be modeled as complex baseband
channels, which means that with one antenna at the sender,
the receiver will receive y = h∗d, where d is the complex
data sent by the sender and h is the complex channel coef-
ficient. The receiver can recover the data by dividing y by
h. Note that here we consider flat fading which means that

there is no inter-symbol-interference, and do not consider
noise so that the core idea of MPT can be more easily seen.

If there are two antennas at the sender, the sender can
send two different symbols denoted as x1 and x2 on anten-
na 1 and antenna 2, respectively. If there are two receivers,
receiver 1 will receive y1 = h∗

11x1 + h∗
12x2 and receiver 2

will receive y2 = h∗
21x1 + h∗

22x2, where hij is the channel
coefficient from antenna j to user i. For simplicity we will
use hi to denote [hi1, hi2]T and use x to denote [x1, x2]T ,
and call them the channel coefficient vector and the trans-
mitted vector, respectively. In vector forms, receiver i will
receive yi = h∗

i x.
Now let d1 and d2 denote the data that should be sent to

receiver 1 and receiver 2, respectively. We cannot simply
send d1 via antenna 1 and d2 via antenna 2 because the data
will be mixed up at the receivers. However, suppose there
are vectors u1 = [u11, u12]T and u2 = [u21, u22]T such
that h∗

1u2 = 0 and h∗
2u1 = 0. We can let transmitted vec-

tor be x = d1u1 + d2u2, that is, send d1u11 + d2u21 on
antenna 1 and d1u21 + d2u22 on antenna 2. Thus receiver
1 will receive h∗

1(d1u1 + d2u2) = d1h∗
1u1, and similarly

receiver 2 will receive d2h∗
2u2, thus distinct data is sent to

each receiver.
u1 can be any vector lies in V1 which is the space or-

thogonal to h2, however, to maximize the received signal
strength, u1 should lie in the same direction as the projec-
tion of h1 onto V1. u2 should be similarly chosen. Since the
total transmitted power is limited, not all pairs of receiver-
s are compatible, i.e., can use MPT. Basically, the sender
should choose two receivers if their channel coefficient vec-
tors are already near orthogonal.

To perform MPT, the sender needs 4 more complex mul-
tipliers. It also needs to know the channel coefficient vec-
tors of the receivers and run algorithms to smartly pair up
the receivers. However, the receivers needs no additional
hardware and can receive the signal as if the sender is only
sending to it. It is also possible to send to more than 2 re-
ceivers at the same time if the sender has more than 2 anten-
nas. In this paper we focus on the more practical 2-antenna
case. Also note that MPT requires wireless channels to be
slow changing as compared to the data rate, which is of-
ten true in a wireless LAN where the wireless devices are
stationary for most of the time.

3 MAC Layer Modifications

In this section we describe the modifications to MAC
layer protocol, in particular, 802.11, to support MPT. We
say two users U1 and U2 are compatible if they can receive
at the same time. If U1 and U2 are compatible, sometimes
we also say that the packets destined for U1 and U2 are com-
patible.

The AP keeps the channel coefficient vectors of all nodes
that have been reported to it previously. If, based on the past

v1 v2 v3 v4

v1 v2
v3

v4

v1
v2 v4

v3

v v v v1 2 3 4

v v v v1 2 3 4

Figure 2. 4 packets and different schedules.

channel coefficient vectors, U1 and U2 are compatible and
there are two packets that should be sent to them, the AP
sends out a RTS (Require To Send) packet, which contains,
in addition to the traditional RTS contents, a bit field indi-
cating that the packet about to send is a MPT packet. If
U1 appears earlier than U2 in the destination field, upon re-
ceiving the RTS packet, U1 will first reply a CTS (Clear To
Send) packet containing the traditional CTS contents plus
its latest channel measurements. After a short fixed amount
of time U2 will also reply a CTS packet. After received the
two CTS packets, the AP will update the channel coefficient
vectors. It will then decide whether U1 and U2 are still com-
patible and most likely they still are since the environment
is slow changing. If in the rare case that the channels have
changed significantly such that they are no longer compati-
ble, the AP can choose to send to only one node. Therefore,
before sending the data packets, the AP first sends 2 bits in
which bit i is ‘1’ means the packet for Ui will be sent for
1 ≤ i ≤ 2. After the data packet is sent, U1 and U2 can
reply an acknowledgment packet in turn.

In this paper we consider matching user packets of the
same size. For simplicity, we consider the case when the
bit rates are also the same, such that all packets need the
same transmission time which we call a time slot. We do
not make any assumption about the compatibilities of users
and treat them as arbitrary.

4 Scheduling Algorithms for Access Points

While the idea of MPT is simple, the AP will encounter
the problem of how to match the packets with each other
to send them out as fast as possible. For example, suppose
in the buffer of the AP there are 4 packets destined for 4
users denoted as v1, v2, v3 and v4, respectively. Assume
packet vi is compatible with vi+1 for 1 ≤ i ≤ 3, as shown
at the top of Fig. 2 where there is an edge between two
packets if they are compatible. If we match v2 with v3, the
4 packets have to be sent in 3 time slots since v1 and v4

are not compatible. However, a better choice is to match
v2 with v1 and match v3 with v4 and send the 4 packets in
only 2 time slots. When the number of packets grows the
problem of finding the best matching strategy will become
harder. In this section we describe algorithms that solve this
problem.

4.1 Algorithm for Optimal Schedule

We call a schedule by which packets can be sent out in
minimum time an optimal schedule. Clearly, in an optimal
schedule maximum number of packets are sent out in pairs,
therefore the problem of finding an optimal schedule is e-
quivalent to finding maximum number of compatible pairs
among the packets. To solve this problem, as shown in Fig.
2, we draw a graph G where each vertex represents a packet
and two vertices are adjacent if the two packets are compat-
ible. In a graph, a matching M is defined as a set of vertex
disjoint edges, that is, no edge in M has a common vertex
with another edge in M . Therefore the problem reduces to
finding a maximum matching in G. For example, the second
matching in Fig. 2 is a maximum matching while the first
one is not. Maximum matching in a graph can be found in
polynomial time by algorithms such as the Edmonds’ Blos-
som Algorithm which takes O(N4) time, where N is the
number of vertices in the graph [10, 2].

Before continuing our discussion, we first give defini-
tions of some terms. Let M be a matching in a graph G. We
call edges in M the “matching edges.” If a vertex is inciden-
t to an edge in M , we say it is “saturated;” otherwise, it is
“unsaturated” or “free” or “single.” An M -augmenting path
is defined as a path with edges alternating between edges in
M and edges not in M , and with both ends being unsaturat-
ed vertices. For example, with regarding to the first match-
ing in Fig. 2, v1 − v2 − v3 − v4 is an augmenting path. It is
well known in graph theory that the size of a matching can
be incremented by one if and only if there can be found an
augmenting path.

The buffer of the AP may store many packets, as a re-
sult, the graph can be quite large. However, the size of the
graph can be reduced by taking advantage of the fact that
vertices represent packets for the same user have exactly
the same set of neighbors in the graph. More specifically, in
the graph, we say vertex u and v belong to the same equiv-
alent group, or simply the same group, if the packets they
represent are for the same user. Vertices that belong to the
same group have the same neighbors and are not adjacent to
each other. Let A = {a1, a2, a3} and B = {b1, b2, b3} be
two groups of vertices and suppose ai is matched to bi for
1 ≤ i ≤ 3. We have

Lemma 1 If there is an augmenting path traversing all 3
matching edges between A and B, there must exist an aug-
menting path traversing only 1 matching edge between A
and B.

Proof. This can be best explained with the help of Fig. 3,
where edges in the matching are shown as heavy lines and
edges not in the matching are shown as dashed lines. As in
the figure, suppose an augmenting path traversing all three
matching edges between A and B is x− a1 − b1 − c− d−
b2 − a2 − e − f − a3 − b3 − y. However, if x is adjacent

a b

a

a

b

b

1

2

3

1

2

3

y

x

c

d

f

e

Figure 3. “shortcut” exists. The matching edges are
shown as heavy lines and the non-matching edges are
shown as dashed lines.

to a1, it must also be adjacent to a3 since a1 and a3 belong
to the same group, thus there is a shorter augmenting path
traversing only to the last matching edge between A and B
which is x − a3 − b3 − y. (Note that the same proof also
holds if in the augmenting path, the segment between, say,
b1 and b2, is longer.)

As a result of this lemma, if there exists an augmenting
path, there must also exist an augmenting path traversing
no more than two matching edges between any two groups
of vertices. This is because if the path traverses more than
two matching edges between two groups of vertices, as we
have shown in the lemma, there must be a shortcut by which
we need only to traverse the last of the first three matching
edges, and we can keep on finding such shortcuts and re-
ducing the number of traversed matching edges until it is
less than 3. Therefore, for any two groups of vertices, only
two matching edges between them need to be kept and other
redundant matching edges can be removed. After that there
will be O(n2) saturated vertices left where n is the number
of users. Also note that for the purpose of finding augment-
ing paths, only one of the unsaturated vertices belonging to
each group needs to be considered. Therefore, the graph we
work on contains O(n2) number of vertices which does not
depend on the size of the buffer.

4.2 Practical Considerations

Although the optimal schedule can be found for a giv-
en set of packets by the maximum matching algorithm, in
practice, the packets do not arrive all at once but arrive one
by one. It is not feasible to run the maximum matching
algorithm every time a new packet arrives due to the rela-
tively high complexity of the algorithm. Therefore, after a
new packet arrives, we can match it according to the follow-
ing simple strategy: A new vertex is matched if and only if
it can find an unsaturated neighbor. In this way we always
maintain a maximal matching, where a matching M is max-
imal in G if no edge not belonging to M is vertex disjoint
with all edges in M . For example, the two matchings in
Fig. 2 are all maximal matchings. The maximum matching
algorithm can be called only once a while to augment the
existing maximal matching.

Another problem is that the packets do not stay in the
buffer forever and must be sent out. We will have to make
the decisions of which packet(s) should be sent out once

the AP has gained access to the media and there is a del-
icate tradeoff between throughput and delay. To improve
the throughput, we should always send out packets in pairs;
however, this policy favors the packets that can be matched
over the packets that cannot be matched, and will increase
the delay of the latter. To prevent excessive delay of the sin-
gle packets, in practice, we can keep a time stamp for each
packet and if the packet has stayed in the buffer for a time
longer than a threshold, it will be sent out the next time the
AP has gained access to the media. If there are multiple
such packets, the AP can choose one randomly. The thresh-
old can be determined adaptively based on the measured
delays of the packets that were sent out in pairs.

Finally, although maximum matching can be found in
polynomial time, maximum matching algorithms are in
general complex [11] and may not meet the timing require-
ments of real time applications, considering that the proces-
sors in the AP are usually cheap and not powerful. There-
fore in some cases, a fast approximation algorithm which is
capable of finding a “fairly good” matching may be useful,
which will be discussed next.

4.3 A Linear Time 3/4 Approximation
Algorithm for Finding Maximum
Matching

The simplest and most well known approximation al-
gorithm for maximum matching simply returns a maximal
matching. It is known that this simple algorithm has O(|E|)
time complexity where |E| is the number of edges in the
graph and has a performance ratio of 1/2, which means that
the matching it finds has size at least half of M∗ where
M∗ denotes the maximum matching. In this section we
give a simple O(|E|) approximation algorithm for maxi-
mum matching with an improved ratio of 3/4. To the best
of our knowledge it is the first linear time approximation
algorithm for maximum matching with 3/4 ratio.

The idea of our algorithm is to eliminate all augment-
ing paths of length no more than 5. Note that any M -
augmenting path must have i edges in M and i+1 edges not
in M for some integer i ≥ 0. Therefore if the shortest M -
augmenting path has length at least 7, |M |

|M∗| > 3/4, since to
increment the size of the matching by one, the “trade ratio”
is at least 3/4, i.e., the best we can do is to take out 3 edges
in M and add in 4 edges not in M .

A maximal matching does not have augmenting paths of
length 1, which is why the size of a maximal matching is
at least half of the size of a maximum matching. In our al-
gorithm, we will start with a maximal matching and then
eliminate augmenting paths of length 3 and then of length
5. As can be seen, the algorithms themselves are simple
and straightforward. However, it is interesting and some-
what surprising that they can be implemented to run in lin-
ear time.

Table 1. Finding Augmenting Paths of Length 3
Initially, M = S where S is a maximal matching.
for i = 1 to |S| do

Let (u, v) be the ith edge in S.
Check if u and v have distinct unsaturated neighbors.
if yes

Let the neighbors of u and v be x and y, respectively.
M ← M ∪ {(x, u), (v, y)} \ {(u, v)}.

end if
end for

4.3.1 Eliminating Augmenting Paths of Length 3

We start with a maximal matching denoted by S and the
output of our algorithm is denoted by M . For each vertex,
a list is used to store its neighbors. An array is used to
store the matching, that is, the ith element in the array is the
vertex matched to the ith vertex. Note that with this array,
it takes constant time to augment the matching with fixed
length augmenting paths or to check whether a particular
vertex is saturated or not.

The algorithm is summarized in Table 1. Initially, let
M = S. We will check edges in S from the first to the
last to augment M . When checking edge (u, v), we check
whether both u and v are adjacent to some distinct unsatu-
rated vertices. If there are such vertices, say, u is adjacent to
x and v is adjacent to y, there is an M -augmenting path of
length 3 involving (u, v) which is x− u− v − y. We can e-
liminate this augmenting path and augment M by removing
(u, v) from M and adding (u, x) and (v, y) to M . We call
(u, x) and (v, y) the new matching edges. The algorithm
terminates when all edges in S have been checked this way.

Next we prove the correctness and derive the complexity
of this algorithm. It is important to note that if the match-
ing is always augmented according to augmenting paths, the
following two facts always hold. First, all saturated vertices
will remain saturated after each augmentation. Second, as a
result of the first fact, if a vertex is unsaturated after an aug-
mentation, it must be unsaturated before the augmentation
and therefore throughout the process M remains a maximal
matching.

Lemma 2 The new matching edges need not to be checked
because there cannot be augmenting paths of length 3 in-
volving them.

Proof. To see this, suppose x − u − v − y is a length-3
augmenting path, as shown in Fig. 4. If there is a length-3
augmenting path involving one of the new matching edges,
say, (x, u), let it be s − x − u − t, as shown in the right
part of Fig. 4. Note that s and x are not saturated before the
matching is augmented according to x − u − v − y, which
contradicts the fact that the matching is always maximal.
The left part of Fig. 4 shows this situation.

s

t

s

t

x

u

v

y

u

x

v

y

Figure 4. Augmenting M according to x − u − v − y.
s and x are both unsaturated which contradicts the fact
that M is a maximal matching.

Corollary 1 When the algorithm terminates, there is no
length-3 augmenting path.

Proof. By contradiction. If there is still a length-3 augment-
ing path, let it be x−u−v−y where u and v are saturated.
By Lemma 2, (u, v) cannot be a new matching edge, there-
fore it is in S. But this cannot happen since if such an aug-
menting path exists after the algorithm terminates, it must
also exist when (u, v) was checked and should have been
found.

Lemma 3 The algorithm runs in O(|E|) time where |E| is
the number of edges.

Proof. Note that when checking edge (u, v), the edges inci-
dent to u and v were checked at most once. Since the edges
in S are vertex disjoint, the algorithm checks an edge in G
no more than twice.

Combining these discussions, we conclude that

Theorem 1 The algorithm in Table 1 eliminates all length-
3 augmenting paths in O(|E|) time.

4.3.2 Eliminating Augmenting Paths of Length 5

After eliminating augmenting paths of length 3, we search
for augmenting paths of length 5. We first check all edges
in the current matching to construct a set T . A vertex v
is added to set T if v is matched to some vertex u and u
is adjacent to at least one unsaturated vertex. We call v
an “outer vertex” and u an “inner vertex.” Note that v can
be both an outer vertex and an inner vertex when v and u
are both adjacent to the same unsaturated vertex and are
not adjacent to any other unsaturated vertices. Clearly, to
find augmenting paths of length 5 is to find adjacent outer
vertices. Also note that T can be constructed in O(|E|)
time.

The algorithm is summarized in Table 2 and works as
follows. We check the vertices in T from the first to the last.
When checking vertex v, let u be the inner vertex matched
to v. We first get or update l(u) which is the list of unsatu-
rated neighbors of u: If l(u) has not been established earlier,
we search the neighbor list of u to get l(u); otherwise, we
check the vertex in l(u) (in this case, there can only be one
vertex in l(u), for reasons to be seen shortly) and remove it

from l(u) if it has been matched. After getting l(u), if l(u)
is empty, we quit checking v, remove v from T and go on
to the next vertex in T . Otherwise, we check the neighbors
of v to find an outer vertex. If an outer vertex w is found
to be adjacent to v, let z be the inner vertex matched to w.
We get l(z) which is the unsaturated neighbor list of z in
the same way as for u. If l(z) is empty, we remove w from
T and go on to the next neighbor of v. Otherwise, we check
if there is an augmenting path of length 5 involving (u, v)
and (w, z), and note that this can be in constant time. This
is because (1) if l(z) contains at least 2 vertices, there must
be such a path; (2) if l(z) contains exactly 1 vertex, there
is such a path if and only if l(u) is different from l(z). If
an augmenting path is found, we augment M according to
this path and remove both v and w from T ; otherwise, we
continue to check the next outer vertex neighbor of v. If all
neighbors of v have been checked and no augmenting path
is found, we remove v from T and continue to the next ver-
tex in T . Now we can see why if an outer vertex is still in
T after it has been checked, the unsaturated neighbor list
of the inner vertex matched to it must contain exactly one
vertex. This is because if it contains more than 1 vertices,
an augmenting path must have been found when checking
this outer vertex and it would have been removed from T .
The algorithm terminates when T is empty. Note that this
algorithm makes sure that it will find an augmenting path of
length 5 involving (u, v) if such a path exists when checking
outer vertex v. Also note that removing an element in a set
is equivalent to marking this element which takes constant
time.

Recall that if M is augmented by augmenting paths, M
remains to be a maximal matching which means that it does
not have any augmenting path of length 1. The next lemma
shows that by augmenting M by length-5 augmenting paths,
there will never be “new” augmenting paths of length 3.

Lemma 4 Throughout the execution of the algorithm no
augmenting paths of length 3 will be created.

Proof. By contradiction. Since M does not have length-3
augmenting paths at the beginning, suppose the first such
a path was created after augmenting M with length-5 aug-
menting path a−b−c−d−e−f . The length-3 augmenting
path must involve one of the new matching edges which are
(a, b), (c, d) and (e, f). If (c, d) creates an augmenting path
of length 3, say, u− c− d− v, as shown in the right part of
Fig. 5(a), there must exist augmenting path a − b − c − u
which has length 3, as shown in the left part of Fig. 5(a),
which contradicts the fact that there is no such a path before
the matching was augmented. Thus (c, d) cannot create an
augmenting path of length 3. If (a, b) creates an augment-
ing path of length 3, say, x−a−b−y, as shown in the right
part of Fig. 5(b), x and a must be both unsaturated before
the matching was augmented, as shown in the left part of

Table 2. Finding Augmenting Paths of Length 5
Construct T , the set of outer vertices.
while T is not empty

Let v be a vertex in T that has not been checked.
Suppose v is matched to u. Get or update l(u),
the unsaturated neighbor list of u.
if l(u) is empty

Remove v from T and continue to the next outer
vertex in T .

end if
while not all neighbors of v have been checked

Let w be an outer vertex neighbor of v and suppose
w is matched to z.
Get or update l(z), the unsaturated neighbor list of z.
if l(z) is empty

Remove w from T and continue to the next
neighbor of v.

end if
Based on l(u) and l(z), determine if there is a
length-5 augmenting path.
if an augmenting path is found

Augment M according to this path and
remove both v and w from T ;
break from the inner while loop.

end if
end while
if no augmenting path is found

Remove v from T
end if

end while

Fig. 5(b), which contradicts the fact that the matching is al-
ways maximal. Hence (a, b) cannot create augmenting path
of length 3 and for the same reason neither can (e, f).

Lemma 5 Throughout the execution of the algorithm the
new matching edges cannot be involved in any augmenting
path of length 5.

Proof. Suppose during the execution of the algorithm, the
first time that a new matching edge becomes involved in a
length-5 augmenting path is after we augment the matching
according to augmenting path a − b − c − d − e − f . We
first show that (c, d) cannot be involved in augmenting path
of length 5 by contradiction. If there is such an augmenting

c

b

a

d

e

f

u

v

c

b

a

d

e

f

u

v

x

y

c

b

a

d

e

f

c

b

a

d

e

f

x

y

(a) (b)

Figure 5. No new augmenting paths of length 3 will be
created.

c

b

a

d

e

f

c

b

a

d

e

f

x x
c

b

d

e

f

u x

v w
a

(a) (b)

Figure 6. No new matching edge will be involved in
augmenting paths of length 5.

path, there must be an unsaturated vertex adjacent to either
c or d. Let the unsaturated vertex be x and without loss of
generality due to symmetry, suppose x is adjacent to c, as
shown in Fig. 6(a). Then there is an augmenting path of
length 3 before the algorithm started: a − b − c − x, which
contradicts the fact that there are no such paths.

We now show that (a, b) cannot be involved in augment-
ing path of length 5. The same proof can be used for
(e, f) due to symmetry. First note that since the match-
ing is maximal, a cannot be adjacent to an unsaturated ver-
tex. Therefore the augmenting path must be in the form of
u − b − a − v − w − x, as shown in Fig. 6(b). We claim
that edge (v, w) cannot be an “old matching edge,” i.e., can-
not be in the matching before the algorithm started. Since
if so, a − v − w − x is an augmenting matching of length
3 before the algorithm started. Therefore (v, w) is also a
new matching edge. Suppose edge (v, w) was first added
to the matching by augmenting the matching according to a
length-5 augmenting path P . Since no new matching edge
was involved in any length-5 augmenting path before the
matching was augmented according to a−b−c−d−e−f ,
edge (v, w) was not involved in any length-5 augmenting
path except P . Note that due to the same reason, since (c, d)
cannot be in any length-5 augmenting path, (v, w) cannot be
the edge in the center of P , and thus (v, w) must be at the
end of P . Since w is adjacent to an unsaturated vertex x, w
cannot be the end vertex of P , thus v must be the end vertex
of P . However, this means that both a and v were unsaturat-
ed before the algorithm started, which cannot happen since
the matching is maximal. (Note that the proof also holds if
(v, w) is (c, d) or (f, e).)

Corollary 2 When the algorithm terminates, there is no
augmenting path of length 5.

Proof. Suppose it is not true, that is, there still exists an
augmenting path of length 5, say, a− b− c− d− e− f . By
Lemma 5, neither (b, c) nor (d, e) is a new matching edge.
However, in this case the algorithm must have found this
augmenting path.

Lemma 6 The algorithm runs in O(|E|) time.

Proof. Consider checking an outer vertex v in set T . Note
that all time needed for checking v is O(d(v)) where d(v) is
the degree of v except for getting the unsaturated neighbor
lists for some inner vertices. Therefore overall the algorithm
runs in O(|E|) time plus the time needed for getting the
unsaturated neighbor lists for inner vertices which also takes
O(|E|) time since it needs to be done for each inner vertex
no more than once. Thus, the lemma follows.

Combining the above discussions, we conclude that

Theorem 2 The algorithm in Table 2 eliminates all length-
5 augmenting paths in O(|E|) time.

5 Performance Study

In this section we study the performance of the wireless
LAN after enhanced by MPT. We first derive the maximum
arrival rate of the downlink and then study the average pack-
et delay by an analytical model and simulations.

The performance of a wireless network depends on many
factors, for example, the physical environment, the location-
s of the wireless nodes, etc., such that the performance of
one network could be different from that of another even
when they are using the same devices. In many cases the
performance of the same network may also be changing due
to the occasional movements of the wireless nodes. This
makes the performance evaluation in general a difficult job.
However, we note that the performance gain of adopting
MPT is mainly determined by the probability of two nodes
being compatible, and this probability should be the same
in networks under similar environments and with same de-
vices. It is thus more insightful to use the compatibility
probability p as the parameter for performance evaluation.
For simplicity, we assume that the probability that two users
are compatible is independent of other users.

5.1 Maximum Arrival Rate

The first and the most important question is: After using
MPT, how much faster does the downlink become? This can
be measured by the maximum allowable arrival rate, where
an arrival rate is allowable if it does not cause the buffer
of the AP to overflow. More specifically, suppose once the
AP has got access to the media, on average it has to wait
T seconds to be able to get access to the media again. In
the following, for convenience, we refer to T as a time slot.
The normalized arrival rate λ is defined as the average num-
ber of packets arrived in a time slot. Without MPT, clearly,
λmax = 1 where λmax denotes the maximum allowable ar-
rival rate. Next we derive the value of λmax when MPT is
used.

Suppose there are n users among which c users are com-
patible with some other users. These c users are called
the “non-isolated” users and the rest are called the “isolat-
ed users.” Consider W arrived packets. Assuming packets
have random destinations, there will be W (c/n) packets for

the non-isolated users and W (1 − c/n) packets for the iso-
lated users. The fastest way to send out these W packets
is to always send out the packets for the non-isolated users
in pairs, thus the minimum time needed to send out all the
packets is W (1−c/2n) time slots. In other words, W pack-
ets should arrive in at least W (1 − c/2n) time slots. Thus,
the maximum arrival rate for given n and c is (1−c/2n)−1.

The number of non-isolated users is a random variable.
Let Pn(l) be the probability that out of n users, there are l
isolated users. The average maximum arrival rate is

λmax =
n∑

c=0

Pn(n − c)(1 − c/2n)−1

Therefore in the following we focus on finding Pn(l).
Apparently, when n = 1, P1(0) = 0 and P1(1) = 1;

when n = 2, P2(0) = p, P2(1) = 0 and P2(2) = 1 −
p where p is the compatibility probability. To find Pn(l)
for larger n, we condition on the number of isolated users
among the first n−1 users. Let Ex,y be the event that in the
x users, y are isolated and let L be random variable denoting
the number of isolated users among n users.

Pn(l) = P (L = l) =
n−1∑
i=0

Pn−1(i)P (L = l|En−1,i)

Clearly, for i < l − 1,

Pn(L = l|En−1,i) = 0,

since by adding a user, we can add at most one isolated user.
For i = l − 1,

Pn(L = l|En−1,l−1) = (1 − p)n−1,

since given there are l − 1 isolated users among the n − 1
users, there are l isolated users in the n users if and only
if the nth user is isolated, which occurs with probability
(1 − p)n−1. For i = l, we have

Pn(L = l|En−1,l) = [1 − (1 − p)n−1−l](1 − p)l,

since if there are already l isolated users in the n − 1 users,
the nth user must not be isolated, i.e., must be compatible
with some user in the first n−1 users. However, it cannot be
compatible with any of the isolated among the n − 1 users,
since this will reduce the number of isolated users, thus it
must be compatible with at least one of the users among the
n − 1 − l non-isolated users, which is an event that occurs
with probability [1 − (1 − p)n−1−l](1 − p)l. For i > l,

Pn(L = l|En−1,i) =
(

i
i − l

)
pi−l(1 − p)l,

since if i > l, the addition of the nth user reduces the num-
ber of isolated users by i − l, thus it must be compatible
with exactly i − l previous isolated users.

Fig. 7 shows the maximum arrival rate for networks of
different sizes under different compatibility probabilities.

0 0.1 0.2 0.3 0.4 0.5
1

1.2

1.4

1.6

1.8

2

Compatibility Probability

M
ax

im
um

 A
rr

iv
al

 R
at

e

n=5
n=10
n=20
n=50

Figure 7. Maximum arrival rate for networks of dif-
ferent sizes under different compatibility probabilities.

It is remarkable to see that a significant improvement can
be achieved even with very small compatibility probability.
For example, for n = 10, when p = 0.04, the maximum
arrival rate is 1.2, which is a 20% increase.

Finally, we want to argue that the maximum arrival rate
is approximately achievable, although it is at the cost of ex-
cessive delay for the isolated users. Note that as mentioned
earlier, the maximum arrival rate is achieved if packets des-
tined for non-isolated users are always sent out in pairs and
if no time slot is wasted, i.e., there is always at least one
packet sent out in a time slot. Therefore, if there are com-
patible packet pairs in the buffer, we send the pair; other-
wise, we send packets destined for the isolated users and
keep on doing so until a new pair has formed after some
new packets have arrived. Since at a high arrival rate the
queues for the isolated users are most likely quite long, it is
highly likely that we can wait until a pair appears before the
queues for the isolated users are exhausted.

5.2 Average Packet Delay

As we have seen, adopting MPT can greatly increase the
maximum allowable arrival rate. Note that MPT can also
reduce the queuing delay of the packets comparing to Sin-
gle Packet Transmission (SPT). In this section we use an
analytical model along with simulations to see how packet
delay can be reduced.

5.2.1 An Approximation Analytical Model

We first describe our analytical model. The model is de-
veloped for the purpose of comparing MPT with SPT and
therefore only considers arrival rates less than 1. We as-
sume that the AP maintains n queues in its buffer, one for
each user. Note that to exactly model the behavior of the
queues in the AP, many MAC layer related issues have to
be considered, for example, how often can the AP gain ac-
cess to the media and how many packets will arrive at the
AP in a given time period, etc. All such issues are inter-
acting with each other which makes exact analytical mod-
eling very difficult. We therefore use some approximations

to simplify the model. As the simulations show, our model
is very accurate when λ < 1.

The model is based on Markov chains. We take the to-
tal number of packets stored in the buffer before the AP
has gained access to the media, which we will later refer
to as the AP sending for convenience, as the state of the
Markov chain. The advantage of doing so is that the Markov
chain becomes discrete-time since we are only looking at
the buffer at some discrete time instants. We will assume
that between two AP sendings, the number of packets ar-
rived at the AP follows the widely used Poisson distribu-
tion, that is, Pa(K = k) = e−λλk/k!, where K is the
random variable denoting the number of arrived packets. It
should be noted that our model is not limited to Poisson
distribution and can also be used if the arrival follows other
distributions. We also assume that the arrived packets have
random destinations. Note that we have avoided explicit-
ly dealing with the complex issue of how often can the AP
gain access to the media, because it has been encapsulated
in the assumption of the arrival distribution. That is, if the
AP has to wait longer to access the media, we can choose
a large λ since more packets can be expected to arrive and
otherwise we can choose a small λ since less packets can be
expected to arrive.

To more accurately model the queues, we also consid-
er whether there exists a pair of compatible packets in the
buffer. Therefore in our model, we use (b, r) as the state of
the Markov chain, where b is the total number of packets,
and r = 0 means that there is no compatible pair and r = 1
otherwise. We assume that if there exists a compatible pair
the AP will always send it, since when the arrival rate is s-
mall, most likely the packets will not be delayed longer than
the threshold. Thus, the transition probability for (b, 0) is

(b, 0) → (b − 1 + k, 0) : P1Pa(k)

where P1 is the probability that given there is no compatible
pair in the b − 1 packets left in the buffer, there is no com-
patible pair after k new packets have arrived, and, clearly,

(b, 0) → (b − 1 + k, 1) : (1 − P1)Pa(k).

Similarly, the transition probability for (b, 1) is

(b, 1) → (b − 2 + k, 0) : P2Pa(k)

where P2 is the probability that given there was a compati-
ble pair, after sending out the pair and after receiving k new
packets, there is no compatible pair. Also,

(b, 1) → (b − 2 + k, 1) : (1 − P2)Pa(k).

Therefore in the following we need only to focus on finding
P1 and P2. Note that since we have used only two random
variables to model n queues, some information is lost, and
the model is only an approximation model in the sense that

the Markovian property only holds approximately. How-
ever, this is necessary since if the queues are considered
separately, the complexity of the model will be exponential.

To find P1 and P2, we will make the assumption that
the packets stored in the buffer have random destinations.
Note that this is not true since the AP favors packets des-
tined non-isolated users, and as a result, in the buffer, there
will be more packets destined for isolated users than for the
non-isolated users. However, this assumption makes the an-
alytical modeling tractable and yields remarkably accurate
results when λ ≤ 1.

Let Fx be the event that among x packets there is no
compatible pair. We have

P1 = P (Fb−1+k|Fb−1) =
P (Fb−1+k, Fb−1)

P (Fb−1)
=

P (Fb−1+k)
P (Fb−1)

since if there is no compatible pair in the b − 1 + k pack-
ets, there cannot be a compatible pair in any subset of it, in
particular, the b − 1 packets. P2 is harder to find than P1,
since we do not know after sending out a compatible pair,
whether there is still a compatible pair in the b − 2 packet-
s. We make the assumption that there is no compatible pair
in the b − 2 packets, since when λ is not large, the packet-
s can be sent out rather swiftly, and we can safely assume
that once a compatible pair is formed, it will be immediate-
ly sent out. With this assumption, similar to P1, we have
P2 = P (Fb−2+k)/P (Fb−2).

To find P (Fx), we first find PU (x, s) which is the prob-
ability that knowing that x packets are for s users, there is
at least one packet for each of the s users, i.e., none of the
queues for the s users is empty. Clearly, PU (x, 1) = 1 for
all x and PU (2, 2) = 1/2. For larger x and s, observe that
if given t packets are for the first user, the event that none
of the s queues is empty occurs if and only if the rest x − t
packets make the rest s − 1 queues all non-empty, which
occurs with probability PU (x− t, s−1). Thus, we have the
recursive relation

PU (x, s) =
x−s+1∑

t=1

PU (x − t, s − 1)
(

x
t

)
(1/s)t(1 − 1/s)x−t

Let PW (x, s) be the probability that if there are totally x
packets in the buffer, there are exactly s non-empty queues
among the total n queues. We have

PW (x, s) =
(

n
s

)
(s/n)xPU (x, s),

since there are

(
n
s

)
ways to choose s queues from n

queues and for any given s queues, this event occurs if and
only if the x packets are all for the s users which occurs with
probability (s/n)x and if the x packets make the s queues
all non-empty which occurs with probability PU (x, s).

After obtaining PW (x, s), PF (x) is simply

P (Fx) =
n∑

s=1

PW (x, s)(1 − p)s(s−1)/2,

since the probability that there is no compatible pair among
s users is (1 − p)s(s−1)/2.

5.2.2 Analytical and Simulation Results

We also conducted simulations to verify our analytical mod-
el. In our simulations, each point is obtained by running
on 100 random topologies and each topology is run for
100, 000 rounds. Fig. 8(a) shows the average packet delay
as a function of compatibility probability when λ < 1 for
n = 10 obtained by simulations and the analytical model.
First we observe that the analytical results are very close to
the simulation results. Second we observe that MPT greatly
reduces the average delay even when p is very small. We
also observe that the average delay decreases faster when p
is smaller and will tend to converge to a value when p fur-
ther increases. Fig. 8(b) shows the average packet delay
obtained by simulations when λ > 1. Similarly, we can
observe that increasing p will always reduce the delay. We
have used large p in Fig. 8(b) than in Fig. 8(a) because
when λ > 1, small p occasionally results in too separated
topologies which causes the buffer that has limited size in
our simulations to be unstable.

6 Conclusions

In this paper we considered using Multiple Packet Trans-
mission (MPT) to improve the downlink performance of the
wireless LANs. With MPT, the access point can send t-
wo compatible packets simultaneously to two distinct users.
We have formalized the problem of finding a minimum time
schedule as a matching problem, and have given a practical
linear time algorithm that finds a matching at least 3/4 the
size of a maximum matching. We studied the performance
of wireless LAN after enhanced with MPT. We gave an-
alytical bounds for maximum allowable arrival rate which
measures the speedup of the downlink and our results show
that the maximum arrival rate increases significantly even
with a very small compatibility probability. We also used
an approximate analytical model and simulations to study
the average packet delay and our results show that packet
delay can be greatly reduced even with a very small com-
patibility probability.

References

[1] D. Tse and P. Viswanath, “Fundamentals of wireless com-
munication,” Cambridge University Press, May 2005.

[2] D.B. West, “Introduction to graph theory,” Prentice-Hall,
1996.

[3] T. Lang, V. Naware and P. Venkitasubramaniam, “Signal
processing in random access,” IEEE Signal Processing Mag-
azine, vol.21, no.5, pp.29-39, 2004.

0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

Compatibility Probability

A
ve

ra
ge

 P
ac

ke
t D

el
ay

n=10

λ=0.75, ana
λ=0.85, ana
λ=0.95, ana
λ=0.75, simu
λ=0.85, simu
λ=0.95, simu

(a) λ < 1

0.14 0.16 0.18 0.2 0.22 0.24
2

3

4

5

6

7

8

Compatibility Probability

A
ve

ra
ge

 P
ac

ke
t D

el
ay

n=10

λ=1.05, simu
λ=1.15, simu
λ=1.25, simu

(b) λ > 1

Figure 8. Average packet delay as a function of com-
patibility probability under different arrival rates when
there are 10 users. “ana” and “simu” stand for “analyt-
ical” and “simulation,” respectively.

[4] G. Dimic, N. D. Sidiropoulos and R. Zhang; “Medium ac-
cess control - physical cross-layer design,” IEEE Signal Pro-
cessing Magazine, vol.21, no.5, pp.40-50, 2004.

[5] Q. Liu, S. Zhou and G.B. Giannakis, “Cross-layer schedul-
ing with prescribed QoS guarantees in adaptive wireless net-
works,” JSAC, vol.23, no.5, pp.1056-1066, 2005.

[6] V. Kawadia and P.R. Kumar, “Principles and protocols for
power control in wireless ad hoc networks,” JSAC, vol.23,
no.1, pp.76-88, 2005.

[7] A Czygrinow, M. Hanckowiak and E. Szymanska, “A
fast distributed algorithm for approximating the maximum
matching,” Algorithms - ESA 2004, Lecture Notes in Com-
puter Science 3221, pp.252-263, 2004.

[8] http://grouper.ieee.org/groups/802/11/.
[9] W. Xiang; T. Pratt and X. Wang; “A software radio testbed

for two-transmitter two-receiver space-time coding OFDM
wireless LAN,” IEEE Communications Magazine, vol.42,
no.6, pp.S20-S28, 2004.

[10] J. Edmonds, “Paths, trees, and flowers,” Canad. J. Math,
17:449-467, 1965.

[11] H. N. Gabow, “An efficient implementation of Edmonds’ al-
gorithm for maximum matching on graphs,” Journal of the
ACM (JACM), vol.23, no.2, pp.221-234, 1976.

[12] J. Magun, “Greedy matching algorithms: An experimen-
tal study,” Proc. 1st Workshop on Algorithm Engineering,
pp.22-31, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

