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Abstruct- Switches with shared buffer have lower packet 
loss probabilities than other types of switches when the 
sizes of the huffers are the same. In the past, the perfor- 
mance analysis for electronic shared buffer switches has 
been carried out extensively. However, due to the strong 
dependencies of the output queues in the buffer, it is very 
difficult to find a good analytical model. Existing models 
are either accurate but have exponential complexities or 
not very accurate. In this paper, we propose a novel 
analytical model called the Aggregation Model for switches 
with shared buffer. This model can be used for analyzing 
both electronic and optical switches, and has perfect 
accuracies under all tested conditions and has polynomial 
time complexity. I t  is based on the idea of induction: first 
find the behavior of 2 queues, then aggregate them into one 
block; then find the behavior of 3 queues while regarding 
2 of the queues as one block, then aggregate the 3 queues 
into one block; then aggregate 4 queues and so on. When 
a sufficient number of queues have been aggregated, the 
behavior of the entire switch is found. We believe that the 
new model represents the best analytical model for shared 
buffer switches so far. 

I. INTRODUCTION 

Switches with shared buffer have lower packet loss probabil- 
ities than other types of switches when the sizes of the buffers 
are the same. Due to its practical interest, the performance 
analysis of shared buffer switches has become a classical 
problem in the literature and over the years has intrigued 
many researchers. However, it has fiot been adequately solved. 
Existing models are either accurate but have exponential 
complexities or not very accurate. 

The difficulty of analytically modeling a shared buffer 
switch is due to the strong dependencies of the queues in the 
buffer. For example. consider the switch shown in Fig.1la). 
It has N input ports and N output pons, and a common 
buffer pool with B cell locations. The amving cells are 
multiplexed and stored in the buffer. where they are organized 
into N separate queues, one for each output port. The strong 
dependency means that the numbers of cells stored in the N 
queues are a set of random variables strongly depending on 
each other. The dependency comes from both the dependency 
of the input and the dependency of the finite size buffer. The 
dependency of the input means, for example, that if it is known 
that there are IE cells destined for output 1,  en there cannot 
be over N - 3: cells destined for other outputs. In other words, 

outpul queues 

Fig. 1. (a). A shared buffer switch with N input ports and N 
output ports and a common buffer pool with 3 cell locations. 
(b). After the behaviors of queue 1 and queue 2 are found, 
regard them as one block. 

he knowledge of the number of cells destined to one output 
contains much information about the number of cells destined 
to other outputs. The dependency of the buffer is similar: 
knowing that there are y cells in output queue 1 rules out 
the possibility that there are over B - y cells in other queues. 

The strong dependencies of the queues make exact analyt- 
ical modeling impossible except b y  the vector method which 
uses a 1 x N vector to represent the state of the switch, 
with each component being the number of cells stored in 
each queue [6]. However, this makes the number of states 
grow exponentially with N .  To make the analysis tractable. 
other researchers tried to circumvent the strong dependency 
by making assumptions on the queues. In [61. [5] it was 
assumed that the queues are independent of each other. In 
[I], it was assumed that the cells stored in the buffer have 
independent random destinations. In [31, [41, it was assumed 
that all possibIe combinations of how cells were stored in 
the buffer are equally likely. All these assumptions fail to 
acknowledge the fact that the queues, as well as the cells stored 
in the queues, are indeed dependent upon each other. As a 
result, the accuracies of these models are not very good under 
certain conditions. In this paper we will give the Aggregation 
Method to solve the problem in a completely different way. 
In this model we do not make arbitrary assumptions on the 
queues in the buffer. Moreover, the model has polynomial. 
running time as a function of the switch size and gives very 
accurate results under all tested cases. 

Although the technical details and mathematical interpre- 
tations could be lengthy, the idea of our method is quite 
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simple and can be described as follows. The basic idea is 
to find the behavior of the queues in an inductive way. First 
consider when the buffer is very large. In this case the cell loss 
probability will be very small and the buffer dependency can 
be neglected. Note that the queues are still dependent on each 
other due to the input dependency. Now if we only consider 2 
queues in the buffer, say. queues for output I and output 2> a 
very good prediclion about the behaviors of these two queues 
can be obtained without much difficulty: the input patterns to 
these two queues are known (by the assumptions about input 
traffic), and no other queue will interfere with them, i.e., no 
other queue will grow to a size so large such rhat some of 
the input cells to these two outputs have to be dropped. After 
finding out the behavior these two queues? we “aggregate” 
them together, or to consider them as a singIe block. This block 
will store the cells for output 1 and output 2. as illustrated 
in Fip.I(b), and at this moment, its behavior is known quite 
well. Now consider 3 queues: the queues for outputs 1, 2. 
and 3. Instead of regarding them as 3 separate queues, we 
regard them as two components: one component is the block 
containing queues 1 and 2 ,  and the other component is queue 
3. The behavior of each of the two components is known. and 
again we can find out the behaviors of the three queues quite 
precisely. Then again we aggregate the three queues into one 
block. and then consider 4 queues. The process can be carried 
on until all N queues have been aggregated into one block, 
and by this time, we have found the queueing properties of 
the entire switch. We will show later that this idea can also 
be used for switches with smaller buffers. 

The advantage of this method is that, regardless of the value 
of N .  in each step, there are always only two components 
that need to be considered. The whole process takes N steps, 
therefore the complexity of this method is a polynomial of 
N .  Also note that though the queues are dependent upon 
each other, they interact in  such a way that after a step some 
unnecessary details can be “omitted” and only those that will 
be needed in the future need to be stored. For example, when 
considering two queues? rather than storing the probability that 
queue 1 is  of size z and queue 2 is of size y, we only store 
the probability that queue 1 and queue 2 are of size 2 i- g, 
because other queues typically do not care how these z -t y 
cells are distributed as long as they know that there are 2 + y 
cells in these two queues. 

It should be pointed out that the idea of aggregation is not 
limited only to electronic switches, and can be used in a wide 
variety of applications. En this paper we will also apply it to 
optical Wavelength Division Multiplexing (WDM) switches. 
WDM technique is now widely regarded as the candidate for 
future high speed communication networks due to its nearly 
unlimited bandwidth [12]. In a WDM packet switch, input 
and output links are optical fibers. On a fiber there are k 
wavelengths, each carrying independent data [I 21. Buffers are 
implemented with Fiber Delay Lines (FDL). which are capable 
of delaying packets for a certain amount of time. The incoming 
packets are fixed length cells stored in the optical domain. 

In the past the performance of WDM packet switches with 
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Fig. 1. An optical WDM switch with shared buffer. 

dedicated buffer for each output link has been studied by [ 143, 
[13]. However, since FDLs are expensive and bulky, to reduce 
the cost and size of the switch. it is more desirable to let 
them shared by all outputs 1151. Fig2 shows such a WDM 
switch with shared buffer. It has N input/ourput fibers and 
E shared FDLs, each capable of delaying a packet for one 
time slot. Before entering the switching fabric. a packet can 
be converted from one wavelength to another by wavelength 
converters. Aside from the technical details, this switch can 
be considered as a switch with N inpuVoutput ports and Bb 
buffer locations. wirh each port capable of receivinghending 
up to k packets at a time slot. To the best of our knowledge, 
the performance of this type of switch has not been previously 
studied analytically. We will show that the Aggregation Model 
can also be used for it and can give very accurate results. 

In the rest of the paper, we will first iIlustrate the Aggre- 
gation Model under uniform Bernoulli traffic for electronic 
switches. We will then show that it can also be used under 
other types of traffic. Finally we will apply it to optical WDM 
switches and also to other switch models. 

11. THE AGGREGATION MODEL FOR ELECTRONIC 
SWITCHES UNDER BERNOULLI TRAFFIC 

In this section we will illustrate the Aggregation Model 
using uniform Bernoulli traffic for electronic switches. The 
assumptions of the traffic are: 

The arrival at lhe input is BernouIli with parameter p 
(0 I p I l), i.e., at a time slot, the probability that there 
is a cell arriving at an input port is p and independent of 
other time slots, 
The destination of a cell is uniformly distributed over all 

I Inputs are independent of each other. 
The switch is modeled as running in a three-phase manner: 

In phase 1, it accepts the arrived cells. In phase 2, it transmits 
the cells at the head of queues. In phase 3. it runs a buffer 
management algorithm and drops some cells if necessary. We 

N outputs. 
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call i t  the “receive first switch” and denote it by RFS. Later 
on we will also consider “transmit first switch” or “TFS”, in 
which phase 1 and phase 2 are reversed. 

When the switch has just finished phase 2, we say it is in the 
“intermediatc state”. In the intermediate state. if the number 
of cells that have to be buffered exceeds the buffer size, some 
of the cells have to be dropped. The decisions are made by a 
buffer management algorithm. We adopt a “random drop with 
pushout” algorithm which> if the buffer size is exceeded by 
V, will randomly drop V cells out of the total B -t- V cells. 
Note that by this algorithm, not only the newly arrived cells 
but also cells already in the buffer could be dropped. This is 
what meant by “pushout”. In general, algorithms that allow 
pushout have better performance than those do not [7]. 

Before diving into the formulas and equations, we first give 
an overview of the method. 

A. An Overview 

There are Ar virtual queues in the buffer, one for each 
output. We first consider two queues, queues for output 1 
and for output 2.  The state of these two queues can be 
represented by a pair of random variables. (X, Y), with S 
being the number of cells stored in queue 1 and Y being the 
number of cells stored in queue 2. We model it as a two- 
dimensional Markov chain. The transition rate and the steady 
state distribution of this Markov chain can be found. Then 
we combine the two queues into one block which stores the 
cells for output 1 and output 2. We will then use another 
pair of random variables, (S ,  U ) ,  to represent the state of the 
block, where S is the number of cells stored in the block and 
U is the number of non-empty queues in the block. To de- 
scribe the behavior o f  the block, two conditional probabilities 
are needed, CT(S1:UIISojUo,n) and CB(U~ISI ,UI ,S?) .  
CT(S1,lJl(So, UO, n) is the probability that the block goes 
from state (SO, U O )  to intermediate state (SI, U l )  when there 
are n cells arrived for it. C3(U2 ]SI, U1, S2) is the probability 
that if the intermediate state is (SI, UI),  after dropping SI -S2 
cells, the block will have U, non-empty queues. 

Now consider three queues, queue 1 to queue 3. Regarding 
I the first two queues as a block, we can use (S, U,  2 )  to 

represent the state of the three queues, where S is the the 
number of cells stored in  the black, U is the number of 
non-empty queues in the block and Z is the number of cells 
stored in queue 3. With the transition probability for (S, U )  
obtained in the previous step, the transition rate of this 3- 
dimensional Markov chain can be found, with which we find 
the steady state distribution of this Markov chain. Now similar 
to the previous step, we combine the three queues into a 
single block and use only two random variables, (S ,U)  to 
represent the state of this block, where S is the number of 
cells stored in queue 1 to queue 3 and U is the number of non- 
empty queues from queue 1 to queue 3. We now update the 
two conditional probabilities used to describe the behavior of 
the new block containing three queues, GT(S1, U1 ]So, UO, n) 
and CB(UzIS1, U1, S2), where CT(S1, U1 IS,, UO, n) is the 
probability that the block containing 3 queues goes from state 

(SO, V O )  to intermediate state (SI, U,)  when there are n cells 
arrived for it, and CB(U?IS1,U1.&) is the probability that 
after dropping SI - S2 cells the block containing 3 queues 
will have U, non-empty queues. When considering 4 queues. 
again the first 3 queues will be considered as one block and 
we can still use triple (S,  U,  2)  to represent h e  state of the 
four queues. After obtaining the steady state distribution of 
the Markov chain we can combine the four queues into one 
block. The process can be carried on until all N queues have 
been combined into one single block. Then we can find useful 
information such as cell loss probability and average delay of 
the switch. 

Note that throughout the process only 3 random variables 
are used, as compared to IV random variables of the vector 
method. Of course. this model is not an exact model as the 
vector method since we use only 2 random variables to model 
up to Ar queues and we assume Markov property of these 
random variables. However, as can be seen later, our model 
is indeed very accurate under all network configurations and 
arrival rates. 

B. Dela iled Description 
In the following we give detailed description of our model. 

First consider only two queues. 
I) Gelring Started - Two queues: The state of queue for 

output 1 and queue for output 2 i s  represented by random 
variable pair ( X , Y ) .  We will first give the transition rate of 
this two dimensional Markov chain, 

Suppose the Markov chain is currently in  state (&,YO) 
where Xo + Yo 5 B and there are a cells arrived for output 
1 and b cells arrived for output 2. The Markov chain will go 
to intermediate state ( X I ,  Yl ) where 

( 1 )  
X ’ o = O m d a < 2  { 2 0  + a - 1 otherwise x 1  = 

and 

I$ = 0 and b < 2 
(2) 

‘1 = { i.i +- b - 1 otherwise 

For convenience we write the conditional probability that given 
there are a cells arrived far output 1 and b cells arrived 
for output 2, the Markov chain will transit from (Xo,l$) to 
(xl, yl) as Ta,b(Xl, 1’1; x’u, b ) :  

1, 
0, otherwise 

if Eq. (1) and {2) satisfied 

The transition rate from (XO, 15) to (XI, YI) can be found 
by summing over all possible pairs of (a: b):  

T(X1, I’l;xO,YO) = Ta,b(~l:~’l;~Ol~O1a, b)Pa:b(% b )  
(a ,&)  

(4) 

wherep,,b(a, b) is the probability that there are a cells arrived 
for output 1 and b cells arrived for output 2. 
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p,:b(n,b) can be found as follows. Let nz be the total 
number of cells arrived for output 1 and output 2. Then 

IJm(7n) = ( ; ) (2p/N)n”l - ,p/A‘)”-”~ 

poln2(Ulf71) = ( ’,“ ) 0.5’0.5’”-” 

( 5 )  

where 777 E [O, iV]. Given there are rn cells for output 1 and 
output 2, the probability that a out of these m cells are for 
output I is 

( 6 )  

where (1. f [U, m] and 

Pa;b(fl.! b )  Palm(ala f- b ) h ( c 1  + b)  (71 

So far we have given the transition rate from an initial state 
(SO, 1’0) to some intermediate stale (SI: 1’1). (SI, lrl) is an 
intermediate state since i t  is the state before running the buffer 
management algorithm. If there is no buffer overflow in the 
switch, (SI: I.; 1 will be the state of the two queues in the 
next time slot. Otherwise some of the cells may be dropped 
by the buffer management algorithm and the two queues may 
store fewer cells than Xl and K .  In this paper we refer to the 
dropping of cells as the “moving back” of the Markov chain. 

It will be difficult, if not impossible, to know exactly how 
many cells will be dropped from queue 1 and queue 2, 
because at this moment we have absolutely no information 
about queues other than queue 1 and queue 2. Thus some 
approximation has to be used. We will assume that if x’1 + 
rl, 5 B,  no cells will be dropped from queue 1 and queue 2. 
Otherwise suppose XI + Y1 = B+ V ,  V cells will be dropped 
from queue 1 and queue 2. 

Since the dropping is random, when XI + E; = B + V ,  the 
probability that the switch dropped ‘U, cells from queue I and 
vY cells from queue 2 is 

r 

where ‘U, + vY = V and 0 5 vz 5 X I ,  0 5 ‘uy 5 YI.  After 
the dropping the Markov chain will move back to (X2,E;) 
where Sa = SI - U+. and YZ = Y1 - uY. 

When computing the transition rate of the Markov chain, 
we first find T(Xl, YI; So, Yo], the transition rate from s- 
tate (X0, kb) to state (X,,Yl) by Equation (4). If X1 f 

5 B, the transition rate from state ( X O ,  1’0) to s- 
tate (XI? YI) is iflcremented by T ( X 1 ,  Y I ;  XO, 15). 0th- 
erwise let Back( SS, Y2 ; XI, I i )  be the probability that 
( X 1 , Y l )  will move back to (Xz,I2). Then the transition 
rate from state (XO: 17,) to state (X?! Eli) is incremented by 

After obtaining the transition rate. T ( X ;  Y ) ,  the steady state 
distribution of the Markov chain can be easily found, either 
by directly inverting the transition matrix or using a fixed 
point method. As described earher, we will now combine 
these two queues into one block. We use another pair of 

T ( X 1 ,  Y1; KO; Yo) x Bact(X‘?: k’2; XI, Y1). 

random variables, (S ,  U ) .  as the state of this block. where 
S is the number of ceIls stored in this block and U is the 
number of non-empty queues in this block where 0 5 5’ 5 B. 
0 5 U 5 2.  For a given (S. U ) .  (S: Y) which satisfies 
X 4 I’ = S and u(X) + ~(1’) = U is called a “sub-state” of 
(S, U ) .  where U ( )  is the step function: 

0. 2 5 0  
1 otherwise .U(..) = 

There can be more than one suh-stales of (S: I/) and all such 
sub-states will merge into one state. Note that this is where the 
simplification over the vector method begins. The probability 
that the block is in state (S, U ) .  or T(S ,  U ) ,  is obtained by 
summing 7i(X! Y )  for all its sub-states. 

We will need two conditional probabilities to describe the 
behavior of the block for the computation in the next step. 
First we will need to find the transition rate from (So,  Uo) to 
intermediate state (SI, V I ) ,  given that there are n cells arrived 
for output 1 and output 2. Denoted by CT(Si,U1ISo: U O : ~ ) ,  
it can be found as follows. Let (Xg:E.ho) be a sub-state 
of (SO,  UO) .  Given that the block is in state (So ,Uo) ,  the 
probability that it is in sub-state (X,“; I$) is 

0 = 7Tyx,o, l;o)/x(sO, Vi)) 

For a sub-state of (Sl,U1) denoted by ( X { , Y / ) :  let 

n, arrived cells for output 1 and output 2, the block transits 
from (X,”! 15’) to (X:, Yf ). It can be found by 

T (Xj I ,  y j . X o  I O ,  170 In) be the probability that given there are 

Z(; In,) = Ta,b(;  lQ.:b)P,lm(alQ. + C) (9) 
a+b=n 

where T a , b ( ;  la, b)  is given in Equation (3) and p,l,(ala. + 
6 )  is given in Equation (6). Let 71 be the summation of 
T, ( X :  , Er; ; X:, 1;’ in,) over all sub-slates of ( SI, U1 ) . Incre- 
ment CT(Sl ,  U1lSo, UO, n,) by 6 ~ .  Then repeat this procedure 
for the rest of sub-states of (SO, U ,  j .  

The other probability we will need to know is when the 
intermediate state is (SI, VI). given the block will move back 
to a state containing S, cells, what is the probability that it wilI 
have U ,  non-empty queues? Denote if by GB( U2 IS1,111, &), 
first, let B be the probability that the block is in sub-state 
(Xp, of (SI, Ul). Knowing that there are 21 = SI-& cells 
dropped, we can use Quation (8) to find the probability that uz 
cells are dropped from queue 1 and vY cells are dropped from 
queue 2, where v, +U, = 21 and 0 5 ?I, 5 X t ?  0 5 vf/ 5 YF. 
Denote this probability as y. Increment CB(U21S1, U,, Sz) by 
By where U, = u ( X p  - U % )  I- . (I;” - c y )  and U ( )  is the step 
function. Then repeat this procedure for the rest of sub-slates 

2 )  TTw Ilerarion - More queues: Now suppose we have 
aggregated 1 queues into one block. When just completed the 
computing for two queues, 1 = 2. We now study I +  1 queues 
by regarding queue 1 to queue I as a block. The state of the 
1 -+ 1 queues is represented by (S, U ,  Z ) ,  where 5’ is the the 

of (SI, U1). 
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number of cells stored in the block. U is the number of non- 
empty queues in the block and Z I S  the number of cells stored 
in queue I -t 1. 

Similar to the 2-queue case. we will first need to find nut 
the uansition rate of this Markov chain. Suppose it is in state 
(SO,  U,, 20). Given there are n cells arrived for output 1 to 
output 1 and c cells for output I +  1. queue I +  1 will go from 
2, to Z1 where 

Z o t c I 1  
.& + c - 1 otherwise t 10) 

Computing the moving back probability is somewhat more 
complicated than the 2-queue case because one more random 
variable. U .  the number of non-empty queues in the block is 
involved. Suppose 5’1 -t Z1 = B 4 V .  First use Equation (S) 
to obtain the probability that out of these V cells, v, are from 
the block and U, are from queue 1 + 1. Then the ( I  +- lit,, 
queue will move to ZL! = Z1 - vz. The block will store SZ = 
SI - us cells, and the probability that it will have Up non- 
empty queues is CB(Up1S1, VI, S2) which was obtained in 
the previous step. With the moving back probability and the 
transition probability to the intermediate states, the transition 
probability of this Markov chain can be found in a similar 
way to the 2-queue case, 

After obtaining the transition probabilities, the steady state 
distribution of the Markov chain can be Found. We will then 
aggregate the I + 1 queues into one block. The state of block 
will be represented by (S’, U’) ,  where 5’’ is the number of 
cells stored in queue 1 to I +  1 and U’ is the number of non- 1, 21: 20, and c satisfy Equation (10) 

(12kmpty queues from queue 1 to I +  1. The probability that the 

and CT(S1, U1lLS,, U,, 7 1 )  is the conditional probability ob- 
tained from the previous step. The transition rate of the 
intermediate switch state can be found by 

T(S1, u1, z1; SO! UO, ZO) = 

Tn,c(Sl, u1, .&;so: U,; Zoln! c)pn,c(n, c )  1131 
(n7c) 

~ , , ~ ( n ,  c) can be found in  a similar way to p,,b(a. ,  b ) .  Let 
ni be the total number of cells arrived for output 1 to output 
I + 1. Then 

where m E [ O , N ] .  Given there are m cells for output 1 to 
output I + 1, the probability that n out of these m cells are 
for output 1 to output I is 

where ?E E IO, m] and 

For moving back,& make the same assumptions as in the 
2-queue case, that is, i f  SI +Z1 5 B,  no cells will be dropped 
from these queues, otherwise suppose SI + Z1 = B + V, and 
V cells will be dropped from these queues. 

Note that the switch may not actually work according to this 
assumption. When S I  -k Z1 5 B,  cells from these queues may 
still be dropped since other queues may be storing too many 
cells, and when SI + Z1 = B + V, fewer than V cells could 
be dropped from these queues since the switch may decide to 
drop some cells from other queues. However. the probabilities 
of the above events are relatively small, and most importantly, 
as I approaches N - 1. these probabilities will decrease to 
zero and this assumption will become true. 

block is in state (S’, U ’ )  can be found by 

,’(SI, U’)  = TjS;  U ,  2 )  

where (S, U! 2) satisfies S + 2 = S’ and U + U (  2) = U ‘ .  
Following our convention each such triple ( S ,  U ,  Z )  is called 
a sub-state of (S’, U‘) .  

Finally, similar to the two-queue case, we have to prepare 
two conditional probabilities for the next step. The first is 
CT’(S;, UilS,$ Ui,n.’), which is the probability that when n’ 
cells arrived for output 1 to output I+  1, the block wiII transit 
from (Sh, U;)  to (Si: Vi) .  Again, let (S,”! U:, Z,”) be a sub- 
state of (S,!,, U ; ) .  Knowing that the block is in state (SA, U ; ) ,  
the probability that is in sub-state (S,”, U:, 2:) is 

8 = T(S,o, U& Z,O)/jT’(S& U;)  

Let ( $ ! U { , Z { )  be a sub-state of (S i ,U i ) ,  
T,(Sf, U:, 2:; S:, U$, Z:ln’), which is the transition 
probability from state (S,”, U:: 2:) to state (S:: U { ,  2;) 
given thal there are totally n’ cells arrived for output 1 lo 
output I +  1 can be found by 

Tn(; In’) = TnJ; 1 %  C ) P n l m ( 4 4  (18) 
n+c=n’ 

where TY,,J; in, e )  is given in Equation (1 1) and pnlm(?iIn.‘) is 
given in Equation (15). Find such transition probabilities for 
all sub-states of (Si, V i )  and let 7 be the summation of them. 
Increment CT’(S;, UilS& U& n’) by Bq.  Then repeat this for 
the rest of sub-states of (Sb, U;).  

The second conditional probability is that when the inter- 
mediate slate is (Si, Vi), knowing the block will move back 
to a state containing Si cells, &what is the probability that 
it will have U; non-empty queues? Denote this probability 
by CS’( U; IS;, Vi, Si). First let 0 be the probability that the 
block is in sub-state (Sy, Up,  Z! )  of (Si, U:).  Knowing that 
there are V = 5’; - Si cells dropped, we can use Equation (8) 
to find the probability that us cells are dropped from the block 
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and I : ,  cells are dropped from queue I+  1, where t!, + = 1” 
and 0 5 e:, 5 5’:. 0 5 er, 5 Z:. Denote this probability 
by 7. Now for the block. the intermediate state is (Sy, Up): 
and it will move back to a state storing Si = 5’: - 1;, cells. 
The probability that after moving back, i t  will haw Ut non- 
empty queues is c = C B ( C ~ ~ l S ~ ,  Up ,  5’;). which is obtained 
from the previous step. Increment GB’(U4 IS‘;, U;, 5’;) by Bya 
where U: E U ~ + U L ( Z ~ - Z ’ ~ )  and U ( )  is the step function. Then 
repeat this procedure for the rest of sub-states of (Si, U ; ) .  

C. Using the Model 
After iterating the process until I = N - 1. the stationary 

distribution T(S, U )  cm be found. where S is the number of 
c e b  stored in the buffer and U is the number of non-empty 
queues. We can also obtain C T ( S l ,  U1 15’0, UO, 71.). which is 
the probability that when there are SO cells and r/, non-empty 
queues in the buffer, upon receiving 71 cells, the switch will 
store Si cells and has U1 non-empty queues before moving 
back. With this information we are now in the position to 
derive the cell loss probability and the average delay time of 
the switch. 

I )  Cell Loss Probabilin: The cell loss probability, denoted 
by CY, can be found by 

S(, =o uo=o n=O S I  =U lii  =o 
C ~ ( S 1 : U l I ~ O :  Uo,n)(S1 - B)Pnln) (19) 

where 5’1 

n cells arrived at this switch 
B. p , (n)  is the probability that there are ~otally 

where n E [O! NI. The probability that the switch is in  state 
(5’0: U,) is 7r(S0, UO). Upon receiving n. new cells, the prob- 
ability that it will transit to (SI, U , )  is CT(S1, U I ~ S O ,  VO, n). 
If SI 5 B, no cell will be dropped. Otherwise exactly SI - B 
will be dropped. a is then found by summing over all possible 
n, U and S. 

2) Average Delay: The delay time of a ceIl is usually 
defined as the number of time slots it stays in the buffer before 
being transmitted. Since the buffer management algorithm 
we adopt allows pushout. cells that have to ix put into the 
buffer could be dropped without being actually transmitted. 
Therefore, we modify the definition of delay time as the 
number of time slots a cell stays in the buffer before being 
transmitted or being dropped. 

It can be shown that in such a system Little’s Formula still 
holds. That is. 

F ( W )  = E ( S ) / ( N p )  (21) 

where E( W )  is the average delay time and E ( S )  is the average 
number of cells stored in  the buffer. E ( S )  can he found as 

B N  

E ( S )  = Sx(S, U )  
s=o u=o 
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Fig. 3. Cell loss probability and average delay under Bernoulli 
traffic when hi = 4, B = 8. 

D. Validation of the Model 
We conducted extensive simulations to validate the Aggre- 

gation model and the results are shown in Fig. 3 to Fig. 4. For 
comparison purpose, we also implemented 3 other models, 
called the Active Input Model [I]. the URN Model [3 ] ,  and 
the Tagged Queue Model [6], and showed their results in the 
figures, We can see that for both cell loss probability and 
average delay and for both small switch and large switch, the 
Aggregation Model is very accurate: its curves almost overlap 
with the simulation curves. Other models, in general, do no1 
perform very well, especially when N and B grow large. We 
did not provide the results for the Tagged Queue Model when 
N = 16 and B = 32. because in this case it takes too much 
time since this model is actually of exponential complexity. 
We will give a detailed comparison of the Aggregation model 
and other models in Section VI. 

111. THE AGGREGATION MODEL UNDER BURSTY TRAFFIC 
So far we have considered h e  Aggregation Model under 

Bernoulli traffic. The idea of aggregation is actually not related 
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Fig. 4. Cell loss probability and average delay under Bernoulli 
traffic when AT = 16, B = 32. 

fo traffic types, and in this section we will show how to 
apply it to Bursty Traffic for electronic switches, Under bursty 
traffic, an input port is assumed to be alternating between two 
states, the “idle” state and the “busy” state. When in “idle” 
state no cell arrives at this input port. When in “busy” state, 
cells continuously arrive at this input port and go to the same 
destination. This stream of cells is called a burst. 

When applying the aggregation method to bursty traffic, the 
general scheme is exactly the same as for Bernoulli traffic. 
However, it becomes more complicated because of the input 
correlations and we have to add some additional random 
variables to describe the state of h e  input. Therefore, first 
we give the input state transition probabilities. 

A. Input State Transitions 
It is usually assumed that the durations of the busy and idle 

periods are random variables following geometric distribution 
with parameter p and q. respectively. An input port can be 
modeled as a two state Markov chain. When in the busy state, 
the probability that in the next time slot it will go to the idle 

state is p and the probability that it will stay in the busy state 
is 1 - p .  Similarly. when in the idle state, the probability that 
in the nexl time slot it will go to the busy state is q and the 
probability that it will stay in the idle state is 1 -g. The average 
burst length L is l/p, and the average idle period length is 
l / q .  Therefore the traffic load is p = q / ( p  + q ) ,  

We use triple (a!  P ,  x) to represent the state of the input. 
where CY is the number of cells arrived for output 1 to output 
I ,  P is the number of cells arrived for output I t- 1 and x 
is the total number of input cells arrived at this switch. Here 
1 E [ l , N  - I]. (aJ3,x) is a Markov chain. The transition 
probability from state (00, Po: KO) to state (a1, PI. SI) can be 
found as follows. 

Let p ~ z ~ ( r ~ 1 ~ 0 )  be the probability that there are totally rL 
input ports jumped from idle state to busy state, given that 
there were so busy input ports in the previous time slot. 

(23) 

Given r t ,  let be the probability that out of these T~ 

newly turned busy input ports, T ,  are sending cells to output 
1 to output 1 f 1 

since the destinations are randomly chosen. Again, given that 
there are rs new busy inputs to output 1 to outpul I + 1, the 
probability that there are 7-1 inputs for output 1 to output I is 

With Equations (23) to (25), the probability that there are 
totally r t  new busy input ports and 7-1 of them go to output 1 
to 1 and r2 of them go to output I + 1 is 

P R ( T l : T 2 7  TtlXO) = 
P R ~ ( T ~ I X O ) Y R ~ ( T I  + ~ ~ ~ T ~ ) P R ~ ( T I ( T I  + ~ 2 )  (26) 

Now let ~ L ~ ( ~ ~ ( C Y O )  be the probability that given there were 
cy0 input ports sending cells to output 1 to output I ,  11 of them 
jumped from busy state to idle state, 

Similarly, let p p ( l 2  I ~ o )  be the probability that given there 
were input ports sending cells to output I -t 1, / 2  of them 
jumped from busy state to idle state. 

There were 60 = xo - 00 - PO input ports sending cells to 
output port 1+3 to output N. Let p ~ ~ ( l ~ ~ c h )  be the probability 
that 1, of these input ports jumped from busy state to idle state. 
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With Equatjons (27) to (29), the probability that there are 
totally 1, input ports jumped From busy state to idle state and 
l 1  of them used to address output 1 to output 1 and 12 of them 
used to address output I + 1 is 

P L ( l 1 , [ 2 :  l t l ao ;  Po, so) = 

p1,1(11Iao)PL2(1:!I~ob)PLr(lt - 11 - 1 z I b )  (30) 

After obtaining Equations (26) and (30), 
Z’I(O,I>BI: XI :  00, /30,xo)~ which is the transition probability 
from (cto,p~?x~) to state ( c t Y 1 : & , ~ ~ ) ,  can be found by 

TI(a1: PI: Q1;Qo: PO! xo) = 

~ P L (  / I ,  h: it  )ao, Po, N O ) ~ ~ R ( ~ L :  7’2, T t  1x0) (31) 

over all possible (1.1, r?, rt) and ([I, 1 2 ;  l t )  satisfying QI -a0 = 

B. The ilggregation Method for Biirst? Traflc 
After obtaining the transition probability of thc inputs, we 

can start deriving the transition probability of the entire switch. 
Since much of the technical details is similar to, i f  not the same 
as, the Bernoulli traffic case, we only outline the parts which 
are different. 

When considering two queues, the state of the switch are 
represented by 5 random variables. ( a ,  p, x; X, Y ) .  where ct is 
the number of busy inputs addressing output 1, P is the number 
of busy inputs addressing outpuc 2,  x is the total number of 
busy inputs, X is the number of cells stored in queue 1 and 
I’ is the number of cells stored in queue 2. The transition 
probability from state (QO: PO, XO: X O ,  Yi) to intermediate state 

1’1 - I I ,  p1 - = T Z  - 12 and 91 - SO 7- t  - 1,. 

( W , P I , X l , ~ l , Y d  1s 

~ ~ ( ~ I , P ~ : , Y ~ ~ ~ O : P ~ : ~ O ) ~ ~ , ~ ( ~ I , ~ ~ ; ~ O : ~ O J ~ O : P O )  
where TI(cr1, P l ,  XI;  QO, DO, XO) is given in Equation (31) and 
Ta,b(X1,Y~; XO, YoJcuo,pO) is given in Equation (3). If X1 -t- 
Y1 > R, same as in the BernoulIi traffic case, the Markov 
chain will move back to some state (al  ~ PI,  xl,  XZ, 15) where 
X2 + ?i = B. The probabihty of moving back from ( X I ,  13) 
to (X2, Y2) is exactly the same as io the Bernoulli traffic. 

After obtaining the transition matrix, the steady state dis- 
tribution can be obtained. Like in Bernoulli traffic, the two 
queues will now be combined into one block. (X: E’) wiIl be 
replaced by (S, U ) ,  where S is the number of cells stored in 
the block and U is the number of non-empty queues in the 
block. (a ,  p) will be replaced by n = a+ p which is the total 
number of cells addressing outputs 1 and 2. The conditional 
probability that given that there are 7 1  cells for this block, it will 
go from (SO, UO) to (SI, U l )  can be found in a similar way as 
in Berfloulli traffic. except that here be more precise, we also 
record the total number of cells arrived at the switch. Therefore 
rhe conditional probability will be GT(S1, U1 JSO, UO, 72, T )  
where T is the total number of cells arrived at the switch 
and the rest of variables are defined in the same way as 
in Bernoulli traffic. The conditional probability concerning 
moving back is also added with two more conditions. the 
total number of cells arrived at the switch, T ,  and the total 

number of cells addressing the block, n. and is written as 

When considering I + 1 queues where I 2 2, the s- 
tate of the queues is represented with 6 random variables. 
(a: p, 9: S’: U: Z), where a is the number of busy inputs 
addressing output 1 to output I, p is the number of busy inputs 
addressing output I -t 1, x is the total number of busy inputs, 
S is the number of cells stored in queue 1 to queue 1. U is the 
number of non-empty queues from queue 1 to queue 1 and Z 
is the Izumber of cells stored in queue 1 +- 1. The transition 
probability from state (ao, PO,  XO! SO, U,: 20) to intermediate 

CB(U?)Sl, Ui? S2, TZ? T ) .  

state ( W : & ~ X ~ , & , U I , . Z ~ )  is 

TI(ar1: PI 7 SI 1 0 0 ,  Po, xo)Tnn:c ( S I  : u1, z1; s o :  &, 2, lao: Po) 
where Tn,JS1, U I ,  21; So, UO: ZO~CEO,~O) is given in Equation 
(11). Moving back is exactly the same as !he Bernoulli 
uaffic case. Then we combine the I -I- 1 queues into one 
block: ( S I U ; Z )  will be replaced by (5”’:U’) where S’ = 
S + Z and U’ = U + u ( Z ) ,  and (a,P) will be replaced 
by n = n + ,R. After that the two conditional probabilities 
GT(S,7U11Sb:Uo:n,T) and CB(UZIS1,Ul,S2,n,T) will be 
updated. 

C. The Rewinding Modification 
The cell loss probability of bursty traffic is much lxger than 

Bernoulli traffic. Therefore, when the buffer size is not large 
enough, the zero buffer assumption. or the assumption that 
there is no buffer dependency usually fails. In other words, 
some of the queues will grow to a very large size and the 
switch may have to drop cells in other queues. However, the 
aggregation method still works fairly well under these condi- 
tions. The reason is that, first, we only need the conditional 
transition probabilities, and to obtain these probabilities we 
will first go through a normalization procedure which tends 
to make them accurate. Another reason is that when using the 
zero buffer dependency assumption, at the Ith iteration, we are 
actually assuming there are only It-1 queues in the buffer, This 
assumption will become closer and closer to the truth as the 
iteration goes on, since when the number of considered queues 
increases, the number of unknown queues will decrease, and 
in the last step when I = N-1. there is indeed no interference 
from other queues since there is no other queue at all. 

With the observations above, we can improve the accuracy 
of the aggregation method as follows. The behavior of a 
block containing I queues is found after the ( I  - l j t h  itera- 
tion and is fully described by the two conditional probabili- 
ties, GTr(S1, UlISo, U o , n , T )  and CBr(Li2(S1,U11S2,71,T). 
Here we added subscript 1 to indicate that these are the 
transition probabilities of a block containing I queues. For 
simplicity, in the following we write them as CT,() and 
C B I ( ) ,  respectively. After going through N -  1 sieps, we have 
obtained the CTr() and C B I ( )  for all 3 5 1  5 N .  Now we 
can consider the switch as two blocks. one with I queues and 
the other with N - I queues. Since the behavior of these two 
blocks is known, the steady state distribution of the two blocks 
can be found. Note that the zero buffer dependency assumption 
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is not needed at this time since all the queues in the switch 
are considered. With this we can find the probability that the 
second block stores j cells when the first block is in a certain 
state. With this probability we, can recalculate the C T I ( )  and 
CBI ( )  without the zero buffer dependency assumption, since 
now we have the knowledge about the number of cells stored 
in other N - I  queues. This recalculation may start with 1 = 3, 
then for I = 3 to 1 = M - 1. We call this “rewinding.” 

The rewinding modification is similar to a fixed point 
method: first make a guess ahout the solution, then use this 
guess to find a better solution in hope that it will indeed 
become better. We found that the rewinding will improve 
the accuracy of the aggregation method, and typically only 
one round of rewinding is needed. Therefore, in our program 
for bursty traffic this modification is included. However, for 
Bernoulli traffic it seems unnecessary because the model is 
already very accurare. 

D. Validations of the Model 
In Fig. 5 we show the cell loss probabiliky and the average 

delay time of a switch with M = 4 and B = 8 as a function of 
h e  traffic load when the average burst length is 5 time slots. 
We can see that the results of the Aggregation Model are very 
close to the simulation. The results of other models are also 
shown. The cell loss probabilities of these models are close 
to the simulation, but the average delays are not. A detailed 
comparison will be given in SectionVI. 

Iv. THE AGGREGATION MODEL FOR OPTICAL SWITCHES 

The Aggregation Model can be readily applied to optical 
WDM switches. As in Section I, we model WDM switch 
with fir inputioutput fibers and B shared FDLs as a switch 
with h‘ inputloutput ports and Bk buffer locations, with each 
port capable of receiving/sending up to k cells at a time 
slot. By modifying the three equations governing the queuing 
behaviors, Equalions (l), (2) and (lo), the Aggregation Model 
can be used for this type of switch. For example, Equation (1) 
should be changed to 

X ’ o + a l k  
otherwise SO + a - k 

Equations (2) and (10) should also be modified in a similar 
way. Also, in the pair of random variables (5’: U )  which repre- 
sent the state of an aggregated block of queues, U now should 
be interpreted as the number of cells ready to be transmitted in 
the block. Fig.6 shows the cell loss probability and the average 
delay of a WDM switch with 8 input/out fibers, 4 FDLs and 4 
wavelengths per fiber under Bernoulli traffic. We can see that 
the Aggregation Model matches perfecily with the simulations. 

V. TRANSMIT FIRST SWITCH 

So far. we have considered receive first switches, which 
first accept all arrived cells, then transmit cells at the head 
of queues, There are also transmit first switches. which first 
transmit cells at the head of queues, then accept arrived cells. 
The extension of the Aggregation Model from the receive 

Arrival Rate 

(a) 
N=4.B=8 

Arrival Rates 
(b) 

Fig. 5. Cell loss probability of and average delay under bursty 
traffic when N = 4, B = 8. The average burst length is 5 
time slots. 

first switch to the transmit first switch i s  immediate. Similar 
to Section IV, only Equations (l), (2) and (lo), need to be 
modified. For example, Equation (1) should be changed to 

xo 0 
x1 { ;ro + a - 1 otherwise (33) 

which states the fact that no cell will be transmitted if 
the queue is empty, otherwise one cell will be transmitted. 
Equations ( 2 )  and (10) should also be modified in a similar 
way. Fig. 7 shows the analytical and simulation results for a 
electronic transmit first switch under Bernoulli traffic when 
hr = 16, B = 32. Again we can see that the Aggregation 
Model is very accurate. 

VI. COMPARISONS WITH OTHER EXISTING MODELS 
In this section, we compare our model with three other 

existing analytical models for shared buffer switches we are 
aware of. Note that all these models are for electronic switches, 
therefore, the comparison will be for electronic switches only. 
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To the best of our knowledge, previously there has not been 
any analytical model for optical WDM switches with shared 
buffer. and ours is the first such model. Also note that~our 
mode1 for WDM switches gives very accurate results, as.can 
be seen in Fig.6, 

As in [3], we call the three models the Active Output Model, 
URN Model, and the Tagged Queue Model. The Active Outpui 
Model was first introduced by Turner [ l J  and may i e  the 
earliest model for the shared buffer switches. In this model, i t  
is assumed that the cells stored in the buffer have independent 
random destinations. The URN Model was introduced by Fong 
in C31 which assumed that all possible combinations of how 
cells were stored in  the buffer are equally likely. The same 
assumption was also used in  [4]. The Tagged Queue Model 
was introduced by Paltavina and Gianatti in [6], [5 ] ,  which 
assumed that the queues in the buffer are independent of each 
other. We have implemented these models a d  shown their 
results along with our model and the simulations in  the figures. 
We did not implement the vector method as it is of exponential 
complexity and, since known LO be exact, it should yield the 

1 OD N=16,5=32 

1 0- 
c - 

a 
m a  

1 ... 
0.75 0.8 0.85 0.9 

&.7 0.75 0.8 0.85 0.9 
Arrival Rate 

(b) 

Fig. 7. Cell loss probability and average delay of a electronic 
transmit first switch under Bernoulli traffic when N = 16, 
B = 32. 

same results as the simulations. 
From the figures, first we can see that our Aggregation 

'Model is a very accurate model. since in  every figure its curve 
matches perfectly with the simulation curve. Other three mod- 
els perform well in some occasions, for example, in Fig.S(a) 
for cell loss probability under bursty traffic in a small switch; 
but perform not so well in  other occasions, for example. in 
Fig4 for both cell loss probability and average delay under 
Bernoulli traffic in a larger switch. Therefore, we can say that 
these three models are capable of giving satisfactory results 
under some type of traffic for some performance measures, 
but not for all types of traffic and all performance measures. 

Next we consider the compkxities of the models. As 
explained earlier. the complexity of Lhe aggregation model 
i s  a polynomial function of the switch size. Under Bernoulli 
traffic, the Markov chain of the Aggregation Model is three 
dimensional with ( B  + 1)(B + 2 ) ( N  - 1)/2 states. Under 
bursty traffic, three more dimensions have to be added to 
descnbe the state of the input and the Markov cham is six 
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dimensional with O(Ar3(B 4- 1)(B + 3 ) ( M  - 1) /2)  states. 
The complexity of the Active Output Model and the URN 
Model are also polynomial functions of the switch size. The 
Tagged Queue model, though also conceptually simple, has a 
time complexity growing exponentially with the switch size. 
To see thist we need to explain how the Tagged Queue model 
was implemented. 

In this model, a queue called the “Td’dgged Queue” is singled 
out, and the rest M - 1 queues are modeled as a block. The 
behavior of the tagged queue is given in Equation (1). The 
behavior of the block containing N - 1 queues is described 
by F‘l(vll) which is the conditional probability that when there 
are 1 cells in the block, v cells are ready to be transmitted. 
9 (w I I )  is approximated by using the independence assumption 
of the queues. Let qf be the number of cells stored in queue 
i .  States satisfying Ci=., qi. = 1 are said to be in set I[. 
States in Il satisfying Ed=,? u(gi) = v are said to be in set 
Il.v where U ( )  is the step function. The probability that the 
block is in state ( q 2 , q 3 : .  . . qhr] is approximated by using 
the independence assumption: fl;L2 P ~ ( q i ) .  where PQ(x) is 
the probability that the tagged queue is storing IC cells at the 
beginning of a time slot which can be found approximately 
with the zero buffer dependency assumption. The probability 
that the block is storing 1 cells and has U cells ready to transmit 
is approximated by summing probability over all the states 
in IL,~. The probability that the block is storing 1 cells is 
approximated by summing probability over all the states in 
11. Then P!(vll) is approximated as the ratio of the former 
over the latter. We can see that to find P[(vll), one may have 
to go through all the possible states of the N - 1 queues. 
With each queue having maximum length B, it will require 
O ( B N )  time. This number could be reduced by carefully 
avoiding redundant states, but will still be roughly in the order 
of O(%) which is still exponential [lo], since the number of 
different states it has to visit is the number of different ways 
to put B indistinguishable balls into N - 1 indistinguishable 
boxes. 

The advantage of singling out a tagged queue is that at the 
very least, the behavior of this tagged queue can be known 
quite well. This idea was first introduced in [61, [51, and 
is how the Tagged Queue Model got its name. The tagged 
queue idea was not used in other models originally, and it is 
incorporated here to improve their performance. We can see 
that these models are like our Aggregation Model in the last 
iteration, except for the differences in obtaining the behavior 
of the block. We obtain this information in a step by step 
manner, starting from a block containing only two queues, 
while other models make assumptions about the entire block. 

As a conclusion, the Aggregation Model has an accuracy 
similar to the exact vector method and has polynomial time 
complexity, while the three other models are not accurate 
and may have exponential time complexity. In this sense, we 
can say the newly proposed aggregation model is the best 
analytical model for shared buffer switches. 

Before ending this section, we would like to explain an 

N 
N 

a 

interesting phenomena, It might have been noticed that the 
performances of the three models compared are better under 
Bursty traffic than under Bernoulli traffic. This is a surprise 
to us since the Bernoulli traffic is simpler than the Bursty 
traffic. In order to rule out the possibilities of coding errors, 
we did the following test. For Bernoulli traffic, we plugged 
the simulation 9 ( v ( I )  into the programs for these models and 
by doing so, both the cell loss probability curves and the 
average delay curves moved much closer to the simulation 
curve. Therefore, the reason that these three models are not 
performing well under Bernoulli traffic is because of their 
Pi(wll). In fact, we have compared the Pl(vtl) obtained by 
these models with the simulation Pt(ull) and found that they 
do not agree well on most I and v. Since under bursty uaffic 
the cell loss probabilities of these models are much closer 
to the simulations than under Bernoulli traffic. one might 
expect that the Pl(v\l) of these models should become more 
accurate under bursty traffic. However, this is not the case. 
When comparing the P~(v l l ) ,  we found that they also do not 
agree well with simulations on most 1 and ‘U. same as under 
Bernoulli traffic. The same fact can also be seen in 131, The 
reason for his improvement. we feel? might be that two more 
random variables describing the state of the input were added, 
and that these models derive the cell loss probability based on 
the statistics of the tagged queue which is known relatively 
well. However, note that under bursty traffic the average delays 
given by these models are still not precise. The reason is that, 
to find average delay all queues have to be considered, and 
the final result will not be accurate if Pi(vll) is not. 

VII. CONCLUSIONS 

In this paper we have presented an analytical model called 
the Aggregation Model for switches with shared buffer. We 
considered both electronic and optical switches. This model 
finds the behavior of the queues in the shared buffer in a 
step by step manner. The time complexity of this model is 
a polynomial function o€ the switch size. We verified h i s  
model through extensive simulations and the results showed 
that it is very accurate, similar to the exact vector method 
which has exponential time complexity. In this sense, the 
new model is the best analytical model for shared buffer 
switches by far. In our future work we will find ways to further 
reduce the complexity of this model and consider other buffer 
management algorithms. 
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