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Abstract— In this paper we study on-line wavelength
assignment in wavelength-routed WDM networks under
both unicast and multicast traffic. We assume nodes in
the networks have wavelength conversion ability, Since
wavelength converters are still expensive and difficult
to implement, we consider the networks that have only
a limited number of converters in each node, and the
converters are shared by all input channels at the node.
We consider how to set up connections in such networks
using as few wavelength converters as possible. For unicast
traffic, we first study the problem of setting up a lightpath
on a given link path with minimum number of conversions,
and give a new algorithm that solves it in O(tk) time, where
t is the number of links on the path and % is the number
of wavelengths per fiber, as compared to the best known
existing algorithm that rums in at least O(t°k) time. We
also consider the case when nodes have different conversion
priorities, and give an O(tk) time algorithm for settingup a
lightpath on a given link path while converting wavelength
at higher priority nodes only when necessary. We then
generalize this technique to WDM networks with arbitrary
topologies and present an algorithm that sets up an optimal
lightpath network-wide in O(Nk + Lk) time by checking
the state of the entire network, where N and L are the
number of nodes and links in the network, respectively.
For multicast traffic, finding an optimal multicast light-
tree is known to be NP-hard and is usually solved by
first finding a link tree then finding a light tree on the
link tree. Finding a link tree is also NP-hard and has
been extensively studied. Thus, we focus on the second
problem which is to set up a light tree on a given link tree
with minimum number of conversions. We propose a new
and more practical multicast conversion model, where the
output of the wavelength converter can be split. As can
be seen, the new model can save the usage of converters
considerably. We first show that this problem is NP-hard
and then give efficient heuristics to solve it approximately.

I. INTRODUCTION AND BACKGROUND

Optical networks with wavelength division multiplexing
(WDM) are now widely regarded as the backbone network
for future communication networks because of the huge
bandwidth of optical systems. In a WDM network, nodes
are connected by optical fiber links, On each link there are
multiple wavelengths carrying independent data. To transmit
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intormation from one node to another, a lighipath needs to be
set up along the links connecting the source to the destination.
Without wavelength converters, a lightpath must use the same
wavelength throughout the path. With wavelength converters,
a lightpath dces not need to be on the same wavelength and
can consist of several consecutive wavelength continuous seg-
ments, with wavelength conversion carried out at the junction
nodes. It has been shown that by adding wavelength conversion
ability network performance can be greatly improved [15].

However, at current time wavelength converters are still
expensive and difficult to implement. Therefore, as suggested
by [4], at an intermediate node, using a converter pool that
can be shared by all input channels is more cost-effective than
giving each input channel its own wavelength converter. This is
because it is highly unlikely that every input wavelength will
need wavelength conversion at the same time. The number
of wavelength converters at a node can be far less than the
totat number of input wavelength channels, therefore, when
setting up connections, it is desirable to use as few converters
as possible. In this paper we study several related problems
on wavelength scheduling under this scenario and give effi-
cient algorithms to find wavelength assignment that uses less
wavelength converters whenever possible for both unicast and
multicast traffic. We focus on how to solve the problem on-
line (or dynamically), which means that the traffic intensity
between nodes is not previously known to the schedulers, and
when a connection request comes, the scheduler seeks to find
ways 1o satisfy it optimally based on the current network state.
It is different from what is usually referred (o as the Routing
and Wavelength Assignment (RWA) problem, which can be
regarded as the off-line or static version of our problem where
the traffic intensity between every pair of nodes in the network
is known and given in advance [14]. Apparently, the speed
requirement for on-line scheduling is far more critical.

We first consider unicast traffic, i.e., there is one source
and one destination in a connection request. The problem of
finding lightpaths for unicast connection requests in WDM
networks has been extensively studied in recent years, see,
for example, [12], {91, [7]. 4). [17]. It can be solved by
breaking it into two subproblems: the routing problem which
is to find a link path in the network connecting the source to
the destination, and the wavelength assigrment problem which
is to find a light path on the iink path [4], [17]. Alternatively,
the problem can be solved by jointly considering the two
subproblems [12], [9], [7]. The second approach will give
better results but is very time consuming especially for a
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large network. We will mainly follow the first approach. In
particular, we will give new algorithms for the wavelength
assignment problem,

The problem of finding a lightpath on a given link path is
usually solved by applying the First Fit Algorithm which starts
from the source node and finds the first available wavelength
channel {o reach to the next node. This may cause unnecessary
wavelength conversions, which is especially undesirable in an
environment where wavelength converters are scarce. In [4]
the problem of finding a lightpath using minimum number of
converters was studied and solved by constructing an auxiliary
graph and then applying Dijkstra’s algorithm, which has time
complexity of at least OQ(t?k) where ¢ is the number of
nodes on the path and %k is the number of wavelengths per
fiber. In this paper we will solve exactly the same problem
but in a completely different and more direct way without
using auxiliary graphs, and the resulting algorithm, called the
Longest Segment Algorithm, has linear time complexity of
O(tk). We will also consider the case when some of the nodes
have higher conversion priorities than others, and study the
problem of setting up a lightpath using converters in higher
priority nodes only when necessary, and give an algorithm that
runs in O{tk) time as well.

We will also study similar problems as those in [9], [7] and
give an algorithm that sets up an optimal lightpath network-
wide by checking the state of the entire network. In [9],
[7] a cost represented by a real number is assigned to each
wavelength channel and also to each wavelength converter, and
the optimal lightpath is defined as a lightpath with minimum
total cost, including the wavelength channel cost and the
conversion cost. What we study here is a special, albeit may
be of more practical interest case of it. We assume that each
wavelength channel has the same cost and each wavelength
converter also has the same cost, since wavelength channels
typically have the same bandwidth and full range wavelength
converters are capable of converting a wavelength to any
other wavelengths at similar cost. Furthermore, we assume that
the costs of wavelength converters are much higher than the
costs of wavelength channels, since the number of wavelength
channels on a fiber link is growing very rapidly and 256
channels on a fiber have been reported, and propagation
loss can be compensated by optical amplifiers which are
much cheaper than wavelength converters, This reduces the
problem in [9], [7] to finding a lightpath with minimum total
number of conversions and, under this condition, minimum
total number of hops. We will give an algorithm that runs in
O(Nk + LkE) time 10 solve this problem, where N and L are
the number of nodes and links in the network, respectively.
Note that in [9], {7] the more generalized problem needs at
least O(Nk? + Lk + Nklog(Nk)) time.

We will also consider multicast traffic, which is to send
information from one source to muitiple destinations. In a
communication network, 2 multicast connection is usually
realized by establishing a multicast tree covering all the nodes
involved, Finding an optimal light tree in WDM networks is
NP-hard [2], [1], and can be solved by breaking it into two
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Fig. 1. Under Converter Spilt Medel, one wavelength converter can be saved.

sub-problems and solving them one by one: (1) find a link tee
that covers all the nodes involved; then (2) find a wavelength
assignment in this link tree to construct a light tree. Finding a
link tree in a network is still NP-hard and has been extensively
studied [2], [1], and we will focus on the second subproblem
in this paper.

[2] gave a linear time algorithm to ser up a light tree in a
link tree using a dynamic programming method, but under a
different scenario and did not try to minimize the total number
of conversions. [1] gave a linear time algorithm to set up a
light tree using minimum number of conversions. In this paper
we will also consider the problem of finding a light tree with
minimum number of conversions, but under a new and more
practical multicast model. In [1], it is assumed that the output
of the wavelength converter cannot be split. That is, if an
intermediate node of the tree has m branches, the light signal
is first split into m copies, and each copy is either sent directly
into a branch or first converted to another wavelength by a
separate wavelength converter and then sent into a branch.
In this paper, we propose a new model which allows the
output of the converter to split. This is not technologically
difficult and does not increase the splitting cost defined in
[1]. however, as will be seen, the new model can reduce the
conversion cost considerably. For example, in Fig.1, suppose
node 1 wants to send information to nodes 2 and 3 through
an intermediate node, but on the link between node 1 and the
intermediate node only A, is available and on the links from
the intermediate node to nodes 2 and 3 only A, is available,
If the output of the converter cannot be split, we will have
to use two wavelength converters, both converting Ag to Ay,
as shown in Fig.1(a). On the other hand, if the output of the
converter can be split, we can use one wavelength converter
to convert s to Aj, then split the output of the converter and
send them to the destinations, thus saving one converier, as
shown in Fig.1(b). We will first show that when the output of
the converter can be split, the optimal wavelength assignment
problem is NP-hard and then give efficient heuristics to solve
it approximately. We will call the multicast conversion model
in this paper the “Converter Split Model” and call the model
in [1] the “No Converier Split Model.” It should be mentioned
that the algorithm presented in this paper can also solve the
wavelength assignment problem under the No Converter Split
Model in linear time but its implementation is much simpler,
since we can apply our Longest Segment Algorithm developed
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for unicast to find the properties of tree branches in a more
efficient and more explicit way and we only compute such
properties for the branches of the wee while in [1], such
properties were computed for every node.

The rest of the paper is organized as follows. Section
1T describes the algorithms for unicast traffic, including the
algorithm for setting up a light path on a link path with
minimum number of wavelength conversions, the algorithm
for seuing up a light path on a link path when nodes have
different conversion priorities, and the network wide routing
and wavelength conversion algorithm, Section III describes
the algorithms for multicast traffic. Section IV concludes the

paper.
II. WAVELENGTH SCHEDULING FOR UNICAST

In a network, we define a path as several consecutive links.
If wavelength A; is currently unused on several consecutive
links, those wavelength channels on A; are called a wavelength
continuous segment on A;. A lightpath is defined as several
consecutive wavelength continuous segments, with the con-
straint that the junction node where two segrhents join should
be wavelength convertible.

For example, Fig.2(a) shows a link path with 16 nodes and

4 wavelengths per fiber. Ay to Az are represented by blue,
red, green, and purple line segments, respectively. Wavelength
convertible nodes are shown in rectangles with round corners.
There is a wavelength continuoys segment on the first wave-
length, Ao, from node O o node 4. The lightpath connecting
node 0 to node 15 found by the First Fit Algorithm is shown in
Fig.2(b), where wavelength channels chosen by the algorithm
are shown in wider line segments and nodes that perform
wavelength conversions are shown as rectangles with heavy
edges.

A. Longest Segment Algorithm for Setting up a Lightpath with
Minimum Number of Conversions

We now give the Longest Segment Algorithm for setting up
4 lightpath along a given link path with minimum number of
conversions. First we introduce some notations. We first give
the source node index (. Then any other node on this path
is denoted by the number of links from the source to it. In
this way, assuming there are ¢ links between the source and
the destination, the nodes are indexed as 0, 1, ..., t. We say
node u finds node v if v > » and there exists a wavelength
continuous segment from « to v. We define furthest reachable
wavelength convertible node from a node w, or abbreviated
as the FRC node, as the furthest wavelength convertible node
that can be found by «. For example, in Fig,2(a), node 0 finds
node 4 because there is a wavelength continuous segment on
Ao from O to 4. The FRC node from node 0 is node 3.

The algorithm is described in Table 1. It is a greedy algo-
rithm. In each step, it will try to find the longest wavelength
continuous segment starling at current extending point =z,
Initially, = is set to be the source node. If the destination
is reached, the algorithm returns; otherwise, it sets the FRC

3 4 5 6 7 8 9 10 11 12131415
(a) A link path with 16 nodes.

1 2 3 4 65 8 7 8 9 10 11 12 13 14 15
(b) Assignment found by the First Fit Algorithm.

6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(c) Assignment found by the Longest Segment Algorithm.

3 4 5 6 7 8 8 10 11
(d) Assighment found by the Label Extending Algorithm.

o 1 2 12 13 14 15

Fig. 2. The state of a link path with 16 nodes and assignments found by
different algorithms. .

TABLE 1
LONGEST SEGMENT ALGORITEM

r—0
while x cannot reach ¢
find w, the FRC node from z.
if no such v exists
exit the while loop
end if
X —u
end while

node as the next extending point and repeats. Every FRC node
performs wavelength conversion,

For example, the assignment found by the Longest Segment
Algorithm for the link path in Fig.2(a) is shown in Fig.2(c).
In the first step, node O can find as far as 4 on Ag, and the
FRC node is 3. Therefore the extending point at the next step
is 3. Then 3 can find as far as 8 on A2, and 8 is the FRC node
and will be the next extending point. This is carried on until
15 is found. Note that one fewer converter is used than that

_in Fig2(b).

Theorem 1. The Longest Segment Algorithm finds an light-
path on a given link path using the minimum number of
converters.

Proof. If the destination ¢ can be found by the source 0,
the algorithm will find a wavelength continuous segment to
connect 0 to t. Therefore the claim is true if no wavelength
conversion is needed. In the following we consider the case
when wavelength conversion has to be used. Let the lightpath
found by the algorithm be ¥. ¥ will consist of several, say,
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Fig. 3. If node O can reach node v1 and vy is wavelength convertible, 43
caninot be the FRC node of nede 0.

1+ 1, wavelength continuous segments. and we denote them
by [0, w;], [atg, usl. ..., [, t], with wavelength conversion at
w;, i € [1,1], as shown in Fig.3. To show this algorithm is
indeed optimal, let ® be any other lightpath. Now consider
the first wavelength continuous segment in ¥. We claim that
from node O to «;, ® has at least one wavelength conversion,
Suppose the claim is not true. Then on path ¢ none of the
nodes 0, 1, ..., u; convert wavelength. Since ® has to use
some wavelength conversions to connect 0 to ¢, the conversions
are carried out by nodes with longer distances to 0 than »;.
Let the first such node be »;. We have »; > w1, and O finds
v1 by a wavelength continnous segment. This contradicts the
fact that u; is the FRC node of 0.

Next consider the second wavelength continuous segment
of ¥, |u,ua]. We claim that from uy + 1 10 uz, ® has at
least one wavelength conversion. Suppose this is not true, Let
v be a node where & converts wavelength and v; < ;.
From previous discussions we know that there must exist such
a node, and let v; be the one closest to wy. If there is no
conversion from u; + 1 t0 us, the next wavelength conversion
node in ® following vy, denoted by wa, satisfies ve > ws.
There must be a wavelength continuous segment between v
and vy, Therefore, there must also be one between v and vs.
This contradicts the fact that w, is the FRC node of ..

This argument can be carried on, and will lead to the
conclusion that in each of the first J segments of ¥, & uses
at least one wavelength conversion. Therefore the number of
conversion used in ¥ is no more than that in ®. Since ® can
be any lightpath, ¥ also uses no more wavelength conversions
than the optimal lightpath. Hence, ¥ is an optimal lightpath,
|

We can represent the state of each link by a 1 x % binary

vector, where an element being ‘1’ means the corresponding

wavelengih channel is available on that link. We use Ly 24
to represent the link vector of the link between node z and
x + 1. To check whether ¢ can be found by a node x, we
only need to perform a series of AND operations, starting
with an all “1” vector and then AND with Lg 5.+, then with
Lri1,z492: Lysn o243, until the result becomes all zero or until
t has been found. At the same fime, while “moving forward”,
we can check whether a node is wavelength convertible, and
always keep the FRC node as the one that was reached most
recently, If the AND result becomes all zero at », we start
the AND operation Irom », the FRC node. Note that Ly, w41
t0 Ly 41 will be involved in the AND operation one more
time. However, they will not be involved in the next and
following rounds, since the FRC node of « must have a larger
index than v. Hence, a link state vector is ANDed no more
than twice, and the running time for finding the total number

of conversions is O(f). To set up the lightpath, we need 1o
find wavelength continuous segments to connect the successive
extending points. This can be done by scanning through the
elements of the AND resulis and chooese the first ‘1°. As there
are k wavelengths and the number of extending points cannot
exceed ¢, the running time for setting up a lightpath is O(¢4).

B. Label Extending Algorithm for Setting up a Lighipath when
Nodes Have Different Conversion Priorities

So far we have considered finding a lightpath using mini-
mum number of conversions. There are situations when some
of the wavelength convertible nodes should converi wavelength
only when extremely necessary. For example, when a node has
very few converters left, to set up a lightpath. it is intuitively
better to convert wavelength at other nodes whenever possible.
Another case is when the network is hybrid: some of the nodes
have full conversion ability, i.e, have a number of converters
equal to the mumber of input channels; some have partial
conversion ability, i.e., have a limited number of converters
less than the number of input channels; and some have no
conversion ability. In this case, we should use wavelength
converters at nodes with full conversion ability whenever
possible.

This problem can be formalized as follows, Categorize
wavelength convertible nodes into two classes: one with higher
conversion priority called the “critical nodes” and the other
with lower conversion priority called the “non-critical nodes”.
In the first case discussed above, a node is critical when the
number of converters left is lower than a threshold. In the
second case, a node is critical if it only has partial conversion
ability, An assignment is then measured by a pair of integers,
{€, N), where C is the number of critical conversions aiong
the path and N is the number of non-critical conversions along
the path. We say assignment 1 is better than assignment 2 if
(€4, N1) is lexicographically smaller than {Cq, N2 ), that is, if
Ci < ChorCy = Cybut Ny < N, The optimal assignment is
defined as the one with the lexicographically smallest (C, N).

For a given link path, the optimal wavelength assignment
algorithm considering the conversion priorities of the nodes is
shown in Table 2. We here define the set of nodes that can
be reached by the source via a lightpath as the reachable set
and denote it by R. The algorithm will try to extend R at
a wavelength convertible node chosen as the extending point
in each step until ¢ can be added to R or until K cannot be
extended any further. To extend R at node w is to add to R
all the nodes not previously in K but can be found by w.
Also, a label is given to all the newly found nodes: if the
extending point, say, «, has label (¢, n). nodes that added to
R by extending at w are labeled as {¢,n + 1} if « is a non-
critical node and (¢ + 1,n) otherwise. At the first step, the
source is regarded as the extending point and all the nodes
that can be reached by the source without conversion is added
to R. All such nodes are given label (0.0). Note that if « is
the extending point and v can be added to X by extending at
u, all w where « < w < v can also be added 1o . It follows
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TABLE 2
LABEL EXTENDING ALGORITHM

Extend R at the source.
Give all the nodes in R label (0,0).
while ¢ is not labeled
Among all the newly labeled nodes, find u,
the non-critical node with the largest index.
= if v exists
Extend R at u.
Give label to nodes accordingly.
else
For nodes that have larger indices than the last
extending point and have not been critical-searched
before, let {(c.n) be the smallest label.
while no non-critical nodes were labeled
Find v, which a cnitical node with the largest
index among nodes with label (¢, n).
if v exists
Extend R at v.
Give label to nodes accordingly.
else
Set (¢,n) to be the next smallest label
that have not been searched.
exit if no such label.
end il
end while
end if
end while

that if node « is in R, all the nodes with smaller indices than
» must also be in A,

In the algorithm, if in an extension some non-critical nodes
were added to R or were labeled, the next extending point will
be the newly labeled non-critical node with the largest index.
Otherwise, the algorithm will find the set of nodes with the
smailest label among the nodes that have larger indices than
the last extending point and have not been scanned for critical
nodes before. It will do a search, called the “critical-search”
among these nodes to find a critical node. If there is one,
this node is set to be the next extending point. Otherwise, the
algorithm does the critical-search in the set of nodes with a
larger label. If all labeled nodes have heen explored and no
node can be set to be the extending point, the algorithm returns
and ¢ is not reachable.

For example, Fig.2(d) shows the assignment found by the
Label Exiending Algorithm, Nodes 3, 8 and 10 are critical
nodes. In the first step, nodes 1, 2, 3 and 4 are labeled as
{0,0), because they can be found by 0 on A¢. Since a non-
critical node, node 2, was labeled, it is set to be the next
extending point. Node 2 gives label (0,1) to nodes 5 and 6,
and node 5 becomes the next extending point. Node 5 gives
label {0, 2) to nodes 7, § and 9, and node 7 becomes the next
extending point. Node 7 gives label {0, 3) to nodes 10 and
11. Since there is no non-critical node labeled at this step, the
algorithm should perform a critical-search among the nodes
with larger indices than the previous extending point. These
nodes are 8 and 9. with label {0, 2); and 10 and 11, with label
(0, 3). The algorithm will start at nodes with the smaliest label,
and node 8 gives label (1,2) to node 12. Since node 12 is not
wavelength converiible, the algorithm checks nodes 10 and 11,
and 10 gives label (1, 3) 1o node 13. 13 is a non-critical node
and can find 15. The algorithm then terminates.

We next show that this atgorithm is optimal because the la-
bel given to every node is the minimum number of conversion
needed to reach it.

Theorem 2: The following two invariants hold throughout
the execution of the algorithm; (1) The algorithm labels as
many nodes as possible in each extension; (2} The label given
o each node is the optimal number of conversion needed to
reach this node.

Proof. We prove it by induction on the steps of extension.
This is cbviously true at the first step when all the nodes that
can be reached from the source without conversion are labeled
(0,0). Now suppose it is also true for the first H extensions.
Now consider the (H + 1)y, extension. Invariant 1 is easy (o
see since we always use the one with the largest index as the
extending point, In the following we show Invariant 2 also
holds.

1f there is a non-critical node labeled as {¢,n) at the H,;,

* extension, according to the algorithm, we choose the one with

the largest index, say, w«, as the next extending point, and alt
the nodes that can be found by « are labeled as (¢, n+1). Now
if this label is not correct for one of the nodes, say, 2, then =
can be reached from the source by a lightpath with less than
(¢, n+1) conversions., Let the last wavelength conversion along
this path occur at node z, and first suppose « is non-critical.
Then z can be reached with less than (¢, n) conversions. We
first claim that v > z, since otherwise, v can be reached by the
source with less than (¢, ) conversions which contradicts the
induction kypothesis. If =z < w, after siep I, = must have been
labeled and according to the induction hypothesis it has been
given a correct label, say, (¢/,n’) which is less than (c,n).
Now consider when we first label x. Since z is a non-critical
node, the next step must use a non-critical node with label
{¢/,n') as extending point. This means that = must have been
labeled at this step, since there is a wavelength continuous
segment from z to x. This contradicts the fact that = has not
been labeled until step H + 1.

Now if along the lightpath which reaches =z with less than
(.7 + 1) conversions, the last conversion is critical. Let this
node be y. y must have been labeled, and suppose it was
labeled as (¢”,n"”) where ¢ < c. If we had used one of
the critical nodes with a label no less than (¢”,»”) as an
extending point, = must have been labeled upon this extension,
because of the wavelength continuous segment from v to z and
that these nodes are closer to z than v is. But if we had not,
then we only used nodes with smaller labels than (¢, n”) as
extending points up to the H;p extension. Consider » which is
the extending point that gave label (¢, =) at the Hy, extension.
Suppose the label of » is (", »"'). v cannot be aon-critical,
sinice otherwise ¢ = ¢ > ¢”. Hence, ¢/ = ¢—1 and »" = n.
In this case, we must have ¢” = ¢ = c—land n” > n"” = n,
since v has a label larger than ». This is a contradiction.

Now consider when the (H + 1):» extension is a critical
extension. Suppose the extending point has label (¢, »). Then
all the newly labeled nodes are given label (¢4 1, n). Suppose
that the invariant is not true, that is, there exists a lightpath
reaching a newly labeled node z with less than (¢ + 1,n)
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conversions. We choose z to be such a node with the smallest
index. Again consider the last wavelength conversion node on
this path and let it be w. We first show that w must have been
labeled after step H. If it is not, then it must be labeled at step
H+1, since its index must be smaller than = and : was labeled
at step H + 1. In this case, due 10 the choice of z, w must
be labeled correctly. Therefore to reach w at least (c+ 1, n)
conversions are needed. This contradicts the hypothesis that
there exists a lightpath reaching = converting wavelength at w
with less than (¢ + 1,n) conversions.

We next show that after step H w cannot have a label larger
than (e, »). This is because if so, w must be a critical node
since it has been labeled before but was not chosen to be
an extending point, Suppose w has label (¢, n'). Then (¢ -+
1,n") must be smaller than (c+ 1.n) while (¢’,n’) is larger
than (¢, n). It is not hard to see that these two conditions
cannot be both satisfied. Tt the case where w«w has a smaller
label than (¢, n), following the same arguments as the case
when step H +1 extends at a non-critical node, we can obtain
a contradiction.

Next we analyze the complexity of this algorithm. We can
still represent the state of links with k-bit binary vectors. The
atgorithm does two things; exiend the reachable segment and
search for wavelength convertible nodes, The latter is done in
O(t) time, because we scan one node at most twice, once for
searching the non-critical node and the other for searching the
critical node. The extending is to do AND operations on the
k-bit binary vectors. We show that one particular vector can be
involved in this operation at most 3 times. Consider the time
when the algorithm finished an extension and labeled some
nodes. The vectors for the links connecting these nodes would
then have been ANDed exactly once. If among these nodes
there is a non-critical node, these vectors would be ANDed
at most one more time. If there is no non-critical node, the
number of AND operations for a vector will be determined
by the number of extensions that originated from the nodes
with smaller labels. It turns out that there can be at most one
such an extension. This is because, at the first time when the
algorithm failed to find a non-critical node after an extension
which, say, labeled nodes as (0, »), there can be at most two
types of nodes with indices larger than the last extending point:
nodes with labels (0.7 — 1} and (0,n), and it will search
only among them for a critical node as the next extending
point. In each extension some new nodes will be Jabeled, but
there will be at most one set of nodes which may contain the
next extending point with a smaller label than those of newly
labeled nodes. The same is (rue for the following extensions.
Hence, it takes O(¢) time for the algorithm to find where to
convert wavelengths, where ¢ is the number of links between
the source and the destination. The time to set up a lightpath
is O(¢k), where k is the number of wavelengths per fiber.

One might be concerned on that the Label Extending
Algorithm may end up using {oo many converters at non-
critical nodes. The next theorem gives the bound of the number
of converters used by the Label Extending Algorithm.

Theorem 3: The total number of converters used by the

by
U pewy p) p) O

Vi Vp Vv, Ug

>
0

Fig. 4.

uy
If 41 can reach wy. then wo cannot have been not been used.

9 10 11 12 13 14 15

012 3 45 86 7 8

{a) Longest Segment Algorithm.

01 2 3 4 5 6 7 8 9 10 11 12 13 14 156
(b) Label Extending Algorithm.
Fig. 5. The bound io Theorem 3 is tight. 4 and 10 are critical podes.

Label Extending Algorithm is at most twice of the Longest
Segment Algorithm.

Proof. Consider the assignment given by the Longest Segment
Algorithm. Suppose it uses W converters at nodes, say, «q ©
uw, and these nodes divide the path into W 4 1 segments,
We show that in the segment between any w; and w;yq, the
Label Extending Algorithm can use no more than 2 converters.
We show this by contradiction. Suppose W = 2, as shown in
Fig 4. Since there is a wavelength continuous segment between
w1 and w3, vy can reach vz without converting wavelength at v
and thus », could not have been used. By similar arguments,
we can show that there can be at most one converter used
by the Label Extending Algorithm in the segment between
the source and w; and the segment between uw and the
destination. Thus, at most 2(W — 1) + 2 = 2W converters
are used. |

The example in Fig.5 shows that the bound is tight.

C. Network-Wide Dynamic Routing and Wavelength Assign-
ment Algorithm

A more compiicated case is when the routing is dynamic, in
other words, the source can choose any path network-wide to
connect to the destination. This will potentially improve the
network performance, in the mean time, it also poses more
challenges to the scheduling. We now need to search the entire
network to find the optimal lightpath.

We measure a lightpath by a pair of integers, (c, #), where ¢
is the number of wavelength conversions and A is the number
of hops. A lightpath is considered better than another if its
measure is lexicographically smaller than the other, that is, if
it uses less wavelength conversions, or, if it travels less hops
when the number of wavelength conversions are the same, for
reasons described in Section 1. The optimal lightpath is defined
as a path with the lexicographically smallest measure.
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We propose an algorithm, called the Label Searching Al-
gorithm, to solve this problem, and the algorithm is shown
in Table 3. The idea of it is simple and is similar 10 the
Label Extending Algorithm. Let s be the scurce and t be
the destination. In the first round, s gives label (0, %) to all
the nodes that can be reached from it with no wavelength
conversion and a minimum of ~ hops. If the destination has
been labeled. the optimal lightpath has been found. Otherwise
wavelength conversions need to be used.

Let the » be the wavelength convertible node with the
smallest label, say, (0,h). All unlabeled nodes that can be
reached by « with one hop can be labeled as (1,h + 1).
Because first, apparently, they can be reached by the source
with one conversion and » + 1 hops. They cannot be reached
without wavelength conversion because otherwise they would
have been labeled previously. Now if they can be reached with
one conversion but less than h 4+ | hops, suppose along one
of such paths wavelength conversion occurs at node «. v must
have a label less than {0, h), which contradicts the fact that «
is the labeled wavelength convertible node with the smallest
label.

After labeling all nodes that can be reached with one
hop from wavelength convertible nodes with label (0, k), the
algorithm moves on to label nodes that can be reached with
two haops from wavelength convertible nodes with labet {0, k)
and nodes that can be reached with one hop from wavelength
convertible nodes with labe] (0, 2 -+ 1). All such nodes can be
labeled as (1,/ + 2), for similar reasons as described earlier.
In the following, in step <, the algorithm gives label (1, k+4)
to nodes that can be reached with ¢ — j hops from wavelength
convertible nodes with label (0, A+ j) for all possible j, untit
all the nodes that can be reached from wavelength convertible
nodes labeled in the first round without converting wavelength
have been labeled. By this time we have found the optimal
lightpath to all the nodes that can be reached with no more
than one wavelength conversion,

If the destination is still not reached, we begin a new round
of labeling, starting from the wavelength convertible node that
was labeled in the previous round with the smallest label. This
process is repeated until the destination is labeled or no new
nodes can be labeled.

It can be seen that in the I, round of labeling, all the
nodes that can be reached with a minimum of I wavelength
conversions are labeled. It follows that it there is a lightpath
from the source to the destination, such a path will be found,
And since the label we give always reflects the measure of
the optimal lightpath from the source to this node, when
the destination is labeled, we have found the desired optimal
lightpath.

In round I, to find nodes certain hops away from wavelength
convertible nodes and label them, we can maintain a search
list. In the first step, the wavelength convertible nodes labeled
in the previous round with the smallest label, say, ([, h) are
added to the list. After this, for each node w in the list, we add
all uniabeled nodes adjacent to « Lo the list and label them as
(I+1,h+1) and remove w from the list. Then ali wavelength

TABLE 3
LABEL SEARCHING ALGORITHM

Label all nodes that can be reached from s
without conversion.
I—
while ¢ is not labeled
Suppose (1, h) is the minimum label of wavelength
convertible nodes labeled in the previous round.
i—1
do
Give label (I + 1,k + %) to all unlabeled nodes
that are a minimum of { — 7 hops away from some
wavelength convertible nodes with label (I, h + 7)
for all possible j.
te—i41
while new nodes have been labeled
end while

convertible nodes with label (I, &+ 1) are added to the list,
and repeat the process.

To establish the lightpath, each node records which node
first reaches itself on a certain wavelength. For example, if w«
is in the search list and on the link connecting v and @, A; is
free, we record at v that it was reached from « by A;. After
this, we mask A; on this link, since we have used this channel
for searching. Each node also records the wavelength by which
it is first reached. After ¢ is labeled, it will first find the node
that labeled it, and then use the information above to trace
back to establish the lightpath to s. Clearly, the complexity
of this algorithm is Q{Nk + Lk}, where N is the number of
nodes, L is the number of links in the network, and & is the
number of wavelength per fiber, since a link and a node is
checked no more than & times.

D. Performance Study for Unicast Algorithms

We have impiemented the algorithms and studied their
performances under different network topologies. We assume
that the connection requests arrive at the network according
to a Poisson process, and the traffic intensities between every
pair of nodes are the same. The duration of a connection
follows exponential distribution with parameter 1. The network
performance is measured by overall blocking probability, as
a function of the arrival rate at each node. In Fig.6 and
Fig.8, “FF denotes the First Fit Algorithm, “LSeg” denotes
the Longest Segment Algorithm, “LExt” denotes the Label
Extending Algorithm and “LSear” denotes the Label Searching
Algorithm.

We first show the results for a bidirectional ring network
with 16 nodes and 16 wavelengths per fiber, Ring network
was chosen first because it is a widely used topology. The
second reason is that, for any pair of nodes in the ring, there
are exaclly two possible routes connecting them. Thus there is
no routing problem nieeds to be solved and to set up a lightpath
we can simply apply the wavelength assignment algorithm
on these two routes. This makes it perfect for comparing the
impact of wavelength assignment algorithms on network per-
formance. We assume that there are § wavelength converters in
each node, and the threshold of the Label Extending Algorithm
is 2, In Fig.6, we can see that both Longest Segment Algorithm
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Fig. 6. Blocking probability of a bidirectional ring network with 16 nodes
and 16 wavelengths per fiber.

The NSF network.

Fig. 7.

and the Label Exiending Algorithm outperform the First Fit
Algorithm by a large amount when the arrival rates are not too
high. An interesting phenomenon is that the performance of
the first two algorithis is almost the same under this scenario.

We also used the well known 14-node NSF network, shown
in Fig. 7, as a testing topology, and the results are shown in
Fig.8. We still assume that there are 16 wavelengths per fiber
and there are 8 wavelength converters in each node, and the
threshold of the Label Extending Algorithm is 2, For each pair
of nodes, we keep up to 4 link disjoint paths as candidate link
paths. Similar trends can be observed as in Fig.6. However, as
expected, the performance of the Label Searching Algorithm
is better than the others.

Il11. WAVELENGTH SCHEDULING FOR MULTICAST

We now move onto the on-line wavelength assignment
problem in WDM networks under multicast traffic. In this
section we consider setting up a light tree in a given link
tree for & multicast connection using the minimum number of
converters. We first give definitions and notations that will be
used in the section.

A. Definitions and Notations

For a tree denoted by T, we define a node with out degree
more than one as the ramification node. Each part of the
tree starting at a ramification node is called a branch. The
ramification node is catled the roor node of this branch. A

1 Blacking probability of NSF network

Blocking probability

(=)

10 11 12 13 14
Arrival rate

@l
o

Fig. 8.
fiber.

Blocking probability of the NSF network with 16 waveiengths per

ree may have many branches, and a branch itself may also
have child branches. A branch containing no child branches

. Is calied a simple branch. The wree itself can also be regarded

as a branch, with its root node being the source node of
the multicast connection. A branch is of level ¢ if along the
path from the source node to the root node of it there are
¢ ramification nodes, including the root node of the branch.
The tree itself is of level 0. The tree level is the maximum
branch level. A node is said to belong to a branch if there is
no ramification node along the path from the root node of the
branch to it.

We now introduce the following two notions. A light tree,
when exiending to a branch B, may choose from the &
wavelengths to enter this branch. The cost associated with
each wavelength called the covering cost and measured by
the minimum number of wavelength converters used if the
light tree enters this branch on this wavelength. is denoted by
Ap(i) for A; where ¢ € [1,%]. If Ag(i) # oc, we say A,
covers B at cost Ag(?), If A\; covers a branch, we say the
branch can be entered by A;. In a light tree, if the first link of
a branch 1s on A;, we say the tree enters this branch on A;. For
branch B, we use dp to denote min {Ap{i)}. If Ap(i) = g,
we say A; is the optimal entering wavelength of this branch.
For simplicity, we use Ag() to denote the set of Ag(é) for
all i € [1, k]

For a ramification node », we use T.(¢) to denote the
minimurn number of wavelength conversions needed to cover
all its child branches if the light tree reaches this ncde on
wavelength \; where ¢ € [1, k. We use T,.() to denote the set
of T,.(4) for all ¢ € {1, k]. Table 4 listed these notations. Also,
throughout this section, we use B to denote the branches, and
use r to denote the ramification node of a branch, and use ¢
to denote the root of a branch.

Fig.9 is an example for illustrating the definitions and the
notations. The link tree is shown in the left of the figure. It
has 12 nodes. Node 0 is the root of the tree. Node 3 is the
ramification node. Node 3 has 3 child branches, denoted as
By, B, and Bs. Node 3 is the root node of all these branches,
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TABLE 4
LIST OF SYMBOLS IN SECTION IT1

Ap(r) minimum number of converters used when the
. tree enters B on Aq.
o : minApg(i) forall < € {0,1,.... k—1}.
Tr(2) minimum number of converters needad 10
cover all child branches of ramification node
when the light tree reaches r on A;.

Fig. 9. A link tree with 4 wavelengths per fiber and the optimal light tree,
where 2, 3, 4 and 10 are wavelength convertible nodes.

B, B> and Bs are all simple branches of level 1. By is a
branch of level 0 and is the tree itself. The tree level is 1.

I is not difficult to see that Ag () = {0,00,00,0},
A () = {00,0,00,1}), Ap,(} = {1,1,00,00}. 6p, = 0,
and the optimal entering wavelength for By is Ay, Under the
Converter Split Model, T3(0) = 2, Ts(1) = 2, Ta(2) = 3,
T3(3) = 3. As an example, T3(0) = 2 since A is the optimal
entering wavelength for B2, and Bj, and covers these two
branches at total cost of 1, and it can be converted to Ay
at node 3 which covers B at cost Q.

In this simple example, it can be seen that for By, ég, =
Ap,(0) = 2, and we should use Ay as the entering wavelength
of it. The optimal light tree is shown in the right of the figure
where wavelength channels in the optimal light ree are shown
in wider line segments.

B. Outline of the Algorithm

The idea of our algorithm is simple: Find Ap(} recursively
where T is the tree. This can be implemented in a “bottom-up”
way, as shown in Table 5. Basically, we start from branches at
the lowest level which are all simple branches, and find Ag()
for them. Then “move up” one level, find Ag() for branches
at this level according to the Ag() of their child branches
found in the previous round. Then keep on moving up until
reach the highest level. The minimum number of conversions
needed to cover the tree is dy. Once dr is obtained. we can
determine which wavelength to enter a branch and the optimal
light tree can be established.

TABLE 5
ALGORITHM FOR FINDING OPTIMAL COVER COST OF A LIGHT TREE T

i — tree lavel;

while : > 0
Find Y () for all non-simple branches of level ¢ ;
Find A() for all branches of level i;

end while

return JT;

The major difference between our algorithm and the algo-
rithms in [1] is that the basic element ot our algorithm is a
tree branch while the basic element of the algorithms in [1] is
an individual node. We only compute A() for a branch, while
[1] computes it for every node. As a result, our algorithm is
much simpler and needs less computation,

C. Finding Ag()

We first explain how to find Ag{). Our way of finding
Ap(7) for A; is to apply the Longest Segment Algorithm for
unicast in Table 1, and takes O(t) time for a branch with ¢
nodes. Overall, the time spent on this task is O{Nk) where
N is the total number of nodes in the tree.

Finding Ag() for a simple branch B is easy. We can mask
all wavelengths other than A; on the fist link of B and apply
the Longest Segment Algorithm, by regarding the root of the
branch as the source node and the leaf node of the branch as
the destination node. The number of converters needed found
by the aigorithm is Ag(4).

When B is not a simple branch, Ag(z) can be found as
follows. Let the root node of the branch be ¢ and let the
ramification node of the branch be r. At this time, T,{)
should have been found. There are two cases: (1) If there
is no wavelength converters left in the nodes of the branch,
Ap(i) = T,(:) if there is a wavelength contintous segment
on A; from ¢t to r, otherwise Ap(i) = oc; (2) If there
are wavelength convertible nodes from ¢ to r, suppose the
one nearest to r is w. Consider the set of wavelengths that
have wavelength continuous segments from w to r. Let € =
min T, (j) for all A; in this set. Again we mask all other
wavelengths on the first link except A; and apply the Longest
Segment Algorithm, and suppose n; converters are needed and
the last extending point is ». For all wavelengths that have
wavelength continuous segments from v o r, if there is X;
where T,.(j) = e, then apparently, Ag (i) = 5; + €. Otherwise,
Ap(i) = m + €+ 1, since we can convert the wavelength at
u to one of the wavelengths that achieve e.

We have the following theorem concerning Ap().

Theorem 4; 1f there are wavelength converters on a branch,
Ag{), excluding those who are oo, differ at most by one.

Proof. Suppose Ag(i) = d&p. If there are wavelength
convertible nodes in the branch, suppose the one closest o
the root ¢ is w. For any wavelength other than A;, say, A;, if
there is no wavelength continuous segment on A; from ¢ (0 w,
Ag(i) = oo. Otherwise, suppose the lightpath for X; leaves

702



w on X, We can convert A; to A; at w, and hence cover the
branch at cost no more than Ag(i) + 1. |

Note that the property in Theorem 4 was unaware of by [1]
and part of the algorithm in [1] is unnecessary. Also note that
our method for finding Ag(} can be applied to both the No
Converter Split Model and the Converter Split Model. Thus,
we have oblainted a simpler solution for the same problem
defined in [1] as well,

D. Finding T,()

In this subsection we will try to seclve the problem of
finding T,.() under converter split model. We show that the
problem is hard and ¢ven hard to approximaie, because they
are inhereatly related to the Ser Covering Problem which is
known t¢ be NP-hard and no polynomial time algorithm has a
log ratio. Nevertheless, simple greedy algorithms will produce
good results and will save conversion cost in most of the cases.

We show that the problem can be solved by consecutively
running three greedy algorithms, shown in Tables 7. 8 and
9, respectively, and for convenience, we call them Greedy
1, Greedy 2 and Greedy 3. For a ramiftcation node with m
child branches, to find T,(i) for a wavelength A;, all greedy
algorithms run in O(m”k). The overall time to find a light
tree is thus O(N2k?), where N is the number of nodes in the
tree, and £ is the number of wavelengths.

1) Determining Feasibilitv: Consider a ramification node r,
and suppose it has m child branches, denoted as By, B», . ...
B,.. and Ap;() is known for all j € [1, m]. Suppose there
are C converters left at node . We first show that

Theorem 5; Tt is NP-complete to decide whether all child
branches of r can be covered using no more than C converters
at r.

Proof. The problem can be formalized as follows. First note
that for a branch B; with Apg;(i) # o0, it can be covered
by A; without wavelength conversion. Hence we only need
to consider the rest of the branches. Suppose there are m' of
them, We regard each of them as an element of a set with m’
elements, denoted as S. We also regard each wavelength as a
subset of S, denoted as 5 for 1 < < k. An element By is in
subset Sy if Ap;(l) # o0, ie, if A\; can cover branch B;. Each
subset can cover more than one elements and each element
can be covered by more than one subsets. The question then
becomes: Given these m’ elements and k subsets, can a group
of no more than C' subsets be found such that each element is
in at least one of the subsets? This is exactly the Set Covering
Problem which is NP-complete [16]. ]

A simple greedy algorithm shown in Table 6 can be used
to solve the set covering problem approximately. In each step,
this algorithm finds a subset that covers the maximum number
of uncovered elements. It has an Q(lnm') performance ratio,
where m’ is the number of elements, which means that if the
elements can be covered with a minimnm of Cop, subsets, the
number found by the algorithm, €7, satisfies C'/Cope < Inm’.
Recent results show that no polynomial algorithm has a ratio
smaller than Inm’ [16].

TABLE 6
GREEDY SET COVER ALGORITHM

T —0;
while I1 # 9
find 5y which covers the most elements in 11;
il no such subset can be found break.
Remove all elements i I that can be covered by Sj;
(O s
end while

TABLE 7
GREEDY |

Let IT be the set of branches that cannot be covered by A;;
For every Ar. let 5§ be a subset where an element in I

ts in Sy if that branch can be covered by ;.

Apply the Greedy Set Cover Algonthm. find €.

If ¢’ < C return yes else return no.

We can transform our problem into a set cover problem
directly and use the algorithm in Table 6 t0 determine the
feasibility, as shown in Table 7, If ¢ < C then child branches
can be covered. Note that because the problem is NP<omplete,
this approximation algorithm may turn down some request
even if it is feasible. However, since this algorithm achieves
the best possible performance ratio to the optimal algorithimn,
it is the best we can do for this problem.

2) Minimizing Conversion Cost: Suppose the Greedy |
determines that the request is feasible. The next question is
then to find a wavelength assignment that uses the minimum
number of converters. We show that

Theorem 6: It is NP-hard to find a wavelength assignment
to cover all child branches of v at minimum total cost.
Proof. This problem can be formalized as follows. Given a set
S with m elements. each representing a branch, and % subsets,
each representing a wavelength. Let c;; be the cost of using
subset Sy to cover ¢lement By, in our case ¢ = Ap;(l). Let
¢} be the cost of using subset 5y, in our case, ¢f =0if { =+
and ¢ = 1 if [ # i, The problem then becomes finding a
group of subsets to cover all elements with minimum cost.

This problem is NP-hard, because given any instance of the
set covering problem, we can transform it into an instance
of this problem with the same elements and subsets plus an
additional subset S;. For a subset .S; in the original problem,
let ¢;; = 0 for allt element B; and ¢; = 1, For S, let ¢;; = 00
for all element B; and ¢ = 0. Therefore it is not hard to see
that if we can solve this preblem optimally, we can also solve
the set covering problem optimally. ]

We hereby give a greedy algorithm to solve this problem,
shown in Table 8. First note that if Ap;(i) = dg;. we can
cover this branch with minimum cost and without wavelength
conversion at r. Therefore, the optimal assignment must enter
branch B; with A;. Thus we need only to consider branches
where Ag;(i) # dp;. The input to this algorithm is A() for
all child branches. The output is the number of wavelength
converters needed to cover all the child branches if the light
tree reaches r on ;.
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TABLE 8
GREEDY 2

Let all branches where Ap;(t) # 655 be an element.
For every A let Sp be a subset where element B is
in subset Sy if Ag (1} = dg;-

Apply the Greedy Set Cover Algorithm. find C7.
retun C' + 370, ép;

We can see that by the algorithm, we only enter a branch
via an optimal eniering wavelength. We next show that
Theorem 7: The performance ratio of the algorithm shown
in Table § is Inm, where m is the number of branches.
Proof. Given any optimal assignment, if for a branch the
entering wavelength A, is not an optimal entering wavelength,
we can convert A; to an oplimal entering wavelength X; at r,
and enter this branch on J;. This new assignment should still
be optimal, since Ag;(p) > Ag;{f) + 1. Hence there exists
an optimal assignment where every branch is entered via its
optimal entering wavelength, Note that the assignment we give
also enters every branch via its optimal entering wavelength.
Therefore, the difference between the optimal and the greedy
algorithms is the number of wavelength converters used at
r. Denote them as C,pe and €7, respectively. With previous
discussions. we know that C'/Cpp; < Inm. Therefore the
performance ratio is
’ ) . i
“ Ejifdsj < ¢ <Inm
Copt + Zj:l JBj C'opt

since €' > Cppe and E;":l 6g; > 0. Also note that this bound
is tight, when Z;’;l dp; = 0. [ ]

3) Minimizing Conversion Cost for the Case of Limited
Number of Available Converters: Greedy 2 tries to minimize
the total number of wavelength conversions. Note that this is
a simplified approach to solving our problem, as it does not
consider the constraint that there are a total of C available
wavelength converters, If €/ < €, or the number of converts
used at r is ne more than the number of available converters,
Greedy 2 gives a feasible scheduling. Otherwise, we might
have to use other methods to find a feasible scheduling while
Irying to reduce the number of converters used.

This problem can be formatized as follows. Given a set S
with m elements and & subsets, let ¢;; be the cost of using
subset S; to cover element By and let ¢; be the cost of using
subset 5. Find a group of no more than C subsets to cover all
elements with minimum cost. Here in our particular problem,
c; 18 Apy(l) which takes non-negative integer values, and ¢
s 1 if { % ¢ and O otherwise.

By using a similar method to the proof of Theorem 6, we
can transform an instance of the set covering problem to an
instance of this problem, and show that

Theorem 8 1t is NP-hard to find a wavelength assignment
1o cover all child branches of r at minimum total cost while
using no more than C converters at r.

Table 9 gives an algorithm 10 solve it approximately, The
idea is to start with a feasible scheduling which is the one
found by Greedy 1, and use wavelength conversions at r to

TABLE 9
GREEDY 3

Use Greedy I to find a feasible scheduling.
Suppose €7 wavelength conversions are used ac 7.
Let w(B;) be the cost of branch B;.
w{B;) — Apg;(l) — ég; where X is the entering
wavelength of B; under current assignment.
while ' < C
Find an unused wavelangth that reduces the
maximum iotal cost of the branches.
if no such wavelength can be found break.
Update the cost of the branches.
C' =0+ 1.
end while

reduce the number of conversions step by step. Note that if

we choose to use a converter to convert A; to an unused .
wavelength A,, for branch Bj, if under current assignment
the entering wavelength is A, the cost of B; will be reduced
by an amount of [Ag;({) — Apg;(p)]*.

Unlike the previous two greedy algorithms, we cannot find
a bound for this algorithm. The reason is that due to its greedy
nature, the algorithm will try to make sure that all branches
are covered first, and may choose to enter a branch not using
the optimal entering wavelength while the difference between
the covering cost of the optimal entering wavelength and that
of other wavelengths can be unbounded. However, note that if
there are wavelength converters on every branch, the covering
cosis differ at most by one, as shown in Theorem 4. In this
case, it is not hard to show that the difference between the cost
of the assignment found by Greedy 3 and that of the optimal
algorithm is no more than C(1 ~1/Inm) 4 m.

In Greedy 3, when Greedy | has finished, we will choose
a wavelength to reduce the total cost in each of the following
steps, We next show that,

Theorem 9: After finishing Greedy 1, in the following steps
the difference between the cost of the assignment found by
Greedy 3 and that of the optimal algorithm will decrease
exponentially at a rate no less than (1 —1/C).

Proof. Suppose when Greedy 1 has finished, the cost differ-
ence between the greedy and the optimal in the m branches is
wo. Therefore, if we add in all Cj,,, wavelengths in the optimal
scheduling, the cost will decrease by exactly wp. Thus, at least
one of the wavelengths in the optimal scheduling will reduce
the total cost by wo/Cyy,. Since by the greedy algorithm we
always choose the wavelength that decreases the maximum
amount of cost, we have wy < wo(l— l/C;pt). In other words,
wy is at most a fraction of (1 — 1/C,,} of wo. The same is
also true for all following steps. Thus, the decreasing rate is
no less than {1 — 1/C), since C > C,. [

E. Performance Study for Multicast Algorithms

To compare the performance of the multicast wavelength
assignment algorithms, we applied the algorithms on randomiy
generated trees with average 39.4 nodes, and the results as a
function of the percentage of the availability of the wavelength
channels on each link are shown in Fig.10. We can see that
by allowing the output of the converter to split, our algorithm
saves about 6% to 10% of the converters.
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Fig. 10. Average number of converters needed to set up a light tree in a link
tree with average 39.4 nodes.

IV. CONCLUSIONS

In this paper we studied the problem of on-line setting up
connections in WIDM networks at minimum conversion cost,
We considered both unicast and multicast traffic, and improved
existing results significantly. For unicast, we first considered
the problem of setting up a lightpath on a given link path with
minimum number of conversions, and gave a new algorithm
that solves it in O(1k) time, where ¢ is the number of links
and k is the number of wavelengths, as compared to the best
known existing algorithm that runs in at least O(t2k) time. We
also considered the case when nodes have different conversion
priorities and gave an O(tk) time algorithm for setting up
a light path while converting wavelength at higher priority
nodes only when necessary. We then generalized this technique
to WDM networks with arbitrary topologies and presented
an algorithm that sets up an optimal lightpath network-wide
in O{Nk + Lk) time by checking the state of the entire
network, where N is the number of nodes in the network and
L is the number of links in the network, For multicast, we
focused on the problem of setting up an optimal light tree on
a given link tree with minimum conversion cost. We proposed
a new multicast conversion model which allows the output
of the converter to split and can save the conversion cost
considerably. We showed that this problem is NP-hard, and
then gave efficient heuristics to solve it approximately. Our
method can also be applied to solve the problem when output
of the converter is not allowed {0 split in linear time and is
much simpler to implement than existing algorithms,
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