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Abstract—In this paper we study two-layered heterogeneous
sensor networks where two types of nodes are deployed in
the network: basic sensor nodes and cluster head nodes.
Basic sensor nodes are simple and inexpensive, while clus-
ter head nodes are much powerful and much richer in en-
ergy. A cluster head node organizes the basic sensor nodes
around it into a cluster. A basic sensor node does data collec-
tions and sends the data packets when polled by the cluster
head. By introducing hierarchy, such a two-layered hetero-
geneous sensor network has better scalability than homo-
geneous sensor networks. It also has a smaller overall cost
since networking functionalities are shifted from sensors to
the cluster head. It also has a longer life time, as sensors
send packets only when polled by the cluster head and less
energy is consumed in collisions and idle listening. This type
of network will be ideally suited for applications such as en-
vironmental monitoring. In this paper, we focus on finding
energy efficient and collision-free polling schedules in the
multi-hop cluster. To reduce energy consumption in idle lis-
tening, a schedule is optimal if it uses minimum time. We
show that the problem of finding an optimal schedule is NP-
hard, and then give a fast on-line algorithm. We also consid-
er dividing a cluster into sectors to further reduce the idle
listening time of sensors. We conducted simulations on the
NS-2 simulator, and the results show that our polling scheme
can reduce the active time of sensors by a significant amount
while sustaining ���� throughput.

Index Terms: Sensor networks, Clusters, Polling, Multi-hop
polling.

I. INTRODUCTION AND BACKGROUND

The use of wireless sensors networks will enable a wide vari-
ety of applications, including environmental monitoring, medi-
cal treatment, emergency response, outer-space exploration, etc.
In a sensor network, a large number of sensors are deployed
over a large area, with each sensor capable of collecting data
and sending data via wireless channels. To ensure reliable data
transfer, sensors need to be organized into a robust multi-hop
wireless network, which poses several challenges in the net-
work design. First, the network must be scalable, since there
can be thousands of sensors in the network. Second, to reduce
the cost, sensors should be made as simple as possible, and as a
result, sensors should only have some very simple functionali-
ties. Third, the power supplies of sensors are limited and cannot
be replaced, therefore the network must be energy efficient.

In general, these challenges cannot be easily met. We can
tackle the first challenge by introducing hierarchies: the net-
work is partitioned into clusters, and sensors need only to com-
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Fig. 1. A two-layered heterogeneous sensor network. The large nodes are the
cluster heads. The small nodes are the basic sensor nodes.

municate within clusters while the inter-cluster communication
is handled by cluster heads. [3] [13] gave protocols for cluster
forming and cluster head selection. However, in these methods,
sensors become more complicated since every sensor could be
potentially elected as a cluster head and thus more transmitting
and storage capabilities are needed for each sensor.

We note that for some applications, for example, ground tem-
perature monitoring, where the main job of sensors is to gather
information and send it to outside observer, we can take the
idea of clustering one step further by adding some powerful da-
ta gathering nodes to the network so that the sensors need not
be burdened with the requirement of acting as the cluster head.
We can deploy two different types of sensor nodes: basic sen-
sor nodes and cluster head nodes, as shown in Fig.1. The basic
sensor node is the majority of the sensor nodes, which is inex-
pensive and has relatively simple functionalities, such as data
sampling and simple packet forwarding. It has limited power
supply which cannot be replaced, thus its transmission power is
small. The cluster head node, on the other hand, is much more
powerful than basic nodes. It has much more computational ca-
pabilities, a far richer or replaceable power supply and a much
larger transmission power. A cluster head node organizes ba-
sic sensor nodes around it into a cluster, and acts as the cluster
head. The basic sensor node samples the data and sends it to
its cluster head. The cluster head node then sends data to the
outside observer or other nearby head nodes. Since the trans-
mission power of a cluster head is large, the message sent by
a cluster head can be received by all sensors in the cluster. On
the other hand, since the transmission power of a basic sensor is
small, the message sent by a basic sensor has to be relayed by
other sensors to reach the cluster head. The advantage of such a
heterogeneous network is that the majority of sensor nodes can
be made very simple and inexpensive, thus the overall cost of
the network can be greatly reduced. In the rest of the paper, we
will refer to the basic sensor node as sensor, and the cluster head
node as cluster head.

We can regard this type of network as a two-layered network.
The first layer is the individual clusters. Above the first layer, in
the second layer, the cluster heads can organize themselves into
another network, in which they can exchange information or
send data to the outside observer. The second layer is essentially
a static wireless ad hoc network, and much work in the literature
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can be applied. The main issue remains is how to design the
first layer in an energy-efficient way to prolong the life of the
network.

Most commonly, it is assumed that sensors decide to send
data packets based on their local information on the network.
From the point of view of energy efficiency, this has several dis-
advantages. First, energy could be wasted in collisions: several
sensors may decide to send packets at the same time and all
these packets have to be retransmitted. Second, energy can be
wasted by overhearing: sensors may need to decode packets not
destined for them. Third, in an effort to avoid collision, sensors
may have to use control packets to coordinate with each oth-
er, which also consumes a significant amount of energy. Lastly
and most importantly, when sensors send packets in a random
manner, a lot of energy will be wasted in idle listening. This
is because sensors have to constantly monitor the radio chan-
nel for possible data packets destined for them, while the pow-
er consumption ratio for sleeping, idle listening, receiving and
sending for typical sensors is ��� � ��� � ��� � ��� [9], which in-
dicates that idle listening still consumes more than ��� of the
energy of other active operations.

To reduce energy consumption, we should reduce collision,
overhearing and control messages, and set sensors to sleep mod-
e as much as possible. For this purpose, [8] introduced MAC
layer control called the S-MAC. However, S-MAC has no cen-
tral controller and the energy spent in idle listening is still quite
high. We note that the energy is wasted in S-MAC because of
the lack of coordination among sensors: sensors do not know
what other sensors will do and have to “be prepared” for most
of the time. This is inevitable in a completely distributed sys-
tem. However, in a heterogeneous network, with the presence of
the cluster head, sensors within a cluster can be fully controlled
by the cluster head and be fully coordinated, thus all possible
sources of energy wasting mentioned above can be eliminated.
The cluster head can send out messages to inform sensors to
send packets that do not cause collision. The cluster head can
also tell sensors when to receive a packet, thus no overhearing
will occur. There will be no control packets from sensors. Af-
ter enough data has been collected, the cluster head can tell all
sensors to enter the sleep mode until next wake up time. Other
advantages of this framework is that it needs less functionalities
of the sensors. Such a locally-centralized framework is uncon-
ventional, but is not impossible since with some overhead, the
cluster head can gather enough information about all sensors in
its cluster. This type of network is ideally suited for data gath-
ering applications where timing requirement is not strict, such
as ground temperature monitoring.

We will give methods for the cluster head to organize the sen-
sors in a robust and energy efficient way. The goal is to maxi-
mize the battery lives of sensors in the cluster. We use polling
to collect data from the sensors, i.e., the cluster head sends a
message to the sensor it wants to hear from, and only the sensor
received this message will start sending. We will show that in
a multi-hop cluster, the problem of completing polling in mini-
mum time is NP-hard. We will then give a fast on-line approx-
imation algorithm, which can also handle possible packet loss.
Note that the difference of our algorithm from other polling pro-
tocols, such as 802.11 PCF and Bluetooth, is that the latter are
for single hop networks while the former is for multi-hop net-
works.

In the past, the problem of partitioning sensors into cluster-
s has been studied extensively, see, for example, [3] [13] [5].
These works considered homogeneous sensor networks and fo-
cused on how to partition networks into clusters, while we con-
sider heterogeneous sensor networks and mainly focus on the
operations inside a cluster. Sensor networks with two different
types of nodes were considered in [11]. However, [11] focused
on data compression techniques using the correlations of sen-
sor data, not on the polling. Polling and data collection in sen-
sor networks were studied in [15] [18], and both assumed that
the central controller’s polling message cannot be heard by al-
l sensors and has to be relayed, while we assume the size of
the cluster is modest and the cluster head has a relatively large
transmission power, so that its polling message can be heard by
all sensors in the cluster.

The rest of the paper is organized as follows. Section II de-
scribes how a cluster operates. Section III shows that complet-
ing polling in minimum time in a multi-hop cluster is NP-hard,
and gives a fast on-line algorithm. Section IV explores the pos-
sibility of dividing a cluster into sectors to further reduce the
idle listening time of sensors. Section V discusses some imple-
mentation issues. Section VI gives simulation results obtained
by using the ns-2 simulator. Finally, Section VII concludes the
paper.

II. CLUSTER OPERATIONS

Before moving on, we first describe how a cluster operates. In
this and next two sections, we will assume that the network has
been partitioned into clusters and focus only on the operations
in an individual cluster. We target at the applications where the
data generation rate is low. For such applications, sensors can
sleep for most part of the time, and wake up only for a short
period to send data. The time between two consecutive wake
ups is referred to as a cycle. The time when sensors are active
is referred to as a duty cycle.

In a duty cycle, the sensors work as follows. First, sensors
wake up, and enter the active listening mode, at the time speci-
fied by the cluster head before they went to sleep in the last du-
ty cycle. They will wait for a message broadcast by the cluster
head, indicating the beginning of a duty cycle. After the cluster
head broadcasts this message, each sensor sends a short packet
back, acknowledging the cluster head, also informing the clus-
ter head of the number of packets it needs to send in this duty
cycle.

The cluster head will poll the sensors according to the in-
formation carried in the ack packets. It controls the sensors in
a time slotted manner, where a time slot is the length of time
for one data packet transmission. At the beginning of a time
slot, the cluster head broadcasts a polling message, indicating
which sensors can start to send their packets, also which sen-
sors should receive packets. All other sensors will enter the idle
listening mode for one time slot. Before the next time slot starts,
all sensors will listen to the radio channel, waiting for the nex-
t polling message. After hearing the polling message, sensors
that are polled send their packets, and sensors that had received
a packet in the previous time slot will relay the packet to the
next hop neighbor, and so on, until all packets have been re-
ceived. After this, the cluster head broadcasts a message, sets
all sensors to the sleep mode, and also informs them the next
wake-up time. We can see that sensors work in a way similar to
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Fig. 2. (a). A simple cluster. ��, �� and �� have 0, 1 and 1 packet to send,
respectively. ��� �� and ��� � do not cause collision, where � is the cluster
head. (b). The optimal polling schedule.

a pipelined system, and the polling message acts as the clock.
To reduce the length of a time slot, we do not use link level ac-
knowledgment. If a packet is lost, the cluster head will poll the
sensor again.

III. POLLING IN MULTI-HOP CLUSTERS

As mentioned earlier, the cluster head uses polling to get data
from sensors. The major difference between single hop polling
and multi-hop polling is that in multi-hop clusters, the cluster
head can poll more than one sensors at the same time if their
packet transmissions do not cause collision. As a simple exam-
ple, consider the cluster shown in Fig.2(a). Suppose sensors ��,
�� and �� have 0, 1 and 1 packet to send, respectively. Because
the packet from �� has to use two hops to reach the cluster head
�, if only one sensor is polled at a time, i.e., a sensor is polled
only after the packet from the sensor polled previously has been
received by �, 3 time slots are needed. However, if transmission-
s �� � �� and �� � � do not cause collision, the cluster head
can poll both �� and �� at the first time slot. ��’s packet will be
received by � at the first time slot. At the second time slot, ��
relays the packet from �� to �. Thus the polling is completed in
only 2 time slots, as shown in Fig.2(b).

To reduce energy consumption, we want to find a polling
schedule that uses minimum time. Such a schedule is called
an optimal polling schedule. We will show in this section that
the problem of finding an optimal polling schedule is NP-hard,
and then give a fast on-line approximation algorithm for it.

A. Relaying Paths

The first problem needs to be solved is to find paths for each
sensor, by which its packet is relayed to the cluster head. Define
the load of a sensor as the average number of packets it needs
to send out during a duty cycle, including its own packets and
packets from other sensors it relays. The relaying paths for sen-
sors are chosen such that the loads of sensors are balanced, i.e.,
there is no sensor relaying too many packets while other sensors
relaying too few.

The problem can be formalized as a min-max problem: find a
routing strategy such that the maximum load of sensors is mini-
mized. [4] [12] showed that it can be solved in polynomial time
by formalizing into a network flow problem, where either links
or nodes have limited capacities.

The idea of the network flow formalization can be explained
as follows. Suppose there are � sensors in the cluster and in
a duty cycle each sensor has exactly one packet to send. We
draw a directed graph � according to the connection patterns
in the cluster. Let the cluster head be node �, or the sink of �.
Each sensor, say, ��, corresponds to two nodes �� and ��

�
in �,

which are the “input” node and “output” node of ��, respective-

ly. There is an arc from �� to ��

�
with capacity Æ, where Æ is a

positive integer. For any sensor that can hear the message from
��, say, ��, there is an arc from ��

�
to the input node of ��, or

��, with infinite capacity. Similarly, if cluster head can hear ��,
there is an arc from �

�

�
to � with infinite capacity. We also add

a source node � to �. There is an arc from � to �� with unit
capacity for all �� �� �.

Note that if we run the Ford-Fulkerson algorithm on � and
find a flow of value �, we have found for each sensor a relay-
ing path to the cluster head, and, if sensors send packets along
these paths, no sensor’s load will exceed Æ. Therefore, we can
start with a small Æ, for example, 1, then run the Ford-Fulkerson
algorithm. If the value of the resulting maximum flow found
by the algorithm is less than �, we can increment Æ by one and
run the algorithm again, until the value of the maximum flow is
�. At this time Æ is the maximum load of sensors. The running
time of this algorithm is �����.

So far we have used the simplest case to explain the basic
idea of the network flow formalization. By varying the link ca-
pacities from the source node to input nodes, this method can
also be extended to the case when the number of packets gener-
ated by sensors are different. When the energy levels of sensors
are different, the problem can be formalized as a network flow
problem where the nodes, not the links, have capacity limita-
tions. Also, note that to balance sensor load we need only to
run the network flow algorithm once every long time period, by
using the average traffic intensity of sensors which is the aver-
age number of packets generated by a sensor in a cycle. For
details of the routing issue, the readers are referred to [4] [12].

From now on, we assume that the relaying paths have been
found, and in one duty cycle, a sensor will send its packets along
one fixed relaying path. For example, the relaying path for �� in
Fig.2(a) is �� � �� � �. The hop count of a sensor is defined
as the number of hops its packet has to travel before reaching
the cluster head.

Note that to find the relaying paths, the cluster head needs to
know which sensors a sensor can reliably communicate with, or
the connectivity patterns of the cluster. We will describe meth-
ods to find the connectivity patterns in later sections. For now,
we assume the cluster head has this knowledge.

B. Interference Patterns

To find a collision-free schedule, it is also crucial for the clus-
ter head to know the interference patterns in the cluster. That is,
the cluster head has to know whether a group of transmissions
are contention-free, or compatible. [17] introduced two models
for determining interferences in sensor networks: the protocol
model and the physical model. Of the two, the protocol model
is widely used. It assumes that sensor �� can receive packets
from sensor ��

�
if �� lies in a disc centered at ��

�
with radius �,

and two transmissions, say, ��

�
� �� and ��

�
� ��, are compat-

ible if and only if the distance between ��

�
and �� is more than

����� �, as well as between ��

�
and ��, where � is a positive

constant. This model is convenient for performance analysis,
but we cannot use it in determining polling schedules for the
following reasons.

First, in reality, the covering area of a sensor, which is the area
in which other sensors can correctly receive messages from it,
may very likely not be a disc. A number of factors, for exam-
ple, obstacles and multi-path fading, can make the covering area
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Fig. 3. Pairwise compatibility does not guarantee compatibility.

very oddly shaped and might not even be convex, especially in
urban areas [1]. The second reason is even more profound. The
protocol model suggests that a group of transmissions are com-
patible if and only if they are pairwise compatible. However, in
reality, a necessary condition for a group of transmissions being
compatible is that the accumulated interferences at any receiv-
er are not too large. For example, as in Fig.3, suppose three
transmissions, ��

�
� ��, ��

�
� �� and ��

�
� �� are pairwise

compatible. Let � ���

�
���� be the signal power from ��

� received
by �� when ��

� is sending packets. The three transmissions be-
ing pairwise compatible implies that any single � ���

����� is not
large for � �� �. However, when the three transmissions occur at
the same time, if � ���

�
���� �� ���

�
���� is too large, transmis-

sion ��

�
� �� will still fail.

Neither can we use the other model, the physical model, in
[17], because it assumes that the signal power decreases with
distance strictly according to the power law, while the experi-
ments in [1] showed that the signal power received at relatively
long distance can be arbitrary. To make the network robust in
any environment, in this paper we do not make any assump-
tion about the covering areas and interference patterns and treat
them as arbitrary. The cluster head obtains the connectivity pat-
terns and interference patterns by testing the involved transmis-
sions and sensors, and we will describe the method in detail
later. Note that testing the interference patterns for all possible
groups of transmissions needs exponential time and is impracti-
cal. Thus, in our algorithm we will assume that the cluster head
only knows the compatibility of � transmissions, where � is
a small positive integer, such as 2 or 3.

C. Optimal Polling Schedule

We now consider the problem of finding the optimal polling
schedule, which is the schedule that finishes the polling in min-
imum time. We assume that with the acknowledgments collect-
ed at the beginning of a duty cycle, the cluster head knows the
number of packets each sensor needs to send. The details of the
acknowledgments collecting will be deferred to Section V.

We say a sensor is in level � if its hop count is �. If all sensors
are in level 1, the scheduling reduces to single hop polling and
is trivial. We call the problem when some sensors have levels
more than 1 the Multi-Hop Polling problem and refer to it as
MHP problem.

We will show that the MHP problem is NP-hard under vir-
tually all scenarios, which would justify our use of a simple
greedy algorithm for finding the polling schedule. To be spe-
cific, we will first show that it is NP-hard when packets are not
delayed, i.e., a received packet is forwarded to the next hop im-
mediately in the next time slot. We will then show that problem
is still NP-hard when packets can be delayed. Note that in these
two cases, the number of packets sensors need to send can be
any non-negative integer. Finally we will show that even a spe-
cial case of the MHP problem, in which each sensor has exactly
one packet to send is also NP-hard.
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Fig. 4. (a) A TSRF with 5 branches. (b). An graph with 5 vertices. (c). A
polling schedule for Fig.4(a) with interference patterns defined in Fig.4(b). This
schedule corresponds to the Hamiltonian Path ��� ��� ��� ��� �� .

C.1 Multi-Hop Polling Problem without Packet Delay

To see MHP problem is NP-hard, first we consider a special
structure called “two level star with relaying only in the first
level”, which is referred to as TSRF. A TSRF is a tree, with
the root of the tree being the cluster head. There are several
branches connected to the root, where each branch consists of 2
sensors. Fig.4(a) shows a TSRF with 5 branches. More specif-
ically, let � be the root. Sensors denoted by ��, ��, ��, � � � are
connected to �, or are in the first level, sensors denoted by ��

�
,

��

�
, ��

�
, � � � are in the second level, where ��

�
is only connected

to ��, ��

�
is only connected to ��, etc. Each sensor in the sec-

ond level has exactly one packet to send, and sensors in the first
level have no packet to send. The relaying path for the packet
generated in sensor ��

� is ��

� � �� � �. Some transmissions,
say, ��

�
� �� and ��� � can occur at the same time if they do

not cause collision.
The problem is: Given a TSRF and its interference pattern,

does there exist a schedule by which all sensors can send their
packets to the cluster head by time �, where � is a given positive
integer? We call it TSRF Polling problem and sometimes refer
to it as TSRFP.

Lemma 1: The TSRF Polling problem is NP-complete when
packet delay is not allowed.
Proof. It is clear that this problem belongs to NP. To see its
NP-completeness, we use the well-known NP-complete Hamil-
tonian Path problem.

Given any instance of the undirected Hamiltonian Path prob-
lem, we construct an instance of TSRFP as follows. Denote
the graph of the Hamiltonian Path problem as 	, and denote
the vertices in 	 as 
�, 
�, 
�, � � � . Each node in 	 corre-
sponds to a branch of the TSRF. For example, the TSRFP in-
stance for the graph shown in Fig.4(b) is Fig.4(a), where 
�
corresponds to branch ��

�
� �� � �, 
� corresponds to branch

��

�
��� �� �, etc. If two vertices are adjacent, for example,


� and 
�, transmissions �� � � and ��

�
� �� are compatible,

and transmissions �� � � and ��

�
� �� are also compatible.

Otherwise, these two pairs of transmissions are not compatible.
� is set to be ���, where � is the number of vertices in 	.

Note that in a schedule that needs only ��� time slots, the
transmissions must be back to back: all sensors in the second
level must start to send in consecutive time slots with no “pause”
in between. Sensor ��

� and ��

� can start in consecutive time slots
if and only if ��� � and ��

� � �� do not cause collision. In this
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case, by our construction, there is an edge connecting �� to �� in
�. Therefore, this schedule determines a Hamiltonian path in
�. For example, as Fig.4(c) shows, a polling schedule using 6
time slots for the TSRF shown in Fig.4(a) determines a Hamil-
tonian path �� � �� � �� � �� � �� in Fig.4(b). Hence any
algorithm that answers the TSRFP will also answer the Hamil-
tonian Path problem, i.e., the former is at least as hard as the
latter.

Since any algorithm that solves the MHP problem can solve
the TSRFP problem, we have

Theorem 1: The Multi-Hop Polling problem is NP-hard
when packet delay is not allowed.

Note that in the proof we constructed a TSRF with interfer-
ence patterns resembling the connection patterns of an arbitrary
graph. A natural question is whether the interference pattern in
a TSRF can indeed be arbitrary.

We verify this with the following interference model, which
is the physical model in [17] without the power law signal de-
crease assumption, as follows. We assume that in the TSRF, two
transmissions, say, ��

� � �� and �� � �, do not interfere with
each other if and only the following two inequalities hold:

�
� ���

�� ��� � � ��� � ��
� ��� ����� � � ���

�����

where � is a positive constant. Note that as illustrated in [1],
whether a packet can be successfully received or not is not com-
pletely determined by signal power. Thus, this model is still an
approximation to reality. However, we still use it because it
makes sense and also because of the lack of other good models.

In wireless environments, � ��� � ��� can be arbitrary [1].
Thus, we can assume that � ��� � �� is larger than any � ���

�� ���
for all � and 	. We can let � ���

����� � 
 for all �. Then if there
is an edge between �� and �� , we can let � ��� ����� � 
. Other-
wise, we can let � ��� ����� �
 . This will produce the desired
interferences.

C.2 Multi-Hop Polling Problem with Packet Delay

Not allowing packet delay makes the controlling simple, and
also reduces the size of memory in sensors. Moreover, as we
will soon show, the MHP problem is still NP-hard even if pack-
et delay is allowed. Therefore there is no benefit for allowing
packet delay.

Theorem 2: The Milti-Hop Polling problem is NP-hard even
when packets can be delayed.
Proof. Again consider the TSRF. Suppose there is an algorithm
that answers the question: Given a TSRF and interference pat-
tern, does there exist a schedule by which all sensors can send
their packets to the cluster head by time �, when allowing pack-
et delay? Again we can let � � 
��, where 
 is the number of
branches in the TSRF.

We claim that if there is a schedule by which all sensors’
packets will have been received by the cluster head by time 
�
�, the same schedule must also be a legitimate schedule when
packets are not allowed to be delayed. To see this, note that in
this schedule, in every time slot after the first one, there must
be a sensor in the first level relying a packet to the cluster head.
Consider the first packet received by the cluster head. It must
be received at the second time slot, and suppose it was from ��.
Then in the first time slot, ��

� must be sending this packet to

......

t
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1S’
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U’’’

U’U

U’’
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1

Fig. 5. The auxiliary branch for branch ��

�
� ��� �.

�� and therefore this packet did not experience any delay. Now
consider the second packet received by the cluster head. This
packet must be received at the third time slot, and suppose it was
from �� . This packet must be sent to �� by ��

� at the second time
slot, and thus is also not delayed. The same argument can be
carried on, and as a result, no packet is delayed in this schedule.
Hence, the same algorithm can be used to answer the TSRFP
problem when packet delay is not allowed.

C.3 MHP Problem when Each Sensor has Exactly One Packet
to Send

In some applications, sensors sample data periodically and
generate exactly one packet per cycle. Now we consider a spe-
cial case of the Multi-Hop Polling problem, in which each sen-
sor has exactly one packet to send. We will call it Exact One
Packet Multi-Hop Polling problem, and abbreviate it as X1MHP
problem. This problem, unfortunately, is still NP-hard.

Theorem 3: The Exact One Packet Multi-Hop Polling prob-
lem is NP-hard when packets are not delayed.
Proof. We prove this by using the TSFRP. Given any instance of
the TSFRP, we construct an instance of the X1MHP as follows.

For each branch in the TSFRP instance, say, ��

�
� �� � �,

we add another auxiliary branch, as shown in Fig.5. The relay-
ing path for � ���

�
is � ���

�
� � ��

�
� � �

�
� �. The relaying path for

� ��

�
is � ��

�
� �� � �. � �

�
and �� send their packets directly to

�. Transmission � ��

�
� � �

�
is compatible with �� � �. Other

transmissions in this auxiliary branch are not compatible with
any other transmissions.

For any optimal solution to the X1MHP problem, suppose
sensor � ���

�
start to send its packet at time slot �. At time slot

���, � ��

�
will relay this packet to � �

�
. If sensor �� is not send-

ing its packet to � at time slot ���, we can “move” it to this
time slot, since � ��

�
� � �

�
is compatible with �� � �, and the

resulting schedule should still be optimal. After pairing them
up, we move them to the beginning of the schedule, that is, we
let � ���

�
start to send at time slot 1, and let �� start to send at

time slot 2. The resulting schedule should still be optimal s-
ince � ���

�
� � ��

�
and � �

�
� � are not compatible with any other

transmissions, and thus are not occurring at the same time with
any other transmissions in the optimal schedule. For the same
reason, we can also move � ��

�
, � �

�
and �� to the front, or to let

them start to send at time slots 4, 6 and 7, respectively. Then we
can pair up �� with its auxiliary branch and move them to the
beginning of the schedule, then ��, �� and so on.

As a result, the optimal schedule will consist of two parts.
The first part is from time slot 1 to time slot �
, where 
 is the
number of branches in the TSRF, which is for sensor ��, ��,
� � � , and sensors in their auxiliary branches. Following the first
part, the second part starts at time slot �
��, which must be an
optimal schedule for the TSFRP instance.
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Using similar arguments as in Theorem 2, it can be shown
that

Theorem 4: The Exact One Packet Multi-Hop Polling prob-
lem is NP-hard even when packets can be delayed.

To generate interference pattern in the cluster used in the
proof of the above theorems, we can first let the received power
for transmissions in the auxiliary branches be very weak. Con-
sider the first auxiliary branch. To make transmissions �� � �

and � �

�
� � incompatible with all other transmissions, we need

only to raise � ���� � for all sensors � not in the first level. To
make � ���

�
� � ��

�
and � ��

�
� �� not compatible with any oth-

er transmissions, we can raise � ���� ��

�
� and � ���� �� for all

sensors �. To make � ��

�
� � �

�
compatible only with ��� �, we

can let � ���� �

�
� be relatively large for all sensors other than ��.

D. On-Line Polling Algorithm

In this subsection we focus on finding an algorithm that gives
sub-optimal contention-free polling schedules. Note that anoth-
er requirement of this algorithm is that it should be able to be
run on-line, since it needs to deal with packet loss, as success
packet delivery is not guaranteed in wireless communications.
Since the cluster head knows which time slot a sensor starts to
send its packet and the hop count from the sensor to it, it knows
exactly which time slot it should expect to receive that packet.
Therefore, the cluster head can find out when a packet is lost
and once this occurs, it can simply poll the sensor again. This
is why the scheduling algorithm should be on-line, since new
polling requests may come (actually the old ones come again)
when the polling is going on.

The NP-hardness of the problem and the on-line requiremen-
t left us no other choices but to adopt a very simple algorithm
described in Table 1. We refer each packet as a polling request,
or simply a request. Initially, each request is active. When a
request has been added to the schedule, it becomes idle. At
the time slot when the packet should have been received by the
cluster head, if it is not received, the request will become active
again. Otherwise, it will be deleted. The algorithm will on-
ly consider active polling requests. Since the cluster head only
knows all possible combinations of no more than � transmis-
sions, at any time, the algorithm will allow at most � concur-
rent transmissions.

Before a time slot, the algorithm finds the schedule only for
this time slot. Before the first time slot, the schedule is empty,
and the algorithm tries to find a group of requests that can start
at the first time slot. It will scan through the requests according
to an arbitrarily predetermined order, and add a request to the
schedule if it does not cause contention with the existing ones, if
started at the first time slot. After a maximal number of requests
have been added to the schedule, or after � requests have been
added, the algorithm halts. The cluster head will tell sensors in
the schedule to send their packets at the first time slot. Before
the second time slot, the algorithm will find requests that can
start at the second time slot without causing collision with the
requests already in the schedule, and so on, until all packets
have been received.

To see whether a packet can be sent at time slot ���, sup-
pose the hop count is �. Then we need to check whether the �
transmissions involved will collide with the transmissions in the
existing schedule from time slots ��� to �� �. Suppose there
are � requests in the schedule. For each time slot, there are to-

TABLE 1

POLLING ALGORITHM

Input : The polling requests.
Output: Polling schedule.
while requests are not all deleted

if a packet is received
Delete the request for this packet

end if
if a packet that is expected to arrive is not received

Set the request for this packet to active.
end if
while �� requests in the schedule at this time slot

Add an active request to the schedule to
current time slot if it does not cause collision.
Mark the request as idle.

end while
wait until next time slot.

end while

tally
��

���

�
�

	

�
� ��� � possible groups of transmissions

that need to be checked. Note that � �� � �, thus it would
require 
���� � time. Suppose there are totally � requests and
the maximum hop count is�. The work in each time slot can be
done in 
����� � time. Note that although there is an expo-
nential term, �� , in the bound,� is a fixed small integer. Thus
the algorithm is still a linear time algorithm to the input size.

E. Joint Routing and Scheduling

So far, in this section, we have considered the scheduling
problem when the relaying paths of sensors have been given.
Sometimes we may want to find the optimal solution while not
fixing the routing paths. This will give us more flexibilities and
possibly better solutions. However, without much difficulty,
next we will show that this problem is also NP-hard. This is why
we choose to break the bigger problem into two sub problem-
s, the routing problem and the scheduling problem, and solve
them one by one.

Define the polling time of a cluster as the time needed for
the cluster head to finish the polling. The life of a sensor is
determined by its transmission load and the polling time of the
cluster. We can assume the life of �� is reversely proportion-
al to the power consumption rate �
� � �� , where 
� is the
transmission load of �� and � is the polling time, and � and
� are constants. The problem is: Given the connection pattern
and the interference pattern of a cluster, find relaying paths and
a polling schedule such that the maximum power consumption
rate is minimized. We call it the Joint Multi-Hop Routing and
Polling problem, or the JMHRP problem. JMHRP is clearly al-
so NP-hard since any algorithm that solves it can also give a
solution to the TSFRP. This is because that in a TSFR there is
no routing problem involved and the JMHRP reduces to TSFRP.

IV. DIVIDING CLUSTER INTO SECTORS

Note that during the data transmission period, if a sensor will
not be involved in transmissions occurred later, it can enter the
sleep mode immediately to save energy. A sensor can enter the
sleep mode in this way if and only if all the packets generated
by itself and all the packets it needs to relay have been correctly
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Fig. 6. The construction of the CPAR problem for set ���������.

received by the cluster head. Therefore, if we want to set a
sensor to sleep mode sooner, we can poll it and its dependents
first, where a dependent of sensor � is a sensor whose relaying
path involves �. Also note that by the time a sensor can enter
the sleep mode, all its dependents can also enter the sleep mode.

These observations lead us to consider dividing a cluster into
a number of sectors, where a sector consists of a group of sen-
sors and each sensor has a relaying path to the cluster head. We
can let each sector wake up and do data transmission in turn. By
doing so, the wake up time of sensors can be greatly reduced.
However, the maximum load of sensors may increase. Thus
we have to divide clusters carefully such that the power con-
sumption rates of sensors can be decreased. Note that sectors
can be considered as small clusters, and its routing and polling
mechanisms are the same as for clusters described in previous
sections.

Managing sensors by sectors has yet another advantage. The
number of sensors in a sector can be far less than the number
of sensors in the entire cluster. This makes finding and storing
the interference patterns much simpler, since far less number
of groups of transmissions need to be tested and stored. For
example, if we divide a cluster with 80 sensors into 8 sectors
with each sector having 10 sensors, for � � �, we need to test
1320 groups, which is far less than 85320 otherwise.

A. Optimal Sector Partition is NP-hard

Question still remains as to how to optimally partition a clus-
ter into sectors. Since our primary goal is to prolong sensor life,
we may want to minimize the maximum power consumption
rate of sensors. However, finding the optimal partition is NP-
hard by this criterion since finding the optimal polling schedule
is NP-hard. Another criterion that makes sense is: We say a
partition is optimal if the maximum pseudo power consumption
rate is minimum. The pseudo power consumption rate of �� is
defined as ��� �����, where �� is the load of �� and �� is the
number of sensors in the sector �� belongs to, since the polling
time is roughly proportional to the number of sensors involved.
Unfortunately, even when reduced to this, the optimal partition-
ing problem is still NP-hard.

Problem: Given a cluster and its connection patterns, does
there exist a partition such that
������� ������ �� for a given �?

We call it Cluster Partition problem and refer to it as CPAR.
Theorem 5: The Cluster Partition problem is NP-complete.

Proof. The CPAR problem clearly belongs to NP. To see its
NP-completeness, we use Partition problem, in which a set of
positive integers ������� � � �� are given, and we partition the
integers into two subsets where the sum of the numbers in two

subsets should be equal.
Given any instance of the Partition problem, we construct an

instance of the CPAR problem as follows. We draw two sensor
nodes, �� and ��, which are connected to the cluster head 	.
For the 
�� integer, ��, in the set, we draw �� sensors, denoted
as ��

�
to ��

Æ , where Æ � ��. These Æ sensors are a branch, with
��
� connected only to ��

���
for � � � � Æ. ��

�
is connected to

both �� and ��. � is set to be �
�	� �
� �� ��
, where 
 ��
��. For example, the construction for set ���	���	� is shown

in Fig.6.
Note that this cluster can be divided into at most two sectors,

since there are only two sensors, �� and ��, that can directly
communicate with the cluster head. Also note that the cluster
cannot be a single sector, since if so, the pseudo power con-
sumption rate of either �� or �� will exceed �. Thus if there is
a partition satisfying �, the cluster must be divided into 2 sec-
tors, with �� and �� in different sectors. In each sector, �� and
�� must have exactly 
�	 dependents. Therefore, the partition
of the sector gives a solution to the Partition problem. For ex-
ample, for the cluster shown in Fig.6, we can let the first and
the third branch be in the same sector as �� and let the second
and the fourth branch be in the same sector as ��, which is to
partition set ���	���	� into ����� and �	�	�.

B. Heuristic for Sector Partition

We now give a heuristic for partitioning a cluster into sectors.
Since the duty cycle is short as compared to the length of a
cycle, we do not need to set a limit to the number of sectors in
a cluster. Due to limited space we only outline the ideas of the
heuristic here.

We call a sensor that can directly communicate with the clus-
ter head the first level sensor. First, in the simplest case, if the
union of the optimal relaying paths found by the maximum flow
algorithm is a tree, we can let each first level branch be a sector,
where a first level branch is defined as a first level sensor and its
dependents. By so doing, the load of sensors remains the same,
and the numbers of sensors in the sectors are likely to be evenly
distributed.

When the union of the optimal relaying paths is not a tree,
which is almost surely the case, we will first try to make it a
tree. Note that there must be some flow splitting sensors, i.e.,
sensors sending packets not only to one sensor but to multiple
sensors. We can modify the relaying paths of such sensors to let
them send packets to only one sensor, or force them to “choose
a parent”. This is referred to as “flow merging”. A flow splitting
sensor chooses a particular sensor as its parent if the maximum
load of sensors along the path from the chosen parent to the
cluster head is minimum. To make sure that there are no flow
splitting sensors along this path, we start flow merging at flow s-
plitting sensors closest to the cluster head. Eventually, the union
of the relaying paths will become a tree.

However, we cannot simply let a first level branch of this tree
be a sector, because at this time it is very unlikely that the load
of first level sensors are evenly distributed. To remedy this, we
can combine two first level branches into one sector. There are
three rules for pairing up branches. First, there should be con-
nections between the two branches such that some traffic can
be redirected to the first level sensor with less load. Second,
a branch with more sensors should be paired up with a branch
with fewer sensors. Third, let two first level sensors be �� and
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��, when �� is sending a packet to the cluster head, �� should
be able to receive a packet from other sensors, and vice versa,
so that the polling can be done more efficiently. Note that we
assume sensors are simple and cannot receive and send at the
same time. In a sector with only one first level sensor, say, ��,
�� has to receive a packet in the first time slot and then sends
the packet to the cluster head in the second time slot. In a sec-
tor with two first level sensors, if the third rule is satisfied, ��
and �� can send packets to the cluster head in consecutive time
slots, and the polling time will not increase much as compared
to sectors with only one first level sensor.

V. IMPLEMENTATION ISSUES

In this section, we discuss some implementation issues in the
two-layered heterogeneous sensor networks.

A. Cluster Forming

Initially, the sensor network should be partitioned into clus-
ters. The cluster head should know which sensors are in its clus-
ter and sensors should also know which clusters they belong to.
This is Cluster Forming, and is a research topic of its own [5]
[3] [13].

In this paper we assume that the clusters have been formed
and focus on in-cluster controls. However, one possible way
of cluster forming is to let cluster heads compute the Voronoi
diagrams and let sensors in the same Voronoi cell belong to
the same cluster. This requires sensors to know their locations,
which is a legitimate assumption since for many applications,
information will be meaningless without knowing the locations
of where they come from.

After cluster has formed, the cluster head should know which
sensors belong to its cluster. We can first let the cluster head
discover sensors that can directly communicate with it, then let
these sensors find sensors that are two hops away, then use the
new sensors to find sensors three hops away, until no new sen-
sors are discovered. Each sensor can remember the first sensor
that discovered it as its parent, who will be in charge of for-
warding its packets to the cluster head. Note that this is only for
setting up a temporary data relaying path.

B. Knowing the Connectivity

The cluster head should first find out the connectivity patterns
in its cluster. We can let sensors broadcast in turn, then poll
each sensor to see which sensor it has heard from. This will
need ���� time where � is the number of sensors, and is only
needed at the initialization phase. After the connectivity pattern
is known the cluster head can find the optimal relaying path
using the network flow algorithms.

C. Source Routing

To the best of our knowledge, all previous works on load bal-
anced routing focused on the theoretical aspects of the problem,
that is, how to find the optimal relaying paths. Practically, after
finding the optimal relaying paths, we should find a way to make
traffic move along it. This problem was realized in [12] but not
solved. A possible solution to this is to use source routing: Each
sensor remembers its relaying path and adds it to the header of
the packet it sends. The sensor that receives this packet will
then relay it to the sensor that appears next in the relaying path.
This will ensure that traffic will flow according to the optimal

relaying paths. However, source routing will also add length to
the data packets and waste energy. Equivalently, we can let each
sensor remember a one-hop routing table for all its dependents.
Since only one hop information is needed for each dependent,
this will not need too much storage space.

D. Multiple Paths Rotation

Note that a sensor may have several relaying paths. For ex-
ample, if on average 3 packets are generated by sensor �� in a
cycle, the maximum flow algorithm may find two paths, with
path 1 carrying 2 units of flow and path 2 carrying 1 unit. To
simplify the control, in a duty cycle, we would like sensors to
send packets only on one path. Thus, to balance the load, we
can let sensors send packets on these paths alternatively, in pro-
portion to the units of flows the paths carry. In this example,
we can let �� send packets along path 1 for two duty cycles and
along path 2 for one duty cycle.

E. Knowing the Interference Pattern

After the optimal routing path is found, to determine the
polling schedule, the cluster head needs to know the interfer-
ence pattern. As mentioned earlier, we can do so by testing each
group of no more than� transmissions in the optimal relaying
paths. We can poll each pair of sensors involved in the transmis-
sions at the same time, then poll the sensors that are supposed
to receive the packets in turn. This can be done in ���� � time.

F. Acknowledgments Collecting

As discussed earlier, after the cluster head has received all
the packets, sensors enter the sleep mode. Ideally, later, all sen-
sors should wake up at exactly the same time. However, due to
possible drift of clocks in sensors, this might not be the case.
Therefore, to make sure that all sensors have waken up before
data transmission, the cluster head should broadcast an inquiry
message. All sensors receiving this message should then re-
ply an acknowledgment. Only after receiving acknowledgments
from all sensors will the cluster head start polling. In addition,
along with this acknowledgment message, a sensor can inform
the cluster head of the number of packets it intends to send.

One possible way of doing this is to let cluster head poll every
sensor. However, note that since the network is multi-hop, some
sensors will have to relay the ack packet for other sensors, and
while relaying, sensors can add in their own ack to this packet.
Thus, actually only one ack packet is needed for sensors along
a path to the cluster head, and as a result, only the sensor at the
beginning of the path needs to be polled.

Using similar arguments to that in Section III-E, we can
show that problem of completing the acknowledgments collect-
ing process in minimum time is also NP-hard. To solve it, we
can break it into two subproblems: first, find a set of paths that
covers all sensors; then, find a schedule to finish polling the sen-
sors at the beginning of the paths in minimum time. The second
problem can be solved by the algorithm for multi-hop polling
described earlier.

To solve the first subproblem, we use the relaying paths for
the data packets as “candidate” paths, and choose among them
a set of paths that cover all sensors with minimum total hop
counts. This problem can be solved by regarding the sensors
as elements in a whole set, and regarding the paths as subsets.
Each subset has a cost equal to its hop count. Then find a group
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of subsets that cover the whole set with minimum total cost.
This problem is exactly the Weighted Set Cover Problem, and
is also NP-hard, but a fast greedy algorithm can be used to give
sub-optimal solutions. This greedy algorithm iteratively choos-
es a subset that has the minimum covering cost, where covering
cost of a subset is defined as the ratio of the cost of the subset
divided by the number of uncovered elements it contains.

G. Removing Inter-Cluster Interference

In practice, there may be many clusters in a wireless sensor
network. With the proposed polling scheme, sensors in the same
cluster do not interfere with each other. However, at the bound-
aries of the clusters, sensors belonging to different clusters may
still do, if their cluster heads decide to poll them at the same
time. This is called the inter-cluster interference.

The simplest way to remove inter-cluster interference is to al-
low data transmission in only one cluster at a time. A token can
be rotated among the cluster heads, and only the cluster head
that captures the token can start data transmission in its cluster.
It works for the case when the number of clusters are not large,
and the data transmission within a cluster can be completed in a
relatively short time period as compared to a cycle.

Another more efficient way is to let sensors in nearby clusters
operate in different radio channels. Regarding a radio channel
as a color, this problem is equivalent to giving adjacent clusters
different colors. This is the planar graph coloring problem and
we know that 4 colors, or 4 radio channels will be sufficient. To
find a coloring, a cluster head can be elected to run a central-
ized algorithm for the coloring problem. There exists a simple
algorithm that uses at most 6 colors, using the property that in a
planar graph, there must be a vertex with degree no more than 5
[14].

VI. SIMULATION RESULTS

In this section we evaluate the performance of the proposed
polling scheme. We have implemented the proposed algorithm
based on the NS-2 simulator. We assume that all sensor nodes
are uniformly deployed within a ��������� two-dimensional
square. The cluster head is placed at the center of the square.
Two-ray propagation model is used to describe the feature of
the physical layer. With the maximum transmission power
�������, each node can communicate with other nodes as far
as ��� away. The radio bandwidth is 200kbps. CBR traffic on
the top of UDP is generated to measure the throughput. Each
packet has a fixed size of 80 bytes, including header and pay-
load. The simulation runs for 1000 seconds which contains 100
seconds warming-up period. All simulation data are collected
from 100 seconds to 1000 seconds.

A. Percentage of Active Time

The major goal of our polling scheme is to reduce the active
time of sensors. In Fig. 7(a) we plot the percentage of active
time needed to ensure that all packets are received by the cluster
head, where the number of sensors in a cluster ranges from 10 to
100 and data generating rate ranges from 10 to 80 ���. We can
see that for a cluster with 30 sensors, when the data generating
rate is 60 ���, sensors need only to be active for about ��� of
the time.

We can also see that when the number of sensors increases,
or when data generating rate increases, the active time of sen-
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Fig. 7. (a) Percentage of active time of sensors as a function of cluster size and
data generating rate, when polling is used.. (b). Throughput of the cluster with
30 sensors as a function of total offered load. (c). Life time ratio of a cluster
when divided into sectors v.s. no sector.
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sors will also increase to ensure packet delivery. We notice that
for a given data generating rate, for example, 80 ���, when the
number of nodes increases to 90, all sensor in the cluster must
be active for all time. This implies that there is a maximum size
for a cluster under a certain data generating rate, and above this
threshold, packets will be lost. Thus we should choose a suit-
able size for a cluster so that no packets are lost while sensors
can also enjoy long sleeping time.

B. Comparison with SMAC

To show the effectiveness of the proposed polling scheme, we
compare its performance with an energy efficient MAC proto-
col, named SMAC [8]. Similar to our polling scheme, SMAC
also allows each sensor to sleep periodically to save energy. We
will mainly compare the throughput of the two schemes, which
is defined as the average number of packets received by the clus-
ter head in a given time period. Since SMAC is only for MAC
layer, to find the relaying path for each sensor, we use AODV
which is an efficient topology-based routing protocol. The sim-
ulations for SMAC were carried out with the code contributed
by the designer of SMAC available on the web.

Fig. 7(b) shows the throughput of a cluster with 30 sensors,
when the total offered load is 210, 750 and 1200 ��� (the data
generating rates at individual sensors are 7, 25 and 40 ���, re-
spectively). We can see that under all offered loads, our polling
scheme achieves ���� throughput, i.e., all packets generated by
sensors are correctly received by the cluster head. Note that the
percentage of active time of sensors under the polling scheme
is less than ���, as can be derived from Fig. 7(a). We also
measured the throughput of SMAC+AODV, when active time
of sensors are configured as ��� , ���, ���, ��� and ����.
These ratios are all higher than ��� which is the active time
of sensors under the polling scheme. Quite surprisingly, the
throughput of SMAC+AODV is far less than the total offered
load when the active time is not ����. Thus, we can say that our
polling scheme has much better throughput performance than S-
MAC even with much less sensor active time. We believe one
of the major reasons for this is that in SMAC+AODV, a lot of
control packets were generated for routing, since sensors must
frequently use AODV to find relaying paths as the path used
previously may not be valid any more if some sensors have en-
tered the sleep mode. This large number of control packets will
reduce throughput and increase collision. Another reason is that
unlike the centralized polling, SMAC allows sensors to compete
for channel access randomly according to the back-off algorith-
m. As the data rate increases, more and more collisions will
occur due to this random channel access competing, which will
also reduce the total throughput. This is why even when sen-
sors are fully active, the throughput of SMAC+AODV is still
not ���� when the total offered traffic rate becomes as high as
1200 ���.

C. Effects of Dividing a Cluster into Sectors

As Section IV shows, by dividing a cluster into sectors, sen-
sor life time can be further prolonged. We studied the life time
of a cluster both when divided into sectors and not divided into
sectors while sustaining ���� throughput, and showed the life
time ratio of the former over the latter in Fig. 7(c). We can see
that the ratio is always larger than 1, which means that by divid-
ing a cluster into sectors, sensor life time will always increase.

Also, because usually larger clusters can be divided into more
sectors, the increase of life time is more for larger clusters.

VII. CONCLUSIONS

In this paper we have studied two-layered heterogeneous sen-
sor networks, where the network is partitioned into clusters, and
a powerful cluster head controls all sensors in each cluster. We
mainly focused on energy efficient design of clusters to pro-
long network life. We used polling to get data from sensors
instead of letting sensors send data randomly so that less ener-
gy is consumed. We have showed that the problem of finding a
contention-free polling schedule that uses minimum time is NP-
hard, and then gave a fast on-line algorithm. We also conducted
simulations on the NS-2 simulator, and the results show that our
polling scheme achieves ���� throughput even when the ratio
of active time of sensors is very low.
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