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Abstract— Optical communication is attracting more and more atten-
tions because of its huge bandwidth to meet the ever increasing demand
of emerging computing/networking applications. In this paper we study
distributed scheduling algorithms to resolve output contentions in WD-
M optical interconnects with wavelength conversion ability. We consider
the general case of limited range wavelength conversion, including the ful-
l range wavelength conversion. Two types of limited range wavelength
conversions, circular symmetrical and non circular symmetrical, are stud-
ied. We introduce the request graph and show that finding the largest
group of contention-free connection requests to achieve maximum net-
work throughput is equivalent to finding a maximum matching in the re-
quest graph. Compared with the existing algorithm for finding a max-
imum matching in an arbitrary bipartite graph with time complexity

O(N
3

2 k
3

2 d), the algorithms we present have time complexity of O(k) and
O(dk) (independent of interconnect size N ) for non-circular symmetrical
and circular symmetrical wavelength conversion, respectively, where k is
the number of wavelengths per fiber and d is the conversion degree. In ad-
dition, our algorithms can be easily implemented in hardware, and used
for time slotted WDM optical interconnects where connections hold for
different number of time slots.

I. INTRODUCTION AND BACKGROUND

Many emerging computing/networking applications, such
as data-browsing in the world wide web, video conferencing,
video on demand, E-commerce and image distributing, require
very high network bandwidth often far beyond that today’s
high-speed networks can offer. Optical networking is a promis-
ing solution to this problem because of the huge bandwidth of
optics: a single fiber has a bandwidth of nearly 50 THz [16]. To
fully utilize the bandwidth, a fiber is divided into a number of
independent channels, with each channel on a different wave-
length. This is referred to as wavelength-division-multiplexing
(WDM).

In a WDM all optical network, data is modulated on a se-
lected wavelength channel and this information-bearing signal
remains in the optical domain throughout the path from source
to destination. In the absence of wavelength conversion abil-
ity, the signal is required to be on the same wavelength from
hop to hop, which is referred to as the wavelength continuity
constraint. This constraint can be removed when wavelength
converters are employed in the network. Wavelength converter
converts a signal on one wavelength to another wavelength, and
makes the network more flexible for satisfying various connec-
tion requests. Studies show that network performance is greatly
improved by using wavelength converters [6]. If a wavelength
converter can convert a wavelength to any other wavelength
in the optical system, it is called full range wavelength con-
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verter. However, this type of wavelength conversion is quite
difficult and expensive to implement due to technological lim-
itations [13], [11]. A realistic all-optical wavelength convert-
er may only be able to convert to a limited number of wave-
lengths for any given wavelength, which is called limited range
wavelength converter. In general, a limited range wavelength
converter can convert a wavelength to a set of adjacent wave-
lengths, and the number of wavelengths in the set is called con-
version degree. Research [13], [11], [14] shows that limited
range wavelength converters can achieve network performance
similar to full range wavelength converters even when the con-
version degree is very small. Thus, limited range converters
are considered as a practical, cost-effective choice for provid-
ing wavelength conversion ability in WDM networks, which
will be the main focus of this paper.

A WDM optical interconnect (also called WDM switch in
some literature) provides interconnections between a group of
input fiber links and a group of output fiber links with each fiber
link carrying multiple wavelength channels. Such an optical
interconnect can be used to serve as a crossconnect (OXC) in
a wide-area communication network or to provide high-speed
interconnections among a group of processors in a parallel and
distributed computing system. The WDM interconnect we con-
sider is an N �N switch, i.e., there are N fibers on the input
side of the switch andN fibers on the output side of the switch.
On each fiber there are k wavelengths that carry independent
data. Thus, there are a total of Nk input wavelength chan-
nels and Nk output wavelength channels in the interconnect.
Any input wavelength channel can be connected to any output
fiber. In addition, there are limited range wavelength convert-
ers with conversion degree d (d � k) equipped on the output
side of the switch. With limited range wavelength conversion,
an input wavelength channel may be connected to d adjacen-
t channels on an output fiber. Clearly, full range wavelength
conversion is a special case of limited range conversion when
d = k. Figure 1 shows an N � N WDM interconnect with
k wavelengths on each fiber, in which each wavelength can be
converted to d adjacent wavelengths. It can be seen from the
figure that an input fiber is first fed into a demultiplexer, where
different wavelength channels are separated one from another.
The separated wavelength channels are the input of a switching
fabric, through which an input wavelength channel is connect-
ed to d adjacent wavelength channels on an output fiber. At the
output side of the switching fabric, there are optical combiners
for each output wavelength channel which is used to combine
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Fig. 1. A wavelength convertible WDM optical interconnect.

the optical signals that are able to access this output wavelength
channel. Thus, there are Nd inputs to a combiner, but only one
of them may carry signal at a time. The output of the combin-
er is then fed into a wavelength converter, which converts the
wavelength of the signal to the desired wavelength. Then the k
output wavelengths are multiplexed into an output fiber.

The WDM optical interconnect can be operated either asyn-
chronously or synchronously. The former case applies to WD-
M wavelength routing networks that are similar to electrical cir-
cuit switching networks. A typical scenario for the latter case
would be an optical WDM packet switching network where
information is carried in optical packets that arrive to the in-
terconnect at the beginning of each time slot. The duration of
an optical packet is usually assumed to be one time slot. How-
ever, we also consider the general case of multiple time slot
duration in this paper. All connections or optical packets are
assumed to be of the same priority. Since optical buffers are
currently made of fiber delay lines and are still very expensive
[5], we also assume that there are no buffers in the WDM op-
tical interconnect. The traffic pattern considered in this paper
is unicast, i.e., each connection request is destined for only one
output fiber. The connection request does not specify which
wavelength channel on the destination fiber it should be con-
nected to, and we can assign to it any free wavelength channel
accessible to this connection. Under these assumptions, the
connection requests arrived at the interconnect in one time slot
can be partitioned into N subsets according to their destina-
tions. The decision of accepting a request or not in one subset
does not affect the decisions in other subsets, as no connec-
tion request belongs to two subsets. This provides a basis for
a fast distributed scheduling algorithm, as the scheduling for
each output fiber can be done independently of other output
fibers. As will be seen later, the time complexity of the dis-
tributed scheduling algorithms we propose is only in terms of
the number of wavelengths per fiber and the conversion degree,
and is independent of the interconnect size. A global schedul-

ing algorithm, on the other hand, will have a time complexity
at least linear to the size of the interconnect. Thus, in the fol-
lowing we will focus on the scheduling algorithms that have a
distributed nature and can be run independently for each output
fiber. The input to the scheduling algorithm is the connection
requests destined to this fiber. The output of the algorithm is
the decision whether a request is granted or not, and if grant-
ed, which wavelength channel it is assigned to. Note that if the
wavelength conversion is full range the scheduling is trivial: if
no more than k connection requests arrived at this output fiber,
grant all; if more than k arrived, arbitrarily pick k out of them.
This is because full range wavelength converters are capable
of converting any incoming wavelength to any outgoing wave-
length, which makes the connection requests indistinguishable
in the wavelength domain.

However, the scheduling becomes more complex when we
use limited range wavelength converters, as the wavelengths of
connection requests can no longer be considered indistinguish-
able. For example, in the interconnect in Figure 1, if k = 6,
and d = 3, consider the case where two connections on �1,
three connections on �2 and one connection on �4 have ar-
rived and all want to destine to the same output fiber with six
wavelengths �0; �1; : : : ; �5. If the wavelength conversion is
full range, all of them can be satisfied because there are to-
tally six requests which does not exceed the total number of
wavelengths on a fiber. However, since the conversion degree
is 3 in this interconnect, not all can be satisfied. This is be-
cause that there are five connection requests arrived on �1 and
�2, but there are only four output wavelengths accessible to �1
and �2: f�0; �1; �2; �3g with conversion degree 3. If not al-
l connection requests can be satisfied, we say there is output
contention among the connection requests. When a contention
occurs, the scheduling algorithm needs to select some of the
connection requests to transmit while reject others. To maxi-
mize network throughput, the algorithm should find the largest
group of requests that are contention-free. In this example, we
can drop one request coming on �1 or �2 and realize the rest of
connection requests.

Extensive research has been conducted on scheduling algo-
rithms for various electronic switches (which can be consid-
ered as a single wavelength switch). For example, [7] and [8]
considered scheduling algorithms in input-buffered electronic
switches under unicast traffic. Scheduling algorithms for WD-
M broadcast and select networks were also well studied in re-
cent years, see, for example, [17], [18]. In this type of network,
the source node broadcasts its information to all other nodes
via a selected wavelength, and only the destination node tunes
into this wavelength to get the message, so that only one wave-
length on the fiber is used at a time, both for the source and the
destination node. Note that this is a quite different type of net-
work from the WDM interconnect considered in this paper. We
consider a space-division switch where all wavelengths on a
fiber can be utilized simultaneously. There has also been some
work in the literature on the performance analysis of WDM op-
tical interconnects with limited range wavelength conversion
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in WDM wavelength routing networks, e.g., [11], [13], [14].
In these studies, the packet arrivals at the optical interconnect
were assumed to be asynchronous, thus eliminates the need for
a scheduling algorithm since the requests have a natural order
and are assumed to be served according to the “first come first
served” rule. However, future WDM optical interconnects are
more likely to be operated synchronously [9] [10], for exam-
ple, optical packet switching networks [12], where connection
requests arrive in time slots. This type of interconnect is al-
so more suitable for interconnecting processors in a parallel or
distributed computing system as synchronization is required a-
mong collaborating processors. In such an interconnect, a gen-
eral method for resolving output contention has to be studied.
In this paper, we will focus on contention-free scheduling al-
gorithms for such synchronized WDM optical interconnects.

II. PRELIMINARIES

A. Wavelength Conversion

As mentioned earlier, in a WDM optical interconnect with
limited range wavelength conversion, an incoming wavelength
may be converted to a set of adjacent outgoing wavelength-
s, and the number of wavelengths convertible is equal to the
conversion degree. We can use a conversion graph to visu-
alize the wavelength conversion. A conversion graph is a bi-
partite graph, in which each of the left side vertex represents
an input wavelength and each of the right side vertex repre-
sents an output wavelength. Thus, if there are k wavelengths
on each fiber, there are k vertices on each side of the conver-
sion graph. If input wavelength �i can be converted to out-
put wavelength �j , we draw an edge between them. Figure
2(a) is the conversion graph for k = 6 and conversion de-
gree d = 3, in which, wavelength �i may be converted to�
�(i�1) mod 6; �i; �(i+1) mod 6

	
, for i 2 f0; 1; : : : ; 5g.

In general, we assume �i may be converted to f�(i�e) mod k;

�(i�e+1) mod k; : : : ; �i; : : : ; �(i+f) mod kg, where e and f

are the numbers of wavelengths that �i may be converted to on
its “minus” and “plus” side, respectively. Clearly, e+f+1 = d.
In the example above e = f = 1. We call the wavelengths that
�i may be converted to as the adjacency set of �i in the con-
version graph, and represent the adjacency set as an interval of
integers: [i� e; i+ f ]. Note that all the numbers inside this in-
terval are in “mod k”. In other words, interval [x; y] represents
numbers fx mod k; (x + 1) mod k; : : : ; y mod kg. This
notation is purely for presentational convenience, since the ad-
jacency set of some wavelength may not be an interval. For
example, the adjacency set of �0 is f�5; �0; �1g and apparent-
ly 5; 0; and 1 are not an interval, but since (5 mod 6) = (�1
mod 6), we can represent it as [�1; 1].

The conversion scheme discussed above is the common as-
sumption about limited range wavelength conversion in the
literature. The resulting conversion graph is “circular sym-
metrical”. There are also other types of assumptions about
wavelength conversion which is not circular symmetrical. For
example, some authors considered the adjacency set of any
�i is interval [u; v], where u = max f0; i� eg and v =
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Fig. 2. Conversion graphs of two types of wavelength conversion six wave-
lengths and conversion degree three. (a) Circular symmetrical. (b) Non-
circular symmetrical.

min fk � 1; i+ fg, which means that the wavelengths near
one end cannot be converted to the wavelengths on the other
end. For example, if k = 6 and e = f = 1, �0 can only be
converted to �0 and �1, and it cannot be converted to �5. Fig-
ure 2(b) shows the conversion graph of this type of conversion
when k = 6 and e = f = 1. Note that the adjacency set of this
type of conversion is indeed an interval. We will consider both
types of wavelength conversions in this paper.

B. Problem Formalization

As described in Section I, we consider an N �N WDM op-
tical interconnect with k wavelength on each fiber. Any input
wavelength channel can be connected to its adjacency set on
any output fiber according to its conversion degree. We depict
the relationship between the connection requests destined for
an output fiber and the available wavelength channels on that
output fiber by a bipartite graph, called request graph. On the
left side of the request graph, each node represents a connection
request and on the right side of the graph, each node represents
an output wavelength. We use A to represent the set of the left
side vertices and B for the right side vertices. Let the vertices
on the right side be in the same order as their corresponding
wavelength indexes. For example, �0 is above �1, �1 is above
�2 and so on. The vertices on the left side are also ordered
according to their wavelength indexes (requests with the same
wavelength are in an arbitrary order). There is an edge between
a left side node a and a right side node b if the wavelength of
connection request a can be converted to output wavelength
b. Thus the conversion graph discussed earlier can be simply
considered as a special case of the request graph when there
is exactly one connection request coming on each wavelength.
For convenience we also define the request vector. A request
vector is a 1� k row vector, with the ith element representing
the number of connection requests arrived on wavelength �i.
Figure 3 shows the request graphs of the two types of conver-
sions when the request vector is [2; 1; 0; 1; 1; 2]. In addition,
for any ai 2 A, let W (i) denote the wavelength index of con-
nection request a, W (i) 2 [0; k � 1]. For example, in Figure
3(a), W (0) = W (1) = 0, and W (2) = 1. When no confusions
arise, we will use it to represent the wavelength of connection
request ai as well.

A request graph of an output fiber can be easily formed and
stored in hardware. For example, the left side vertices of the
request graph can be implemented by an Nk� 1 binary vector
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Fig. 3. Request graphs of two types of conversions when the request vector is
[2; 1; 0; 1; 1; 2] in a 6-wavelength interconnect with conversion degree 3.
(a) Circular symmetrical. (b) Non-circular symmetrical.

(anNk bit register), with element (i�1)�k+j being 1 means
�j on the ith input fiber is destined for this output fiber and 0
otherwise. The Nk � 1 binary vector is set at the beginning of
each time slot. The right side vertices of the request graph can
be implemented by a k � 1 vector with each element storing
the decision of which input wavelength channel it is assigned
to. The edges that represent the relationship between the inputs
and outputs do not need to be implemented explicitly and can
be considered embedded in the circuit.

In a request graph G, let E denote the set of edges. Any
wavelength assignment can be represented by a subset of E,
E1, where edge ab 2 E1 if wavelength channel b is assigned to
connection request a. Under unicast traffic, any connection re-
quest needs only one output channel and an output channel can
be assigned to only one connection request. It follows that the
edges in E1 are vertex disjoint, because that if two edges share
a vertex, either one connection request is assigned two wave-
length channels or one wavelength channel is assigned to two
connection requests. Thus, E1 is a matching in G. For a given
set of connection requests, to maximize network throughput,
we should find a maximum matching in the request graph. In
the example above, not all left side vertices can be matched be-
cause there are seven vertices on the left (connection requests)
while there are only six vertices on the right (available wave-
length channels). The maximum matchings for both types of
conversions are shown in Figure 4, and in this case they are
identical.

The best known algorithm for finding maximum matching
in an arbitrary bipartite graph was given in [1], and has time
complexity O(n

1

2 (m+ n)), where n and m are the number of
vertices and edges in the bipartite graph, respectively. If we
directly adopt this algorithm in our scheduling algorithm, the
time complexity would be as high as O(N

3

2 k
3

2 d), since the
left side vertices in a request graph alone could be as large as
Nk and each left side vertex is adjacent to d right side ver-
tices. However, faster algorithms are required for scheduling
in WDM optical interconnects as the decision has to be made
in real-time within a time slot, which is in the order of �s [12].
In the rest of the paper, we will show that the request graph for
limited range wavelength conversion exhibits some nice prop-
erties so that faster algorithms are possible. We will present
two fast scheduling algorithms with time complexityO(k) and
O(dk), respectively, for two types of wavelength conversion-
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Fig. 4. Maximum matchings in two request graphs in Figure 3. (a) Circular-
symmetrical. (b) Non-circular-symmetrical.

s, where k is the number of wavelengths and d (� k) is the
conversion degree. Note that the time complexity of our al-
gorithms is independent of the interconnect size N , and can
be easily implemented in hardware also. Because finding the
largest group of contention-free connection requests is equiva-
lent to finding a maximum matching in the request graph, in the
following we will describe these algorithms in the form of find-
ing a maximum matching in bipartite graphs. We first consider
the case that all output wavelength channels are available at the
beginning of time slots in Section III and Section IV. Then in
Section V, we show that our algorithms can be easily extend-
ed to the case that some of the output wavelength channels are
occupied.

III. SCHEDULING ALGORITHM FOR NON-CIRCULAR

SYMMETRICAL WAVELENGTH CONVERSION

First we consider non-circular symmetrical wavelength con-
version. In this case, the request graph is a convex bipartite
graph as defined in [2]. A bipartite graph G is convex if there
exists an ordering “�” of the right side vertices B such that
for any a 2 A and distinct b1; b2 2 B (with b1 � b2), edge
ab1 2 E and ab2 2 E ) ab 2 E for any b 2 B and
b1 � b � b2, where E is the set of edges in G. In other words,
if we use B(a) to denote the set of vertices in B adjacent to a,
B(a) is an interval for any a 2 A in this ordering. With non-
circular symmetrical wavelength conversion, a request graph is
convex because for every left side node a, B(a) is the set of
wavelengths that wavelength W (a) may be converted to, and
they form an interval if the right side vertices are ordered ac-
cording to the wavelength indexes. For example, in Figure 3(b),
if we check left side vertex a2, the set of vertices adjacent to it
is B(a2) = fb0; b1; b2g, which can be represented by interval
[0; 2]. And so do other left side vertices.

Simpler algorithms exist for finding a maximum matching
in a convex bipartite graph. The algorithm shown in Table
1 was described in [3]. The input to this algorithm is: (1)
The left side vertex set A and the right side vertex set B;
(2) For each left side vertex a, the set of vertices adjacen-
t to it denoted by interval [BEGIN(a); END(a)]. We call
BEGIN(a) and END(a) the BEGIN value and END val-
ue of a, respectively. The output of the algorithm is array
MATCH []. MATCH [i] = j means that the ith right side
vertex is matched to the jth left side vertex. MATCH [i] = �
if the ith right side vertex is not matched to any left side ver-
tex. We can see that in this algorithm, the ith vertex in B is
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TABLE 1

GLOVER’S ALGORITHM FOR FINDING A MAXIMUM MATCHING IN A

CONVEX BIPARTITE GRAPH

Glover’s Algorithm
for i := 1 to j B j do

U:=fk : k 2 A; (i; k) 2 Eg
if U = ;

MATCH [i] := �
else

j := element in U with minimum END value
MATCH [i] := j

delete j from A

end if
end for

TABLE 2

FIRST AVAILABLE ALGORITHM FOR FINDING A MAXIMUM MATCHING IN

A REQUEST GRAPH OF NON-CIRCULAR SYMMETRICAL WAVELENGTH

CONVERSION

First Available Algorithm
for i := 1 to k do

let aj be the first vertex in A adjacent to bi
if no such aj exists

MATCH [i] := �
else

MATCH [i] := j

delete aj from A
end if

end for

matched to an adjacent vertex in A whose interval ends closest
to it. The algorithm has time complexity O(jEj) = O(Nkd),
and the time consuming part is the formation of set U and find-
ing the smallest-ending vertex j.

Glover’s algorithm has a lower time complexity than the al-
gorithm for general bipartite graphs in [1] since the bipartite
graph is convex. Our request graph is a special type of convex
bipartite graphs. Hence Glover’s algorithm can be further sim-
plified into First Available Algorithm as described in Table 2.
In this algorithm, we match right side vertex bi with the first
left side vertex that is adjacent to it. In other words, we choose
the “top” edge in the request graph and add it to the matching in
each iteration. Notice that here, for a right side vertex, instead
of finding all the adjacent left side vertices and then selecting
among them the one with the smallest END value, all we need
to do is to find the first adjacent left side vertex. We have the
following result concerning this algorithm.

Theorem 1: First Available Algorithm finds a maximum
matching in a request graph of non-circular symmetrical wave-
length conversion.
Proof. In a request graph of non-circular symmetrical wave-

length conversion, we notice that for left side vertices aj and
al, if j � l, then BEGIN(j) � BEGIN(l) and END(j) �
END(l). If we use Glover’s Algorithm to find the maximum
matching for the request graph, in each iteration, when we are

searching a matching for the ith right side vertex, we can sim-
ply match it to the vertex with smallest index on the left side
that is adjacent to it. This is because that theEND value of any
other vertex with larger index cannot be smaller than it. Thus,
Glover’s Algorithm can be simplified to First Available Algo-
rithm when applied to a request graph of non-circular symmet-
rical wavelength conversion.

Now we discuss the implementation of this algorithm. From
Table 2, we should find the first adjacent vertex to a right side
vertex in each step. Since the packets on the same wavelength
are identical for the purpose of maximizing the matching size,
we need only to find the first input wavelength that has at least
one packet and can be converted to current output wavelength.
After that if there are more than one packets on this input wave-
length, to ensure fairness, a random selecting or a round-robin
scheduling procedure should be adopted as suggested in [7] [8].
All this can be implemented in hardware and the execution time
of each step would be a constant. Thus, the time complexity of
this algorithm is O(k). Note that the time complexity is in-
dependent of the interconnect size and conversion degree. Of
course, if less complex hardware is used it may not be the case.
However, since timing is critical here, the method described
above is preferred.

IV. SCHEDULING ALGORITHM FOR CIRCULAR

SYMMETRICAL WAVELENGTH CONVERSION

When wavelength conversion is circular symmetrical, the re-
quest graph is no longer a convex bipartite graph, because that
the left side vertices near one end will have links to the right
side vertices on the other end (e.g., edge a0b5 and a6b0 in Fig-
ure 3), and the adjacency set is not an interval. This makes the
problem more complicated. However, in the following discus-
sion we show that we can still apply the First Available Algo-
rithm by “breaking” the request graph.

A. Breaking the request graph

First, we introduce some useful definitions in our discussion.
Definition 1: Edge ajbv crosses aibu when

Case 1. W (j) 6=W (i)
1.1. W (j) 2 [u�f+1;W (i)�1] and v 2 [u+1;W (j)+f ]
1.2. W (j) 2 [W (i)+1; u�1+e] and v 2 [W (j)�e; u�1]

Case 2. W (j) =W (i)
2.1. j < i and v 2 [u+ 1;W (j) + f ]
2.2. j > i and v 2 [W (j)� e; u� 1]

For example, in Figure 3(b) edges a0b1 and a1b0 cross each
other, edge a3b4 crosses a4b3, but edge a0b5 and a4b4, though
intersecting with each other in the figure, are not a pair of cross-
ing edges.

Definition 2: For request graph G, let ai and bu be two ver-
tices such that aibu 2 E. LetG0 be the subgraph ofG obtained
by removing vertices ai and bu, all the edges incident to them,
and all edges that cross edge aibu in G. We call G0 the reduced
graph of G. By doing this, we say we break G at aibu. Edge
aibu is called the breaking edge.
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We have the following result.
Lemma 1: There exists a maximum matching in the request

graph where there are no crossing edges.
Proof. We prove this lemma by showing that every pair of

crossing edges in the maximum matching can be replaced by
two non-crossing edges. Let G be the request graph and E
be the edge set of G. Suppose edge aibu and ajbv are in a
maximum matchingM and cross each other. If W (j) =W (i),
when edge aibu 2 E and ajbv 2 E, we have aibv 2 E and
ajbu 2 E. Edge aibv and ajbu are not in M , because if one
of them is then there would be two edges sharing one vertex
in M . They also do not cross each other. In Case 1.1 when
j < i, from the definition we know that v 2 [u+1;W (j)+ f ],
thus [v + 1;W (j) + f ] is a subset of [u + 1;W (j) + f ]. But
u =2 [u + 1;W (j) + f ], then u =2 [v + 1;W (j) + f ]. Thus,
by definition aibv and ajbu do not cross each other. A similar
proof can be given for Case 1.2. Therefore, we can remove
aibu and ajbv from M and add aibv and ajbu to M . The new
matching is still a maximum matching.

For W (j) 6= W (i), we prove Case 2.1 when W (j) 2
[u � f + 1;W (i) � 1] and v 2 [u + 1;W (j) + f ]. The
proof for Case 2.2 is similar. Since aibu 2 E, the set of
left side vertices with wavelengths [u � f;W (i)] are adja-
cent to bu. Also, since W (j) 2 [u � f + 1;W (i) � 1],
ajbu 2 E. We now show that aibv 2 E. The adjacency
set of wavelength W (i) is I = [W (i) � e;W (i) + f ]. If
(W (j) + �) mod k =W (i), the adjacency set of wavelength
W (j) is J = [W (i) � e � �;W (i) + f � �]. By defini-
tion, v 2 [u + 1;W (j) + f ] = [u + 1;W (i) + f � �] �
[u;W (i) + f ]. Since u 2 I and [u;W (i) + f ] � I , it follows
that v 2 I , or, aibv 2 E. Edge aibv does not cross ajbu be-
cause W (j) 2 [v�f+1;W (i)�1] but u =2 [v+1;W (j)+f ].
Hence, for W (j) 6= W (i) the pair of crossing edges can also
be replaced by two non-crossing edges not inM . We can apply
the same procedure to every pair of crossing edges in M and
obtain a new maximum matching without crossing edges.

As an example, in Figure 3(b), edge a0b1 and a1b0 are a pair
of crossing edges. If they are in a matching, we can replace
them with edge a0b0 and a1b1. Similarly, edge a3b4 and a4b3
are a pair of crossing edges. If they are in a matching, we can
replace them with edge a3b3 and a4b4.

For left side vertex aj , the adjacency set in G can be repre-
sented as [W (j) � e;W (j) + f ]. When G is broken at edge
aibu, aj’s adjacency set in G0 will be in one of the follow-
ing three forms: [W (j) � e; u � 1], [u + 1;W (j) + f ], or
[W (j)�e;W (j)+f ]. This is because when we breakG at edge
aibu, if W (j) 2 [u�f+1;W (i)�1], the links to wavelengths
[u+ 1;W (j) + f ] would have been deleted and the adjacency
set in G0 is [W (j)�e; u�1]. If W (j) 2 [W (i)+1; u�1+e],
the links to wavelengths [W (j) � e; u � 1] would have been
deleted and the adjacency set in G0 is [u + 1;W (j) + f ].
If W (j) = W (i), when j > i, the adjacency set in G0 is
[u + 1;W (i) + f ]; when j < i, the adjacency set in G0 is
[W (i) � e; u � 1]. Otherwise W (j) =2 [u � f; u + e], i.e., aj
is not adjacent to bu in G, and the adjacency set in G0 is still
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Fig. 5. Breaking at edge a2b1 in Figure 3(a) (a) Deleting vertex a2 and b1 and
all the incident edges and crossing edges. (b) Reordering a3 and b2 to the
top.

[W (j)� e;W (j) + f ].
Now when G is broken, the order of vertices in G0 can be

represented as:

a0; a1; : : : ; ai�1; ai+1 : : : ; ajAj�1; and

b0; b1; : : : ; bu�1; bu+1; : : : ; bjBj�1

We now left shift these vertices until ai+1 and bu+1 are at the
left end:

ai+1; ai+2; : : : ; ajAj�1; a0; a1; : : : ; ai�1; and

bu+1; bu+2; : : : ; bjBj�1; b0; b1; : : : ; bu�1:

In the above shifting, only the ordering of vertices is changed,
but no edges are deleted or added. It is not difficult to verify
that all three types of adjacency sets are intervals in the new
ordering: [u + 1;W (j) + f ] represents the left most W (j) +
f � u vertices, [W (j) � e; u � 1] represents the right most
u�W (j) + e vertices, and [W (j) � e;W (j) + f ] represents
d consecutive vertices in the middle. Hence G0 in is a convex
bipartite graph. Moreover, for vertices aj and al, if vertex aj
appears on the left of al in the new ordering, the first and the
last vertex adjacent to aj will also be on the left of the first
and the last vertex adjacent to al, respectively. This means that
in the new vertex ordering of G0, for left side vertices aj and
al, if j � l, then BEGIN(j) � BEGIN(l), END(j) �
END(l). Thus we have:

Lemma 2: The vertices in the reduced graph G0 can be or-
dered in a way such that the First Available Algorithm can be
used to find the maximum matching for G0.

Figure 5 shows an example of breaking the request graph in
Figure 3(a) at edge a2b1.

Now the question is whether a maximum matching in G0

along with the breaking edge is a maximum matching of G.
The following lemma shows this is true if the breaking edge is
in a no-crossing-edge maximum matching of G.

Lemma 3: If edge aibu is in a no-crossing-edge maximum
matching M of request graph G, then edge aibu along with a
maximum matching of graphG0 which is obtained by breaking
G at edge aibu is a maximum matching of G.
Proof. If edge aibu is in a no-crossing-edge maximum match-
ing M of G, then edges in L = M n faibug are all in G0.
It follows that L is a matching of G0. It is also true that any
matching of G0 along with edge aibu is a matching of G. Now
L is a maximum matching ofG0, since if it is not, the maximum
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TABLE 3

BREAK AND FIRST AVAILABLE ALGORITHM FOR FINDING A MAXIMUM

MATCHING IN A REQUEST GRAPH OF CIRCULAR SYMMETRICAL

WAVELENGTH CONVERSION

Break and First Available Algorithm
arbitrary choose one left side vertex ai
do for all right side vertex bu adjacent to ai
begin

break G at edge aibu, let the reduced graph be Gu.
apply First Available Algorithm to Gu

to find a maximum matching Mu.
end
let Mw be the matching with max cardinality among all Mu

return Mw [ aibu

matching ofG0 written as L0 contains more edges thanL. Then
L0[faibug which is also a matching of G contains more edges
than M . This contradicts with the fact that M is a maximum
matching. Therefore, any maximum matching of G0 contains
the same number of edges as L. Hence, any maximum match-
ing of G0 together with edge aibu contains the same number of
edges as M . The lemma follows.

Finding an edge in G that is in a no-crossing-edge maximum
matching is not trivial. Examples can be found that none of the
d edges incident to a left side vertex can be assumed to be in a
no-crossing-edge maximum matching. However, we can prove
that there must be at least one such an edge among the d edges.

Lemma 4: For any left side vertex ai in the request graph G,
at least one of the d edges incident to it is in some no-crossing-
edge maximum matching.
Proof. We say ai is saturated in matching M if there is an

edge in M incident to ai. It is obvious that there must be a
maximum matching in which ai is saturated. Since given any
maximum matching M 0, if ai is saturated, the claim is true. If
ai is not saturated in M 0, all the right side vertices adjacent to
ai must be saturated. Now we can arbitrarily match ai to one
of them, say, bu, and remove the edge in M 0 incident to bu, By
doing this we obtain a new maximum matching in which ai is
saturated. Now suppose M 00 is a maximum matching in which
ai is saturated. If M 00 is already a no-crossing-edge match-
ing, then M 00 is the maximum matching we need. If there are
crossing edges in M 00, we can apply the procedure described
in Lemma 1 to obtain a no-crossing-edge maximum matching
M . Notice that any vertex saturated in M 00 is still saturated in
M . The lemma follows.

From this lemma we know that if we try all d edges, we can
obtain a maximum matching.

B. The Scheduling Algorithm

Now we are in the position to present the Break and First
Available Algorithm as described in Table 3.

By combining Lemmas 2, 3 and 4, we can obtain the follow-
ing result concerning the Break and First Available Algorithm.

Theorem 2: The Break and First Available Algorithm gives
the maximum matching of a request graph of circular symmet-

rical wavelength conversion.
The time complexity of the Break and First Available Algo-

rithm is O(dk), because we need to try all d reduced graphs,
and each reduced graph has k � 1 right side vertices. Again
note that the time complexity is independent of network size
N . We can also implement this algorithm in parallel and time
complexity could be reduced to O(k), but we then need d units
of hardware. If the conversion degree d is large, the time com-
plexity or the hardware cost will be high. However, as we men-
tioned in Section I, in WDM networks, it has been shown that
with very small conversion degree, the network performance
can be close to the case of full conversion (d = k), [11]. Most
of the proposed WDM optical interconnects with limited range
wavelength conversion have a conversion degree of d = 2 or
d = 3. Thus, Break and First Available Algorithm is suitable
for hardware implementation in this case.

C. Discussions on the Approximation Algorithm

In the Break and First Available Algorithm we try all d re-
duced graphs because we do not know before hand which edge
belongs to a no-crossing-edge maximum matching. In some
applications, if the speed of the scheduling algorithm is of more
concern than achieving the maximum network throughput, we
can trade-off the time complexity of the algorithm with the net-
work throughput (the size of the matching). Now we discuss
such an approximation algorithm. The question is: if we want
to try only one reduced graph to save time or hardware cost,
which reduced graph we should choose such that the matching
we obtain will still be close to a maximum matching.

Lemma 5: If edges ajbv and albw crosses edge aibu and
W (j) 2 [W (i)+ 1; u� 1+ e], W (l) 2 [u� f +1;W (i)� 1],
then edge ajbv and albw cross each other.
Proof. We have v 2 [W (j)�e; u�1] and w 2 [u+1;W (l)+
f ]. Hence v 2 [W (j) � e; w � 1]. If W (j) 2 [W (l) + 1; w �
1 + e], edge ajbv and albw cross each other. W (j) 2 [W (i) +
1; u�1+e] andW (l) 2 [u�f+1;W (i)�1] imply thatW (j) 2
[W (l) + 1; u� 1+ e]. Similarly, since w 2 [u+1;W (l) + f ],
we have W (j) 2 [W (l) + 1; w � 1 + e].

Now the d right side vertices adjacent to ai are
fW (i)� e;W (i)� e+ 1; : : : ;W (i); : : : ;W (i) + fg. If
edge aibu 2 E, then u is in this set. Suppose u is the Æ(u)th
element in the set when counted from the left to the right.
For example, if u = (W (i) � e) mod k, then Æ(u) = 1; if
u = (W (i) � e + 1) mod k, then Æ(u) = 2. We have the
following lemma.

Lemma 6: Edge aibu may cross up to max fÆ(u)� 1; d� Æ(u)g
edges in a no-crossing-edge maximum matching.
Proof. Given a no-crossing-edge maximum matching M , if
aibu 2 M , it does no cross any edge in M . If aibu =2 M ,
we first consider the requests coming in the wavelength range
[u � f + 1;W (i)]. The set of right side vertices adjacent to
them and that may constitute a crossing edge of aibu can be
represented as [u + 1;W (i) + f ]. There are totally d � Æ(u)
elements in this set. It follows that in any matching there are
at most this number of edges crossing aibu for the left side
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vertices in the wavelength range [u�f+1;W (i)]. By a similar
argument, there are at most Æ(u)� 1 edges crossing aibu with
left side vertices in the wavelength range [W (i); u � 1 + e].
From Lemma 5, any edge in one group crosses all the edges in
the other group. Thus, if the matching has no crossing edges,
only one group may be in that matching. Hence, the maximum
number of edges crossing aibu is the larger of the two.

Theorem 3: By breaking the request graph at edge aibu,
the difference between the matching we find and a maximum
matching cannot be greater than max fÆ(u)� 1; d� Æ(u)g,
where bu is the Æ(u)th vertex adjacent to ai when counting
from the end of the ”minus” side.
Proof. Given any no-crossing-edge maximum matching M ,

by breaking the request graph at edge edge aibu, G0 contains
at least j M j �maxfÆ(u)� 1; d� Æ(u)g � 1 edges in M .
These edges are also a matching in G0. Hence the cardinality
of the maximum matching of G0 cannot be less that that. Thus
by breaking the request graph at edge aibu we find a matching
with at least j M j �max fÆ(u)� 1; d� Æ(u)g edges.

Corollary 1: The upper bound on the difference between a
maximum matching of G and the matching given by breaking
G at edge aibu achieves the smallest value (d � 1)=2 when
Æ(u) = (d+ 1)=2.

From this Corollary, if e = f , Æ(u) = (d + 1)=2 means we
should choose the “shortest” edge. For the case of d = 3 (e =
f = 1), by breaking the request graph at the “shortest” edge,
the difference between our matching and a maximum matching
is at most 1. For the case of d = 5 (e = f = 2), the difference
is at most 2.

V. EXTENSIONS

In the previous discussions we consider the case that all k
output channels �0; �1; : : : ; �k�1 are available at the time of
scheduling. In this case, in the request graph there are always
k vertices on the right side of a request graph. However, if the
duration of connections is more than one time slot it may oc-
cur that not all of the output channels are available at the time
of scheduling, since some output channels may still be occu-
pied by previously arrived connection requests. If the existing
connections can be disturbed, i.e., be reassigned to a different
output channel if needed, the algorithms discussed in the previ-
ous section can still be used. If it is not the case, which is true
in optical burst switching, we can redraw the request graph by
removing the right side vertices representing those occupied
wavelength channels and all the edges incident to them. It is
not difficult to see that we can still apply the algorithms intro-
duced previously to these modified request graphs to obtain the
maximum matching.

VI. CONCLUSIONS

In this paper we have studied scheduling algorithms to re-
solve output contentions in WDM optical interconnects with
wavelength conversion ability. We presented the solutions for
the general case of limited range wavelength conversion, in-
cluding the full range wavelength conversion. We have intro-
duced the request graph and showed that the largest group of

contention-free connection requests can be found by finding a
maximum matching in the request graph. We studied two type-
s of limited range wavelength conversions, circular symmetri-
cal and non circular symmetrical. We showed that the request
graphs under these types of wavelength conversions have some
nice properties and presented fast, simple optimal algorithm-
s which always find a maximum matching to achieve maxi-
mum network throughput. Compared with the general algo-
rithm for finding a maximum matching in bipartite graphs with
time complexityO(N

3

2 k
3

2 d) [1], the distributed algorithms we
gave have time complexity of O(k) and O(dk) (independent
of interconnect size N ) for non-circular symmetrical and cir-
cular symmetrical wavelength conversion, respectively, where
k is the number of wavelengths and d is the conversion de-
gree. In addition, our algorithms can be easily implemented in
hardware, and used for time slotted WDM optical interconnects
where connections hold for different number of time slots. In-
teresting future work may include incorporating different QoS
requirements, such as different priorities among connection re-
quests, in the scheduling algorithm.
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